51
|
Abstract
Like many other pathological infectious processes, sepsis is mainly studied in vivo using mice models. Over the past 30 years, such studies have led to significant achievements in understanding of the sepsis pathophysiology. However, unfortunately, none of them led to any «discoveries» in the treatment of patients. In this review, we question the relevance of the experimental models applied, list some aspects rarely taken into account and discuss ways to resolve the deadlock.The text is a translation of the article: Cavail-lon J. M. New methods of treating sepsis: failure of animal models, Bull. Assoc. Anc. El. Inst. Pastor, 2017, 59,230, 58—60. Translation from French by «Akademperevod», Moscow, Russia.
Collapse
|
52
|
Human antibodies activate complement against Plasmodium falciparum sporozoites, and are associated with protection against malaria in children. BMC Med 2018; 16:61. [PMID: 29706136 PMCID: PMC5925837 DOI: 10.1186/s12916-018-1054-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Antibodies targeting Plasmodium falciparum sporozoites play a key role in human immunity to malaria. However, antibody mechanisms that neutralize sporozoites are poorly understood. This has been a major constraint in developing highly efficacious vaccines, as we lack strong correlates of protective immunity. METHODS We quantified the ability of human antibodies from malaria-exposed populations to interact with human complement, examined the functional effects of complement activity against P. falciparum sporozoites in vitro, and identified targets of functional antibodies. In children and adults from malaria-endemic regions, we determined the acquisition of complement-fixing antibodies to sporozoites and their relationship with antibody isotypes and subclasses. We also investigated associations with protective immunity in a longitudinal cohort of children (n = 206) residing in a malaria-endemic region. RESULTS We found that antibodies to the major sporozoite surface antigen, circumsporozoite protein (CSP), were predominately IgG1, IgG3, and IgM, and could interact with complement through recruitment of C1q and activation of the classical pathway. The central repeat region of CSP, included in leading vaccines, was a key target of complement-fixing antibodies. We show that antibodies activate human complement on P. falciparum sporozoites, which consequently inhibited hepatocyte cell traversal that is essential for establishing liver-stage infection, and led to sporozoite death in vitro. The natural acquisition of complement-fixing antibodies in malaria-exposed populations was age-dependent, and was acquired more slowly to sporozoite antigens than to merozoite antigens. In a longitudinal cohort of children, high levels of complement-fixing antibodies were significantly associated with protection against clinical malaria. CONCLUSIONS These novel findings point to complement activation by antibodies as an important mechanism of anti-sporozoite human immunity, thereby enabling new strategies for developing highly efficacious malaria vaccines. We also present evidence that complement-fixing antibodies may be a valuable correlate of protective immunity in humans.
Collapse
|
53
|
Xu J, Zhang L, Xie M, Li Y, Huang P, Saunders TL, Fox DA, Rosenquist R, Lin F. Role of Complement in a Rat Model of Paclitaxel-Induced Peripheral Neuropathy. THE JOURNAL OF IMMUNOLOGY 2018; 200:4094-4101. [PMID: 29695418 DOI: 10.4049/jimmunol.1701716] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a painful and debilitating side effect of cancer chemotherapy with an unclear pathogenesis. Consequently, the available therapies for this neuropathic pain syndrome are inadequate, leading to a significantly reduced quality of life in many patients. Complement, a key component of the innate immune system, has been associated with neuroinflammation, a potentially important trigger of some types of neuropathic pain. However, the role of complement in CIPN remains unclear. To address this issue, we developed a C3 knockout (KO) rat model and induced CIPN in these KO rats and wild-type littermates via the i.p. administration of paclitaxel, a chemotherapeutic agent associated with CIPN. We then compared the severity of mechanical allodynia, complement activation, and intradermal nerve fiber loss between the groups. We found that 1) i.p. paclitaxel administration activated complement in wild-type rats, 2) paclitaxel-induced mechanical allodynia was significantly reduced in C3 KO rats, and 3) the paclitaxel-induced loss of intradermal nerve fibers was markedly attenuated in C3 KO rats. In in vitro studies, we found that paclitaxel-treated rat neuronal cells activated complement, leading to cellular injury. Our findings demonstrate a previously unknown but pivotal role of complement in CIPN and suggest that complement may be a new target for the development of novel therapeutics to manage this painful disease.
Collapse
Affiliation(s)
- Jijun Xu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; .,Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Lingjun Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Mian Xie
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Yan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ping Huang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Thomas L Saunders
- Transgenic Animal Model Core Facility, University of Michigan, Ann Arbor, MI 48109
| | - David A Fox
- Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109; and.,Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI 48109
| | - Richard Rosenquist
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
54
|
Peterson SL, Nguyen HX, Mendez OA, Anderson AJ. Complement Protein C3 Suppresses Axon Growth and Promotes Neuron Loss. Sci Rep 2017; 7:12904. [PMID: 29018286 PMCID: PMC5635131 DOI: 10.1038/s41598-017-11410-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
The inflammatory response to spinal cord injury (SCI) involves localization and activation of innate and adaptive immune cells and proteins, including the complement cascade. Complement C3 is important for the classical, alternative, and lectin pathways of complement activation, and its cleavage products C3a and C3b mediate several functions in the context of inflammation, but little is known about the potential functions of C3 on regeneration and survival of injured neurons after SCI. We report that 6 weeks after dorsal hemisection with peripheral conditioning lesion, C3-/- mice demonstrated a 2-fold increase in sensory axon regeneration in the spinal cord in comparison to wildtype C3+/+ mice. In vitro, addition of C3 tripled both myelin-mediated neurite outgrowth inhibition and neuron loss versus myelin alone, and ELISA experiments revealed that myelin serine proteases cleave C3 to generate active fragments. Addition of purified C3 cleavage products to cultured neurons suggested that C3b is responsible for the growth inhibitory and neurotoxic or anti-adhesion activities of C3. These data indicate that C3 reduces neurite outgrowth and neuronal viability in vitro and restricts axon regeneration in vivo, and demonstrate a novel, non-traditional role for this inflammatory protein in the central nervous system.
Collapse
Affiliation(s)
- Sheri L Peterson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hal X Nguyen
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Oscar A Mendez
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA. .,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
55
|
Low expression of complement inhibitory protein CD59 contributes to humoral autoimmunity against astrocytes. Brain Behav Immun 2017; 65:173-182. [PMID: 28476558 DOI: 10.1016/j.bbi.2017.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/06/2017] [Accepted: 04/29/2017] [Indexed: 11/22/2022] Open
Abstract
Neuromyelitis optica spectrum disorder is primarily an anti-aquaporin 4 autoantibody-mediated, central nervous system-restricted channelopathy. Patients frequently develop central nervous system-restricted lesions even though autoantigen aquaporin 4 in neuromyelitis optica spectrum disorder is broadly distributed in the central nervous system and peripheral organs. The cause of such tissue-specific immune response remains largely unknown. We confirmed here that CD59, an inhibitory regulator of the complement membrane attack complex, is expressed and co-localized with aquaporin 4 in peripheral organs but is only minimally expressed in astrocytes in the central nervous system. In addition, we further found that CD59 overexpression in mouse brains decreased demyelination, blocked the loss of astrocytes and aquaporin 4, and inhibited membrane attack complex formation and infiltration of inflammatory cells. Inactivation of CD59 in mouse peripheral aquaporin 4-expressing cells and tissues led to complement-dependent cytotoxicity. In accordance with the mouse data, human samples presented higher expression of CD59 in many aquaporin 4-expressing peripheral tissues but not in astrocytes. Silencing or blocking CD59 in aquaporin 4-expressing human tracheal epithelial and skeletal muscle cells induced membrane attack complex formation and cytotoxicity, which suggests a protective role of CD59 in anti-aquaporin 4 antibodies-mediated complement toxicity. Our findings suggest that low CD59 expression in astrocytes may contribute to central nervous system-restricted lesions in neuromyelitis optica spectrum disorder. Restoring CD59 expression in astrocytes may serve as a novel therapeutic target of neuromyelitis optica spectrum disorder.
Collapse
|
56
|
Sanchez-Larrayoz AF, Elhosseiny NM, Chevrette MG, Fu Y, Giunta P, Spallanzani RG, Ravi K, Pier GB, Lory S, Maira-Litrán T. Complexity of Complement Resistance Factors Expressed by Acinetobacter baumannii Needed for Survival in Human Serum. THE JOURNAL OF IMMUNOLOGY 2017; 199:2803-2814. [PMID: 28855313 DOI: 10.4049/jimmunol.1700877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/07/2017] [Indexed: 11/19/2022]
Abstract
Acinetobacter baumannii is a bacterial pathogen with increasing impact in healthcare settings, due in part to this organism's resistance to many antimicrobial agents, with pneumonia and bacteremia as the most common manifestations of disease. A significant proportion of clinically relevant A. baumannii strains are resistant to killing by normal human serum (NHS), an observation supported in this study by showing that 12 out of 15 genetically diverse strains of A. baumannii are resistant to NHS killing. To expand our understanding of the genetic basis of A. baumannii serum resistance, a transposon (Tn) sequencing (Tn-seq) approach was used to identify genes contributing to this trait. An ordered Tn library in strain AB5075 with insertions in every nonessential gene was subjected to selection in NHS. We identified 50 genes essential for the survival of A. baumannii in NHS, including already known serum resistance factors, and many novel genes not previously associated with serum resistance. This latter group included the maintenance of lipid asymmetry genetic pathway as a key determinant in protecting A. baumannii from the bactericidal activity of NHS via the alternative complement pathway. Follow-up studies validated the role of eight additional genes identified by Tn-seq in A. baumannii resistance to killing by NHS but not by normal mouse serum, highlighting the human species specificity of A. baumannii serum resistance. The identification of a large number of genes essential for serum resistance in A. baumannii indicates the degree of complexity needed for this phenotype, which might reflect a general pattern that pathogens rely on to cause serious infections.
Collapse
Affiliation(s)
- Amaro F Sanchez-Larrayoz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Noha M Elhosseiny
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Marc G Chevrette
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Yang Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Peter Giunta
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Raúl G Spallanzani
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Keerthikka Ravi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Tomás Maira-Litrán
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
57
|
Verma MK, Clemens J, Burzenski L, Sampson SB, Brehm MA, Greiner DL, Shultz LD. A novel hemolytic complement-sufficient NSG mouse model supports studies of complement-mediated antitumor activity in vivo. J Immunol Methods 2017; 446:47-53. [PMID: 28390927 DOI: 10.1016/j.jim.2017.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/23/2017] [Accepted: 03/17/2017] [Indexed: 11/15/2022]
Abstract
Monoclonal antibodies (mAbs) have emerged as a mainstream therapeutic option against cancer. mAbs mediate tumor cell-killing through several mechanisms including complement-dependent cytotoxicity (CDC). However, studies of mAb-mediated CDC against tumor cells remain largely dependent on in vitro systems. Previously developed and widely used NOD-scid IL2rγnull (NSG) mice support enhanced engraftment of many primary human tumors. However, NSG mice have a 2-bp deletion in the coding region of the hemolytic complement (Hc) gene, and it is not possible to evaluate CDC activity in NSG mice. To address this limitation, we generated a novel strain of NSG mice-NSG-Hc1-that have an intact complement system able to generate the membrane attack complex. Utilizing the Daudi Burkitt's human lymphoma cell line, and the anti-human CD20 mAb rituximab, we further demonstrated that the complement system in NSG-Hc1 mice is fully functional. NSG-Hc1 mice expressed CDC activity against Daudi cells in vivo following rituximab treatment and showed longer overall survival compared with rituximab-treated NSG mice that lack hemolytic complement. Our results validate the NSG-Hc1 mouse model as a platform for testing mechanisms underlying CDC in vivo and suggest its potential use to compare complement-dependent and complement-independent cytotoxic activity mediated by therapeutic mAbs.
Collapse
Affiliation(s)
- Mohit K Verma
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Julia Clemens
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | - Michael A Brehm
- Diabetes Center of Excellence™, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dale L Greiner
- Diabetes Center of Excellence™, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | | |
Collapse
|
58
|
Jammal J, Zaknoon F, Kaneti G, Hershkovits AS, Mor A. Sensitization of Gram-Negative Bacilli to Host Antibacterial Proteins. J Infect Dis 2017; 215:1599-1607. [DOI: 10.1093/infdis/jix119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
|
59
|
Evgin L, Ilkow CS, Bourgeois-Daigneault MC, de Souza CT, Stubbert L, Huh MS, Jennings VA, Marguerie M, Acuna SA, Keller BA, Lefebvre C, Falls T, Le Boeuf F, Auer RA, Lambris JD, McCart JA, Stojdl DF, Bell JC. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16027. [PMID: 27909702 PMCID: PMC5111574 DOI: 10.1038/mto.2016.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/28/2022]
Abstract
The systemic delivery of therapeutic viruses, such as oncolytic viruses or vaccines, is limited by the generation of neutralizing antibodies. While pseudotyping of rhabdoviruses with the lymphocytic choriomeningitis virus glycoprotein has previously allowed for multiple rounds of delivery in mice, this strategy has not translated to other animal models. For the first time, we provide experimental evidence that antibodies generated against the lymphocytic choriomeningitis virus glycoprotein mediate robust complement-dependent viral neutralization via activation of the classical pathway. We show that this phenotype can be capitalized upon to deliver maraba virus pseudotyped with the lymphocytic choriomeningitis virus glycoprotein in a Fischer rat model in the face of neutralizing antibody through the use of complement modulators. This finding changes the understanding of the humoral immune response to arenaviruses, and also describes methodology to deliver viral vectors to their therapeutic sites of action without the interference of neutralizing antibody.
Collapse
Affiliation(s)
- Laura Evgin
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carolina S Ilkow
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Lawton Stubbert
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Michael S Huh
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Victoria A Jennings
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Monique Marguerie
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sergio A Acuna
- Toronto General Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Brian A Keller
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Charles Lefebvre
- Children's Hospital of Eastern Ontario Research Institute , Ottawa, Ontario, Canada
| | - Theresa Falls
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Fabrice Le Boeuf
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Rebecca A Auer
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - J Andrea McCart
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| | - David F Stojdl
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - John C Bell
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
60
|
Osei-Hwedieh DO, Kanias T, Croix CS, Jessup M, Xiong Z, Sinchar D, Franks J, Xu Q, M Novelli E, Sertorio JT, Potoka K, Binder RJ, Basu S, Belanger AM, Kim-Shapiro DB, Triulzi D, Lee JS, Gladwin MT. Sickle Cell Trait Increases Red Blood Cell Storage Hemolysis and Post-Transfusion Clearance in Mice. EBioMedicine 2016; 11:239-248. [PMID: 27523807 PMCID: PMC5049931 DOI: 10.1016/j.ebiom.2016.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
Background Transfusion of blood at the limits of approved storage time is associated with lower red blood cell (RBC) post-transfusion recovery and hemolysis, which increases plasma cell-free hemoglobin and iron, proposed to induce endothelial dysfunction and impair host defense. There is noted variability among donors in the intrinsic rate of storage changes and RBC post-transfusion recovery, yet genetic determinants that modulate this process are unclear. Methods We explore RBC storage stability and post-transfusion recovery in murine models of allogeneic and xenogeneic transfusion using blood from humanized transgenic sickle cell hemizygous mice (Hbatm1PazHbbtm1TowTg(HBA-HBBs)41Paz/J) and human donors with a common genetic mutation sickle cell trait (HbAS). Findings Human and transgenic HbAS RBCs demonstrate accelerated storage time-dependent hemolysis and reduced post-transfusion recovery in mice. The rapid post-transfusion clearance of stored HbAS RBC is unrelated to macrophage-mediated uptake or intravascular hemolysis, but by enhanced sequestration in the spleen, kidney and liver. HbAS RBCs are intrinsically different from HbAA RBCs, with reduced membrane deformability as cells age in cold storage, leading to accelerated clearance of transfused HbAS RBCs by entrapment in organ microcirculation. Interpretation The common genetic variant HbAS enhances RBC storage dysfunction and raises provocative questions about the use of HbAS RBCs at the limits of approved storage. Sickle cell trait (HbAS) RBC exhibit increased resistance to osmotic shock compared to normal (HbAA) RBCs. HbAS RBC show accelerated storage-related aging and post-transfusion clearance after cold storage compared to HbAA RBC. Reduced post-transfusion survival of stored HbAS RBCs is not due to intravascular hemolysis but due to tissue sequestration.
In allogeneic transfusions, red blood cells (RBCs) are collected and stored for up to 42 days. Historically, donor RBC genetic background is only considered in the context of major Rh and ABO blood groups. This study shows that donor-specific genetic factors such as sickle cell trait, the benign heterozygote state of sickle cell disease, accelerate storage-related hemolysis and reduces RBC post-transfusion survival in mice. Impaired post-transfusion recovery is due to enhanced sequestration in organ microcirculation. Further studies are warranted to determine an appropriate earlier outdate for HbAS RBC units, particularly in malaria-endemic regions where sickle cell trait prevalence is high.
Collapse
Affiliation(s)
- David O Osei-Hwedieh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Department of Molecular Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamir Kanias
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claudette St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Morgan Jessup
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zeyu Xiong
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Sinchar
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Enrico M Novelli
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonas T Sertorio
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karin Potoka
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert J Binder
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Andrea M Belanger
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | | | - Darrell Triulzi
- Institute for Transfusion Medicine, ITxM, Pittsburgh, PA, United States
| | - Janet S Lee
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Molecular Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
61
|
Arvidsson I, Rebetz J, Loos S, Herthelius M, Kristoffersson AC, Englund E, Chromek M, Karpman D. Early Terminal Complement Blockade and C6 Deficiency Are Protective in EnterohemorrhagicEscherichia coli–Infected Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:1276-86. [DOI: 10.4049/jimmunol.1502377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/15/2016] [Indexed: 02/05/2023]
|
62
|
Kotimaa J, Klar-Mohammad N, Gueler F, Schilders G, Jansen A, Rutjes H, Daha MR, van Kooten C. Sex matters: Systemic complement activity of female C57BL/6J and BALB/cJ mice is limited by serum terminal pathway components. Mol Immunol 2016; 76:13-21. [PMID: 27337595 DOI: 10.1016/j.molimm.2016.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023]
Abstract
Experimental mouse models have been extensively used to elucidate the role of the complement system in different diseases and injuries. Contribution of gender has revealed an intriguing gender specific difference; female mice often show protection against most complement driven injuries such as ischemia/reperfusion injury, graft rejection and sepsis. Interestingly, early studies to the mouse complement system revealed that female mice have very low total complement activity (CH50), which is related to androgen regulation of hepatic complement synthesis. Here, our aim was to understand at which level the female specific differences in mouse complement resides. We have used recently developed complement assays to study the functional activities of female and male mice at the level of C3 and C9 activation, and furthermore assayed key complement factor levels in serum of age-matched female and male C57BL/6 mice. Our results show that the female mice have normal complement cascade functionality at the level of C3 activation, which was supported by determinations of early complement factors. However, all pathways are strongly reduced at the level of C9 activation, suggesting a terminal pathway specific difference. This was in line with C6 and C9 measurements, showing strongly decreased levels in females. Furthermore, similar gender differences were also found in BALB/cJ mice, but not in CD-1 mice. Our results clearly demonstrate that the complement system in females of frequently used mouse strains is restricted by the terminal pathway components and that the perceived female specific protection against experimental disease and injury might be in part explained by the inability promote inflammation through C5b-9.
Collapse
Affiliation(s)
- Juha Kotimaa
- Leiden University Medical Center (LUMC), Department of Nephrology, Leiden, The Netherlands
| | - Ngaisah Klar-Mohammad
- Leiden University Medical Center (LUMC), Department of Nephrology, Leiden, The Netherlands
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | | | | | - Mohamed R Daha
- Leiden University Medical Center (LUMC), Department of Nephrology, Leiden, The Netherlands
| | - Cees van Kooten
- Leiden University Medical Center (LUMC), Department of Nephrology, Leiden, The Netherlands.
| |
Collapse
|
63
|
Functional assessment of mouse complement pathway activities and quantification of C3b/C3c/iC3b in an experimental model of mouse renal ischaemia/reperfusion injury. J Immunol Methods 2015; 419:25-34. [DOI: 10.1016/j.jim.2015.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 01/19/2023]
|
64
|
Evgin L, Acuna SA, Tanese de Souza C, Marguerie M, Lemay CG, Ilkow CS, Findlay CS, Falls T, Parato KA, Hanwell D, Goldstein A, Lopez R, Lafrance S, Breitbach CJ, Kirn D, Atkins H, Auer RC, Thurman JM, Stahl GL, Lambris JD, Bell JC, McCart JA. Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques. Mol Ther 2015; 23:1066-1076. [PMID: 25807289 DOI: 10.1038/mt.2015.49] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) have shown promising clinical activity when administered by direct intratumoral injection. However, natural barriers in the blood, including antibodies and complement, are likely to limit the ability to repeatedly administer OVs by the intravenous route. We demonstrate here that for a prototype of the clinical vaccinia virus based product Pexa-Vec, the neutralizing activity of antibodies elicited by smallpox vaccination, as well as the anamnestic response in hyperimmune virus treated cancer patients, is strictly dependent on the activation of complement. In immunized rats, complement depletion stabilized vaccinia virus in the blood and led to improved delivery to tumors. Complement depletion also enhanced tumor infection when virus was directly injected into tumors in immunized animals. The feasibility and safety of using a complement inhibitor, CP40, in combination with vaccinia virus was tested in cynomolgus macaques. CP40 pretreatment elicited an average 10-fold increase in infectious titer in the blood early after the infusion and prolonged the time during which infectious virus was detectable in the blood of animals with preexisting immunity. Capitalizing on the complement dependence of antivaccinia antibody with adjunct complement inhibitors may increase the infectious dose of oncolytic vaccinia virus delivered to tumors in virus in immune hosts.
Collapse
Affiliation(s)
- Laura Evgin
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sergio A Acuna
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Monique Marguerie
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Chantal G Lemay
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Carolina S Ilkow
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Scott Findlay
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Theresa Falls
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kelley A Parato
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David Hanwell
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | - Alyssa Goldstein
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | - Roberto Lopez
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | - Sandra Lafrance
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | | | | | - Harold Atkins
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rebecca C Auer
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua M Thurman
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Gregory L Stahl
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C Bell
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - J Andrea McCart
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
65
|
Meyer S, Leusen JHW, Boross P. Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer. MAbs 2014; 6:1133-44. [PMID: 25517299 PMCID: PMC4622586 DOI: 10.4161/mabs.29670] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The complement system is a powerful tool of the innate immune system to eradicate pathogens. Both in vitro and in vivo evidence indicates that therapeutic anti-tumor monoclonal antibodies (mAbs) can activate the complement system by the classical pathway. However, the contribution of complement to the efficacy of mAbs is still debated, mainly due to the lack of convincing data in patients. A beneficial role for complement during mAb therapy is supported by the fact that cancer cells often upregulate complement-regulatory proteins (CRPs). Polymorphisms in various CRPs were previously associated with complement-mediated disorders. In this review the role of complement in anti-tumor mAb therapy will be discussed with special emphasis on strategies aiming at modifying complement activity. In the future, clinical efficacy of mAbs with enhanced effector functions together with comprehensive analysis of polymorphisms in CRPs in mAb-treated patients will further clarify the role of complement in mAb therapy.
Collapse
Affiliation(s)
- Saskia Meyer
- a Laboratory for Immunotherapy; Laboratory for Translational Immunology (LTI) ; University Medical Center Utrecht ; Utrecht , The Netherlands
| | | | | |
Collapse
|
66
|
Peterson SL, Anderson AJ. Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol 2014; 258:35-47. [PMID: 25017886 DOI: 10.1016/j.expneurol.2014.04.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 12/21/2022]
Abstract
The pathology associated with spinal cord injury (SCI) is caused not only by primary mechanical trauma, but also by secondary responses of the injured CNS. The inflammatory response to SCI is robust and plays an important but complex role in the progression of many secondary injury-associated pathways. Although recent studies have begun to dissect the beneficial and detrimental roles for inflammatory cells and proteins after SCI, many of these neuroimmune interactions are debated, not well understood, or completely unexplored. In this regard, the complement cascade is a key component of the inflammatory response to SCI, but is largely underappreciated, and our understanding of its diverse interactions and effects in this pathological environment is limited. In this review, we discuss complement in the context of SCI, first in relation to traditional functions for complement cascade activation, and then in relation to novel roles for complement proteins in a variety of models.
Collapse
Affiliation(s)
- Sheri L Peterson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
67
|
Ratelade J, Verkman AS. Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica. Mol Immunol 2014; 62:104-13. [PMID: 24980869 DOI: 10.1016/j.molimm.2014.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/16/2022]
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway.
Collapse
Affiliation(s)
- Julien Ratelade
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| | - A S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
68
|
Schatz-Jakobsen JA, Yatime L, Larsen C, Petersen SV, Klos A, Andersen GR. Structural and functional characterization of human and murine C5a anaphylatoxins. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1704-17. [PMID: 24914981 PMCID: PMC4051506 DOI: 10.1107/s139900471400844x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
Complement is an ancient part of the innate immune system that plays a pivotal role in protection against invading pathogens and helps to clear apoptotic and necrotic cells. Upon complement activation, a cascade of proteolytic events generates the complement effectors, including the anaphylatoxins C3a and C5a. Signalling through their cognate G-protein coupled receptors, C3aR and C5aR, leads to a wide range of biological events promoting inflammation at the site of complement activation. The function of anaphylatoxins is regulated by circulating carboxypeptidases that remove their C-terminal arginine residue, yielding C3a-desArg and C5a-desArg. Whereas human C3a and C3a-desArg adopt a canonical four-helix bundle fold, the conformation of human C5a-desArg has recently been described as a three-helix bundle. Here, the crystal structures of an antagonist version of human C5a, A8(Δ71-73), and of murine C5a and C5a-desArg are reported. Whereas A8(Δ71-73) adopts a three-helix bundle conformation similar to human C5a-desArg, the two murine proteins form a four-helix bundle. A cell-based functional assay reveals that murine C5a-desArg, in contrast to its human counterpart, exerts the same level of activition as murine C5a on its cognate receptor. The role of the different C5a conformations is discussed in relation to the differential activation of C5a receptors across species.
Collapse
Affiliation(s)
| | - Laure Yatime
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Casper Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Steen Vang Petersen
- Department of Biomedicine, Aarhus University, Bartholin Building, Wilhelm Meyers Allé 4, DK-8000 Aarhus, Denmark
| | - Andreas Klos
- Institute for Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| |
Collapse
|
69
|
Okroj M, Österborg A, Blom AM. Effector mechanisms of anti-CD20 monoclonal antibodies in B cell malignancies. Cancer Treat Rev 2013; 39:632-9. [DOI: 10.1016/j.ctrv.2012.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/01/2012] [Accepted: 10/16/2012] [Indexed: 11/25/2022]
|
70
|
Taylor RP, Lindorfer MA. The role of complement in mAb-based therapies of cancer. Methods 2013; 65:18-27. [PMID: 23886909 DOI: 10.1016/j.ymeth.2013.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/26/2022] Open
Abstract
The ability of complement to promote lysis of antibody-opsonized cells is well-established. Virtually all of the molecular details of this reaction have been elucidated and numerous points of regulation have also been delineated. Use of this information, along with the techniques that were first applied in the fundamental studies of complement, has allowed for investigations of the role of complement in mAb-based immunotherapies of cancer. These studies, which have often combined in vitro investigations with parallel correlative clinical measurements, have revealed that several FDA-approved mAbs make use of complement as an effector function in promoting opsonization and killing of targeted malignant cells. We describe the key methods used in this work, and discuss how the results of these studies provide rational approaches for making more effective use of complement in mAb-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
71
|
Golay J, Introna M. Mechanism of action of therapeutic monoclonal antibodies: Promises and pitfalls of in vitro and in vivo assays. Arch Biochem Biophys 2012; 526:146-53. [DOI: 10.1016/j.abb.2012.02.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 02/08/2023]
|
72
|
Chang DK, Sui J, Geng S, Muvaffak A, Bai M, Fuhlbrigge RC, Lo A, Yammanuru A, Hubbard L, Sheehan J, Campbell JJ, Zhu Q, Kupper TS, Marasco WA. Humanization of an anti-CCR4 antibody that kills cutaneous T-cell lymphoma cells and abrogates suppression by T-regulatory cells. Mol Cancer Ther 2012; 11:2451-61. [PMID: 22869555 DOI: 10.1158/1535-7163.mct-12-0278] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of neoplastic disorders characterized by clonally derived and skin-homing malignant T cells that express high level of chemokine receptor CCR4, which is associated with their skin-homing capacity. CCR4 is also highly expressed on T-regulatory cells (Tregs) that can migrate to several different types of chemotactic ligand CCL17- and CCL22-secreting tumors to facilitate tumor cell evasion from immune surveillance. Thus, its high-level expression on CTCL cells and Tregs makes CCR4 a potential ideal target for antibody-based immunotherapy for CTCL and other types of solid tumors. Here, we conducted humanization and affinity optimization of a murine anti-CCR4 monoclonal antibody (mAb), mAb1567, that recognizes both the N-terminal and extracellular domains of CCR4 with high affinity and inhibits chemotaxis of CCR4(+) CTCL cells. In a mouse CTCL tumor model, mAb1567 exhibited a potent antitumor effect and in vitro mechanistic studies showed that both complement-dependent cytotoxicity (CDC) and neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) likely mediated this effect. mAb1567 also exerts human NK cell-mediated ADCC activity in vitro. Moreover, mAb1567 also effectively inhibits chemotaxis of CD4(+)CD25(high) Tregs via CCL22 and abrogates Treg suppression activity in vitro. An affinity-optimized variant of humanized mAb1567, mAb2-3, was selected for further preclinical development based on its higher binding affinity and more potent ADCC and CDC activities. Taken together, this high-affinity humanized mAb2-3 with potent antitumor effect and a broad range of mechanisms of action may provide a novel immunotherapy for CTCL and other solid tumors.
Collapse
Affiliation(s)
- De-Kuan Chang
- Dana-Farber Cancer Institute-Harvard Medical School, 450 Brookline Ave., Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ. Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation 2012; 9:137. [PMID: 22721265 PMCID: PMC3464784 DOI: 10.1186/1742-2094-9-137] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/21/2012] [Indexed: 11/28/2022] Open
Abstract
The complement system, a major component of the innate immune system, is becoming increasingly recognised as a key participant in physiology and disease. The awareness that immunological mediators support various aspects of both normal central nervous system (CNS) function and pathology has led to a renaissance of complement research in neuroscience. Various studies have revealed particularly novel findings on the wide-ranging involvement of complement in neural development, synapse elimination and maturation of neural networks, as well as the progression of pathology in a range of chronic neurodegenerative disorders, and more recently, neurotraumatic events, where rapid disruption of neuronal homeostasis potently triggers complement activation. The purpose of this review is to summarise recent findings on complement activation and acquired brain or spinal cord injury, i.e. ischaemic-reperfusion injury or stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), highlighting the potential for complement-targeted therapeutics to alleviate the devastating consequences of these neurological conditions.
Collapse
Affiliation(s)
- Faith H Brennan
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
74
|
Henry SM, Barr KL, Oliver CA. Modeling transfusion reactions with kodecytes and enabling ABO-incompatible transfusion with function-spacer-lipid constructs. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1751-2824.2012.01563.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
75
|
A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer. Blood 2012; 119:6043-51. [PMID: 22442351 DOI: 10.1182/blood-2011-10-383232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer.
Collapse
|
76
|
Desmarets M, Noizat-Pirenne F. [Murine models in blood transfusion: allo-immunization, hemolysis]. Transfus Clin Biol 2011; 18:115-23. [PMID: 21398162 DOI: 10.1016/j.tracli.2011.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/27/2011] [Indexed: 01/28/2023]
Abstract
Mice represent an animal model that can be easily manipulated. Mice have been used to model many human diseases. This review addresses murine models of immunity directed against red blood cell antigens as well as models of antibody and non-antibody mediated hemolysis. These models allow for a better understanding of the side effects of transfusion, such as red blood cell allo-immunization and post-transfusional hemolytic reactions. They also help explore strategies to treat and prevent these side effects in ways that would not be available using clinical research alone.
Collapse
Affiliation(s)
- M Desmarets
- EFS Île-de-France, 51, avenue Maréchal-de-Lattre-de-Tassigny, 94000 Créteil, France.
| | | |
Collapse
|
77
|
Fonseca MI, Chu SH, Berci AM, Benoit ME, Peters DG, Kimura Y, Tenner AJ. Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. J Neuroinflammation 2011; 8:4. [PMID: 21235806 PMCID: PMC3033336 DOI: 10.1186/1742-2094-8-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 01/15/2011] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Complement proteins and activation products have been found associated with neuropathology in Alzheimer's disease (AD). Recently, a C5a receptor antagonist was shown to suppress neuropathology in two murine models of AD, Tg2576 and 3xTg. Previously, a genetic deficiency of C1q in the Tg2576 mouse model showed an accumulation of fibrillar plaques similar to the complement sufficient Tg2576, but reactive glia were significantly decreased and neuronal integrity was improved suggesting detrimental consequences for complement activation in AD. The goal of this study was to define the role of the classical complement activation pathway in the progression of pathology in the 3xTg mouse that develops tangles in addition to fibrillar plaques (more closely reflecting human AD pathology) and to assess the influence of complement in a model of AD with a higher level of complement hemolytic activity. METHODS 3xTg mice deficient in C1q (3xTgQ-/-) were generated, and both 3xTg and 3xTgQ-/- were backcrossed to the BUB mouse strain which has higher in vitro hemolytic complement activity. Mice were aged and perfused, and brain sections stained for pathological markers or analyzed for proinflammatory marker expression. RESULTS 3xTgQ-/- mice showed similar amounts of fibrillar amyloid, reactive glia and hyperphosphorylated tau as the C1q-sufficient 3xTg at the ages analyzed. However, 3xTg and 3xTgQ-/- on the BUB background developed pathology earlier than on the original 3xTg background, although the presence of C1q had no effect on neuropathological and pro-inflammatory markers. In contrast to that seen in other transgenic models of AD, C1q, C4 and C3 immunoreactivity was undetectable on the plaques of 3xTg in any background, although C3 was associated with reactive astrocytes surrounding the plaques. Importantly, properdin a component of the alternative complement pathway was associated with plaques in all models. CONCLUSIONS In contrast to previously investigated transgenic models of AD, development of neuropathology in 3xTg mice, which progresses much slower than other murine models, may not be influenced by fibrillar amyloid mediated activation of the classical complement pathway, suggesting that the alternative complement pathway activation or a C3-independent cleavage of C5 could account for the detrimental effects in these mice that are prevented by the C5a receptor antagonist. Furthermore, the paucity of complement activation may be a factor in the slower kinetics of progression of pathology in the 3xTg model of this disease.
Collapse
Affiliation(s)
- Maria I Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Shu-Hui Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Alisia M Berci
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Marie E Benoit
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Douglas G Peters
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
| | - Yuko Kimura
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, California, 92697, USA
| |
Collapse
|
78
|
Luchetti S, Beck KD, Galvan MD, Silva R, Cummings BJ, Anderson AJ. Comparison of immunopathology and locomotor recovery in C57BL/6, BUB/BnJ, and NOD-SCID mice after contusion spinal cord injury. J Neurotrauma 2010; 27:411-21. [PMID: 19831737 DOI: 10.1089/neu.2009.0930] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Studies of cell transplantation therapeutics in animal models of traumatic spinal cord injury (SCI) are often hampered by partial or complete rejection of the graft by the host. Pharmacological immunosuppression is rarely sufficient to prevent rejection. Further, the immunological niche created by both the host immune response and immunosuppressant drugs could hypothetically influence the proliferation, differentiation, and fate of transplanted progenitor/stem cells. To avoid these confounds, we have previously used the constitutively immunodeficient non-obese diabetic severe combined immunodeficient (NOD-SCID) mouse as a model for transplantation studies following SCI. In the current study, we compare behavioral and histological recovery in NOD-SCID, C57BL/6, and BUB/BnJ mice of both sexes to better facilitate interpretation of data from studies using NOD-SCID mice. Of the strains examined, NOD-SCID mice exhibited the greatest locomotor recovery in the open field; no sex differences were detected in locomotor recovery in any of the strains. Stereologic estimation of the number of infiltrated neutrophils showed more cells in C57BL/6 mice than NOD-SCID mice, with BUB/BnJ mice having an intermediate number. The volume of macrophages/microglia did not differ between strains or sexes, though more rostral-caudal spreading was observed in C57BL/6 and BUB/BnJ than NOD-SCID mice. No significant differences were detected in lesion volume. Taken together these findings demonstrate that relative to other strains, NOD-SCID mice have both similar primary lesion volume and cellular inflammatory parameters after SCI, and support the applicability of the model for neurotransplantation studies.
Collapse
Affiliation(s)
- Sabina Luchetti
- Department of Physical Medicine and Rehabilitation, University of California-Irvine, Irvine, California 92697-4540, USA
| | | | | | | | | | | |
Collapse
|
79
|
Hod EA, Arinsburg SA, Francis RO, Hendrickson JE, Zimring JC, Spitalnik SL. Use of mouse models to study the mechanisms and consequences of RBC clearance. Vox Sang 2010; 99:99-111. [PMID: 20345515 DOI: 10.1111/j.1423-0410.2010.01327.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mice provide tractable animal models for studying the pathophysiology of various human disorders. This review discusses the use of mouse models for understanding red-blood-cell (RBC) clearance. These models provide important insights into the pathophysiology of various clinically relevant entities, such as autoimmune haemolytic anaemia, haemolytic transfusion reactions, other complications of RBC transfusions and immunomodulation by Rh immune globulin therapy. Mouse models of both antibody- and non-antibody-mediated RBC clearance are reviewed. Approaches for exploring unanswered questions in transfusion medicine using these models are also discussed.
Collapse
Affiliation(s)
- E A Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
80
|
Reichwald J, Danner S, Wiederhold KH, Staufenbiel M. Expression of complement system components during aging and amyloid deposition in APP transgenic mice. J Neuroinflammation 2009; 6:35. [PMID: 19917141 PMCID: PMC2784442 DOI: 10.1186/1742-2094-6-35] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 11/17/2009] [Indexed: 12/02/2022] Open
Abstract
Background A causal role of the complement system in Alzheimer's disease pathogenesis has been postulated based on the identification of different activated components up to the membrane attack complex at amyloid plaques in brain. However, histological studies of amyloid plaque bearing APP transgenic mice provided only evidence for an activation of the early parts of the complement cascade. To better understand the contribution of normal aging and amyloid deposition to the increase in complement activation we performed a detailed characterization of the expression of the major mouse complement components. Methods APP23 mice expressing human APP751 with the Swedish double mutation as well as C57BL/6 mice were used at different ages. mRNA was quantified by Realtime PCR and the age- as well as amyloid induced changes determined. The protein levels of complement C1q and C3 were analysed by Western blotting. Histology was done to test for amyloid plaque association and activation of the complement cascade. Results High mRNA levels were detected for C1q and some inhibitory complement components. The expression of most activating components starting at C3 was low. Expression of C1q, C3, C4, C5 and factor B mRNA increased with age in control C57BL/6 mice. C1q and C3 mRNA showed a substantial additional elevation during amyloid formation in APP23 mice. This increase was confirmed on the protein level using Western blotting, whereas immunohistology indicated a recruitment of complement to amyloid plaques up to the C3 convertase. Conclusion Early but not late components of the mouse complement system show an age-dependent increase in expression. The response to amyloid deposition is comparatively smaller. The low expression of C3 and C5 and failure to upregulate C5 and downstream components differs from human AD brain and likely contributes to the lack of full complement activation in APP transgenic mice.
Collapse
Affiliation(s)
- Julia Reichwald
- Novartis Institutes for BioMedical Research, Forum1, Novartis Campus, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
81
|
Schwab C, Klegeris A, McGeer PL. Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim Biophys Acta Mol Basis Dis 2009; 1802:889-902. [PMID: 19883753 DOI: 10.1016/j.bbadis.2009.10.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/09/2009] [Accepted: 10/23/2009] [Indexed: 12/31/2022]
Abstract
Much evidence is available that inflammation contributes to the development of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Our review investigates how well current mouse models reflect this aspect of the pathogenesis. Transgenic models of AD have been available for several years and are the most extensively studied. Modulation of cytokine levels, activation of microglia and, to a lesser extent, activation of the complement system have been reported. Mouse models of PD and HD so far show less evidence for the involvement of inflammation. An increasing number of transgenic mouse strains is being created to model human neurodegenerative diseases. A perfect model should reflect all aspects of a disease. It is important to evaluate continuously the models for their match with the human disease and reevaluate them in light of new findings in human patients. Although none of the transgenic mouse models recapitulates all aspects of the human disorder they represent, all models have provided valuable information on basic molecular pathways. In particular, the mouse models of Alzheimer disease have also led to the development of new therapeutic strategies such as vaccination and modulation of microglial activity.
Collapse
Affiliation(s)
- Claudia Schwab
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada.
| | | | | |
Collapse
|
82
|
Gaur U, Showalter M, Hickerson S, Dalvi R, Turco SJ, Wilson ME, Beverley SM. Leishmania donovani lacking the Golgi GDP-Man transporter LPG2 exhibit attenuated virulence in mammalian hosts. Exp Parasitol 2009; 122:182-91. [PMID: 19328787 DOI: 10.1016/j.exppara.2009.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 12/24/2022]
Abstract
Surface phosophoglycans such as lipophosphoglycan (LPG) or proteophosphoglycan (PPG) and glycosylinositol phospholipids (GIPLs) modulate essential interactions between Leishmania and mammalian macrophages. Phosphoglycan synthesis depends on the Golgi GDP-mannose transporter encoded by LPG2. LPG2-null (lpg2(-)) Leishmania major cannot establish macrophage infections or induce acute pathology, whereas lpg2(-)Leishmania mexicana retain virulence. lpg2(-)Leishmania donovani has been reported to survive poorly in cultured macrophages but in vivo survival has not been explored. Herein we discovered that, similar to lpg2(-)L. major, lpg2(-)L. donovani promastigotes exhibited diminished virulence in mice, but persisted at consistently low levels. lpg2(-)L. donovani promastigotes could not establish infection in macrophages and could not transiently inhibit phagolysosomal fusion. Furthermore, lpg2(-) promastigotes of L. major, L. donovani and L. mexicana were highly susceptible to complement-mediated lysis. We conclude that phosphoglycan assembly and expression mediated by L. donovani LPG2 are important for promastigote and amastigote virulence, unlike L. mexicana but similar to L. major.
Collapse
Affiliation(s)
- Upasna Gaur
- Departments of Internal Medicine, Epidemiology and Microbiology, University of Iowa and the Veterans Affairs Medical Center, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury. J Neurosci 2009; 28:13876-88. [PMID: 19091977 DOI: 10.1523/jneurosci.2823-08.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although studies have suggested a role for the complement system in the pathophysiology of spinal cord injury (SCI), that role remains poorly defined. Additionally, the relative contribution of individual complement pathways in SCI is unknown. Our initial studies revealed that systemic complement activation was strongly influenced by genetic background and gender. Thus, to investigate the role of the classical complement pathway in contusion-induced SCI, male C1q knock-out (KO) and wild-type (WT) mice on a complement sufficient background (BUB) received a mild-moderate T9 contusion injury with the Infinite Horizon impactor. BUB C1q KO mice exhibited greater locomotor recovery compared with BUB WT mice (p<0.05). Improved recovery observed in BUB C1q KO mice was also associated with decreased threshold for withdrawal from a mild stimulus using von Frey filament testing. Surprisingly, quantification of microglia/macrophages (F4/80) by FACS analysis showed that BUB C1q KO mice exhibited a significantly greater percentage of macrophages in the spinal cord compared with BUB WT mice 3 d post-injury (p<0.05). However, this increased macrophage response appeared to be transient as stereological assessment of spinal cord tissue obtained 28 d post-injury revealed no difference in F4/80-positive cells between groups. Stereological assessment of spinal cord tissue showed that BUB C1q KO mice had reduced lesion volume and an increase in tissue sparing compared with BUB WT mice (p<0.05). Together, these data suggest that initiation of the classical complement pathway via C1q is detrimental to recovery after SCI.
Collapse
|
84
|
Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ. The complement cascade: Yin-Yang in neuroinflammation--neuro-protection and -degeneration. J Neurochem 2008; 107:1169-87. [PMID: 18786171 DOI: 10.1111/j.1471-4159.2008.05668.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a 'double edged' sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self-tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS.
Collapse
|
85
|
Rozanov DV, Savinov AY, Golubkov VS, Tomlinson S, Strongin AY. Interference with the complement system by tumor cell membrane type-1 matrix metalloproteinase plays a significant role in promoting metastasis in mice. Cancer Res 2006; 66:6258-63. [PMID: 16778201 DOI: 10.1158/0008-5472.can-06-0539] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neoplasms have developed strategies to protect themselves against the complement-mediated host immunity. Invasion- and metastasis-promoting membrane type-1 (MT1) matrix metalloproteinase (MMP) is strongly associated with many metastatic cancer types. The relative importance of the individual functions of MT1-MMP in metastasis was, however, unknown. We have now determined that the expression of murine MT1-MMP in murine melanoma B16F1 cells strongly increased the number of metastatic loci in the lungs of syngeneic C57BL/6 mice. In contrast, MT1-MMP did not affect the number of metastatic loci in complement-deficient C57BL/6-C3-/- mice. Our results indicated, for the first time, that the anticomplement activity of MT1-MMP played a significant role in promoting metastasis in vivo and determined the relative importance of the anticomplement activity in the total metastatic effect of this multifunctional proteolytic enzyme. We believe that our results shed additional light on the functions of MT1-MMP in cancer and clearly make this protease a promising drug target in metastatic malignancies.
Collapse
MESH Headings
- Animals
- Complement C3/deficiency
- Complement C3/genetics
- Complement C3/immunology
- Complement Inactivator Proteins/genetics
- Complement Inactivator Proteins/immunology
- Complement Inactivator Proteins/metabolism
- Fibrosarcoma/enzymology
- Fibrosarcoma/genetics
- Fibrosarcoma/immunology
- Humans
- Lung Neoplasms/enzymology
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Matrix Metalloproteinase 14
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/immunology
- Matrix Metalloproteinases/metabolism
- Matrix Metalloproteinases, Membrane-Associated
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/secondary
- Mice
- Mice, Inbred C57BL
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Transfection
Collapse
Affiliation(s)
- Dmitri V Rozanov
- Cell Adhesion and Extracellular Matrix Biology, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
86
|
Osmers I, Szalai AJ, Tenner AJ, Barnum SR. Complement in BuB/BnJ mice revisited: serum C3 levels and complement opsonic activity are not elevated. Mol Immunol 2006; 43:1722-5. [PMID: 16310250 DOI: 10.1016/j.molimm.2005.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/17/2005] [Accepted: 10/19/2005] [Indexed: 11/16/2022]
Abstract
With the exception of a few strains such as BuB/BnJ, complement activity in most inbred strains of mice is remarkably similar. The BuB/BnJ strain reportedly has high levels of complement activity and elevated serum levels of C3 and other complement proteins. However, we observed that BuB/BnJ mice have serum C3 levels comparable to those seen in C57BL/6, Balb/c and several other strains of inbred mice. More importantly, using bacteria as a substrate for activation and deposition of complement as a direct biological assay to assess serum complement opsonic activity, we found that BuB/BnJ mice do not have elevated complement activity compared to other inbred mouse strains. In contrast hemolytic assays indicate BuB/BnJ sera to be most active. These results indicate that accepted views regarding mouse serum complement activity need to be re-examined.
Collapse
Affiliation(s)
- Inga Osmers
- Department of Microbiology, 845 19th St. S. BBRB/842, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
87
|
Hazama GI, Yasuhara O, Morita H, Aimi Y, Tooyama I, Kimura H. Mouse brain IgG-like immunoreactivity: strain-specific occurrence in microglia and biochemical identification of IgG. J Comp Neurol 2006; 492:234-49. [PMID: 16196032 DOI: 10.1002/cne.20710] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike the brains of most mammals, the mouse brain appears unique in the massive appearance of cells showing IgG-like immunoreactivity, which has repeatedly been shown via immunohistochemistry. In the present study, we first examined possible species differences in IgG-like immunohistochemical staining in the brains of various rodents, including mice. In four of six mouse strains examined (ICR, Balb/c, C57BL/6, and AKR/J), antibodies against mouse IgG revealed positive staining in many brain microglia. However, no such positive staining was detected in brains of the rat, hamster, guinea pig, or two other mouse strains (CBA/N and CBA/J). We purified IgG-like-immunoreactive molecule(s) biochemically from brain of the ICR mouse as a representative mouse strain. Our amino-acid-sequence analysis proved that the purified protein was identical to serum IgG. The possibility of IgG synthesis by brain microglia in the ICR mouse was denied by our RT-PCR experiments and in situ hybridization histochemistry. In addition, Fcgamma-receptor-deficient double-knockout mice of the C57BL/6 genetic background contained no IgG-immunoreactive microglia in the brain. These results clearly indicate that microglial IgG staining is due to the uptake of serum IgG through Fcgamma receptors. However, the strain-specific mechanisms resulting in microglial IgG uptake remain to be elucidated, in that Fcgamma receptors are omnipresent in microglia of all rodents examined here.
Collapse
Affiliation(s)
- Gen-I Hazama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
88
|
Tenner AJ, Fonseca MI. The double-edged flower: roles of complement protein C1q in neurodegenerative diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 586:153-76. [PMID: 16893071 DOI: 10.1007/0-387-34134-x_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A role for the complement cascade in AD neuropathology was hypothesized over a decade ago, and the results of a significant number of in vitro studies are consistent with the involvement of this pathway in AD pathogenesis (reviewed in). Since C1q is colocalized with thioflavine-positive plaques and the C5b-9 complement membrane attack complex is detected in AD brain at autopsy, it is reasonable to hypothesize that complement activation has a role in the manifestation of AD either by its lytic capacity or as a trigger of glial infiltration and initiation of potentially damaging inflammation. The observed diminished glial activation and reduced loss of neuronal integrity in a murine model overexpressing mutant human APP but lacking the ability to activate the classical complement cascade provide the first direct evidence for a detrimental role of C1q, and presumably activation of the classical complement pathway in an animal model of AD. Research is now focused on generating mouse models that more closely mimic the human disease, so that the role of complement activation and inflammation on the behavioral/learning and memory dysfunction that occurs in this disease can be assessed. In addition, candidate therapies such as targeted inhibition of complement activation will need to be tested in these animal models as a step toward treatment of humans with the disease. However, it is important that the potential for a protective effect of C1q early on in disease progression should not be overlooked. Rather, strategies that enhance or mimic the protective effects of C1q as well as strategies that inhibit the detrimental processes should be fully investigated.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology, Center for Immunology, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
89
|
Atkinson C, Song H, Lu B, Qiao F, Burns TA, Holers VM, Tsokos GC, Tomlinson S. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J Clin Invest 2005; 115:2444-53. [PMID: 16127466 PMCID: PMC1190375 DOI: 10.1172/jci25208] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 06/21/2005] [Indexed: 01/31/2023] Open
Abstract
Previous studies indicate a pivotal role for complement in mediating both local and remote injury following ischemia and reperfusion of the intestine. Here, we report on the use of a mouse model of intestinal ischemia/reperfusion injury to investigate the strategy of targeting complement inhibition to sites of complement activation by linking an iC3b/C3dg-binding fragment of mouse complement receptor 2 (CR2) to a mouse complement-inhibitory protein, Crry. We show that the novel CR2-Crry fusion protein targets sites of local and remote (lung) complement activation following intestinal ischemia and reperfusion injury and that CR2-Crry requires a 10-fold lower dose than its systemic counterpart, Crry-Ig, to provide equivalent protection from both local and remote injury. CR2-Crry has a significantly shorter serum half-life than Crry-Ig and, unlike Crry-Ig, had no significant effect on serum complement activity at minimum effective therapeutic doses. Furthermore, the minimum effective dose of Crry-Ig significantly enhanced susceptibility to infection in a mouse model of acute septic peritonitis, whereas the effect of CR2-Crry on susceptibility to infection was indistinguishable from that of PBS control. Thus, compared with systemic inhibition, CR2-mediated targeting of a complement inhibitor of activation improved bioavailability, significantly enhanced efficacy, and maintained host resistance to infection.
Collapse
Affiliation(s)
- Carl Atkinson
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Taylor RP. Use of biological response modifiers to enhance the action of Rituximab. Leuk Res 2005; 29:599-600. [PMID: 15863194 DOI: 10.1016/j.leukres.2004.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
|
91
|
Mehlhop E, Whitby K, Oliphant T, Marri A, Engle M, Diamond MS. Complement activation is required for induction of a protective antibody response against West Nile virus infection. J Virol 2005; 79:7466-77. [PMID: 15919902 PMCID: PMC1143684 DOI: 10.1128/jvi.79.12.7466-7477.2005] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 02/15/2005] [Indexed: 01/21/2023] Open
Abstract
Infection with West Nile virus (WNV) causes a severe infection of the central nervous system (CNS) with higher levels of morbidity and mortality in the elderly and the immunocompromised. Experiments with mice have begun to define how the innate and adaptive immune responses function to limit infection. Here, we demonstrate that the complement system, a major component of innate immunity, controls WNV infection in vitro primarily in an antibody-dependent manner by neutralizing virus particles in solution and lysing WNV-infected cells. More decisively, mice that genetically lack the third component of complement or complement receptor 1 (CR1) and CR2 developed increased CNS virus burdens and were vulnerable to lethal infection at a low dose of WNV. Both C3-deficient and CR1- and CR2-deficient mice also had significant deficits in their humoral responses after infection with markedly reduced levels of specific anti-WNV immunoglobulin M (IgM) and IgG. Overall, these results suggest that complement controls WNV infection, in part through its ability to induce a protective antibody response.
Collapse
Affiliation(s)
- Erin Mehlhop
- Department of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Ave., Box 8051, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
92
|
Fonseca MI, Zhou J, Botto M, Tenner AJ. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J Neurosci 2005; 24:6457-65. [PMID: 15269255 PMCID: PMC6729885 DOI: 10.1523/jneurosci.0901-04.2004] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
C1q, the recognition component of the classical complement activation pathway, is a multifunctional protein known to be expressed in brain of Alzheimer's disease (AD) patients. To experimentally address the role of C1q in AD, a mouse model lacking C1q (APPQ-/-) was generated by crossing Tg2576 animals (APP) with C1q-deficient mice. The pathology of APPQ-/- was compared with that of APP mice and B6SJL controls at 3-16 months of age by immunohistochemistry and Western blot analysis. At younger ages (3-6 months), when no plaque pathology was present, no significant differences were seen in any of the neuronal or glial markers tested. At older ages (9-16 months), the APP and APPQ-/- mice developed comparable total amyloid and fibrillar beta-amyloid in frontal cortex and hippocampus; however, the level of activated glia surrounding the plaques was significantly lower in the APPQ-/- mice at 12 and 16 months. In addition, although Tg2576 mice showed a progressive decrease in synaptophysin and MAP2 in the CA3 area of hippocampus compared with control B6SJL at 9, 12, and 16 months, the APPQ-/- mice had significantly less of a decrease in these markers at 12 and 16 months. In a second murine model for AD containing transgenes for both APP and mutant presenilin 1 (APP/PS1), a similar reduction of pathology was seen in the APPPS1Q-/- mice. These data suggest that at ages when the fibrillar plaque pathology is present, C1q exerts a detrimental effect on neuronal integrity, most likely through the activation of the classical complement cascade and the enhancement of inflammation.
Collapse
Affiliation(s)
- Maria Isabel Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
93
|
Loeffler DA. Using animal models to determine the significance of complement activation in Alzheimer's disease. J Neuroinflammation 2004; 1:18. [PMID: 15479474 PMCID: PMC529311 DOI: 10.1186/1742-2094-1-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 10/12/2004] [Indexed: 12/11/2022] Open
Abstract
Complement inflammation is a major inflammatory mechanism whose function is to promote the removal of microorganisms and the processing of immune complexes. Numerous studies have provided evidence for an increase in this process in areas of pathology in the Alzheimer's disease (AD) brain. Because complement activation proteins have been demonstrated in vitro to exert both neuroprotective and neurotoxic effects, the significance of this process in the development and progression of AD is unclear. Studies in animal models of AD, in which brain complement activation can be experimentally altered, should be of value for clarifying this issue. However, surprisingly little is known about complement activation in the transgenic animal models that are popular for studying this disorder. An optimal animal model for studying the significance of complement activation on Alzheimer's – related neuropathology should have complete complement activation associated with senile plaques, neurofibrillary tangles (if present), and dystrophic neurites. Other desirable features include both classical and alternative pathway activation, increased neuronal synthesis of native complement proteins, and evidence for an increase in complement activation prior to the development of extensive pathology. In order to determine the suitability of different animal models for studying the role of complement activation in AD, the extent of complement activation and its association with neuropathology in these models must be understood.
Collapse
Affiliation(s)
- David A Loeffler
- Department of Neurology, William Beaumont Hospital Research Institute, Royal Oak, MI 48073, USA.
| |
Collapse
|
94
|
Sheikh KA, Zhang G, Gong Y, Schnaar RL, Griffin JW. An anti-ganglioside antibody-secreting hybridoma induces neuropathy in mice. Ann Neurol 2004; 56:228-39. [PMID: 15293275 DOI: 10.1002/ana.20173] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune responses against gangliosides are strongly implicated in the pathogenesis of some variants of Guillain-Barré syndrome (GBS). For example, IgG antibodies against GM1, GD1a, and related gangliosides are frequently present in patients with post-Campylobacter acute motor axonal neuropathy (AMAN) variant of GBS, and immunization of rabbits with GM1 has produced a model of AMAN. However, the role of anti-ganglioside antibodies in GBS continues to be debated because of lack of a passive transfer model. We recently have raised several monoclonal IgG anti-ganglioside antibodies. We passively transfer these antibodies by intraperitoneal hybridoma implantation and by systemic administration of purified anti-ganglioside antibodies in mice. Approximately half the animals implanted with an intraperitoneal clone of anti-ganglioside antibody-secreting hybridoma developed a patchy, predominantly axonal neuropathy affecting a small proportion of nerve fibers. In contrast to hybridoma implantation, passive transfer with systemically administered anti-ganglioside antibodies did not cause nerve fiber degeneration despite high titre circulating antibodies. Blood-nerve barrier studies indicate that animals implanted with hybridoma had leaky blood-nerve barrier compared to mice that received systemically administered anti-ganglioside antibodies. Our findings suggest that in addition to circulating antibodies, factors such as antibody accessibility and nerve fiber resistance to antibody-mediated injury play a role in the development of neuropathy.
Collapse
Affiliation(s)
- Kazim A Sheikh
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
95
|
Imai M, Hwang HY, Norris JS, Tomlinson S. The effect of dexamethasone on human mucin 1 expression and antibody-dependent complement sensitivity in a prostate cancer cell line in vitro and in vivo. Immunology 2004; 111:291-7. [PMID: 15009429 PMCID: PMC1782423 DOI: 10.1111/j.0019-2805.2004.01815.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Dexamethasone has been shown to up-regulate human mucin 1 (MUC1) expression in certain types of cancer cell lines in vitro, suggesting that this gluocorticoid may enhance MUC1-based immunotherapies. Here we investigated the effect of dexamethasone on MUC1 expression in the DU145 human prostate cancer cell line in terms of antibody-mediated complement-dependent cell lysis. Cells treated with 1 x 10-8 m dexamethasone in vitro expressed maximal levels of MUC1 after 6 days, with an approximately 3-fold increase over MUC1 levels on untreated cells. DU145 cells were highly resistant to lysis by anti-MUC1 antibody and complement, and their susceptibility to antibody and complement was unaffected by dexamethasone treatment. However, dexamethasone also induced expression of the complement inhibitor decay accelerating factor (DAF) on DU145 cells. Blocking or overcoming the function of DAF resulted in enhanced complement-dependent lysis of dexamethasone-treated cells with anti-MUC1 antibodies, indicating that the failure of dexamethasone to enhance the complement susceptibility of DU145 cells was caused by the up-regulated expression of DAF. We also investigated MUC1 expression in vivo and found that MUC1 expression was significantly up-regulated on tumour cells isolated from immune-deficient mice that had been injected with dexamethasone. However, in contrast to in vitro data, there was no difference between the levels of DAF expressed on tumour-derived DU145 cells isolated from either phosphate buffered saline (PBS)-treated or dexamethasone-treated mice, and tumour cells isolated from dexamethasone-treated mice were more sensitive to complement-mediated lysis. In the broad context of immunotherapy, the in vivo data support the use of dexamethasone as an adjunct treatment. Up-regulated DAF expression would not be a favourable outcome of dexamethasone treatment in terms of complement-dependent antibody therapy, but the in vivo data caution against extrapolation of in vitro data with regard to the modulation of complement inhibitors reported here and elsewhere.
Collapse
Affiliation(s)
- Masaki Imai
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
96
|
Tüzün E, Scott BG, Yang H, Wu B, Goluszko E, Guigneaux M, Higgs S, Christadoss P. Circulating Immune Complexes Augment Severity of Antibody-Mediated Myasthenia Gravis in Hypogammaglobulinemic RIIIS/J Mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:5743-52. [PMID: 15100321 DOI: 10.4049/jimmunol.172.9.5743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experimental autoimmune myasthenia gravis (EAMG) is severe in RIIIS/J mice, despite a significant B cell immunodeficiency and a massive TCR V beta gene deletion. Severity of EAMG in RIIIS/J mice is greater than MHC-identical (H-2(r)) B10.RIII mice, suggesting the influence of non-MHC genes as an EAMG-potentiating factor in this strain. To delineate the role of deleted TCR V beta genes in RIIIS/J mice, we obtained (RIIIS/J x B10.RIII)F(1) (V beta(b/c)) x RIIIS/J (V beta(c)) backcross mice using Mendelian genetic methods and immunized them with acetylcholine receptor. EAMG susceptibility was not elevated in mice with V beta(c) genotype having 70% V beta gene deletion. Next, we performed microarray analysis on 12,488 spleen cDNAs obtained from spleens of naive RIIIS/J and B10.RIII mice. In RIIIS/J mice, 263 cDNAs were overexpressed and 303 cDNAs were underexpressed greater than 2-fold, compared with B10.RIII mice. TCR gene expression was augmented, whereas NK receptor, C1q, and C3 gene expressions were diminished in RIIIS/J mice. RIIIS/J mice also had increased lymph node T cell counts, elevated serum anti-AChR Ab levels, and serum C3 and C1q-conjugated circulating immune complex levels. A direct correlation between increased serum C1q-conjugated circulating immune complex levels and disease severity was observed in RIIIS/J mice.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/blood
- Adjuvants, Immunologic/physiology
- Agammaglobulinemia/genetics
- Agammaglobulinemia/immunology
- Agammaglobulinemia/pathology
- Animals
- Antigen-Antibody Complex/biosynthesis
- Antigen-Antibody Complex/blood
- Antigen-Antibody Complex/physiology
- Antigens, Surface/analysis
- Autoantibodies/biosynthesis
- Autoantibodies/physiology
- B-Lymphocyte Subsets/pathology
- Complement C1q/biosynthesis
- Complement C3/biosynthesis
- Gene Deletion
- Germinal Center/pathology
- H-2 Antigens/genetics
- Histocompatibility Testing
- Immunoglobulin G/blood
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Count
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Myasthenia Gravis, Autoimmune, Experimental/epidemiology
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Oligonucleotide Array Sequence Analysis
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Cholinergic/administration & dosage
- Receptors, Cholinergic/immunology
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, KIR
- Severity of Illness Index
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Erdem Tüzün
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Imai M, Ohta R, Okada N, Tomlinson S. Inhibition of a complement regulatorin vivo enhances antibody therapy in a model of mammary adenocarcinoma. Int J Cancer 2004; 110:875-81. [PMID: 15170670 DOI: 10.1002/ijc.20178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Membrane-bound complement regulatory proteins provide tumor cells with protection from antibody and complement in vitro. However, complement regulators are widely expressed on normal tissue, and inhibiting the function of complement regulatory proteins on tumor cells in vivo has not been investigated due to the absence of appropriate tumor-targeting strategies. Using a mouse model of rat mammary adenocarcinoma, we demonstrate that tumor-specific targeting of a complement regulator with a blocking antibody has functional consequences with regard to both complement deposition on tumor cells and the efficacy of monoclonal antibody therapy. Rat adenocarcinoma 13762 cells express Crry, a widely expressed rodent regulator of complement activation, and are recognized by C595 MAb, an anti-MUC1 MAb in clinical trials. Anti-rat Crry 5I2 MAb and F(ab)(2) enhanced complement deposition on C595 MAb-sensitized 13762 cells in vitro. In vivo, C595 MAb bound to 13762 tumors, albeit not specifically, but was not therapeutic when administered after tumor challenge. However, the coadministration of 5I2 MAb with C595 MAb resulted in enhanced complement deposition and significantly delayed tumor onset and reduced tumor growth; 5I2 MAb alone also enhanced complement deposition and reduced tumor growth but less effectively than when combined with C595 MAb; 5I2 MAb alone did not directly activate mouse complement, but its inhibitory effect on Crry enhanced complement deposition following complement activation by both the alternative pathway and by natural IgM reactive to 13762 cells present in mouse serum. Our proof of principle study shows that inhibiting the function of a tumor-expressed complement regulatory protein enhances immune-mediated clearance of tumor cells and improves prospects for successful immunotherapy. The results justify further research and development of targeting strategies to inhibit or downregulate complement regulatory proteins on tumor cells.
Collapse
Affiliation(s)
- Masaki Imai
- Department of Microbiology and Immunology, Medical University of South Carolina, BSB 201, 173 Ashley Avenue, Charleston, SC 29424, USA
| | | | | | | |
Collapse
|
98
|
Späth GF, Garraway LA, Turco SJ, Beverley SM. The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. Proc Natl Acad Sci U S A 2003; 100:9536-41. [PMID: 12869694 PMCID: PMC170953 DOI: 10.1073/pnas.1530604100] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The abundant cell surface glycolipid lipophosphoglycan (LPG) was implicated in many steps of the Leishmania infectious cycle by biochemical tests. The presence of other abundant surface or secreted glycoconjugates sharing LPG domains, however, has led to uncertainty about the relative contribution of LPG in vivo. Here we used an Leishmania major lpg1- mutant, which lacks LPG alone and shows attenuated virulence, to dissect the role of LPG in the establishment of macrophage infections in vivo. lpg1- was highly susceptible to human complement, had lost the ability to inhibit phagolysosomal fusion transiently, and was oxidant sensitive. Studies of mouse mutants defective in relevant defense mechanisms confirmed the role of LPG in oxidant resistance but called into question the importance of transient inhibition of phagolysosomal fusion for Leishmania macrophage survival. Moreover, the limited lytic activity of mouse complement appears to be an ineffective pathogen defense mechanism in vitro and in vivo, unlike human hosts. In contrast, lpg1- parasites bound C3b and resisted low pH and proteases normally, entered macrophages efficiently and silently, and continued to inhibit host-signaling pathways. These studies illustrate the value of mechanistic approaches focusing on both parasite and host defense pathways in dissecting the specific biological roles of complex virulence factors such as LPG.
Collapse
Affiliation(s)
- Gerald F Späth
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
99
|
Cianflone K, Xia Z, Chen LY. Critical review of acylation-stimulating protein physiology in humans and rodents. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:127-43. [PMID: 12543373 DOI: 10.1016/s0005-2736(02)00686-7] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the last few years, there has been increasing interest in the physiological role of acylation-stimulating protein (ASP). Recent studies in rats and mice, in particular in C3 (-/-) mice that are ASP deficient, have advanced our understanding of the role of ASP. Of note, the background strain of the mice influences the phenotype of delayed postprandial triglyceride clearance in ASP-deficient mice. Administration of ASP in all types of lean and obese mice studied to date, however, enhances postprandial triglyceride clearance. On the other hand, regardless of the background strain, ASP-deficient mice demonstrate reduced body weight, reduced leptin and reduced adipose tissue mass, suggesting that ASP deficiency results in protection against development of obesity. In humans, a number of studies have examined the relationship between ASP, obesity, diabetes and dyslipidemia as well as the influence of diet, exercise and pharmacological therapy. While many of these studies have small subject numbers, interesting observations may help us to better understand the parameters that may influence ASP production and ASP action. The aim of the present review is to provide a comprehensive overview of the recent literature on ASP, with particular emphasis on those studies carried out in rodents and humans.
Collapse
Affiliation(s)
- Katherine Cianflone
- McGill University, Cardiology, H7.30, Royal Victoria Hospital, 687 Pine Ave West, Montreal, Quebec, Canada H3A 1A1.
| | | | | |
Collapse
|
100
|
Boyett KW, DiCarlo G, Jantzen PT, Jackson J, O'Leary C, Wilcock D, Morgan D, Gordon MN. Increased fibrillar beta-amyloid in response to human clq injections into hippocampus and cortex of APP+PS1 transgenic mice. Neurochem Res 2003; 28:83-93. [PMID: 12587666 DOI: 10.1023/a:1021600212829] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human C1q when injected directly into hippocampus and cortex of doubly transgenic APP+PS1 mice results in the increase of Congo red-positive fibrillar deposits. Although there was no significant change in overall area stained for Abeta total, qualitatively it appeared that there was less diffuse Abeta in C1q-treated mice versus vehicle. There was no apparent change in astroglial or microglial activation caused by injection of C1q with respect to vehicle injections. These effects of C1q were only found in 50% BUB/BnJ mice, a strain with higher serum complement activity than other mouse lines. These in vivo data were consistent with the effects of C1q to increase fibrillogenesis of Abeta in vitro. In conclusion, complement protein C1q, believed to be involved in the pathogenesis of Alzheimer's disease in humans, can cause increased fibrillogenesis in the APP+PS1 mouse model of amyloid deposition.
Collapse
Affiliation(s)
- Kristal W Boyett
- Alzheimer's Research Laboratory, Department of Pharmacology and Therapeutics, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|