751
|
Luo Y, Fischer FR, Hancock WW, Dorf ME. Macrophage inflammatory protein-2 and KC induce chemokine production by mouse astrocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4015-23. [PMID: 11034412 DOI: 10.4049/jimmunol.165.7.4015] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Astrocytes are specialized cells of the CNS that are implicated in the pathogenesis of multiple sclerosis and experimental allergic encephalomyelitis. In acute and relapsing-remitting experimental allergic encephalomyelitis, the neutrophil chemoattractant CXC chemokines macrophage-inflammatory protein (MIP)-2 and KC are associated with reactive astrocytes in the parenchyma. In vitro treatment of primary astrocyte cultures with nanomolar concentrations of MIP-2 or KC markedly up-regulated expression of the monocyte/T cell chemoattractants monocyte chemoattractant protein-1, inflammatory protein-10, and RANTES by a mechanism that includes stabilization of mRNA. Production of TNF-alpha and IL-6 transcripts were also noted, as was autocrine induction of MIP-2 and KC message. In addition, low levels of MIP-1alpha and MIP-1beta were induced following treatment with MIP-2 or KC. These effects are specific to astrocytes as MIP-2 treatment of microglial cells failed to elicit chemokine production. The astrocyte chemokine receptor for MIP-2 has 2.5 nM affinity for ligand. Astrocytes from CXCR2-deficient mice still respond to KC and MIP-2, indicating the presence of an alternative or novel high affinity receptor for these ligands. We propose that this KC/MIP-2 chemokine cascade may contribute to the persistence of mononuclear cell infiltration in demyelinating autoimmune diseases.
Collapse
MESH Headings
- Acute Disease
- Animals
- Astrocytes/immunology
- Astrocytes/metabolism
- Cells, Cultured
- Chemokine CXCL1
- Chemokine CXCL2
- Chemokines/antagonists & inhibitors
- Chemokines/biosynthesis
- Chemokines/physiology
- Chemokines, CXC
- Cycloheximide/pharmacology
- Cytokines/physiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Microglia/immunology
- Microglia/metabolism
- Protein Synthesis Inhibitors/pharmacology
- Receptors, Interleukin-8B/biosynthesis
- Remission Induction
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Y Luo
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
752
|
Andjelkovic AV, Kerkovich D, Pachter JS. Monocyte:astrocyte interactions regulate MCP‐1 expression in both cell types. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.4.545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anuska V. Andjelkovic
- Blood‐Brain Barrier Laboratory, Department of Pharmacology, University of Connecticut Health Center, Farmington, Connecticut
| | - Danielle Kerkovich
- Blood‐Brain Barrier Laboratory, Department of Pharmacology, University of Connecticut Health Center, Farmington, Connecticut
| | - Joel S. Pachter
- Blood‐Brain Barrier Laboratory, Department of Pharmacology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
753
|
Whitney KD, McNamara JO. GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J Neurosci 2000; 20:7307-16. [PMID: 11007888 PMCID: PMC6772766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2000] [Revised: 06/12/2000] [Accepted: 07/17/2000] [Indexed: 02/17/2023] Open
Abstract
GluR3 autoantibodies have been implicated in the development of Rasmussen's encephalitis, a rare neurodegenerative disease of humans characterized by epilepsy and degeneration of a single cerebral hemisphere. GluR3 autoantibodies are found in some Rasmussen's encephalitis patients, and GluR3 antibodies raised in rabbits destroy cultured cortical cells in a complement-dependent manner. In this study, the cellular targets of anti-GluR3 antisera-mediated cytotoxicity were examined in mixed primary neuronal-glial cultures of rat cortex. Unexpectedly, astrocytes were the principal target of the cytotoxic effects as assessed by immunohistochemistry and lactate dehydrogenase activity; neurons were destroyed to a lesser extent. Astrocyte vulnerability was rescued by transfection with complement regulatory proteins, and neuronal resistance was defeated by impairing complement regulatory protein function. Astrocyte death may occur in Rasmussen's encephalitis, and destruction of this cell type may play a critical role in the progression of this disorder. The present findings suggest complement regulatory protein expression may in part determine the nature and severity of Rasmussen's encephalitis and other complement-dependent nervous system diseases and thus underscore the need for a systematic investigation of the expression of all known complement regulatory proteins in healthy and diseased nervous system tissues.
Collapse
Affiliation(s)
- K D Whitney
- Epilepsy Research Laboratory, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
754
|
Sauder C, Hallensleben W, Pagenstecher A, Schneckenburger S, Biro L, Pertlik D, Hausmann J, Suter M, Staeheli P. Chemokine gene expression in astrocytes of Borna disease virus-infected rats and mice in the absence of inflammation. J Virol 2000; 74:9267-80. [PMID: 10982374 PMCID: PMC102126 DOI: 10.1128/jvi.74.19.9267-9280.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) causes CD8(+) T-cell-mediated meningoencephalitis in immunocompetent mice and rats, thus providing a valuable animal model for studying the mechanisms of virus-induced central nervous system (CNS) immunopathology. Chemokine-mediated leukocyte recruitment to the CNS is a crucial step in the development of neurological disease. We found increased mRNA levels of IP-10 and other chemokines in brains of adult rats following infection with BDV. The marked increase in chemokine gene expression at about day 8 postinfection seemed to immediately precede the inflammatory process. In brains of rats infected as newborns, in which inflammation was only mild and transient, sustained expression of IP-10 and RANTES genes was observed. In situ hybridization studies revealed that astrocytes were the major source of IP-10 mRNAs in brains of rats infected as newborns and as adults. In brains of infected mice lacking CD8(+) T cells (beta2m(0/0)), transcripts encoding IP-10 and RANTES were also observed. IP-10 transcripts were also present in a small number of scattered astrocytes of infected knockout mice lacking mature B and T cells as well as functional alpha/beta and gamma interferon receptors, indicating that BDV can induce chemokine synthesis in the absence of interferons and other B- or T-cell-derived cytokines. These data provide strong evidence that CNS-resident cells are involved in the early localized host immune response to infection with BDV and support the concept that chemokines are pivotal for the initiation of virus-induced CNS inflammation.
Collapse
Affiliation(s)
- C Sauder
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79104 Freiburg
| | | | | | | | | | | | | | | | | |
Collapse
|
755
|
Ricard CS, Kobayashi S, Pena JD, Salvador-Silva M, Agapova O, Hernandez MR. Selective expression of neural cell adhesion molecule (NCAM)-180 in optic nerve head astrocytes exposed to elevated hydrostatic pressure in vitro. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:62-79. [PMID: 11000479 DOI: 10.1016/s0169-328x(00)00150-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glaucomatous optic neuropathy is usually associated with elevated intraocular pressure. Optic nerve head astrocytes may respond to intraocular pressure by stimulation of pressure-sensitive mechanoreceptors on the cell surface. Neural cell adhesion molecule (NCAM) a transmembrane protein, mediates cell adhesion and migration. The NCAM 180 isoform increases in astrocytes of glaucomatous optic nerve head. We characterized the relative expression of NCAM isoforms in human optic nerve head astrocytes grown under elevated hydrostatic pressure. Astrocytes cultured from normal human optic nerve heads were exposed to either atmospheric or continuous hydrostatic pressure of 60 mm Hg, and analyzed at 6-48 h. Changes in cell shape, immunoreactivity, and distribution of GFAP, actin and NCAM were observed in pressure-treated cultures. Newly synthesized (35)S-labeled NCAM protein immunoprecipitated from cell lysates was increased 2-fold within 24 h after exposure to elevated pressure compared to control. The increase in NCAM synthesis was primarily due to the NCAM 180 isoform. A significant increase in NCAM 180 mRNA levels was detected by RT-PCR and Northern blots in cultured optic nerve head astrocytes within 6 h after exposure to elevated pressure. NCAM 180 mRNA and protein synthesis decreased after 24 h and returned to control levels by 48 h. Our data indicate that NCAM 180 transcription and synthesis in astrocytes is stimulated by elevated hydrostatic pressure. Because NCAM 180 interacts with the cytoskeleton through an extended cytoplasmic tail, a selective and transient increase in NCAM 180 in optic nerve head astrocytes exposed to elevated pressure may be relevant to the migration and interactions of reactive astrocytes in glaucoma.
Collapse
Affiliation(s)
- C S Ricard
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 63110, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
756
|
Walker PR, Calzascia T, Schnuriger V, Scamuffa N, Saas P, de Tribolet N, Dietrich PY. The brain parenchyma is permissive for full antitumor CTL effector function, even in the absence of CD4 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3128-35. [PMID: 10975826 DOI: 10.4049/jimmunol.165.6.3128] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Effective antitumor immune responses against cerebral malignancies have been demonstrated in several models, but precise cellular function of specific effector cells is poorly understood. We have explored this topic by analyzing the MHC class I-restricted T cell response elicited after implantation of HLA-CW3-transfected P815 mastocytoma cells (P815-CW3) in syngeneic mice. In this model, tumor-specific CTLs use a distinctive repertoire of TCRs that allows ex vivo assessment of the response by immunophenotyping and TCR spectratyping. Thus, for the first time in a brain tumor model, we are able to directly visualize ex vivo CTLs specific for a tumor-expressed Ag. Tumor-specific CTLs are detected in the CNS after intracerebral implantation of P815-CW3, together with other inflammatory cells. Moreover, despite observations in other models suggesting that CTLs infiltrating the brain may be functionally compromised and highly dependent upon CD4 T cells, in this syngeneic P815-CW3 model, intracerebral tumors were efficiently rejected, whether or not CD4 T cells were present. This observation correlated with potent ex vivo cytotoxicity of brain-infiltrating CTLs, specific for the immunodominant epitope CW3170-179 expressed on P815-CW3 tumor cells.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/immunology
- Brain Neoplasms/pathology
- Brain Neoplasms/prevention & control
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Movement/immunology
- Cell Separation
- Clone Cells
- Cytotoxicity, Immunologic/genetics
- Female
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/pathology
- HLA-C Antigens/genetics
- HLA-C Antigens/immunology
- Humans
- Injections, Intraventricular
- Lymphocyte Activation/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphopenia/immunology
- Mice
- Mice, Inbred DBA
- Neoplasm Transplantation
- Receptors, Antigen, T-Cell/biosynthesis
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/pathology
- Sarcoma, Experimental/prevention & control
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
- Tumor Cells, Cultured/transplantation
- Weight Loss/immunology
Collapse
Affiliation(s)
- P R Walker
- Laboratory of Tumor Immunology, Division of Oncology, and Department of Neurosurgery, University Hospital Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
757
|
Benton RL, Ross CD, Miller KE. Glutamine synthetase activities in spinal white and gray matter 7 days following spinal cord injury in rats. Neurosci Lett 2000; 291:1-4. [PMID: 10962139 DOI: 10.1016/s0304-3940(00)01362-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glial enzyme glutamine synthetase (GS) is critical for central nervous system catabolism of glutamate and glutamine production. Upregulation of GS is a hallmark of reactive astrocytosis, although such induction following spinal cord injury (SCI) has not been reported. This study's purpose was to determine if GS activity is increased following SCI. Experimental rats received a complete spinal transection at the T5 segment and control rats received a laminectomy only. GS activities were determined using an enzymatic microassay. Glutamine levels were resolved in semi-adjacent sections. At 7 days following SCI, GS activity increased an average of 170-190% in white matter and 15-25% in gray matter immediately adjacent to the transection, and 70-90% in white matter and 40-45% in gray matter from cervical and lumbar enlargements. Correlative increases in glutamine were observed also. These findings further characterize the astrocytic response to SCI, which may contribute to altered glutamine metabolism in injured spinal tissue.
Collapse
Affiliation(s)
- R L Benton
- Department of Cell Biology, University of Oklahoma Health Sciences Center, PO Box 26901, Biomedical Sciences Building Room 553, OK 73190, Oklahoma City, USA.
| | | | | |
Collapse
|
758
|
Abstract
An in vitro "scratch-wound" model was used to evoke and investigate some astroglial responses to mechanical injury. The changes in the morphology, locomotion, and proliferation of injured astrocytes were analysed under culture conditions devoid of blood-derived cells responsible for activating the inflammatory cascade. The rate of proliferation was determined by immunocytochemical detection of BrdU-incorporating cells located next to or far from the wound. The motility of individual cells and the mass-advancement of cell-assemblies were monitored by computer controlled video-microscopy both in injured monolayers and in preparations of single cells or aggregates of astrocytes. The large sets of digitalized data allowed a reliable statistical evaluation of changes in cell positions providing a quantitative approach for studies on dynamics of cell locomotion. The results indicated that cultivated astrocytes respond to injury (1) with enhanced nestin immunoreactivity at the expanding processes, (2) with increased mitotic activity exceeding the rate caused by the liberation from contact inhibition, but (3) without specific, injury-induced activation of cell locomotion. Some advantages and drawbacks of "scratch-wound" models of astrocytic responses to mechanical injury are presented and discussed.
Collapse
Affiliation(s)
- Z Környei
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
759
|
Satoh K, Suzuki N, Yokota H. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs) is transcriptionally induced in beta-amyloid treated rat astrocytes. Neurosci Lett 2000; 289:177-80. [PMID: 10961658 DOI: 10.1016/s0304-3940(00)01285-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Beta-amyloid (Abeta) deposition is considered to be of the most crucial events in the onset of Alzheimer's disease (AD). To identify factors involved in the exacerbation of AD, we investigated transcriptionally Abeta-induced genes using a cDNA subtraction technique in rat astrocytes as previously reported. One subtracted gene that showed the Abeta-induced expression was rat ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs). In this report, we present the deduced sequence for the mature form of rat ADAMTS-4 and demonstrate the induction of its mRNA by treatment of cells with Abeta. Our results suggest a degradation of the extracellular matrix occurring in the brain of AD patients and a possibly significant role of this enzyme in the progression of AD.
Collapse
Affiliation(s)
- K Satoh
- Discovery Research Laboratory, Daiichi Pharmaceutical Co., Ltd. Tokyo R&D Center, Japan.
| | | | | |
Collapse
|
760
|
Csuka E, Hans VH, Ammann E, Trentz O, Kossmann T, Morganti-Kossmann MC. Cell activation and inflammatory response following traumatic axonal injury in the rat. Neuroreport 2000; 11:2587-90. [PMID: 10943727 DOI: 10.1097/00001756-200008030-00047] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a rat model of traumatic brain injury cell activation was characterized immunohistochemically from 2 h up to 2 weeks. Reactive astrocytosis became apparent perivascularly and in the grey matter within 4h after trauma. Increased OX42 immunoreactivity indicated microglial activation in cortex and hippocampus as early as 4 h, whereas up-regulation of MHC class II (OX6) was evident in white matter tracts at 24 h. Although macrophage (ED1) numbers increased in the meninges and perivascularly, brain infiltration appeared marginal. Accumulation of lymphocytes and granulocytes was not observed. Our results show that traumatic axonal injury induces a rapid and sustained glial activation in the absence of leukocyte infiltration. Thus, cell activation following diffuse trauma strongly differs from that found after focal brain damage, awaiting further functional characterization.
Collapse
Affiliation(s)
- E Csuka
- Klinik für Unfallchirurgie, Departement Chirurgie, Universitätsspital Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
761
|
Chiarugi A, Sbarba PD, Paccagnini A, Donnini S, Filippi S, Moroni F. Combined inhibition of indoleamine 2,3‐dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon‐γ‐activated macrophages. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.2.260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Alberto Chiarugi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | - Persio Dello Sbarba
- Department of Experimental Pathology and Oncology, University of Florence, Italy
| | | | - Sandra Donnini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | - Sandra Filippi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | - Flavio Moroni
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| |
Collapse
|
762
|
Abstract
Interactions of CD4(+) T helper (Th) cells with microglia and astrocytes are likely to play an important role in regulating immune responses as well as tissue damage and repair during infectious and autoimmune central nervous system (CNS) diseases. T cells secreting Th1-type cytokines provide inducing signals for microglia to mature into functional antigen presenting cells (APC). The ability of microglia to act as efficient APC for the restimulation of Th1 cells suggests a role for these cells in the local amplification of pro-inflammatory immune responses. Conversely, the Th2-inducing capacity of microglia and astrocytes together with their ability to produce anti-inflammatory mediators could play a role in providing counter-regulatory signals limiting CNS inflammation. In this article, we review recent studies addressing the functional significance of T cell-CNS glia interactions and present new data on the expression of cyclooxygenase-2, the inducible enzyme involved in prostanoid biosynthesis, in microglia and astrocytes during the course of experimental allergic encephalomyelitis.
Collapse
Affiliation(s)
- F Aloisi
- Laboratory of Organ and System Pathophysiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy.
| | | | | |
Collapse
|
763
|
Harvey DC, Lacan G, Tanious SP, Melega WP. Recovery from methamphetamine induced long-term nigrostriatal dopaminergic deficits without substantia nigra cell loss. Brain Res 2000; 871:259-70. [PMID: 10899292 DOI: 10.1016/s0006-8993(00)02439-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After administration of methamphetamine (METH) (2x2 mg/kg, 6 h apart) to vervet monkeys, long term but reversible dopaminergic deficits were observed in both in vivo and post-mortem studies. Longitudinal studies using positron emission tomography (PET) with the dopamine transporter (DAT)-binding ligand, [11C]WIN 35,428 (WIN), were used to show decreases in striatal WIN binding of 80% at 1 week and only 10% at 1.5 years. A post-mortem characterization of other METH subjects at 1 month showed extensive decreases in immunoreactivity (IR) profiles of tyrosine hydroxylase (TH), DAT and vesicular monoamine transporter-2 (VMAT) in the striatum, medial forebrain bundle and the ventral midbrain dopamine (VMD) cell region. These IR deficits were not associated with a loss of VMD cell number when assessed at 1.5 years by stereological methods. Further, at 1.5 years, IR profiles of METH subjects throughout the nigrostriatal dopamine system appeared similar to controls although some regional deficits persisted. Collectively, the magnitude and extent of the dopaminergic deficits, and the subsequent recovery were not suggestive of extensive axonal degeneration followed by regeneration. Alternatively, this apparent reversibility of the METH-induced neuroadaptations may be related primarily to long-term decreases in expression of VMD-related proteins that recover over time.
Collapse
Affiliation(s)
- D C Harvey
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA 90095-1735, USA
| | | | | | | |
Collapse
|
764
|
Abstract
The effects of pretreatment with the antioxidants reduced glutathione (GSH), ascorbate (ASC), Trolox (TROL), and combined ascorbate and Trolox (ASC/TROL) exposure on the acute (24 h) toxicities (EC50 value) of the antidepressants amitriptyline, imipramine (tricyclic antidepressants), fluoxetine (a selective serotonin reuptake inhibitor; SSRI), and tranylcypromine (a monoamine oxidase inhibitor; MAOI) were determined in the rat (C6) glioma and human (1321N1) astrocytoma cell lines using the neutral red uptake assay. The effects of pretreatment with buthionine-[S, R]-sulfoximine (BSO), and manipulation of intracellular cyclic AMP (cAMP) using isoproterenol (beta-receptor agonist), 3-isobutyl-1-methylxanthine (IBMX; a phosphodiesterase inhibitor), and dibutyryl cyclic AMP (dBcAMP; cAMP analogue) on antidepressant toxicity were also determined. Protective responses were observed after antioxidant treatments and manipulation of cAMP in both C6 cells pretreated with dBcAMP (+dBcAMP) and 1321N1 cells not pretreated with dBcAMP (-dBcAMP), with a few exceptions in 1321N1 cells (-dBcAMP). Some protective responses occurred in C6 cells (-dBcAMP) and 1321N1 cells (+dBcAMP) after isoproterenol and combined IBMX/isoproterenol pretreatment but not after just IBMX pretreatment. Pretreatment with BSO enhanced toxicity with the exception of fluoxetine. The antidepressants caused increases in intracellular GSH in the C6 cells at subcytotoxic concentrations, with decreases in GSH occurring at higher concentrations. Cytotoxicity of the antidepressants may be partly mediated through oxidative stress with alterations in signal transduction pathways.
Collapse
Affiliation(s)
- N D Slamon
- Department of Biological Sciences, University of Salford, M5 4WT, Salford, UK
| | | |
Collapse
|
765
|
Camborieux L, Julia V, Pipy B, Swerts JP. Respective roles of inflammation and axonal breakdown in the regulation of peripheral nerve hemopexin: an analysis in rats and in C57BL/Wlds mice. J Neuroimmunol 2000; 107:29-41. [PMID: 10808048 DOI: 10.1016/s0165-5728(00)00246-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously demonstrated that one of the peripheral nerve responses to injury is the overexpression of hemopexin (HPX). Here, we demonstrate that Wallerian degeneration is required for this response, since HPX does not increase in C57BL/Wlds mice, which display a severely impaired Wallerian degeneration. We also show that HPX synthesis is dramatically increased in macrophages during their activation or after IL-6 stimulation. However, IL-6-driven HPX overexpression occurs in vivo and in vitro in the absence of substantial macrophage invasion. We conclude that, after nerve injury, HPX overexpression occurs first in Schwann cells as a result of axotomy and is subsequently regulated by inflammation. Furthermore, our results and those already described suggest that IL-6, synthesized by the various cell types producing HPX, control nerve HPX expression via paracrine and autocrine mechanisms.
Collapse
Affiliation(s)
- L Camborieux
- Centre de Biologie du Développement, UMR CNRS 5547, Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | | | | | | |
Collapse
|
766
|
Nawashiro H, Brenner M, Fukui S, Shima K, Hallenbeck JM. High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab 2000; 20:1040-4. [PMID: 10908037 DOI: 10.1097/00004647-200007000-00003] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Astrocytes perform a variety of functions in the adult central nervous system (CNS) that contribute to the survival of neurons. Thus, it is likely that the activities of astrocytes affect the extent of brain damage after ischemic stroke. The authors tested this hypothesis by using a mouse ischemia model to compare the infarct volume produced in wild-type mice with that produced in mice lacking glial fibrillary acidic protein (GFAP), an astrocyte specific intermediate filament component. Astrocytes lacking GFAP have been shown to have defects in process formation, induction of the blood-brain barrier. and volume regulation; therefore, they might be compromised in their ability to protect the CNS after injury. The authors reported here that 48 hours after combined permanent middle cerebral artery occlusion (MCAO) and 15 minutes transient carotid artery occlusion (CAO) GFAP-null mice had a significantly (P < 0.001) larger cortical infarct volume (16.7 +/- 2.2 mm3) than their wild-type littermates (10.1 +/- 3.9 mm3). Laser-Doppler flowmetry revealed that the GFAP-null mice had a more extensive and profound decrease in cortical cerebral blood flow within 2 minutes after MCAO with CAO. These results indicated a high susceptibility to cerebral ischemia in GFAP-null mice and suggested an important role for astrocytes and GFAP in the progress of ischemic brain damage after focal cerebral ischemia with partial reperfusion.
Collapse
Affiliation(s)
- H Nawashiro
- Department of Neurosurgery, National Defense Medical College Tokorozawa, Saitama, Japan
| | | | | | | | | |
Collapse
|
767
|
Chen CJ, Liao SL, Kuo MD, Wang YM. Astrocytic alteration induced by Japanese encephalitis virus infection. Neuroreport 2000; 11:1933-1937. [PMID: 10884046 DOI: 10.1097/00001756-200006260-00025] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neurotropism of Japanese encephalitis virus (EV) has not been well characterized. Astrocytes are parts of the blood-brain barrier, a major source of chemokines, and critical effectors of central inflammation. Thus, astrocytes might play some role as JEV travels from the peripheral to the CNS and/or the resultant encephalitis. Using rat cortical cultures, we found that JEV can cause cellular and/or functional changes in astrocytes as indicated by increased expression of interleukin-6 (IL-6), regulated by activation, normal T cell expressed and secreted (RANTES), and monocyte chemotactic protein 1 (MCP-1), increased lactate release and glucose uptake, and attenuation of glutamate toxicity. These modulations occur needed by the cells for compensation and may affect neuron and/or astrocyte function.
Collapse
Affiliation(s)
- C J Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taiwan, ROC
| | | | | | | |
Collapse
|
768
|
Althaus HH, Richter-Landsberg C. Glial cells as targets and producers of neurotrophins. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:203-77. [PMID: 10761118 DOI: 10.1016/s0074-7696(00)97005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glial cells fulfill important tasks within the neural network of the central and peripheral nervous systems. The synthesis and secretion of various polypeptidic factors (cytokines) and a number of receptors, with which glial cells are equipped, allow them to communicate with their environment. Evidence has accumulated during recent years that neurotrophins play an important role not only for neurons but also for glial cells. This brief update of some morphological, immunocytochemical, and biochemical characteristics of glial cell lineages conveys our present knowledge about glial cells as targets and producers of neurotrophins under normal and pathological conditions. The chapter discusses the presence of neurotrophin receptors on glial cells, glial cells as producers of neurotrophins, signaling pathways downstream Trk and p75NTR, and the significance of neurotrophins and their receptors for glial cells during development, in cell death and survival, and in neurological disorders.
Collapse
Affiliation(s)
- H H Althaus
- AG Neural Regeneration, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
769
|
Abstract
Our previous studies have shown that prior intracerebral infusion of a low dose of thrombin (thrombin preconditioning; TPC) reduces the brain edema that follows a subsequent intracerebral infusion of a high dose of thrombin or an intracerebral hemorrhage. In vitro studies have also demonstrated that low concentrations of thrombin protect neurons and astrocytes from hypoglycemia and oxidative stress-induced damage. This study, therefore, examines the hypothesis that TPC would offer protection from ischemic brain damage in vivo. This was a blinded design study. The rat brain was preconditioned with 1 U thrombin by direct infusion into the left caudate nucleus. Seven days after thrombin pretreatment, permanent middle cerebral artery occlusion (MCAO) was induced. Twenty-four hours post-ischemia, neurological deficit was evaluated and infarction volume, brain water and ion contents were measured. Compared to saline-treated rats, thrombin pretreatment significantly attenuated brain infarction in cortex (90+/-33 vs. 273+/-22 mm(3); P<0.05) and basal ganglia (56+/-17 vs. 119+/-12 mm(3); P<0.05) that followed 24 h of permanent MCAO. TPC also reduced the brain edema in cortex and basal ganglia by 50 and 53% (P<0.05). Neurological deficit was improved in thrombin pretreatment group (P<0.05). These effects of TPC were, in part, prevented by co-injection of hirudin, a thrombin inhibitor, indicating that the protection was indeed thrombin mediated. Cerebral TPC significantly reduces ischemic brain damage, perhaps by activation of the thrombin receptor. This finding provides a new mechanism by which to study ischemic tolerance.
Collapse
Affiliation(s)
- T Masada
- Department of Surgery (Neurosurgery), University of Michigan, R5550 Kresge I, Ann Arbor, MI 48109-0532, USA
| | | | | | | |
Collapse
|
770
|
Annesley-Williams D, Farrell MA, Staunton H, Brett FM. Acute demyelination, neuropathological diagnosis, and clinical evolution. J Neuropathol Exp Neurol 2000; 59:477-89. [PMID: 10850860 DOI: 10.1093/jnen/59.6.477] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A retrospective analysis of 14 patients who presented with a progressively expanding mass lesion(s) shown at biopsy/autopsy to represent acute demyelination was carried out. The aims of this study were to determine the optimal neuropathological approach to diagnosis and to determine the clinical evolution of this condition. Subsequent investigations and clinical outcome studies confirmed MS in 10 cases. Two patients had received an incorrect neuropathologic diagnosis of astrocytoma resulting in cranial irradiation. Key histologic parameters in establishing a diagnosis of acute demyelination were a predominance of lipid filled macrophages, macrophage alignment along axons, and an absence of oligodendroglial inclusions. Axonal injury was present in all cases and a lymphocytic/plasma cell infiltrate was sparse in areas of demyelination. Neuroimaging revealed single lesions in 10 patients and multiple lesions in 4 patients. Two patients were lost to follow-up, 3 died within 18 months of diagnosis, 8 had a relapsing remitting clinical course, and 1 patient had a chronic progressive course. In conclusion, a dense lymphocytic and plasma cell infiltrate is unusual in acute human demyelination. Although axonal injury is a frequent histologic finding in acute demyelination, it does not preclude a favorable clinical outcome.
Collapse
|
771
|
Labombarda F, Gonzalez S, Roig P, Lima A, Guennoun R, Schumacher M, De Nicola AF. Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. J Steroid Biochem Mol Biol 2000; 73:159-69. [PMID: 10925216 DOI: 10.1016/s0960-0760(00)00064-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Progesterone (P4) can be synthesized in both central and peripheral nervous system (PNS) and exerts trophic effects in the PNS. To study its potential effects in the spinal cord, we investigated P4 modulation (4 mg/kg/day for 3 days) of two proteins responding to injury: NADPH-diaphorase, an enzyme with nitric oxide synthase activity, and glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. The proteins were studied at three levels of the spinal cord from rats with total transection (TRX) at T10: above (T5 level), below (L1 level) and caudal to the lesion (L3 level). Equivalent regions were dissected in controls. The number and area of NADPH-diaphorase active or GFAP immunoreactive astrocytes/0.1 mm(2) in white matter (lateral funiculus) or gray matter (Lamina IX) was measured by computerized image analysis. In controls, P4 increased the number of GFAP-immunoreactive astrocytes in gray and white matter at all levels of the spinal cord, while astrocyte area also increased in white matter throughout and in gray matter at the T5 region. In control rats P4 did not change NADPH-diaphorase activity. In rats with TRX and not receiving hormone, a general up-regulation of the number and area of GFAP-positive astrocytes was found at all levels of the spinal cord. In rats with TRX, P4 did not change the already high GFAP-expression. In the TRX group, instead, P4 increased the number and area of NADPH-diaphorase active astrocytes in white and gray matter immediately above and below, but not caudal to the lesion. Thus, the response of the two proteins to P4 was conditioned by environmental factors, in that NADPH-diaphorase activity was hormonally modulated in astrocytes reacting to trauma, whereas up-regulation of GFAP by P4 was produced in resting astrocytes from non-injured animals.
Collapse
Affiliation(s)
- F Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
772
|
Morgan JE. Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye (Lond) 2000; 14 ( Pt 3B):437-44. [PMID: 11026971 DOI: 10.1038/eye.2000.128] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increased intraocular pressure (IOP) is recognised as the principal risk factor for the development of glaucomatous cupping of the optic disc. The hypothesis that it disrupts the function of retinal ganglion cell axons by increasing mechanical forces on the lamina cribrosa of the optic nerve head has received considerable experimental support. However, many patients with glaucoma will have progressive cupping even though the IOPs remain within the normal range, suggesting that mechanical compression is unlikely to be the sole cause of optic nerve damage. Clinical studies have emphasised the role of other factors, such as optic nerve head ischaemia, in generating optic disc cupping. One of the outstanding problems in understanding optic nerve head dysfunction in glaucoma has been the elucidation of the pathways that could integrate the effects of IOP and ischaemia to generate the characteristic changes seen. This review considers the role that optic nerve head astrocytes might play in the initiation of axon damage, based on the hypothesis that these cells are sensitive to mechanical or ischaemic factors and are important for the maintenance of retinal ganglion physiology. It discusses their role in the remodelling of the structure of the lamina cribrosa and the effect that this might have on axon function. Recent evidence has shown that the modulation of astrocyte activity, for example by the reduction of the production of nitric oxide, may prevent retinal ganglion cell death in ocular hypertension. The possibility that astrocyte-axon interactions are important in the development of glaucomatous optic neuropathy suggests new avenues of therapeutic intervention, not related to the control of IOP, that would prevent retinal ganglion cell death in glaucoma.
Collapse
Affiliation(s)
- J E Morgan
- Department of Ophthalmology, University of Wales College of Medicine, Cardiff, UK.
| |
Collapse
|
773
|
Monzón-Mayor M, Alvarez M, Arbelo-Galván J, Romero-Alemán M, Yanes C, Plaza ML, Rodríguez JR, Rodríguez JJ, Toledano A. Long-term evolution of local, proximal and remote astrocyte responses after diverse nucleus basalis lesioning (an experimental Alzheimer model): GFAP immunocytochemical study. Brain Res 2000; 865:245-58. [PMID: 10821927 DOI: 10.1016/s0006-8993(00)02231-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A study on long-term astrocytic responses (from 1 day to 20 months after lesioning in 4-month-old rats, and from 1 day to 6 months in 20-month-old rats) to diverse unilateral damage of the nucleus basalis (nbM) by injection of 40 nmol of ibotenic acid, or 50 or 100 nmols of quisqualic acid was performed using a histochemical method (immunoreactivity against the glial fibrillary acidic protein GFAP). Glial reactivity (i.e., isolated or clustered hypertrophic and/or hyper-reactive astrocytes) was evaluated in several ipsilateral and contralateral brain regions: the 'local response' within the damaged nbM region; the 'proximal response' (a new concept proposed by us) in the non-damaged structures neighbouring the nbM; and the 'remote response' in the ipsilateral brain cortex and in the contralateral cortex and nbM. In 4-month-old animals, the remote cortical glial responses, independent of the involution of cortical cholinergic activity and randomly located in layers I-V of motor and somatosensory cortical regions, were similar in appearance over a long period (13-20 months), with the highest reactivity 45 days after lesioning. The proximal response lasted from 1 day to 13 months and afterwards tended to disappear. Contralateral reactivity and ipsilateral cortical scars were observed. The local (nbM) glial response was maintained throughout the period studied. Subsets of astrocytes of different reactivities were observed, most of their elements being highly intermeshed. In 20-month-old animals, nbM lesions produced less positive, but similar, glial reactive patterns. This glial reactivity was superposed onto the glial reactivity of old age. All these results are discussed. The maintenance of reactive astrocytes many months after lesioning suggests the existence of cellular factors other than those produced by damaged nbM neurons. Taking into account the role of glial cells under pathological conditions, it is possible that these reactive astrocytes in humans could promote neurodegenerative processes, such as amyloid plaque formation and neurodegeneration (Alzheimer's disease). Along this line, nbM cholinergic involution could then originate cortical involution through induced reactive astrocytosis.
Collapse
Affiliation(s)
- M Monzón-Mayor
- Department of Morphology (Cellular Biology Section), Faculty of Health Sciences, University of Las Palmas, Gran Canaria, Canary Islands, Las Palmas, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
774
|
Praticò D, Trojanowski JQ. Inflammatory hypotheses: novel mechanisms of Alzheimer's neurodegeneration and new therapeutic targets? Neurobiol Aging 2000; 21:441-5; discussion 451-3. [PMID: 10858591 DOI: 10.1016/s0197-4580(00)00141-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D Praticò
- The Center for Experimental Therapeutics, Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
775
|
|
776
|
Penkowa M, Hidalgo J. IL-6 deficiency leads to reduced metallothionein-I+II expression and increased oxidative stress in the brain stem after 6-aminonicotinamide treatment. Exp Neurol 2000; 163:72-84. [PMID: 10785446 DOI: 10.1006/exnr.2000.7383] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of interleukin-6 (IL-6) deficiency on brain inflammation and the accompanying bone marrow (BM) leukopoiesis and spleen immune reaction after systemic administration of a niacin antagonist, 6-aminonicotinamide (6-AN), which causes both astroglial degeneration/cell death in brain stem gray matter areas and BM toxicity. In both normal and genetically IL-6-deficient mice (IL-6 knockout (IL-6KO) mice), the extent of astroglial degeneration/cell death in the brain stem was similar as determined from disappearance of GFAP immunoreactivity. In 6-AN-injected normal mice reactive astrocytosis encircled gray matter areas containing astroglial degeneration/cell death, which were infiltrated by several macrophages and some T-lymphocytes. Reactive astrocytes and a few macrophages increased significantly the antioxidants metallothionein-I+II (MT-I+II) and moderately the MT-III isoform. In 6-AN-injected IL-6KO mice reactive astrocytosis and recruitment of macrophages and T-lymphocytes were clearly reduced, as were BM leukopoiesis and spleen immune reaction. Expression of MT-I+II was significantly reduced while MT-III was increased. Oxidative stress, as determined by measuring nitrated tyrosine and malondialdehyde, was increased by 6-AN to a greater extent in IL-6KO mice. The blood-brain barrier to albumin was only disrupted in 6-AN-injected normal mice, which likely is due to the substantial migration of blood-derived inflammatory cells into the CNS. The present results demonstrate that inflammation in CNS is clearly reduced during IL-6 deficiency and this effect is likely due to significant inhibition of BM leukopoiesis. We also show that IL-6 deficiency reduces the levels of neuroprotective antioxidants MT-I+II followed by an increased oxidative stress during CNS inflammation.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
777
|
Abstract
Primary open angle glaucoma is a common eye disease characterized by loss of the axons of the retinal ganglion cells leading to progressive loss of vision. The site of damage to the axons is at the level of the lamina cribrosa in the optic nerve head. The mechanism of axonal loss is unknown but elevated intraocular pressure and age are the most common factors associated with the disease. Previous studies in human glaucoma and in experimental glaucoma in monkeys have established a relationship between chronic elevation of intraocular pressure and remodeling of the optic nerve head tissues known clinically as cupping of the optic disc. This review focuses on the astrocytes, the major cell type in the optic nerve head. Astrocytes participate actively in the remodeling of neural tissues during development and in disease. In glaucomatous optic neuropathy, astrocytes play a major role in the remodeling of the extracellular matrix of the optic nerve head, synthesize growth factors and other cellular mediators that may affect directly, or indirectly, the axons of the retinal ganglion cells. Due to the architecture of the lamina cribrosa, formed by the cells and the fibroelastic extracellular matrix, astrocytes may respond to changes in intraocular pressure in glaucoma, leading to some of the detrimental events that underlie axonal loss and retinal ganglion cell degeneration.
Collapse
Affiliation(s)
- M R Hernandez
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
778
|
Satoh K, Nagano Y, Shimomura C, Suzuki N, Saeki Y, Yokota H. Expression of prostaglandin E synthase mRNA is induced in beta-amyloid treated rat astrocytes. Neurosci Lett 2000; 283:221-3. [PMID: 10754227 DOI: 10.1016/s0304-3940(00)00926-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Deposition of beta-amyloid (A beta) in the brain is considered to be one of the most critical events in the onset of Alzheimer's disease (AD). In order to identify factors involved in the exacerbation of AD, we investigated transcriptionally A beta-induced genes using a cDNA subtraction technique in rat astrocytes. One gene obtained was rat prostaglandin (PG) E synthase. In this report, we present the deduced sequence for rat PGE synthase for the first time and demonstrate the induction of PGE synthase mRNA by treatment of cells with A beta. Our results suggest a possibly significant role of this enzyme in the progression of AD.
Collapse
Affiliation(s)
- K Satoh
- Discovery Research Laboratory, Daiichi Pharmaceutical Co. Ltd., Tokyo R&D Center, 1-16-13 Kitakasai, Edogawa-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
779
|
Klein BD, White HS, Callahan KS. Cytokine and intracellular signaling regulation of tissue factor expression in astrocytes. Neurochem Int 2000; 36:441-9. [PMID: 10733012 DOI: 10.1016/s0197-0186(99)00147-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There is evidence that inflammatory cytokines such as IL-1beta, TNFalpha, and IL-6 are involved in the pathogenesis of cerebrovascular disorders including stroke. One action of cytokines that contributes to diseases in peripheral tissues is upregulation of the procoagulant receptor tissue factor (TF). In the CNS, astrocytes are the primary cells that express TF; although little is known about how TF is regulated in these cells. Experiments were performed to evaluate the effect of cytokine treatment on TF activity in primary cultures of murine cortical astrocytes and in the human astrocytoma cell line (CCF). IL-1beta treatment induced a 2.5-fold increase in TF activity in the primary astrocytes and a 3-fold induction in the astrocytoma cells. TNFalpha treatment induced a 2.5-fold increase in TF activity in both the primary astrocytes and astrocytoma cells. IL-6 upregulated TF activity 2-fold in primary astrocytes, however, it had no effect on TF activity in the astrocytoma cells. The signaling pathways regulating TF expression in these cells were examined by using staurosporine, a broad spectrum inhibitor of serine-threonine protein kinases, and by examining the effects of intermediates in the sphingomyelin signaling pathway. Staurosporine inhibited IL-1beta-induced TF activity in the primary astrocytes but did not effect IL-1beta- or TNFalpha-induced TF activity in the astrocytoma cells. TF activity in the astrocytoma cells was upregulated 1.5-fold over constitutive levels by a ceramide analogue or the enzyme sphingomyelinase, however the ceramide analogue had no effect on TF activity in the primary astrocytes. These results suggest inflammatory cytokines can upregulate TF activity in astrocytes and the astrocytoma CCF cell line although the two cell types appear to utilize different signaling pathways to mediate TF expression. Further studies will be important to more completely define the signaling regulation of TF in astrocytes since alterations in brain TF levels may play a key role in CNS pathophysiology.
Collapse
Affiliation(s)
- B D Klein
- University of Utah, College of Pharmacy, Department of Pharmacology and Toxicology, Salt Lake City 84112, USA
| | | | | |
Collapse
|
780
|
Won JS, Kim YH, Song DK, Huh SO, Lee JK, Suh HW. Stimulation of astrocyte-enriched culture with arachidonic acid increases proenkephalin mRNA: involvement of proto-oncoprotein and mitogen activated protein kinases. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:396-406. [PMID: 10762717 DOI: 10.1016/s0169-328x(00)00032-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In astrocyte-enriched cultures, arachidonic acid (AA, 100 microM) significantly increased the proenkephalin (proENK) mRNA level (4. 9-fold at 8 h). In addition, AA also increased several AP-1 proteins, such as c-Fos, Fra-1, Fra-2, JunB, JunD, and c-Jun, or AP-1 and ENKCRE-2 DNA-binding activity. As well as AP-1 proteins and their DNA-binding activities, proENK mRNA level induced by AA was reduced by the pretreatment with 15 microM of cycloheximide (CHX; 1.6-fold). AA-dependent increase of proENK mRNA is not mediated by cyclooxygenase- or lipoxygenase-dependent metabolites, or free radicals, because the AA-induced increase of proENK mRNA levels was not affected by indomethacin (10 microM), nordihydroguaiaretic acid (10 microM), or N-acetylcysteine. However, as well as proto-oncoprotein levels, such as Fra-1, Fra-2, c-Jun, JunB, but not JunD, AA-induced increase of proENK mRNA was significantly reduced by the pretreatment with 10 microM of PD98059 (1.3-fold) or 10 microM of SB203580 (1.8-fold). These results strongly suggest that AA rather than one of its metabolites is involved in the increase of proENK mRNA. In addition, the activation of both the p38 and ERK pathways appears to be involved in the AA-induced increase of proENK mRNA via activating the expression of proto-oncoprotein, such as Fra-1, Fra-2, c-Jun, and JunB.
Collapse
Affiliation(s)
- J S Won
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okchun-Dong, Chunchon, Kangwon-Do, South Korea
| | | | | | | | | | | |
Collapse
|
781
|
Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience 2000; 95:425-32. [PMID: 10658622 DOI: 10.1016/s0306-4522(99)00455-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Virtually any neurological disorder leads to activation of resident microglia and invasion of blood-borne macrophages, which are accompanied by an increase in number and change in phenotype of astrocytes, a phenomenon generally termed reactive astrocytosis. One of the functions attributed to activation of astrocytes is thought to involve restoration of tissue damage. Hitherto, the role of astrocytes in the inflammatory reaction occurring in Parkinson's disease has not received much attention. In the present study, we examined the inflammatory events in autopsies of the substantia nigra and putamen from Parkinson's disease patients using age-matched autopsies from normal patients as controls. In the substantia nigra, activation of microglia was consistently observed in all Parkinson's disease autopsies as verified from immunohistochemical detection of CR3/43 and ferritin. Activation of resident microglia was not observed in the putamen. No differences were observed between controls and Parkinson's disease autopsies from the substantia nigra and putamen, in terms of distribution, cellular density or cellular morphology of astrocytes stained for glial fibrillary acidic protein or metallothioneins I and II, the latter sharing high affinity for metal ions and known to be induced in reactive astrocytes, possibly to exert anti-oxidative effects. Together, these findings indicate that the inflammatory process in Parkinson's disease is characterized by activation of resident microglia without reactive astrocytosis, suggesting that the progressive loss of dopaminergic neurons in Parkinson's disease is an ongoing neurodegenerative process with a minimum of involvement of the surrounding nervous tissue. The absence of reactive astrocytosis in Parkinson's disease contrasts what follows in virtually any other neurological disorder and may indicate that the inflammatory process in Parkinson's disease is a unique phenomenon.
Collapse
Affiliation(s)
- B Mirza
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
782
|
Bury SD, Eichhorn AC, Kotzer CM, Jones TA. Reactive astrocytic responses to denervation in the motor cortex of adult rats are sensitive to manipulations of behavioral experience. Neuropharmacology 2000; 39:743-55. [PMID: 10699441 DOI: 10.1016/s0028-3908(99)00272-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent research has suggested that mild denervation of the neocortex of adult rats may facilitate neuronal growth in response to behavioral changes. Astrocytes react to denervation, produce growth-promoting factors and are a potential mediator of this denervation-facilitated growth. The present study assessed whether astrocytic reactions to denervation vary dependent upon post-injury behavioral experience. Denervation of the transcallosal afferents to the motor cortex was induced via partial transections of the corpus callosum. Transected- or sham-operated rats were then either forced to use the opposite forelimb (via limb-restricting vests) or permitted to use both forelimbs normally for 8 days. In the motor cortex, the surface density of glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytic processes and the density of basic fibroblast growth factor (FGF-2)-IR glial cells was significantly increased as a result of transections alone and as a result of forced forelimb-use alone in comparison to controls. The combination of transections and forced-use significantly enhanced GFAP-IR in comparison to all other groups, but did not further enhance FGF-2-IR. These findings are consistent with behavior and denervation having interactive influences on astrocytic reactivity in the motor cortex. These results also raise the possibility that astrocyte-mediated support of neural restructuring after brain injury might be enhanced with appropriate post-injury behavioral manipulations.
Collapse
Affiliation(s)
- S D Bury
- Psychology Department, University of Washington, Guthrie Hall Box 351525, Seattle 98195, USA
| | | | | | | |
Collapse
|
783
|
Giraudon P, Szymocha R, Buart S, Bernard A, Cartier L, Belin MF, Akaoka H. T lymphocytes activated by persistent viral infection differentially modify the expression of metalloproteinases and their endogenous inhibitors, TIMPs, in human astrocytes: relevance to HTLV-I-induced neurological disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2718-27. [PMID: 10679113 DOI: 10.4049/jimmunol.164.5.2718] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of T lymphocytes by human pathogens is a key step in the development of immune-mediated neurologic diseases. Because of their ability to invade the CNS and their increased secretion of proinflammatory cytokines, activated CD4+ T cells are thought to play a crucial role in pathogenesis. In the present study, we examined the expression of inflammatory mediators the cytokine-induced metalloproteinases (MMP-2, -3, and -9) and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMP-1, -2, and -3), in human astrocytes in response to activated T cells. We used a model system of CD4+ T lymphocytes activated by persistent viral infection (human T lymphotropic virus, HTLV-I) in transient contact with human astrocytes. Interaction with T cells resulted in increased production of MMP-3 and active MMP-9 in astrocytes despite increased expression of endogenous inhibitors, TIMP-1 and TIMP-3. These data suggest perturbation of the MMP/TIMP balance. These changes in MMP and TIMP expression were mediated, in part, by soluble factors (presumably cytokines) secreted by activated T cells. Integrin-mediated cell adhesion is also involved in the change in MMP level, since blockade of integrin subunits (alpha1, alpha3, alpha5, and beta1) on T cells resulted in less astrocytic MMP-9-induced expression. Interestingly, in CNS tissues from neurological HTLV-I-infected patients, MMP-9 was detected in neural cells within the perivascular space, which is infiltrated by mononuclear cells. Altogether, these data emphasize the importance of the MMP-TIMP axis in the complex interaction between the CNS and invading immune cells in the context of virally mediated T cell activation.
Collapse
Affiliation(s)
- P Giraudon
- Institut National de la Santé et de la Recherche Médicale U433, Faculté de Médecine R. Laënnec, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
784
|
Effect of the control proliferation of astrocyte on the formation of glial scars by antisenseGFAP retrovirus. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/bf02884900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
785
|
Abstract
Normal vision depends on the normal function of retinal neurons, so vision loss in diabetes must ultimately be explained in terms of altered neuronal function. However to date relatively little attention has been paid to the impact of diabetes on the neural retina. Instead, the focus of most research has been primarily on retinal vascular changes, with the assumption that they cause altered neuronal function and consequently vision loss. An increasing body of evidence suggests that alterations in neuronal function and viability may contribute to the pathogenic mechanisms of diabetic retinopathy beginning shortly after the onset of diabetes. This view arises from neurophysiological, psychometric, histopathological and biochemical observations in humans and experimental animals. The collective evidence from past and recent studies supports the hypothesis that neurodegeneration, together with functional changes in the vasculature, is an important component of diabetic retinopathy. The authors invite other investigators to include the neural retina as a component of their studies so that the pathogenesis of diabetic retinopathy can be understood more clearly.
Collapse
Affiliation(s)
- E Lieth
- Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Penn State Geisinger Health System, Hershey 17033, USA.
| | | | | | | |
Collapse
|
786
|
Lewczuk P, Reiber H, Korenke GC, Bollensen E, Dorta-Contreras AJ. Intrathecal release of sICAM-1 into CSF in neuroborreliosis--increased brain-derived fraction. J Neuroimmunol 2000; 103:93-6. [PMID: 10674994 DOI: 10.1016/s0165-5728(99)00221-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, we report sICAM-1 concentration in the cerebrospinal fluid (CSF) and serum of patients with neuroborreliosis (NB, n = 11), compared to the data from a control group of patients with corresponding blood/CSF barrier dysfunction but without inflammation in the central nervous system (disc prolaps, DP, n = 11). In NB, the sICAM-1 concentration in CSF was increased up to six-fold (ranges: 6.6-42.8 ng/ml and 2.2-9.8 ng/ml for NB and DP respectively) with no change in serum sICAM-1. The corresponding sICAM-1 CSF/serum concentration quotients (Q(ICAM)) were in the ranges: 22.5-171.3 X 10(-3), and 8.8-27.8 X 10(-3) for NB and DP respectively. This finding can be explained by increase of the brain-derived fraction of sICAM-1 in NB. In one case we observed increased Q(ICAM) on 6th day after admission to the hospital (171.3 X 10(-3) at the time of the first lumbar puncture slightly increasing to 243.6 x 10(-3) five days later), followed by normalization, in two remaining repunctured patients we observed decreasing QICAM with normalizing Q(Alb).
Collapse
Affiliation(s)
- P Lewczuk
- Neurochemistry Laboratory, University of Goettingen, Germany.
| | | | | | | | | |
Collapse
|
787
|
Abstract
Previous work from this laboratory has shown that both macrophages and microglia phagocytize relatively little myelin in vitro under basal conditions. In an effort to better simulate the conditions within the central nervous system (CNS), we have co-cultured these cells with astrocytes, the most numerous of the neural cells in the CNS, and have compared myelin phagocytosis in the co-cultures with that in cells cultured alone. Both macrophages and microglia in company with astrocytes phagocytized about three times as much myelin as controls, as measured by the formation of cholesterol ester, while astrocytes alone showed little evidence of myelin phagocytosis. Astrocyte-conditioned medium increased phagocytic activity in macrophages by 2.3-fold, and by 3.5-fold in microglia. A number of adhesion molecules and extracellular matrices were tested for their effects on myelin phagocytosis. Matrigel was most effective in activating the macrophages, and in the presence of conditioned medium, stimulated these cells to phagocytize as much myelin as when co-cultured with astrocytes. On the other hand, Matrigel inhibited myelin phagocytosis in microglia. These results indicate that activation of macrophages by astrocytes may be due to an adhesion component, as well as to soluble factors secreted by the astrocytes. While microglia were also stimulated by conditioned medium, adhesion to astrocytes or Matrigel induced a downregulation in phagocytic activity.
Collapse
Affiliation(s)
- M E Smith
- Department of Neurology, Stanford University School of Medicine, CA 94305, USA.
| | | |
Collapse
|
788
|
Venero JL, Vizuete ML, Revuelta M, Vargas C, Cano J, Machado A. Upregulation of BDNF mRNA and trkB mRNA in the nigrostriatal system and in the lesion site following unilateral transection of the medial forebrain bundle. Exp Neurol 2000; 161:38-48. [PMID: 10683272 DOI: 10.1006/exnr.1999.7243] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have performed unilateral transection of the medial forebrain bundle (MFB) and studied BDNF mRNA and trkB mRNA levels at different postlesion times in the nigrostriatal system by means of in situ hybridization. BDNF mRNA levels were transiently induced in the substantia nigra pars compacta at 1 day postaxotomy. The disposition of BDNF mRNA expressing cells at this postlesion time in substantia nigra mimicked that of the dopaminergic neurons expressing the mRNA for the dopamine transporter. TrkB mRNA levels remained unaltered in the ventral mesencephalon at the different postlesion times examined-1 to 14 days. In contrast, trkB mRNA levels were significantly induced in the striatum at the longer postlesion time examined-14 days-when all neurodegenerative events are completed. It is becoming apparent that nigral BDNF mRNA levels are anterogradely transported to its target tissue in striatum. However, following axotomy, the lesion site represents a second potential target for BDNF action. Consequently, we also analyzed the pattern of mRNA expression for BDNF and trkB at the lesion site where dopaminergic axons are disconnected. There, we found notable inductions of both BDNF mRNA and trkB mRNA levels at 4 days postaxotomy. BDNF mRNA expressing cells were confined at the site of axotomy, which coincided precisely to that showing induction of trkB mRNA. Altogether, our results anticipate promising trophic roles of BNDF in the injured nigrostriatal system.
Collapse
Affiliation(s)
- J L Venero
- Departamento de Bioquimica, Bromatologia y Toxicologia, Seville, 41012, Spain
| | | | | | | | | | | |
Collapse
|
789
|
Saas P, Boucraut J, Walker PR, Quiquerez AL, Billot M, Desplat-Jego S, Chicheportiche Y, Dietrich PY. TWEAK stimulation of astrocytes and the proinflammatory consequences. Glia 2000. [DOI: 10.1002/1098-1136(200010)32:1<102::aid-glia100>3.0.co;2-u] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
790
|
Asković S, McAtee FJ, Favara C, Portis JL. Brain infection by neuroinvasive but avirulent murine oncornaviruses. J Virol 2000; 74:465-73. [PMID: 10590136 PMCID: PMC111558 DOI: 10.1128/jvi.74.1.465-473.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive noninflammatory spongiform encephalomyelopathy after neonatal inoculation. The virus was constructed by the introduction of pol-env sequences from the wild mouse virus CasBrE into the genome of a neuroinvasive but nonneurovirulent strain of Friend murine leukemia virus (FMuLV), FB29. Although the brain infection by FrCas(E) as well as that by other neurovirulent murine retroviruses has been described in detail, little attention has been paid to the neuroinvasive but nonneurovirulent viruses. The purpose of the present study was to compare brain infection by FrCas(E) with that by FB29 and another nonneurovirulent virus, F43, which contains pol-env sequences from FMuLV 57. Both FB29 and F43 infected the same spectrum of cell types in the brain as that infected by FrCas(E), including endothelial cells, microglia, and populations of neurons which divide postnatally. Viral burdens achieved by the two nonneurovirulent viruses in the brain were actually higher than that of FrCas(E). The widespread infection of microglia by the two nonneurovirulent viruses is notable because it is infection of these cells by FrCas(E) which is thought to be a critical determinant of its neuropathogenicity. These results indicate that although the sequence of the envelope gene determines neurovirulence, this effect appears to operate through a mechanism which does not influence either viral tropism or viral burden in the brain. Although all three viruses exhibited similar tropism for granule neurons in the cerebellar cortex, there was a striking difference in the distribution of envelope proteins in those cells in vivo. The FrCas(E) envelope protein accumulated in terminal axons, whereas those of FB29 and F43 remained predominantly in the cell bodies. These observations suggest that differences in the intracellular sorting of these proteins may exist and that these differences appear to correlate with neurovirulence.
Collapse
Affiliation(s)
- S Asković
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
791
|
A�t-Ikhlef A, Hantaz-Ambroise D, Henderson C, Rieger F. Influence of factors secreted byWobbler astrocytes on neuronal and motoneuronal survival. J Neurosci Res 2000. [DOI: 10.1002/(sici)1097-4547(20000101)59:1<100::aid-jnr12>3.0.co;2-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
792
|
South SA, Deibler GE, Tzeng SF, Badache A, Kirchner MG, Muja N, De Vries GH. Myelin basic protein (MBP) and MBP peptides are mitogens for cultured astrocytes. Glia 2000; 29:81-90. [PMID: 10594925 DOI: 10.1002/(sici)1098-1136(20000101)29:1<81::aid-glia8>3.0.co;2-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
After CNS demyelination, astrogliosis interferes with axonal regeneration and remyelination. We now provide evidence that myelin basic protein (MBP) can contribute to this observed astrocyte proliferation. We found that astrocytes grown in either serum-containing or serum-free medium proliferate in response to MBP. The mitogenic regions of MBP in both media were MBP(1-44), MBP(88-151) and MBP(152-167). The mitogenic effect of these individual peptides was potentiated by simultaneous treatment with microglia conditioned media (CM). MBP-induced proliferation was inhibited by suramin at concentrations known to block the fibroblast growth factor receptor (FGFR), whereas neither MBP(1-44), MBP(88-151) nor MBP(152-167) were affected. Cholera toxin B, that binds to ganglioside GM(1), inhibited the mitogenicity of MBP(1-44) and had no significant effect on the mitogenicity of MBP, MBP(88-151) or MBP(152-167). Treatment of astrocytes with MBP and MBP(152-167) caused a modest and transitory elevation of intracellular calcium, whereas treatment with MBP(1-44) resulted in a substantial and sustained increase in intracellular calcium. These results suggest that for cultured astrocytes 1) FGFR and extracellular calcium play a major role in MBP mitogenicity; 2) MBP(1-44), MBP(88-151) and MBP(152-167) are the mitogenic regions of MBP; 3) MBP(1-44) and MBP(152-167) interact with ganglioside GM(1) and FGFR, respectively; 4) Component(s) present in microglial CM potentiate the mitogenicity of MBP(1-44), MBP(88-151) and MBP(152-167). These data support the hypothesis that MBP related peptides in conjunction with microglial secreted factors may stimulate astrogliosis after demyelination in vivo.
Collapse
Affiliation(s)
- S A South
- Research Service, Hines VA Hospital, Hines, IL 60141, USA
| | | | | | | | | | | | | |
Collapse
|
793
|
Ghirnikar R, Lee Y, Eng L. Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat. J Neurosci Res 2000. [DOI: 10.1002/(sici)1097-4547(20000101)59:1<63::aid-jnr8>3.0.co;2-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
794
|
|
795
|
Moon LD, Brecknell JE, Franklin RJ, Dunnett SB, Fawcett JW. Robust regeneration of CNS axons through a track depleted of CNS glia. Exp Neurol 2000; 161:49-66. [PMID: 10683273 DOI: 10.1006/exnr.1999.7230] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transected CNS axons do not regenerate spontaneously but may do so if given an appropriate environment through which to grow. Since molecules associated with CNS macroglia are thought to be inhibitory to axon regeneration, we have tested the hypothesis that removing these cell types from an area of brain will leave an environment more permissive for axon regeneration. Adult rats received unilateral knife cuts of the nigrostriatal tract and ethidium bromide (EB) was used to create a lesion devoid of astrocytes, oligodendrocytes, intact myelin sheaths, and NG2 immunoreactive cells from the site of the knife cut to the ipsilateral striatum (a distance of 6 mm). The regenerative response and the EB lesion environment was examined with immunostaining and electron microscopy at different timepoints following surgery. We report that large numbers of dopaminergic nigral axons regenerated for over 4 mm through EB lesions. At 4 days postlesion dopaminergic sprouting was maximal and the axon growth front had reached the striatum, but there was no additional growth into the striatum after 7 days. Regenerating axons did not leave the EB lesion to form terminals in the striatum, there was no recovery of function, and the end of axon growth correlated with increasing glial immunoreactivity around the EB lesion. We conclude that the removal of CNS glia promotes robust axon regeneration but that this becomes limited by the reappearance of nonpermissive CNS glia. These results suggest, first, that control of the glial reaction is likely to be an important feature in brain repair and, second, that reports of axon regeneration must be interpreted with caution since extensive regeneration can occur simply as a result of a major glia-depleting lesion, rather than as the result of some other specific intervention.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Antigens/analysis
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Astrocytes/chemistry
- Astrocytes/cytology
- Astrocytes/physiology
- Avian Proteins
- Axons/physiology
- Axons/ultrastructure
- Axotomy
- Basigin
- Behavior, Animal
- Benzenesulfonates
- Blood Proteins
- Cell Death/physiology
- Coloring Agents
- Corpus Striatum/cytology
- Corpus Striatum/physiology
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Enzyme Inhibitors
- Ethidium
- Male
- Medial Forebrain Bundle/physiology
- Medial Forebrain Bundle/surgery
- Membrane Glycoproteins/analysis
- Microglia/chemistry
- Microglia/physiology
- Microscopy, Electron
- Monocytes/chemistry
- Monocytes/physiology
- Myelin Sheath/physiology
- Myelin Sheath/ultrastructure
- Nerve Degeneration/chemically induced
- Nerve Degeneration/pathology
- Nerve Regeneration/physiology
- Neurons/enzymology
- Neurons/ultrastructure
- Oligodendroglia/cytology
- Oligodendroglia/physiology
- Proteoglycans/analysis
- Rats
- Rats, Sprague-Dawley
- Substantia Nigra/cytology
- Substantia Nigra/physiology
- Tyrosine 3-Monooxygenase/analysis
Collapse
Affiliation(s)
- L D Moon
- MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, CB2 2PY
| | | | | | | | | |
Collapse
|
796
|
Cortez N, Trejo F, Vergara P, Segovia J. Primary astrocytes retrovirally transduced with a tyrosine hydroxylase transgene driven by a glial-specific promoter elicit behavioral recovery in experimental Parkinsonism. J Neurosci Res 2000. [DOI: 10.1002/(sici)1097-4547(20000101)59:1<39::aid-jnr6>3.0.co;2-n] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
797
|
Ricard CS, Pena JD, Hernandez MR. Differential expression of neural cell adhesion molecule isoforms in normal and glaucomatous human optic nerve heads. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:69-82. [PMID: 10640677 DOI: 10.1016/s0169-328x(99)00264-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Type 1B astrocytes of the human optic nerve head (ONH) constitutively express neural cell adhesion molecule (NCAM) in vivo and in vitro. Increased synthesis of NCAM has been detected in reactive astrocytes in the glaucomatous ONH of human donor eyes. Several NCAM isoforms are generated through alternate RNA splicing in tissue- and disease-specific patterns. In this study, we analyzed expression of NCAM isoforms in ONH of normal donors at different ages and in glaucoma. Total RNA was extracted from ONH of fetal, normal adult and glaucomatous eyes, and cultured human ONH astrocytes, fetal brain astrocytes and an astrocytoma cell line, for reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. To distinguish between NCAM 180 and 140 isoforms, exon-specific primer sets covering exons 13-19 were used. Isoform-specific riboprobes were used for in situ hybridization (ISH) in glaucomatous and in age-matched ONH. By RT-PCR, NCAM 140 was the predominant isoform in adult ONH as well as in all cultured cells. NCAM 180 mRNA was strongly expressed in glaucoma, whereas in normal adult tissues it was not detectable. ISH confirmed expression of NCAM in normal adult ONH and localized NCAM 140 mRNA to astrocytes. ISH demonstrated expression of NCAM 180 mRNA in reactive astrocytes in glaucomatous ONH. Our results demonstrate that the NCAM 180 isoform is induced in glaucoma. NCAM 180 may play a role in astrocyte interaction with extracellular matrix (ECM), vessels, axons and other astrocytes and, through its expanded cytoplasmic domain, serve as a signaling molecule for reactive astrocytes during remodeling of the ONH in glaucoma.
Collapse
Affiliation(s)
- C S Ricard
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8096, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
798
|
Tanaka M, Kadokawa Y, Hamada Y, Marunouchi T. Notch2 expression negatively correlates with glial differentiation in the postnatal mouse brain. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199912)41:4<524::aid-neu8>3.0.co;2-i] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
799
|
Levine JB, Kong J, Nadler M, Xu Z. Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS). Glia 1999. [DOI: 10.1002/(sici)1098-1136(199912)28:3<215::aid-glia5>3.0.co;2-c] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
800
|
González Deniselle MC, Lavista-Llanos S, Ferrini MG, Lima AE, Roldán AG, De Nicola AF. In vitro differences between astrocytes of control and wobbler mice spinal cord. Neurochem Res 1999; 24:1535-41. [PMID: 10591403 DOI: 10.1023/a:1021199931682] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Wobbler mouse, a model of amyotrophic lateral sclerosis (ALS), presents motorneuron degeneration and pronounced astrogliosis in the spinal cord. We have studied factors controlling astrocyte proliferation in cultures derived from Wobbler and control mice spinal cord. Basal rate of [3H]thymidine incorporation was 15 times lower in Wobbler astrocytes. While in control cultured cells interleukin-1alpha (IL-1) and corticosterone (CORT) significantly increased proliferation, both agents were inactive in Wobbler astrocytes. The lack of response to CORT was not due to the absence of glucocorticoid receptors, because similar receptor amounts were found in Wobbler and control astrocytes. In contrast to IL-1 and CORT, transforming growth factor-beta1 (TGF-beta1) substantially increased proliferation of Wobbler astrocytes but not of control cells. Differences in response to TGF-beta1 were also obtained by measuring glial fibrillary acidic protein (GFAP) immunoreaction intensity, which was substantially higher in Wobbler astrocytes. Thus, abnormal responses to different mitogens characterized Wobbler astrocytes in culture. We suggest that TGF-beta1 may play a role in the reactive gliosis and GFAP hyperexpression found in the degenerating spinal cord of this model of ALS.
Collapse
|