51
|
Balan OV, Vorotelyak EA, Smirnova TD, Ozernyuk ND. Specific features of satellite cells and myoblasts at different stages of rat postnatal development. BIOL BULL+ 2011. [DOI: 10.1134/s1062359008020052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
52
|
Ishido M, Kasuga N. In situ real-time imaging of the satellite cells in rat intact and injured soleus muscles using quantum dots. Histochem Cell Biol 2010; 135:21-6. [PMID: 21132508 DOI: 10.1007/s00418-010-0767-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 12/26/2022]
Abstract
The recruitment of satellite cells, which are located between the basement membrane and the plasma membrane in myofibers, is required for myofiber repair after muscle injury or disease. In particular, satellite cell migration has been focused on as a satellite cell response to muscle injury because satellite cell motility has been revealed in cell culture. On the other hand, in situ, it is poorly understood how satellite cell migration is involved in muscle regeneration after injury because in situ it has been technically very difficult to visualize living satellite cells localized within skeletal muscle. In the present study, using quantum dots conjugated to anti-M-cadherin antibody, we attempted the visualization of satellite cells in both intact and injured skeletal muscle of rat in situ. As a result, the present study is the first to demonstrate in situ real-time imaging of satellite cells localized within the skeletal muscle. Moreover, it was indicated that satellite cell migration toward an injured site was induced in injured muscle while spatiotemporal change in satellite cells did not occur in intact muscle. Thus, it was suggested that the satellite cell migration may play important roles in the regulation of muscle regeneration after injury. Moreover, the new method used in the present study will be a useful tool to develop satellite cell-based therapies for muscle injury or disease.
Collapse
Affiliation(s)
- Minenori Ishido
- Faculty of Education, Creative Arts and Sciences, Aichi University of Education, Igaya-cho, Kariya, Aichi, Japan.
| | | |
Collapse
|
53
|
Petricka JJ, Van Norman JM, Benfey PN. Symmetry breaking in plants: molecular mechanisms regulating asymmetric cell divisions in Arabidopsis. Cold Spring Harb Perspect Biol 2010; 1:a000497. [PMID: 20066115 DOI: 10.1101/cshperspect.a000497] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Asymmetric cell division generates cell types with different specialized functions or fates. This type of division is critical to the overall cellular organization and development of many multicellular organisms. In plants, regulated asymmetric cell divisions are of particular importance because cell migration does not occur. The influence of extrinsic cues on asymmetric cell division in plants is well documented. Recently, candidate intrinsic factors have been identified and links between intrinsic and extrinsic components are beginning to be elucidated. A novel mechanism in breaking symmetry was revealed that involves the movement of typically intrinsic factors between plant cells. As we learn more about the regulation of asymmetric cell divisions in plants, we can begin to reflect on the similarities and differences between the strategies used by plants and animals. Focusing on the underlying molecular mechanisms, this article describes three selected cases of symmetry-breaking events in the model plant Arabidopsis thaliana. These examples occur in early embryogenesis, stomatal development, and ground tissue formation in the root.
Collapse
Affiliation(s)
- Jalean J Petricka
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
54
|
Wang PY, Yu HT, Tsai WB. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnol Bioeng 2010; 106:285-94. [PMID: 20148416 DOI: 10.1002/bit.22697] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alignment and fusion of myoblasts into parallel arrays of multinucleated myotubes are critical in skeletal muscle tissue engineering. It is well known that contact guidance by grooves/ridges structures induces myoblasts to align and to migrate along the anisotropic direction. In this study, two series of grooved substrata with different widths (450 and 900 nm) and different depths (100, 350, and 550 nm) were studied on their effects on myoblast adhesion, proliferation, and differentiation into myotubes. We found that C2C12 cells were aligned and elongated along the direction of grooves. Groove depth was more influential on cellular morphology, proliferation, and differentiation than groove width. While cell proliferation was retarded on the grooved surfaces especially on the substrate with 900/550 nm (width/depth), differentiation was also enhanced on the patterned surfaces compared to the flat control. Our results demonstrated the potential of grooved substrata with submicron scale in skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemical Engineering, National Taiwan University, No. 1, Roosevelt Rd., Sec. 4, Taipei 106, Taiwan
| | | | | |
Collapse
|
55
|
Das M, Rumsey JW, Bhargava N, Stancescu M, Hickman JJ. A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials 2010; 31:4880-8. [PMID: 20346499 PMCID: PMC2925240 DOI: 10.1016/j.biomaterials.2010.02.055] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/21/2010] [Indexed: 01/08/2023]
Abstract
Neuromuscular junction (NMJ) formation, occurring between motoneurons and skeletal muscle, is a complex multistep process involving a variety of signaling molecules and pathways. In vitro motoneuron-muscle co-cultures are powerful tools to study the role of different growth factors, hormones and cellular structures involved in NMJ formation. In this study, a serum-free culture system utilizing defined temporal growth factor application and a non-biological substrate resulted in the formation of robust NMJs. The system resulted in long-term survival of the co-culture and selective expression of neonatal myosin heavy chain, a marker of myotube maturation. NMJ formation was verified by colocalization of dense clusters of acetylcholine receptors visualized using alpha-bungarotoxin and synaptophysin containing vesicles present in motoneuron axonal terminals. This model will find applications in basic NMJ research and tissue engineering applications such as bio-hybrid device development for limb prosthesis and regenerative medicine as well as for high-throughput drug and toxin screening applications.
Collapse
Affiliation(s)
| | | | - Neelima Bhargava
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, 12424 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Maria Stancescu
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, 12424 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, 12424 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
56
|
Wang S, Guo L, Dong L, Guo L, Li S, Zhang J, Sun M. TGF-beta1 signal pathway may contribute to rhabdomyosarcoma development by inhibiting differentiation. Cancer Sci 2010; 101:1108-16. [PMID: 20219075 PMCID: PMC11158283 DOI: 10.1111/j.1349-7006.2010.01512.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Overexpression of transforming growth factor-beta1 (TGF-beta1) and its downstream molecules in the rhabdomyosarcoma (RMS) RD cell line has been reported previously, but the regulatory role of TGF-beta1 on RMS has not been studied extensively. In the present study, we showed that expression of TGF-beta1 and its downstream molecules type II TGF-beta receptor (TbetaRII) and Smad4 was significantly higher in RMS than in normal skeletal muscle, and there was a significant relationship between TGF-beta1 expression and histological grade. Gene silencing with TGF-beta1 short-hairpin RNA (shRNA)-expressing vectors significantly decreased the growth of RD cells, which was confirmed by caspase-3 (in vitro) and TUNEL (in vivo) assays. Moreover, a proportion of treated rhabdomyosarcoma (RD) cells changed to a round shape from the normal fusiform or polygonal shape and expressed myofilaments. Myogenin is one of the myogenic differentiation genes (MyoD) family of myogenic regulators, and was obviously higher in TGF-beta1-shRNA-treated tumors than it in control at the mRNA and protein level. Immunohistochemical staining with myogenic differentiation markers such as myosin and desmin in subcutaneous RMS tissue showed that TGF-beta1 shRNA increased staining for myosin. These results provide new insight into the biological function of TGF-beta1 in malignant tumors, and imply that the TGF-beta1 signal pathway is a potential therapeutic target for drugs that induce differentiation of RMS.
Collapse
Affiliation(s)
- Shouli Wang
- Department of Pathology, Soochow University School of Medicine, Suzhou, China.
| | | | | | | | | | | | | |
Collapse
|
57
|
Harford TJ, Shaltouki A, Weyman CM. Increased expression of the pro-apoptotic Bcl2 family member PUMA and apoptosis by the muscle regulatory transcription factor MyoD in response to a variety of stimuli. Apoptosis 2010; 15:71-82. [PMID: 19943111 DOI: 10.1007/s10495-009-0428-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously reported that the level of MyoD expression correlates with the level of apoptosis that occurs in a subpopulation of skeletal myoblasts induced to differentiate by serum withdrawal. Herein we document that MyoD expression contributes to the level of apoptosis in myoblasts and fibroblasts in response to a variety of apoptotic stimuli. Specifically, re-expression of MyoD in skeletal myoblasts rendered defective for both differentiation and apoptosis by the expression of oncogenic Ras restores their ability to undergo both differentiation and apoptosis in response to serum withdrawal. Further, using a fibroblast cell line expressing an estrogen receptor:MyoD fusion protein, we have determined that addition of estrogen sensitizes these fibroblasts to apoptosis induced by serum withdrawal, or by treatment with etoposide or thapsigargin. RNAi mediated silencing of MyoD in either 23A2 or C2C12 myoblasts renders these cells resistant to apoptosis induced by serum withdrawal, or by treatment with etoposide or thapsigargin. Finally, MyoD mediated regulation of the apoptotic response to these various stimuli, in both myoblasts and fibroblasts, correlates with the level of induction of the pro-apoptotic Bcl2 family member PUMA.
Collapse
Affiliation(s)
- Terri J Harford
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Center for Gene Regulation in Health and Disease, Cleveland, OH 44115, USA
| | | | | |
Collapse
|
58
|
Melchionna R, Di Carlo A, De Mori R, Cappuzzello C, Barberi L, Musarò A, Cencioni C, Fujii N, Tamamura H, Crescenzi M, Capogrossi MC, Napolitano M, Germani A. Induction of myogenic differentiation by SDF-1 via CXCR4 and CXCR7 receptors. Muscle Nerve 2010; 41:828-35. [DOI: 10.1002/mus.21611] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
59
|
Ikeda T, Kanazawa T, Otsuka S, Ichii O, Hashimoto Y, Kon Y. Expression of caspase family and muscle- and apoptosis-specific genes during skeletal myogenesis in mouse embryo. J Vet Med Sci 2009; 71:1161-8. [PMID: 19801895 DOI: 10.1292/jvms.71.1161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caspases (Casps) are a family of cysteine proteases that are known to regulate apoptotic signaling. Apoptosis by activation of Casp is strongly associated with embryonal development and regeneration in many organs, therefore indicating that disorders caused by homozygous mutation in Casp genes can result in embryonic lethality. In the present study, the authors investigated the causative relationship between skeletal myogenesis and the activation of Casps by analyzing their dynamics during mouse embryogenesis. Individual myogenetic tissues were obtained from C57BL/6 mouse embryos aged 12.5-17.5 days post-conception (dpc), and the expression of Casps was analyzed by histochemical and molecular biological methods. Immunoreactions for Casp-3, -9 and -12 were detected first in myoblasts, increasing according to embryonal development, as a result of which myoblasts differentiated into myotube cells. On the other hand, the immunoreaction for ssDNA, which is well-known as an apoptosis marker, was little detected during the skeletal myogenesis. Quantification analysis for Casp mRNA expression by RT-PCR as well as by in situ hybridization showed a peak at 15.5 dpc but a decrease at 17.5 dpc. Similar dynamics were detected for Myod1 mRNA, one of the muscle regulatory factors, but not for Fasl, Bax and Rock1, apoptosis-associated factors during skeletal myogenesis. These results suggest that the activation of Casps in skeletal myogenesis is deeply associated with myoblast differentiation, but not directly related to apoptosis.
Collapse
Affiliation(s)
- Teppei Ikeda
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
60
|
Freer-Prokop M, O'Flaherty J, Ross JA, Weyman CM. Non-canonical role for the TRAIL receptor DR5/FADD/caspase pathway in the regulation of MyoD expression and skeletal myoblast differentiation. Differentiation 2009; 78:205-12. [PMID: 19523746 PMCID: PMC2784740 DOI: 10.1016/j.diff.2009.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/17/2009] [Accepted: 05/13/2009] [Indexed: 12/25/2022]
Abstract
We report herein that the TRAIL receptor DR5/FADD/caspase pathway plays a role in skeletal myoblast differentiation through modulation of the expression of the muscle regulatory transcription factor MyoD. Specifically, treatment with the selective caspase 3 inhibitor DEVD-fmk or the selective caspase 8 inhibitor IETD-fmk in growth media (GM), prior to culture in differentiation media (DM), inhibited differentiation. Further, this treatment resulted in decreased levels of MyoD message and protein. We next explored a role for the TRAIL receptor DR5/FADD pathway. We found that expression of either dominant negative (dn) FADD or dominant negative (dn) DR5 also resulted in decreased levels of MyoD mRNA and protein and blocked differentiation. This decreased level of MyoD mRNA was not a consequence of altered stability. Treatment with TSA, an inhibitor of histone deacetylases (HDACs), allowed MyoD expression in myoblasts expressing dnDR5. Finally, acetylation of histones associated with the distal regulatory region (DRR) enhancer of MyoD was decreased in myoblasts expressing dnDR5. Thus, our data suggests a non-canonical role for the TRAIL receptor/FADD pathway in the regulation of MyoD expression and skeletal myoblast differentiation.
Collapse
Affiliation(s)
- Margot Freer-Prokop
- Department of Biological, Geological, and Environmental Sciences Center for Gene Regulation in Health and Disease Cleveland State University, Cleveland, OH 44115
| | - John O'Flaherty
- Department of Biological, Geological, and Environmental Sciences Center for Gene Regulation in Health and Disease Cleveland State University, Cleveland, OH 44115
| | - Jason A. Ross
- Department of Biological, Geological, and Environmental Sciences Center for Gene Regulation in Health and Disease Cleveland State University, Cleveland, OH 44115
| | - Crystal M. Weyman
- Department of Biological, Geological, and Environmental Sciences Center for Gene Regulation in Health and Disease Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
61
|
Das M, Rumsey JW, Bhargava N, Stancescu M, Hickman JJ. Skeletal muscle tissue engineering: a maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus and neonatal myosin heavy chain expression. Biomaterials 2009; 30:5392-402. [PMID: 19625080 PMCID: PMC2851407 DOI: 10.1016/j.biomaterials.2009.05.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/25/2009] [Indexed: 01/17/2023]
Abstract
The use of defined in vitro systems to study the developmental and physiological characteristics of a variety of cell types is increasing, due in large part to their ease of integration with tissue engineering, regenerative medicine, and high-throughput screening applications. In this study, myotubes derived from fetal rat hind limbs were induced to develop several aspects of mature muscle including: sarcomere assembly, development of the excitation-contraction coupling apparatus and myosin heavy chain (MHC) class switching. Utilizing immunocytochemical analysis, anisotropic and isotropic band formation (striations) within the myotubes was established, indicative of sarcomere formation. In addition, clusters of ryanodine receptors were colocalized with dihydropyridine complex proteins which signaled development of the excitation-contraction coupling apparatus and transverse tubule biogenesis. The myotubes also exhibited MHC class switching from embryonic to neonatal MHC. Lastly, the myotubes survived significantly longer in culture (70-90 days) than myotubes from our previously developed system (20-25 days). These results were achieved by modifying the culture timeline as well as the development of a new medium formulation. This defined model system for skeletal muscle maturation supports the goal of developing physiologically relevant muscle constructs for use in tissue engineering and regenerative medicine as well as for high-throughput screening applications.
Collapse
Affiliation(s)
| | | | - Neelima Bhargava
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, Research Pavilion, 12424, Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Maria Stancescu
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, Research Pavilion, 12424, Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, Research Pavilion, 12424, Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
62
|
Regulation of myoblast differentiation by the nuclear envelope protein NET39. Mol Cell Biol 2009; 29:5800-12. [PMID: 19704009 DOI: 10.1128/mcb.00684-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, several transmembrane proteins of the nuclear envelope have been implicated in regulation of signaling and gene expression. Here we demonstrate that the nuclear lamina-associated nuclear envelope transmembrane protein NET39 (Ppapdc3) functions as a negative regulator of myoblast differentiation, in part through effects on mTOR signaling. We found that NET39 is highly expressed in cardiac and skeletal muscle tissues and becomes strongly upregulated during cultured myoblast differentiation. Knockdown of NET39 by RNA interference in myoblasts strongly promoted differentiation, whereas overexpression of NET39 repressed myogenesis. Proteomic analysis of NET39 complexes immunoprecipitated from myotubes, in combination with other methods, identified mTOR as an interaction partner of NET39. We found that ectopic expression of NET39 in myoblasts negatively regulated myogenesis by diminishing mTOR activity, which in turn decreased insulin-like growth factor II production and autocrine signaling. Our results indicate that NET39 is part of the regulatory machinery for myogenesis and raise the possibility that it may be important for muscle homeostasis.
Collapse
|
63
|
Das M, Rumsey JW, Bhargava N, Gregory C, Reidel L, Kang JF, Hickman JJ. Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation. In Vitro Cell Dev Biol Anim 2009; 45:378-387. [PMID: 19430851 DOI: 10.1007/s11626-009-9192-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 02/13/2009] [Indexed: 01/12/2023]
Abstract
This work describes the step-by-step development of a novel, serum-free, in vitro cell culture system resulting in the formation of robust, contracting, multinucleate myotubes from dissociated skeletal muscle cells obtained from the hind limbs of fetal rats. This defined system consisted of a serum-free medium formulation developed by the systematic addition of different growth factors as well as a nonbiological cell growth promoting substrate, N-1[3-(trimethoxysilyl) propyl] diethylenetriamine. Each growth factor in the medium was experimentally evaluated for its effect on myotube formation. The resulting myotubes were evaluated immunocytochemically using embryonic skeletal muscle, specifically the myosin heavy chain antibody. Based upon this analysis, we propose a new skeletal muscle differentiation protocol that reflects the roles of the various growth factors which promote robust myotube formation. Further observation noted that the proposed skeletal muscle differentiation technique also supported muscle-nerve coculture. Immunocytochemical evidence of nerve-muscle coculture has also been documented. Applications for this novel culture system include biocompatibility and skeletal muscle differentiation studies, understanding myopathies, neuromuscular disorders, and skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Mainak Das
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - John W Rumsey
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Neelima Bhargava
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Cassie Gregory
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Lisa Reidel
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Jung Fong Kang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
64
|
Abe S, Nonami K, Iwanuma O, Hiroki E, Yanagisawa N, Sakiyama K, Ide Y. HGF and IGF-1 is Present during the Developmental Process of Murine Masseter Muscle. J HARD TISSUE BIOL 2009. [DOI: 10.2485/jhtb.18.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
65
|
Suresh S, Yadav VR, Suresh A. Health Benefits and Therapeutic Applications of Curcumin. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10601330601079810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
66
|
Sambasivan R, Pavlath GK, Dhawan J. A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts. J Biosci 2008; 33:27-44. [PMID: 18376068 DOI: 10.1007/s12038-008-0019-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular quiescence is characterized not only by reduced mitotic and metabolic activity but also by altered gene expression. Growing evidence suggests that quiescence is not merely a basal state but is regulated by active mechanisms. To understand the molecular programme that governs reversible cell cycle exit, we focused on quiescence-related gene expression in a culture model of myogenic cell arrest and activation. Here we report the identification of quiescence-induced genes using a gene-trap strategy. Using a retroviral vector, we generated a library of gene traps in C2C12 myoblasts that were screened for arrest-induced insertions by live cell sorting (FACS-gal). Several independent gene- trap lines revealed arrest-dependent induction of betagal activity, confirming the efficacy of the FACS screen. The locus of integration was identified in 15 lines. In three lines,insertion occurred in genes previously implicated in the control of quiescence, i.e. EMSY - a BRCA2--interacting protein, p8/com1 - a p300HAT -- binding protein and MLL5 - a SET domain protein. Our results demonstrate that expression of chromatin modulatory genes is induced in G0, providing support to the notion that this reversibly arrested state is actively regulated.
Collapse
|
67
|
Shaltouki A, Freer M, Mei Y, Weyman CM. Increased expression of the pro-apoptotic Bcl2 family member PUMA is required for mitochondrial release of cytochrome C and the apoptosis associated with skeletal myoblast differentiation. Apoptosis 2008; 12:2143-54. [PMID: 17879164 DOI: 10.1007/s10495-007-0135-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have previously shown that when skeletal myoblasts are cultured in differentiation medium (DM), roughly 30% undergo caspase 3-dependent apoptosis rather than differentiation. Herein, we investigate the molecular mechanism responsible for the activation of caspase 3 and the ensuing apoptosis. When 23A2 myoblasts are cultured in DM, caspase 9 activity is increased and pharmacological abrogation of caspase 9 activation impairs caspase 3 activation and apoptosis. Further, we detect a time dependent release of mitochondrial cytochrome C into the cytosol in roughly 30% of myoblasts. Inclusion of cycloheximide inhibits the release of cytochrome C, the activation of caspase 9 and apoptosis. These data indicate that the mitochondrial pathway plays a role in this apoptotic process and that engagement of this pathway relies on de novo protein synthesis. Through RT-PCR and immunoblot analysis, we have determined that the expression level of the pro-apoptotic Bcl2 family member PUMA is elevated when 23A2 myoblasts are cultured in DM. Further, silencing of PUMA inhibits the release of cytochrome C and apoptosis. Signaling by the transcription factor p53 is not responsible for the increased level of PUMA. Finally, myoblasts rescued from apoptosis by either inhibition of elevated caspase 9 activity or silencing of PUMA are competent for differentiation. These results indicate a critical role for PUMA in the apoptosis associated with skeletal myoblast differentiation and that a p53-independent mechanism is responsible for the increased expression of PUMA in these cells.
Collapse
Affiliation(s)
- Atossa Shaltouki
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | |
Collapse
|
68
|
Liotta D, Han J, Elgar S, Garvey C, Han Z, Taylor MV. The Him gene reveals a balance of inputs controlling muscle differentiation in Drosophila. Curr Biol 2007; 17:1409-13. [PMID: 17702578 PMCID: PMC1955682 DOI: 10.1016/j.cub.2007.07.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/28/2007] [Accepted: 07/13/2007] [Indexed: 11/23/2022]
Abstract
Tissue development requires the controlled regulation of cell-differentiation programs. In muscle, the Mef2 transcription factor binds to and activates the expression of many genes and has a major positive role in the orchestration of differentiation [1–4]. However, little is known about how Mef2 activity is regulated in vivo during development. Here, we characterize a gene, Holes in muscle (Him), which our results indicate is part of this control in Drosophila. Him expression rapidly declines as embryonic muscle differentiates, and consistent with this, Him overexpression inhibits muscle differentiation. This inhibitory effect is suppressed by mef2, implicating Him in the mef2 pathway. We then found that Him downregulates the transcriptional activity of Mef2 in both cell culture and in vivo. Furthermore, Him protein binds Groucho, a conserved, transcriptional corepressor, through a WRPW motif and requires this motif and groucho function to inhibit both muscle differentiation and Mef2 activity during development. Together, our results identify a mechanism that can inhibit muscle differentiation in vivo. We conclude that a balance of positive and negative inputs, including Mef2, Him, and Groucho, controls muscle differentiation during Drosophila development and suggest that one outcome is to hold developing muscle cells in a state with differentiation genes poised to be expressed.
Collapse
Affiliation(s)
- David Liotta
- Cardiff School of Biosciences, Cardiff University Main Building, Cardiff CF10 3TL, United Kingdom
| | - Jun Han
- Cardiff School of Biosciences, Cardiff University Main Building, Cardiff CF10 3TL, United Kingdom
| | - Stuart Elgar
- Cardiff School of Biosciences, Cardiff University Main Building, Cardiff CF10 3TL, United Kingdom
| | - Clare Garvey
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Zhe Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Michael V. Taylor
- Cardiff School of Biosciences, Cardiff University Main Building, Cardiff CF10 3TL, United Kingdom
- Corresponding author
| |
Collapse
|
69
|
Inhibition of differentiation by transforming growth factor ß1 in rhabdomyosarcoma cells. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11805-007-0327-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
70
|
Das M, Wilson K, Molnar P, Hickman JJ. Differentiation of skeletal muscle and integration of myotubes with silicon microstructures using serum-free medium and a synthetic silane substrate. Nat Protoc 2007; 2:1795-801. [PMID: 17641647 DOI: 10.1038/nprot.2007.229] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes a cell culture model to study the differentiation of fetal rat skeletal muscle cells. The model uses serum-free medium, a nonbiological substrate N-1[3(trimethoxysilyl)propyl] diethylenetriamine (DETA) and fabricated microcantilevers to promote the differentiation of dissociated rat myocytes into robust myotubes. In this protocol, we also describe how to characterize the myotubes on the basis of morphology, immunocytochemistry and electrophysiology. Here, four major techniques are employed: fabrication of cantilevers, surface modification of the glass and cantilever substrates with a DETA SAM, a serum-free medium and refined culture techniques. This culture system has potential applications in biocompatibility studies, bioartificial muscle engineering, skeletal muscle differentiation studies and for better understanding of myopathies and neuromuscular disorders. The model can be established in 26-33 d.
Collapse
Affiliation(s)
- Mainak Das
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | | | | | | |
Collapse
|
71
|
Marquette ML, Byerly D, Sognier M. A novel in vitro three-dimensional skeletal muscle model. In Vitro Cell Dev Biol Anim 2007; 43:255-63. [PMID: 17786532 DOI: 10.1007/s11626-007-9054-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/25/2007] [Indexed: 01/21/2023]
Abstract
A novel three-dimensional (3D) skeletal muscle model composed of C2C12 mouse myoblasts is described. This model was generated by cultivating myoblasts in suspension using the rotary cell culture system (RCCS), a unique culture environment. Single-cell suspensions of myoblasts were seeded at 5 x 10(5)/ml in growth medium without exogenous support structures or substrates. Cell aggregation occurred in both RCCS and suspension control (SC) conditions within 12 h but occurred more rapidly in the SC at all time intervals examined. RCCS-cultured myoblasts fused and differentiated into a 3D construct without serum deprivation or alterations. Syncitia were quantified at 3 and 6+ d in stained thin sections. A significantly greater number of syncitia was found at 6+ d in the RCCS cultures compared to the SC. The majority of syncitia were localized to the periphery of the cell constructs for all treatments. The expression of sarcomeric myosin heavy chain (MHC) was localized at or near the periphery of the 3D construct. The majority of MHC was associated with the large cells (syncitia) of the 6+-d aggregates. These results show, for the first time, that myoblasts form syncitia and express MHC in the presence of growth factors and without the use of exogenous supports or substrates. This model test system is useful for investigating initial cell binding, myoblast fusion and syncitia formation, and differentiation processes.
Collapse
Affiliation(s)
- Michele L Marquette
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
72
|
Ciuffini L, Castellani L, Salvati E, Galletti S, Falcone G, Alemà S. Delineating v-Src downstream effector pathways in transformed myoblasts. Oncogene 2007; 27:528-39. [PMID: 17637741 DOI: 10.1038/sj.onc.1210665] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, we delineate the intracellular signalling pathways modulated by a conditional v-Src tyrosine kinase that lead to unrestrained proliferation and block of differentiation of primary avian myoblasts. By inhibiting Ras-MAPK kinase and phosphatidylinositol 3-kinase with different means, we find that both pathways play crucial roles in controlling v-Src-sustained growth factor and anchorage independence for proliferation. The Ras-MAPK kinase pathway also contributes to block of differentiation independently of cell proliferation since inhibition of this pathway both in proliferating and growth-arrested v-Src-transformed myoblasts induces expression of muscle-specific genes, fusion into multinucleated myotubes and assembly of specialized contractile structures. Importantly, we find that the p38 MAPK pathway is inhibited by v-Src in myoblasts and its forced activation results in growth inhibition and expression of differentiation, indicating p38 MAPK as a critical target of v-Src in growth transformation and myogenic differentiation. Furthermore, we show that downregulation of p38 MAPK activation may occur via Ras-MAPK kinase, thus highlighting a cross-regulation between the two pathways. Finally, we report that the simultaneous inhibition of MAPK kinase and calpain, combined to activation of p38 MAPK, are sufficient to reconstitute largely the differentiation potential of v-Src-transformed myoblasts.
Collapse
Affiliation(s)
- L Ciuffini
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo Scalo (RM), Italy
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
Ubiquitin-dependent proteolysis plays an important role in regulating fundamental biological functions, including cell division and cellular differentiation. Previous studies implicate the ubiquitin-proteasome system (UPS) in myogenic differentiation through regulating cell cycle progression and modulating myogenic factors such as MyoD and Myf5. Certain ubiquitin protein ligases, including the SCF complex and APC, have been suggested to govern terminal muscle differentiation. However, the underlying mechanism of regulation of both the cell cycle and myogenic factors by the UPS during this process remains unclear. We have dissected the role of the UPS in myogenic differentiation using an in vitro muscle differentiation system based on C2C12 cells. We demonstrate that Cdh1-APC regulates two critical proteins, Skp2 and Myf5, for proteolysis during muscle differentiation. The targeting of Skp2 by Cdh1-APC for destruction results in elevation of p21 and p27, which are crucial for coordinating cellular division and differentiation. Degradation of Myf5 by Cdh1-APC facilitates myogenic fusion. Knockdown of Cdh1 by siRNA significantly attenuates muscle differentiation. Taken together, Cdh1-APC is an important ubiquitin E3 ligase that modulates muscle differentiation through coordinating cell cycle progression and initiating the myogenic differentiation program.
Collapse
Affiliation(s)
- Wenqi Li
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
74
|
Wu H, Wang X, Liu S, Wu Y, Zhao T, Chen X, Zhu L, Wu Y, Ding X, Peng X, Yuan J, Wang X, Fan W, Fan M. Sema4C participates in myogenic differentiation in vivo and in vitro through the p38 MAPK pathway. Eur J Cell Biol 2007; 86:331-44. [PMID: 17498836 DOI: 10.1016/j.ejcb.2007.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 03/03/2007] [Accepted: 03/05/2007] [Indexed: 11/19/2022] Open
Abstract
Sema4C is a member of transmembrane semaphorin proteins which regulate axonal guidance in the developing nervous system. The expression of Sema4C was dramatically induced not only during differentiation of C2C12 mouse myoblasts, but also during injury-induced skeletal muscle regeneration. C2C12 cells stably or transiently expressing Sema4C both showed increased myogenic differentiation reflected by accelerated myotube formation and expression of muscle-specific proteins. Overexpression of Sema4C elicited p38 phosphorylation directly, and the effects of Sema4C during myogenic differentiation could be abolished by the p38alpha-specific inhibitor SB203580. Knockdown of Sema4C by siRNA transfection during C2C12 myoblasts differentiation could suppress the phosphorylation of p38 followed by dramatically diminished myotube formation. Sema4C could activate the myogenin promoter during myogenic differentiation. This activation could be abolished by p38 inhibitor SB203580. Taken together, these observations reveal novel functional potentialities of Sema4C which suggest that Sema4C promotes terminal myogenic differentiation in a p38 MAPK-dependent manner.
Collapse
Affiliation(s)
- Haitao Wu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Biressi S, Tagliafico E, Lamorte G, Monteverde S, Tenedini E, Roncaglia E, Ferrari S, Ferrari S, Cusella-De Angelis MG, Tajbakhsh S, Cossu G. Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol 2007; 304:633-51. [PMID: 17292343 DOI: 10.1016/j.ydbio.2007.01.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/29/2006] [Accepted: 01/05/2007] [Indexed: 12/30/2022]
Abstract
Skeletal muscle development occurs asynchronously and it has been proposed to be dependent upon the generation of temporally distinct populations of myogenic cells. This long-held hypothesis has not been tested directly due to the inability to isolate and analyze purified populations of myoblasts derived from specific stages of prenatal development. Using a mouse strain with the GFP reporter gene targeted into the Myf5 locus, a cell-sorting method was developed for isolating embryonic and fetal myoblasts. The two types of myoblasts show an intrinsic difference in fusion ability, proliferation, differentiation and response to TGFbeta, TPA and BMP-4 in vitro. Microarray and quantitative PCR were used to identify differentially expressed genes both before and after differentiation, thus allowing a precise phenotypic analysis of the two populations. Embryonic and fetal myoblasts differ in the expression of a number of transcription factors and surface molecules, which may control different developmental programs. For example, only embryonic myoblasts express a Hox code along the antero-posterior axis, indicating that they possess direct positional information. Taken together, the data presented here demonstrate that embryonic and fetal myoblasts represent intrinsically different myogenic lineages and provide important information for the understanding of the molecular mechanisms governing skeletal muscle development.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, Dibit, H. San Raffaele, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Nakanishi K, Dohmae N, Morishima N. Endoplasmic reticulum stress increases myofiber formation in vitro. FASEB J 2007; 21:2994-3003. [PMID: 17435177 DOI: 10.1096/fj.06-6408com] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myoblast differentiation involves myoblast fusion followed by myofiber formation. We recently demonstrated that endoplasmic reticulum (ER) stress signaling occurs during myoblast differentiation in vivo. This signaling results in apoptosis in a subpopulation of myoblasts. In a cell culture model of myogenesis, inhibition of ER stress signaling blocked apoptosis and myoblast differentiation. To further examine the role of ER stress during myogenesis, we exposed cultured myoblasts to ER stress inducers during the transition from proliferation to differentiation. The stress inducers tunicamycin (an inhibitor of N-glycosylation in the ER) and thapsigargin (an inhibitor of ER-specific calcium ATPase) were used at doses that induce 40-50% apoptosis in myoblast cultures. Increased ER stress enhanced differentiation-associated apoptosis of myoblasts. It is likely that apoptosis induced by ER stress selectively eliminates vulnerable cells. We found that the surviving myoblast cells were even more resistant to apoptosis. Remarkably, the surviving cells efficiently differentiated into contracting myofibers that are rarely found in culture models of myogenesis. Our observations suggest that ER stress exerts a positive effect on myofiber formation, possibly mimicking the action of signals that drive apoptosis and differentiation in vivo. These results may provide important insight for developing therapies to improve myofiber formation.
Collapse
Affiliation(s)
- Keiko Nakanishi
- The Biomolecular Characterization Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
77
|
Li X, Zhu L, Chen X, Fan M. Effects of hypoxia on proliferation and differentiation of myoblasts. Med Hypotheses 2007; 69:629-36. [PMID: 17395396 DOI: 10.1016/j.mehy.2006.12.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/18/2006] [Indexed: 02/09/2023]
Abstract
Oxygen is an environmental and developmental signal regulator, and its role is involved in energy homeostasis, development and process of differentiation. Myoblasts persist in skeletal muscle as satellite cells, which possess capability of self-renewing and differentiation into mature myofiber. Myoblasts play a critical role in postnatal muscle regeneration after injury as well as maintaining myofibers' function. Though oxygen is vital to nearly all forms of life, studies focused on investigating the effects of oxygen level on proliferation and differentiation of myoblasts are few. Lower oxygen concentration is more close to the level of oxygen in physiological and pathological environment in vivo. So physiological environment is actually optimum condition for myogenesis. It is significant for understanding repair and regeneration of skeletal muscle to study on effects of hypoxia on myogenesis. HIF-1 signaling pathway was involved in these processes as well as other signaling pathways would be, and accordingly, deep studying and further revealing the signaling pathways involved in mechanism will provide evidences or references for looking for novel targets for stem cells therapy and drug treatment.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | | | | | | |
Collapse
|
78
|
O’Flaherty J, Mei Y, Freer M, Weyman CM. Signaling through the TRAIL receptor DR5/FADD pathway plays a role in the apoptosis associated with skeletal myoblast differentiation. Apoptosis 2007; 11:2103-13. [PMID: 17041756 PMCID: PMC2782111 DOI: 10.1007/s10495-006-0196-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Apoptosis rather than differentiation is a physiological process during myogenesis and muscle regeneration. When cultured myoblasts were induced to differentiate, we detected an increase in caspase 8 activity. Pharmacological inhibition of caspase 8 activity decreased apoptosis. Expression of a dominant-negative mutant of the adapter protein FADD also abrogated apoptosis, implicating a death ligand pathway. Treatment with TRAIL, but not Fas, induced apoptosis in these myoblasts. Accordingly, treatment with a soluble TRAIL decoy receptor or expression of a dominant-negative mutant of the TRAIL receptor DR5 abrogated apoptosis. While TRAIL expression levels remained unaltered in apoptotic myoblasts, DR5 expression levels increased. Finally, we also detected a reduction in FLIP, a death-receptor effector protein and caspase 8 competitive inhibitor, to undetectable levels in apoptotic myoblasts. Thus, our data demonstrate an important role for the TRAIL/DR5/FADD/caspase 8 pathway in the apoptosis associated with skeletal myoblast differentiation. Identifying the functional apoptotic pathways in skeletal myoblasts may prove useful in minimizing the myoblast apoptosis that contributes pathologically to a variety of diseases and in minimizing the apoptosis of transplanted myoblasts to treat these and other disease states.
Collapse
Affiliation(s)
- J. O’Flaherty
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Y. Mei
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - M. Freer
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - C. M. Weyman
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
79
|
Pomiès P, Pashmforoush M, Vegezzi C, Chien KR, Auffray C, Beckerle MC. The cytoskeleton-associated PDZ-LIM protein, ALP, acts on serum response factor activity to regulate muscle differentiation. Mol Biol Cell 2007; 18:1723-33. [PMID: 17332502 PMCID: PMC1855033 DOI: 10.1091/mbc.e06-09-0815] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this report, an antisense RNA strategy has allowed us to show that disruption of ALP expression affects the expression of the muscle transcription factors myogenin and MyoD, resulting in the inhibition of muscle differentiation. Introduction of a MyoD expression construct into ALP-antisense cells is sufficient to restore the capacity of the cells to differentiate, illustrating that ALP function occurs upstream of MyoD. It is known that MyoD is under the control of serum response factor (SRF), a transcriptional regulator whose activity is modulated by actin dynamics. A dramatic reduction of actin filament bundles is observed in ALP-antisense cells and treatment of these cells with the actin-stabilizing drug jasplakinolide stimulates SRF activity and restores the capacity of the cells to differentiate. Furthermore, we show that modulation of ALP expression influences SRF activity, the level of its coactivator, MAL, and muscle differentiation. Collectively, these results suggest a critical role of ALP on muscle differentiation, likely via cytoskeletal regulation of SRF.
Collapse
Affiliation(s)
- Pascal Pomiès
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5237, Centre de Recherches de Biochimie Macromoléculaire, 34293 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
80
|
Pillitteri LJ, Torii KU. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. Bioessays 2007; 29:861-70. [PMID: 17691100 DOI: 10.1002/bies.20625] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stomata are microscopic pores on the surface of land plants used for gas and water vapor exchange. A pair of highly specialized guard cells surround the pore and adjust pore size. Studies in Arabidopsis have revealed that cell-cell communication is essential to coordinate the asymmetric cell divisions required for proper stomatal patterning. Initial research in this area identified signaling molecules that negatively regulate stomatal differentiation. However, genes promoting cell-fate transition leading to mature guard cells remained elusive. Now, three closely related basic helix-loop-helix (bHLH) proteins, SPEECHLESS, MUTE and FAMA have been identified as positive regulators that direct three consecutive cell-fate decisions during stomatal development. The identification of these genes opens a new direction to investigate the evolution of stomatal development and the conserved functions of bHLH proteins in cell type differentiation adopted by plants and animals.
Collapse
|
81
|
Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU. Termination of asymmetric cell division and differentiation of stomata. Nature 2006; 445:501-5. [PMID: 17183267 DOI: 10.1038/nature05467] [Citation(s) in RCA: 384] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 11/21/2006] [Indexed: 11/08/2022]
Abstract
Stomata consist of a pair of guard cells that mediate gas and water-vapour exchange between plants and the atmosphere. Stomatal precursor cells-meristemoids-possess a transient stem-cell-like property and undergo several rounds of asymmetric divisions before further differentiation. Here we report that the Arabidopsis thaliana basic helix-loop-helix (bHLH) protein MUTE is a key switch for meristemoid fate transition. In the absence of MUTE, meristemoids abort after excessive asymmetric divisions and fail to differentiate stomata. Constitutive overexpression of MUTE directs the entire epidermis to adopt guard cell identity. MUTE has two paralogues: FAMA, a regulator of guard cell morphogenesis, and SPEECHLESS (SPCH). We show that SPCH directs the first asymmetric division that initiates stomatal lineage. Together, SPCH, MUTE and FAMA bHLH proteins control stomatal development at three consecutive steps: initiation, meristemoid differentiation and guard cell morphogenesis. Our findings highlight the roles of closely related bHLHs in cell type differentiation in plants and animals.
Collapse
Affiliation(s)
- Lynn Jo Pillitteri
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
82
|
Saab R, Bills JL, Miceli AP, Anderson CM, Khoury JD, Fry DW, Navid F, Houghton PJ, Skapek SX. Pharmacologic inhibition of cyclin-dependent kinase 4/6 activity arrests proliferation in myoblasts and rhabdomyosarcoma-derived cells. Mol Cancer Ther 2006; 5:1299-308. [PMID: 16731763 DOI: 10.1158/1535-7163.mct-05-0383] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myoblast cell cycle exit and differentiation are mediated in part by down-regulation of cyclin D1 and associated cyclin-dependent kinase (Cdk) activity. Because rhabdomyosarcoma may represent a malignant tumor composed of myoblast-like cells failing to exit the cell cycle and differentiate, we considered whether excess Cdk activity might contribute to this biology. Cyclin D-dependent Cdk4 and Cdk6 were expressed in most of a panel of six human rhabdomyosarcoma-derived cell lines. Cdk4 was expressed in 73% of alveolar and embryonal rhabdomyosarcoma tumors evaluated using a human tissue microarray. When challenged to differentiate by mitogen deprivation in vitro, mouse C2C12 myoblasts arrested in G(1) phase of the cell cycle, whereas four in the panel of rhabdomyosarcoma cell lines failed to do so. C2C12 myoblasts maintained in mitogen-rich media and exposed to a Cdk4/Cdk6 inhibitor PD 0332991 accumulated in G(1) cell cycle phase. Similar treatment of rhabdomyosarcoma cell lines caused G(1) arrest and prevented cell accumulation in vitro, and it delayed growth of rhabdomyosarcoma xenografts in vivo. Consistent with a role for Cdk4/Cdk6 activity as a regulator of myogenic differentiation, we observed that PD 0332991 exposure promoted morphologic changes and enhanced the expression of muscle-specific proteins in cultured myoblasts and in the Rh30 cell line. Our findings support the concept that pharmacologic inhibition of Cdk4/Cdk6 may represent a useful therapeutic strategy to control cell proliferation and possibly promote myogenic differentiation in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Raya Saab
- Department of Hematology/Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Das M, Gregory CA, Molnar P, Riedel LM, Wilson K, Hickman JJ. A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures. Biomaterials 2006; 27:4374-80. [PMID: 16647113 DOI: 10.1016/j.biomaterials.2006.03.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 03/21/2006] [Indexed: 11/24/2022]
Abstract
This work documents the development of an in vitro cell culture model consisting of a novel serum-free medium and a non-biological growth substrate, N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), to enable functional myotube integration with cantilevers fabricated using MEMS technology. This newly developed, defined in vitro model was used to study the differentiation of fetal rat skeletal muscle and it promoted the formation of myotubes from the dissociated rat fetal muscle cells. The myotubes were characterized by morphological analysis, immunocytochemistry and electrophysiology. Further, it was demonstrated that when the dissociated muscle cells were plated on fabricated microcantilevers, the muscle cells aligned along the major axis of the cantilever and formed robust myotubes. This novel system could not only find applications in skeletal muscle differentiation and biocompatibility studies but also in bioartificial muscle engineering, hybrid actuation system development, biorobotics and for a better understanding of myopathies and neuromuscular disorders.
Collapse
Affiliation(s)
- Mainak Das
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
84
|
Kuyumcu-Martinez NM, Cooper TA. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:133-59. [PMID: 17076268 PMCID: PMC4127983 DOI: 10.1007/978-3-540-34449-0_7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy (DM), the most common form of adult onset muscular dystrophy, affects skeletal muscle, heart, and the central nervous system (CNS). Mortality results primarily from muscle wasting and cardiac arrhythmias. There are two forms of the disease: DM1 and DM2. DM1, which constitutes 98% of cases, is caused by a CTG expansion in the 3' untranslated region (UTR) of the DMPK gene. DM2 is caused by a CCTG expansion in the first intron of the ZNF9 gene. RNA containing CUG- or CCUG-expanded repeats are transcribed but are retained in the nucleus in foci. Disease pathogenesis results primarily from a gain of function of the expanded RNAs, which alter developmentally regulated alternative splicing as well as pathways of muscle differentiation. The toxic RNA has been implicated in sequestration of splicing regulators and transcription factors thereby causing specific symptoms of the disease. Here we review the proposed mechanisms for the toxic effects of the expanded repeats and discuss the molecular mechanisms of splicing misregulation and disease pathogenesis.
Collapse
|
85
|
Scicchitano BM, Spath L, Musarò A, Molinaro M, Rosenthal N, Nervi C, Adamo S. Vasopressin-dependent myogenic cell differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcineurin pathways. Mol Biol Cell 2005; 16:3632-41. [PMID: 15930130 PMCID: PMC1182303 DOI: 10.1091/mbc.e05-01-0055] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 05/11/2005] [Accepted: 05/24/2005] [Indexed: 01/12/2023] Open
Abstract
Arg8-vasopressin (AVP) promotes the differentiation of myogenic cell lines and mouse primary satellite cells by mechanisms involving the transcriptional activation of myogenic bHLH regulatory factors and myocyte enhancer factor 2 (MEF2). We here report that AVP treatment of L6 cells results in the activation of calcineurin-dependent differentiation, increased expression of MEF2 and GATA2, and nuclear translocation of the calcineurin target NFATc1. Interaction of these three factors occurs at MEF2 sites of muscle specific genes. The different kinetics of AVP-dependent expression of early (myogenin) and late (MCK) muscle-specific genes correlate with different acetylation levels of histones at their MEF2 sites. The cooperative role of calcineurin and Ca2+/calmodulin-dependent kinase (CaMK) in AVP-dependent differentiation is demonstrated by the effect of inhibitors of the two pathways. We show here, for the first time, that AVP, a "novel" myogenesis promoting factor, activates both the calcineurin and the CaMK pathways, whose combined activation leads to the formation of multifactor complexes and is required for the full expression of the differentiated phenotype. Although MEF2-NFATc1 complexes appear to regulate the expression of an early muscle-specific gene product (myogenin), the activation of late muscle-specific gene expression (MCK) involves the formation of complexes including GATA2.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Department of Histology and Medical Embryology, University of Rome La Sapienza, 00161 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
86
|
Köhler T, Pröls F, Brand-Saberi B. PCNA in situ hybridization: a novel and reliable tool for detection of dynamic changes in proliferative activity. Histochem Cell Biol 2004; 123:315-27. [PMID: 15616846 DOI: 10.1007/s00418-004-0730-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2004] [Indexed: 12/21/2022]
Abstract
In order to investigate developmental processes, several methods have been established that allow the visualization of local proliferation zones and to follow their dynamics during morphogenesis. In this study we present a detailed description of transitory and continuous proliferation zones in the developing chick embryo. By tracing the S-phase marker proliferating cell nuclear antigen (PCNA) at the mRNA level we were able to identify the initiation and termination of proliferation programs. This approach provides additional information in comparison to the well-known BrdU incorporation or the PCNA immunostaining, which exclusively labels cells that contain PCNA protein. By means of PCNA in situ hybridization we analyzed the normal expression pattern in the 2- to 5-day-old chick embryo. We furthermore monitored the effects on PCNA expression after various manipulations such as removal of the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), and the surface ectoderm. In addition, we applied morphogens, such as fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), and retinoic acid (RA), and subsequently analyzed changes in the pattern of PCNA expression. While ablation of ZPA, AER, or ectoderm are known to reduce cell proliferation and were paralleled by loss of PCNA expression, neither BMP-2 nor BMP-4 affected PCNA expression. Upregulation of PCNA expression could be achieved by application of RA or FGFs, factors known to induce cell proliferation during limb bud outgrowth. The PCNA in situ hybridization data presented here clearly show that this method offers a novel, very sensitive tool for tracing cell proliferation and for visualizing the dynamic patterns arising due to the initiation and termination of the proliferation program.
Collapse
Affiliation(s)
- Thomas Köhler
- Institute of Anatomy and Cell Biology II, University of Freiburg, Albertstrasse 17, 79104 Freiburg, Germany
| | | | | |
Collapse
|
87
|
Eward KL, Obermann EC, Shreeram S, Loddo M, Fanshawe T, Williams C, Jung HI, Prevost AT, Blow JJ, Stoeber K, Williams GH. DNA replication licensing in somatic and germ cells. J Cell Sci 2004; 117:5875-86. [PMID: 15522891 DOI: 10.1242/jcs.01503] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The DNA replication (or origin) licensing system ensures precise duplication of the genome in each cell cycle and is a powerful regulator of cell proliferation in metazoa. Studies in yeast, Drosophila melanogaster and Xenopus laevis have characterised the molecular machinery that constitutes the licensing system, but it remains to be determined how this important evolutionary conserved pathway is regulated in Homo sapiens. We have investigated regulation of the origin licensing factors Cdc6, Cdt1, Mcm2 and Geminin in human somatic and germ cells. Cdc6 and Cdt1 play an essential role in DNA replication initiation by loading the Mcm2-7 complex, which is required for unwinding the DNA helix, onto chromosomal origins. Geminin is a repressor of origin licensing that blocks Mcm2-7 loading onto origins. Our studies demonstrate that Cdc6, Cdt1 and Mcm2 play a central role in coordinating growth during the proliferation-differentiation switch in somatic self-renewing systems and that Cdc6 expression is rate-limiting for acquisition of replication competence in primary oocytes. In striking contrast, we show that proliferation control during male gametogenesis is not linked to Cdc6 or Mcm2, but appears to be coordinated by the negative regulator Geminin with Cdt1 becoming rate-limiting in late prophase. Our data demonstrate a striking sexual dimorphism in the mechanisms repressing origin licensing and preventing untimely DNA synthesis during meiosis I, implicating a pivotal role for Geminin in maintaining integrity of the male germline genome.
Collapse
Affiliation(s)
- Kathryn Leigh Eward
- Wolfson Institute for Biomedical Research, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Kang JS, Yi MJ, Zhang W, Feinleib JL, Cole F, Krauss RS. Netrins and neogenin promote myotube formation. J Cell Biol 2004; 167:493-504. [PMID: 15520228 PMCID: PMC2172498 DOI: 10.1083/jcb.200405039] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 09/07/2004] [Indexed: 12/27/2022] Open
Abstract
Differentiation of skeletal myoblasts into multinucleated myotubes is a multistep process orchestrated by several families of transcription factors, including myogenic bHLH and NFAT proteins. The activities of these factors and formation of myotubes are regulated by signal transduction pathways, but few extracellular factors that might initiate such signals have been identified. One exception is a cell surface complex containing promyogenic Ig superfamily members (CDO and BOC) and cadherins. Netrins and their receptors are established regulators of axon guidance, but little is known of their function outside the nervous system. We report here that myoblasts express the secreted factor netrin-3 and its receptor, neogenin. These proteins stimulate myotube formation and enhance myogenic bHLH- and NFAT-dependent transcription. Furthermore, neogenin binds to CDO in a cis fashion, and myoblasts lacking CDO are defective in responding to recombinant netrin. It is proposed that netrin-3 and neogenin may promote myogenic differentiation by an autocrine mechanism as components of a higher order complex of several promyogenic cell surface proteins.
Collapse
Affiliation(s)
- Jong-Sun Kang
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
89
|
Dhawan J, Helfman DM. Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation. J Cell Sci 2004; 117:3735-48. [PMID: 15252113 DOI: 10.1242/jcs.01197] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell-substratum interactions trigger key signaling pathways that modulate growth control and tissue-specific gene expression. We have previously shown that abolishing adhesive interactions by suspension culture results in G0 arrest of myoblasts. We report that blocking intracellular transmission of adhesion-dependent signals in adherent cells mimics the absence of adhesive contacts. We investigated the effects of pharmacological inhibitors of acto-myosin contractility on growth and differentiation of C2C12 myogenic cells. ML7 (5-iodonaphthalene-1-sulfonyl homopiperazine) and BDM (2,3, butanedione monoxime) are specific inhibitors of myosin light chain kinase, and myosin heavy chain ATPase, respectively. ML7 and BDM affected cell shape by reducing focal adhesions and stress fibers. Both inhibitors rapidly blocked DNA synthesis in a dose-dependent, reversible fashion. Furthermore, both ML7 and BDM suppressed expression of MyoD and myogenin, induced p27kip1 but not p21cip1, and inhibited differentiation. Thus, as with suspension-arrest, inhibition of acto-myosin contractility in adherent cells led to arrest uncoupled from differentiation. Over-expression of inhibitors of the small GTPase RhoA (dominant negative RhoA and C3 transferase) mimicked the effects of myosin inhibitors. By contrast, wild-type RhoA induced arrest, maintained MyoD and activated myogenin and p21 expression. The Rho effector kinase ROCK did not appear to mediate Rho's effects on MyoD. Thus, ROCK and MLCK play different roles in the myogenic program. Signals regulated by MLCK are critical, since inhibition of MLCK suppressed MyoD expression but inhibition of ROCK did not. Inhibition of contractility suppressed MyoD but did not reduce actin polymer levels. However, actin depolymerization with latrunculin B inhibited MyoD expression. Taken together, our observations indicate that actin polymer status and contractility regulate MyoD expression. We suggest that in myoblasts, the Rho pathway and regulation of acto-myosin contractility may define a control point for conditional uncoupling of differentiation and the cell cycle.
Collapse
Affiliation(s)
- Jyotsna Dhawan
- Center for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| | | |
Collapse
|
90
|
Abstract
Cellular cardiomyoplasty using skeletal myoblasts may be beneficial for infarct repair. One drawback to skeletal muscle cells is their lack of gap junction expression after differentiation, thus preventing electrical coupling to host cardiomyocytes. We sought to overexpress the gap junction protein connexin43 (Cx43) in differentiated skeletal myotubes, using retroviral, adenoviral, and plasmid-mediated gene transfer. All strategies resulted in overexpression of Cx43 in cultured myotubes, but expression of Cx43 from constitutive viral promoters caused significant death upon differentiation. Dye transfer studies showed that surviving myotubes contained functional gap junctions, however. Retrovirally transfected myoblasts did not express Cx43 after grafting into the heart, possibly due to promoter silencing. Adenovirally transfected myoblasts expressed abundant Cx43 after forming myotubes in cardiac grafts, but grafts showed signs of injury at 1 week and had died by 2 weeks. Interestingly, transfection of already differentiated myotubes with adenoviral Cx43 was nontoxic, implying a window of vulnerability during differentiation. To test this hypothesis, Cx43 was expressed from the muscle creatine kinase (MCK) promoter, which is active only after myocyte differentiation. The MCK promoter resulted in high levels of Cx43 expression in differentiated myotubes but did not cause cell death during differentiation. MCK-Cx43-transfected myoblasts formed viable cardiac grafts and, in some cases, Cx43-expressing myotubes were in close apposition to host cardiomyocytes, possibly allowing electrical coupling. Thus, high levels of Cx43 during skeletal muscle differentiation cause cell death. When, however, expression of Cx43 is delayed until after differentiation, using the MCK promoter, myotubes are viable and express gap junction proteins after grafting in the heart. This strategy may permit electrical coupling of skeletal and cardiac muscle for cardiac repair.
Collapse
Affiliation(s)
- Hans Reinecke
- Department of Pathology, University of Washington, Seattle, 98195, USA.
| | | | | | | |
Collapse
|
91
|
Sorci G, Riuzzi F, Arcuri C, Giambanco I, Donato R. Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding. Mol Cell Biol 2004; 24:4880-94. [PMID: 15143181 PMCID: PMC416409 DOI: 10.1128/mcb.24.11.4880-4894.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE), a multiligand receptor of the immunoglobulin superfamily, has been implicated in the inflammatory response, diabetic angiopathy and neuropathy, neurodegeneration, cell migration, tumor growth, neuroprotection, and neuronal differentiation. We show here that (i) RAGE is expressed in skeletal muscle tissue and its expression is developmentally regulated and (ii) RAGE engagement by amphoterin (HMGB1), a RAGE ligand, in rat L6 myoblasts results in stimulation of myogenic differentiation via activation of p38 mitogen-activated protein kinase (MAPK), up-regulation of myogenin and myosin heavy chain expression, and induction of muscle creatine kinase. No such effects were detected in myoblasts transfected with a RAGE mutant lacking the transducing domain or myoblasts transfected with a constitutively inactive form of the p38 MAPK upstream kinase, MAPK kinase 6, Cdc42, or Rac-1. Moreover, amphoterin counteracted the antimyogenic activity of the Ca(2+)-modulated protein S100B, which was reported to inhibit myogenic differentiation via inactivation of p38 MAPK, and basic fibroblast growth factor (bFGF), a known inhibitor of myogenic differentiation, in a manner that was inversely related to the S100B or bFGF concentration and directly related to the extent of RAGE expression. These data suggest that RAGE and amphoterin might play an important role in myogenesis, accelerating myogenic differentiation via Cdc42-Rac-1-MAPK kinase 6-p38 MAPK.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | | | | | |
Collapse
|
92
|
Horackova M, Arora R, Chen R, Armour JA, Cattini PA, Livingston R, Byczko Z. Cell transplantation for treatment of acute myocardial infarction: unique capacity for repair by skeletal muscle satellite cells. Am J Physiol Heart Circ Physiol 2004; 287:H1599-608. [PMID: 15165986 DOI: 10.1152/ajpheart.00965.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An adult heart injured by an ischemic episode has a limited capacity to regenerate. We administered three types of adult guinea pig cells [cardiomyocytes (CMs), cardiac fibroblasts (CFs), and skeletal myoblasts (Mbs)] to compare their suitability for repair of acute myocardial infarction. We used confocal fluorescent microscopy and a variety of specific immunomarkers and echocardiography to provide anatomic evidence for the viability of such cells and their possible functional beneficial effects. All cells were transfected with adenovirus-containing beta-galactosidase gene so that migration from the injection sites could be traced. Both freshly isolated CMs as well as CFs were found concentrated in the infarcted zone; these cells survived for at least 2 wk posttransplantation. Transplanted CMs were regularly striated and grew long projections that could form gap junctions with native CMs, which was evidenced by connexin43 labeling. In addition, CM transplantation resulted in increased angiogenesis in the infarcted areas. In contrast, transplanted CFs did not appear to make any gap junctional contacts with native CMs nor did they enhance local angiogenesis. Mbs cultured for 7 days and transfected Mbs were identified 7 days posttransplantation in the infarcted area. During that time and thereafter, Mbs proliferated and differentiated into myotubes that formed new, regularly striated myofibers that occupied most (50-70%) of the infarcted area by 2-3 wk. These newly formed myofibers maintained their Mb skeletal muscle origin as evidenced by their capacity to express myogenin and fast skeletal myosin. This skeletal phenotype appeared to downregulate with time, and Mbs partially transdifferentiated into a cardiac phenotype as indicated by labeling for cardiac-specific troponin T and cardiac myosin heavy chain. By the third week posttransplantation, new myofibers formed apparent contacts with the native CMs via putative gap junctions that expressed connexin43. Myocardial performance of animals that were successfully transplanted with Mbs was improved.
Collapse
Affiliation(s)
- M Horackova
- Dept. of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 1X5 Canada.
| | | | | | | | | | | | | |
Collapse
|
93
|
Li AA, MacDonald NC, Chang PL. Effect of growth factors and extracellular matrix materials on the proliferation and differentiation of microencapsulated myoblasts. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2004; 14:533-49. [PMID: 12901436 DOI: 10.1163/15685620360674236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An alternative approach to gene therapy via non-autologous somatic gene therapy is to implant genetically-engineered cells protected from immune rejection with microcapsules to deliver a therapeutic gene product. This delivery system may be optimized by using myoblast cell lines which can undergo terminal differentiation into myotubes, thus removing the potential problems of tumorigenesis and space restriction. However, once encapsulated, myoblasts do not proliferate or differentiate well. We now report the use of extracellular matrix components and growth factors to improve these properties. Addition of matrix material collagen, merosin or laminin all stimulated myoblast proliferation, particularly when merosin and laminin were combined; however, none, except collagen, stimulated differentiation. Inclusion of basic fibroblast growth factor (bFGF) within the microcapsules in the presence of collagen stimulated proliferation of C2C12 myoblasts, as well as differentiation into myotubes. Inclusion of insulin growth factor (IGF-II) in the microcapsules had no effect on proliferation but accelerated myoblasts differentiation. When the above matrix material and growth factors were provided in combination, the use of merosin and laminin together with bFGF and IGF-II stimulated myoblast proliferation but had no effect on differentiation. In contrast, the cocktail containing bFGF, IGF-II and collagen induced increased myoblasts proliferation and subsequent differentiation. Hence, the combination of bFGF, IGF-II and collagen appears optimal in improving proliferation and differentiation in encapsulated myoblasts.
Collapse
Affiliation(s)
- Anna Aihua Li
- Department of Pediatrics, Health Sciences Centre, Room 3N18, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8S 4J9, Canada
| | | | | |
Collapse
|
94
|
Yamane A, Nagata J, Akutsu S, Amano O. Roles of Growth Factors in Tongue Myogenesis. J Oral Biosci 2004. [DOI: 10.1016/s1349-0079(04)80022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
95
|
Blagden CS, Fromm L, Burden SJ. Accelerated response of the myogenin gene to denervation in mutant mice lacking phosphorylation of myogenin at threonine 87. Mol Cell Biol 2004; 24:1983-9. [PMID: 14966278 PMCID: PMC350570 DOI: 10.1128/mcb.24.5.1983-1989.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression in skeletal muscle is regulated by a family of myogenic basic helix-loop-helix (bHLH) proteins. The binding of these bHLH proteins, notably MyoD and myogenin, to E-boxes in their own regulatory regions is blocked by protein kinase C (PKC)-mediated phosphorylation of a single threonine residue in their basic region. Because electrical stimulation increases PKC activity in skeletal muscle, these data have led to an attractive model suggesting that electrical activity suppresses gene expression by stimulating phosphorylation of this critical threonine residue in myogenic bHLH proteins. We show that electrical activity stimulates phosphorylation of myogenin at threonine 87 (T87) in vivo and that calmodulin-dependent kinase II (CaMKII), as well as PKC, catalyzes this reaction in vitro. We find that phosphorylation of myogenin at T87 is dispensable for skeletal muscle development. We show, however, that the decrease in myogenin (myg) expression following innervation is delayed and that the increase in expression following denervation is accelerated in mutant mice lacking phosphorylation of myogenin at T87. These data indicate that two distinct innervation-dependent mechanisms restrain myogenin activity: an inactivation mechanism mediated by phosphorylation of myogenin at T87, and a second, novel regulatory mechanism that regulates myg gene activity independently of T87 phosphorylation.
Collapse
Affiliation(s)
- Chris S Blagden
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, New York 10016, USA
| | | | | |
Collapse
|
96
|
Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1007-19. [PMID: 14982854 PMCID: PMC1614716 DOI: 10.1016/s0002-9440(10)63188-4] [Citation(s) in RCA: 350] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/25/2003] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is thought to play a crucial role in fibrotic diseases. This study demonstrates for the first time that TGF-beta1 stimulation can induce myoblasts (C2C12 cells) to express TGF-beta1 in an autocrine manner, down-regulate the expression of myogenic proteins, and initiate the production of fibrosis-related proteins in vitro. Direct injection of human recombinant TGF-beta1 into skeletal muscle in vivo stimulated myogenic cells, including myofibers, to express TGF-beta1 and induced scar tissue formation within the injected area. We also observed the local expression of this growth factor by myogenic cells, including regenerating myofibers, in injured skeletal muscle. Finally, we demonstrated that TGF-beta1 gene-transfected myoblasts (CT cells) can differentiate into myofibroblastic cells after intramuscular transplantation, but that decorin, an anti-fibrosis agent, prevents this differentiation process by blocking TGF-beta1. In summary, these findings indicate that TGF-beta1 is a major stimulator that plays a significant role in both the initiation of fibrotic cascades in skeletal muscle and the induction of myogenic cells to differentiate into myofibroblastic cells in injured muscle.
Collapse
Affiliation(s)
- Yong Li
- Growth and Development Laboratory, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213-2583, USA. jhuard+@pitt.edu
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Fux C, Langer D, Fussenegger M. Dual-regulated myoD- and msx1-based interventions in C2C12-derived cells enable precise myogenic/osteogenic/adipogenic lineage control. J Gene Med 2004; 6:1159-69. [PMID: 15386738 DOI: 10.1002/jgm.601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Advanced gene therapy, tissue engineering and biopharmaceutical manufacturing require sophisticated and well-balanced multiregulated multigene interventions to reprogram desired mammalian cell phenotypes. METHODS We have combined the streptogramin (PIP)- and tetracycline (TET)-responsive gene regulation systems for independent expression control of the differentiation determinants myoD and msx1 in C2C12-derived cells. RESULTS Different dual-regulated expression scenarios which induce either both, only one or none of the lineage control genes triggered differential differentiation and precise control of myogenic, osteogenic or adipogenic cell phenotypes. CONCLUSIONS Our findings substantiate the use of multiregulated multigene interventions in reprogramming cellular differentiation pathways in a desired manner.
Collapse
Affiliation(s)
- Cornelia Fux
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hoenggerberg, HPT D74, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
98
|
Ricaud S, Vernus B, Duclos M, Bernardi H, Ritvos O, Carnac G, Bonnieu A. Inhibition of autocrine secretion of myostatin enhances terminal differentiation in human rhabdomyosarcoma cells. Oncogene 2003; 22:8221-32. [PMID: 14614446 DOI: 10.1038/sj.onc.1207177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcomas (RMSs) are one of the most common solid tumor of childhood. Rhabdomyosarcoma (RMS) cells fail to both complete the skeletal muscle differentiation program and irreversibly exit the cell cycle as a consequence of an active repression exerted on the muscle-promoting factor MyoD. Myostatin is a negative regulator of normal muscle growth, we have thus studied its possible role in RMS cells. Here, we present evidence that overexpression of myostatin is a common feature of RMS since both subtypes of RMS (embryonal RD and alveolar Rh30 cells) express high levels of myostatin when compared to nontumoral skeletal muscle cells. Interestingly, we found that inactivation of myostatin through overexpression of antisense myostatin or of follistatin (a myostatin antagonist) constructs enhanced differentiation of RD cells. In addition, RD and Rh30 cells treated with blocking antimyostatin antibodies progress into the myogenic terminal differentiation program. Finally, our results suggest that high levels of myostatin could impair MyoD function in RMS cells. These results show that an autocrine myostatin loop contributes to maintain RMS cells in an undifferentiating stage and suggest that new therapeutic approaches could be exploited for the treatment of RMS based on inactivation of myostatin protein.
Collapse
Affiliation(s)
- Stéphanie Ricaud
- INRA, UMR 866-Differenciation Cellulaire et Croissance, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
99
|
Kataoka Y, Matsumura I, Ezoe S, Nakata S, Takigawa E, Sato Y, Kawasaki A, Yokota T, Nakajima K, Felsani A, Kanakura Y. Reciprocal inhibition between MyoD and STAT3 in the regulation of growth and differentiation of myoblasts. J Biol Chem 2003; 278:44178-87. [PMID: 12947115 DOI: 10.1074/jbc.m304884200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of myoblasts is regulated by various growth factors as well as by intrinsic muscle-specific transcriptional factors. In this study, we analyzed the roles for STAT3 in the growth and differentiation of myoblasts in terms of cell cycle regulation and interaction with MyoD using C2C12 cells. Here we found that STAT3 inhibited myogenic differentiation induced by low serum or MyoD as efficiently as the Ras/mitogen-activated protein kinase cascade. As for this mechanism, we found that STAT3 not only promoted cell cycle progression through the induction of c-myc but also inhibited MyoD activities through direct interaction. STAT3 inhibited not only DNA binding activities of MyoD but also its transcriptional activities. However, the inhibited transcriptional activities were restored by the supplement of p300/CBP and PCAF, suggesting that STAT3 might deprive MyoD of these transcriptional cofactors. In addition, we found that MyoD inhibited DNA binding activities of STAT3, thereby inhibiting STAT3-dependent cell growth and survival of Ba/F3 cells. These results suggest that the development of muscle cells is regulated by the coordination of cytokine signals and intrinsic transcription factors.
Collapse
Affiliation(s)
- Yoshihisa Kataoka
- Department of Hematology/Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC. Vascular endothelial growth factor modulates skeletal myoblast function. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1417-28. [PMID: 14507649 DOI: 10.1016/s0002-9440(10)63499-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF(165) gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia.
Collapse
Affiliation(s)
- Antonia Germani
- Laboratorio di Biologia Vascolare e Terapia Genica, Centro Cardiologico Fondazione I. Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|