51
|
Benmamar-Badel A, Owens T, Wlodarczyk A. Protective Microglial Subset in Development, Aging, and Disease: Lessons From Transcriptomic Studies. Front Immunol 2020; 11:430. [PMID: 32318054 PMCID: PMC7147523 DOI: 10.3389/fimmu.2020.00430] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Microglial heterogeneity has been the topic of much discussion in the scientific community. Elucidation of their plasticity and adaptability to disease states triggered early efforts to characterize microglial subsets. Over time, their phenotypes, and later on their homeostatic signature, were revealed, through the use of increasingly advanced transcriptomic techniques. Recently, an increasing number of these "microglial signatures" have been reported in various homeostatic and disease contexts. Remarkably, many of these states show similar overlapping microglial gene expression patterns, both in homeostasis and in disease or injury. In this review, we integrate information from these studies, and we propose a unique subset, for which we introduce a core signature, based on our own research and reports from the literature. We describe that this subset is found in development and in normal aging as well as in diverse diseases. We discuss the functions of this subset as well as how it is induced.
Collapse
Affiliation(s)
- Anouk Benmamar-Badel
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark
- Department of Neurology, Slagelse Hospital, Institute of Regional Health Research, Slagelse, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark
| |
Collapse
|
52
|
Abstract
During insults and disease blood-borne monocytes can invade brain and spinal cord, contributing to the neuroimmune response together with brain-resident microglia. The specific function of brain-infiltrating monocytes has been difficult to ascertain because of shared marker expression and morphology of these two immune cell types. Here we describe our method of repopulating the brain with circulating monocytes after microglia ablation to investigate the physiology of brain-invading monocytes, which engraft under these conditions.
Collapse
|
53
|
Kelly R, Joers V, Tansey MG, McKernan DP, Dowd E. Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson's Disease. Molecules 2020; 25:molecules25030453. [PMID: 31973235 PMCID: PMC7037317 DOI: 10.3390/molecules25030453] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder, the motor symptoms of which are associated classically with Lewy body formation and nigrostriatal degeneration. Neuroinflammation has been implicated in the progression of this disease, by which microglia become chronically activated in response to α-synuclein pathology and dying neurons, thereby acquiring dishomeostatic phenotypes that are cytotoxic and can cause further neuronal death. Microglia have a functional endocannabinoid signaling system, expressing the cannabinoid receptors in addition to being capable of synthesizing and degrading endocannabinoids. Alterations in the cannabinoid system—particularly an upregulation in the immunomodulatory CB2 receptor—have been demonstrated to be related to the microglial activation state and hence the microglial phenotype. This paper will review studies that examine the relationship between the cannabinoid system and microglial activation, and how this association could be manipulated for therapeutic benefit in Parkinson’s disease.
Collapse
Affiliation(s)
- Rachel Kelly
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA; (V.J.); (M.G.T.)
| | - Malú G. Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA; (V.J.); (M.G.T.)
- Center for Translation Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Declan P. McKernan
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Eilís Dowd
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
- Correspondence:
| |
Collapse
|
54
|
Role of Infiltrating Microglia/Macrophages in Glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:281-298. [PMID: 32034719 DOI: 10.1007/978-3-030-30651-9_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter we describe the state of the art knowledge of the role played by myeloid cells in promoting and supporting the growth and the invasive properties of a deadly brain tumor, glioblastoma. We provide a review of the works describing the intercellular communication among glioma and associated microglia/macrophage cells (GAMs) using in vitro cellular models derived from mice, rats and human patients and in vivo animal models using syngeneic or xenogeneic experimental systems. Special emphasis will be given to 1) the timing alteration of brain microenvironment under the influence of glioma, 2) the bidirectional communication among tumor and GAMs, 3) possible approaches to interfere with or to guide these interactions, with the aim to identify molecular and cellular targets which could revert or delay the vicious cycle that favors tumor biology.
Collapse
|
55
|
Yang C, Hou X, Feng Q, Li Y, Wang X, Qin L, Yang P. Lupus serum IgG induces microglia activation through Fc fragment dependent way and modulated by B-cell activating factor. J Transl Med 2019; 17:426. [PMID: 31864410 PMCID: PMC6925475 DOI: 10.1186/s12967-019-02175-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 12/10/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Neuropsychiatric manifestations are frequent in patients with systemic lupus erythematosus (SLE), yet the etiology and pathogenesis of brain damage in SLE remains unclear. Because the production of autoantibodies, formation and deposition of immunocomplexes are major serological characteristics of SLE, the elevated level of serum immunoglobulin may contribute to brain tissue injury of SLE. To testify this, in this study, we examined whether immunoglobulin G (IgG) in the serum of SLE patients affects the cellular functions in central nervous system and the potential mechanism. METHODS In vivo intracerebral injection of SLE-serum in mouse was used to activate microglia and the production of pro-inflammatory cytokine was assessed by ELISA. Sera was divided into IgG and IgG depleted fractions, while IgG was further divided into Fc and Fab fragments to examine which part has an effect on microglia. Flow cytometry, immunofluorescence and quantitative PCR (qPCR) were used to verify the synergistic effect of B-cell activating factor (BAFF) on IgG stimulation of microglia. RESULTS We found that IgG in lupus sera can induce M1 activation of brain microglia following intraventricular injection into normal mice, and BAFF facilitates this process. In vitro, we identified that IgG bound to microglia through Fc rather than Fab fragments, and BAFF up-regulated the expression of Fc receptors (FcγR) on the surface of microglia, consequently, promote IgG binding to microglia. CONCLUSION Our results suggest that lupus serum IgG causes inflammatory responses of microglia by involving the Fc signaling pathway and the activity could be up-regulated by BAFF. Accordingly, disruption of the FcγR-mediated signaling pathway and blockade of microglia activation may be a therapeutic target in patients with neuropsychiatric lupus erythematosus.
Collapse
Affiliation(s)
- Chunshu Yang
- Department of 1st Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, 110001 People’s Republic of China
| | - Xiaoyu Hou
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001 People’s Republic of China
| | - Qianhui Feng
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001 People’s Republic of China
| | - Yingzhuo Li
- Department of Physiology, School of Life Science, China Medical University, Shenyang, 110122 People’s Republic of China
| | - Xuejiao Wang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, 110122 People’s Republic of China
| | - Ling Qin
- Department of Physiology, School of Life Science, China Medical University, Shenyang, 110122 People’s Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001 People’s Republic of China
| |
Collapse
|
56
|
VanRyzin JW, Marquardt AE, Pickett LA, McCarthy MM. Microglia and sexual differentiation of the developing brain: A focus on extrinsic factors. Glia 2019; 68:1100-1113. [PMID: 31691400 DOI: 10.1002/glia.23740] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
Microglia, the innate immune cells of the brain, have recently been removed from the position of mere sentinels and promoted to the role of active sculptors of developing circuits and cells. Alongside their functions in normal brain development, microglia coordinate sexual differentiation of the brain, a set of processes which vary by region and endpoint like that of microglia function itself. In this review, we highlight the ways microglia are both targets and drivers of brain sexual differentiation. We examine the factors that may drive sex differences in microglia, with a special focus on how changing microenvironments in the developing brain dictate microglia phenotypes and discuss how their diverse functions sculpt lasting sex-specific changes in the brain. Finally, we consider how sex-specific early life environments contribute to epigenetic programming and lasting sex differences in microglia identity.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lindsay A Pickett
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
57
|
Abstract
Microglia are the primary innate immune cells in the CNS. In the healthy brain, they exhibit a unique molecular homeostatic 'signature', consisting of a specific transcriptional profile and surface protein expression pattern, which differs from that of tissue macrophages. In recent years, there have been a number of important advances in our understanding of the molecular signatures of homeostatic microglia and disease-associated microglia that have provided insight into how these cells are regulated in health and disease and how they contribute to the maintenance of the neural environment.
Collapse
|
58
|
Jacobs AJ, Castillo‐Ruiz A, Cisternas CD, Forger NG. Microglial Depletion Causes Region‐Specific Changes to Developmental Neuronal Cell Death in the Mouse Brain. Dev Neurobiol 2019; 79:769-779. [DOI: 10.1002/dneu.22706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Andrew J. Jacobs
- Neuroscience Institute Georgia State University P.O. Box 5030 Atlanta Georgia30302‐5030
| | | | - Carla D. Cisternas
- Neuroscience Institute Georgia State University P.O. Box 5030 Atlanta Georgia30302‐5030
| | - Nancy G. Forger
- Neuroscience Institute Georgia State University P.O. Box 5030 Atlanta Georgia30302‐5030
| |
Collapse
|
59
|
Refolo V, Stefanova N. Neuroinflammation and Glial Phenotypic Changes in Alpha-Synucleinopathies. Front Cell Neurosci 2019; 13:263. [PMID: 31263402 PMCID: PMC6585624 DOI: 10.3389/fncel.2019.00263] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The role of neuroinflammation has been increasingly recognized in the field of neurodegenerative diseases. Many studies focusing on the glial cells involved in the inflammatory responses of the brain, namely microglia and astroglia, have over the years pointed out the dynamic and changing behavior of these cells, accompanied by different morphologies and activation forms. This is particularly evident in diseased conditions, where glia react to any shift from homeostasis, acquiring different phenotypes. Particularly for microglia, it has soon become clear that such phenotypes are multiple, as multiple are the functions related to them. Several approaches have over time revealed different facets of microglial phenotypic diversity, and advanced genetic analyses, in recent years, have added new insights into microglial heterogeneity, opening novel scenarios that researchers have just started to explore. Among neurodegenerative diseases, an important section is represented by alpha-synucleinopathies. Here alpha-synuclein accumulates abnormally in the brain and, depending on its pattern of distribution, leads to the development of different clinical conditions. Also for these proteinopathies, neuroinflammation and glial activation have been identified as constant and crucial factors during disease development. In the present review we will address the current literature about glial phenotypic changes with respect to alpha-synucleinopathies, as well as consider the pathophysiological and therapeutic implications of such a dynamic cellular behavior.
Collapse
Affiliation(s)
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
60
|
Ikegami A, Haruwaka K, Wake H. Microglia: Lifelong modulator of neural circuits. Neuropathology 2019; 39:173-180. [DOI: 10.1111/neup.12560] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Ako Ikegami
- Division of System Neuroscience; Kobe University Graduate School of Medicine; Kobe Japan
| | - Koichiro Haruwaka
- Division of System Neuroscience; Kobe University Graduate School of Medicine; Kobe Japan
| | - Hiroaki Wake
- Division of System Neuroscience; Kobe University Graduate School of Medicine; Kobe Japan
- Core Research for Evolutional Science and Technology; Japan Science and Technology Agency; Saitama Japan
| |
Collapse
|
61
|
Nichols MR, St-Pierre MK, Wendeln AC, Makoni NJ, Gouwens LK, Garrad EC, Sohrabi M, Neher JJ, Tremblay ME, Combs CK. Inflammatory mechanisms in neurodegeneration. J Neurochem 2019; 149:562-581. [PMID: 30702751 DOI: 10.1111/jnc.14674] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/28/2022]
Abstract
This review discusses the profound connection between microglia, neuroinflammation, and Alzheimer's disease (AD). Theories have been postulated, tested, and modified over several decades. The findings have further bolstered the belief that microglia-mediated inflammation is both a product and contributor to AD pathology and progression. Distinct microglia phenotypes and their function, microglial recognition and response to protein aggregates in AD, and the overall role of microglia in AD are areas that have received considerable research attention and yielded significant results. The following article provides a historical perspective of microglia, a detailed discussion of multiple microglia phenotypes including dark microglia, and a review of a number of areas where microglia intersect with AD and other pathological neurological processes. The overall breadth of important discoveries achieved in these areas significantly strengthens the hypothesis that neuroinflammation plays a key role in AD. Future determination of the exact mechanisms by which microglia respond to, and attempt to mitigate, protein aggregation in AD may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Michael R Nichols
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Quebec, Canada
| | - Ann-Christin Wendeln
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nyasha J Makoni
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Lisa K Gouwens
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Evan C Garrad
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Quebec, Canada
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
62
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
63
|
The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
64
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
65
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
66
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
67
|
The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
68
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
69
|
Bijland S, Thomson G, Euston M, Michail K, Thümmler K, Mücklisch S, Crawford CL, Barnett SC, McLaughlin M, Anderson TJ, Linington C, Brown ER, Kalkman ER, Edgar JM. An in vitro model for studying CNS white matter: functional properties and experimental approaches. F1000Res 2019; 8:117. [PMID: 31069065 PMCID: PMC6489523 DOI: 10.12688/f1000research.16802.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/23/2022] Open
Abstract
The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs). Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals.
Collapse
Affiliation(s)
- Silvia Bijland
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gemma Thomson
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Matthew Euston
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Kyriakos Michail
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Katja Thümmler
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Steve Mücklisch
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Colin L Crawford
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark McLaughlin
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - T James Anderson
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Euan R Brown
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Eric R Kalkman
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
70
|
Webster KM, Sun M, Crack PJ, O'Brien TJ, Shultz SR, Semple BD. Age-dependent release of high-mobility group box protein-1 and cellular neuroinflammation after traumatic brain injury in mice. J Comp Neurol 2018; 527:1102-1117. [DOI: 10.1002/cne.24589] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/15/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Kyria M. Webster
- Department of Medicine (Royal Melbourne Hospital); The University of Melbourne; Parkville Victoria Australia
| | - Mujun Sun
- Department of Medicine (Royal Melbourne Hospital); The University of Melbourne; Parkville Victoria Australia
| | - Peter J. Crack
- Department of Pharmacology and Therapeutics; The University of Melbourne; Parkville Victoria Australia
| | - Terence J. O'Brien
- Department of Medicine (Royal Melbourne Hospital); The University of Melbourne; Parkville Victoria Australia
- Department of Neuroscience; Monash University; Melbourne Victoria Australia
| | - Sandy R. Shultz
- Department of Medicine (Royal Melbourne Hospital); The University of Melbourne; Parkville Victoria Australia
- Department of Neuroscience; Monash University; Melbourne Victoria Australia
| | - Bridgette D. Semple
- Department of Medicine (Royal Melbourne Hospital); The University of Melbourne; Parkville Victoria Australia
- Department of Neuroscience; Monash University; Melbourne Victoria Australia
| |
Collapse
|
71
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2018; 40:98-112. [PMID: 30579704 DOI: 10.1016/j.it.2018.11.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/18/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The mononuclear phagocyte system (MPS) is defined as a cell lineage in which committed marrow progenitors give rise to blood monocytes and tissue macrophages. Here, we discuss the concept of self-proscribed macrophage territories and homeostatic regulation of tissue macrophage abundance through growth factor availability. Recent studies have questioned the validity of the MPS model and argued that tissue-resident macrophages are a separate lineage seeded during development and maintained by self-renewal. We address this issue; discuss the limitations of inbred mouse models of monocyte-macrophage homeostasis; and summarize the evidence suggesting that during postnatal life, monocytes can replace resident macrophages in all major organs and adopt their tissue-specific gene expression. We conclude that the MPS remains a valid and accurate framework for understanding macrophage development and homeostasis.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
72
|
McMenamin PG, Saban DR, Dando SJ. Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Prog Retin Eye Res 2018; 70:85-98. [PMID: 30552975 DOI: 10.1016/j.preteyeres.2018.12.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
Abstract
In the eye immune defenses must take place in a plethora of differing microenvironments ranging from the corneal and conjunctival epithelia facing the external environment to the pigmented connective tissue of the uveal tract containing smooth muscle, blood vessels and peripheral nerves to the innermost and highly protected neural retina. The extravascular environment of the neural retina, like the brain parenchyma, is stringently controlled to maintain conditions required for neural transmission. The unique physiological nature of the neural retina can be attributed to the blood retinal barriers (BRB) of the retinal vasculature and the retinal pigment epithelium, which both tightly regulate the transport of small molecules and restrict passage of cells and macromolecules from the circulation into the retina in a similar fashion to the blood brain barrier (BBB). The extracellular environment of the neural retina differs markedly from that of the highly vascular, loose connective tissue of the choroid, which lies outside the BRB. The choroid hosts a variety of immune cell types, including macrophages, dendritic cells (DCs) and mast cells. This is in marked contrast to the neural parenchyma of the retina, which is populated almost solely by microglia. This review will describe the current understanding of the distribution, phenotype and physiological role of ocular immune cells behind or inside the blood-retinal barriers and those in closely juxtaposed tissues outside the barrier. The nature and function of these immune cells can profoundly influence retinal homeostasis and lead to disordered immune function that can lead to vision loss.
Collapse
Affiliation(s)
- Paul G McMenamin
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Daniel R Saban
- Department of Ophthalmology, Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha J Dando
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
73
|
Embryonic Neocortical Microglia Express Toll-Like Receptor 9 and Respond to Plasmid DNA Injected into the Ventricle: Technical Considerations Regarding Microglial Distribution in Electroporated Brain Walls. eNeuro 2018; 5:eN-MNT-0312-18. [PMID: 30627652 PMCID: PMC6325556 DOI: 10.1523/eneuro.0312-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022] Open
Abstract
Microglia, the resident immune cells in the CNS, play multiple roles during development. In the embryonic cerebral wall, microglia modulate the functions of neural stem/progenitor cells through their distribution in regions undergoing cell proliferation and/or differentiation. Previous studies using CX3CR1-GFP transgenic mice demonstrated that microglia extensively survey these regions. To simultaneously visualize microglia and neural-lineage cells that interact with each other, we applied the in utero electroporation (IUE) technique, which has been widely used for gene-transfer in neurodevelopmental studies, to CX3CR1-GFP mice (males and females). However, we unexpectedly faced a technical problem: although microglia are normally distributed homogeneously throughout the mid-embryonic cortical wall with only limited luminal entry, the intraventricular presence of exogenously derived plasmid DNAs induced microglia to accumulate along the apical surface of the cortex and aggregate in the choroid plexus. This effect was independent of capillary needle puncture of the brain wall or application of electrical pulses. The microglial response occurred at plasmid DNA concentrations lower than those routinely used for IUE, and was mediated by activation of Toll-like receptor 9 (TLR9), an innate immune sensor that recognizes unmethylated cytosine-phosphate guanosine motifs abundant in microbial DNA. Administration of plasmid DNA together with oligonucleotide 2088, the antagonist of TLR9, partially restored the dispersed intramural localization of microglia and significantly decreased luminal accumulation of these cells. Thus, via TLR9, intraventricular plasmid DNA administration causes aberrant distribution of embryonic microglia, suggesting that the behavior of microglia in brain primordia subjected to IUE should be carefully interpreted.
Collapse
|
74
|
Kreisel T, Wolf B, Keshet E, Licht T. Unique role for dentate gyrus microglia in neuroblast survival and in VEGF-induced activation. Glia 2018; 67:594-618. [DOI: 10.1002/glia.23505] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Tirzah Kreisel
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
- Edmond and Lily Safra Center for Brain Sciences (ELSC); The Hebrew University; Jerusalem Israel
| | - Brachi Wolf
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
| | - Tamar Licht
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
| |
Collapse
|
75
|
Metwally E, Farouk SM, Hossain MS, Raihan O. Expression of glial cells molecules in the optic nerve of adult dromedary camel (Camelus dromedarius): A histological and immunohistochemical analysis. Anat Histol Embryol 2018; 48:74-86. [DOI: 10.1111/ahe.12413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Elsayed Metwally
- State Key Laboratory of Molecular Development Biology, Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing China
- Department of Cytology & Histology, Faculty of Veterinary Medicine; Suez Canal University; Ismailia Egypt
| | - Sameh M. Farouk
- Department of Cytology & Histology, Faculty of Veterinary Medicine; Suez Canal University; Ismailia Egypt
| | - Md Shafayat Hossain
- State Key Laboratory of Molecular Development Biology, Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing China
| | - Obayed Raihan
- Jessore University of Science and Technology; Jessore Bangladesh
| |
Collapse
|
76
|
Wu X, Xie S, Wang L, Fan P, Ge S, Xie XQ, Wu W. A computational strategy for finding novel targets and therapeutic compounds for opioid dependence. PLoS One 2018; 13:e0207027. [PMID: 30403753 PMCID: PMC6221321 DOI: 10.1371/journal.pone.0207027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Opioids are widely used for treating different types of pains, but overuse and abuse of prescription opioids have led to opioid epidemic in the United States. Besides analgesic effects, chronic use of opioid can also cause tolerance, dependence, and even addiction. Effective treatment of opioid addiction remains a big challenge today. Studies on addictive effects of opioids focus on striatum, a main component in the brain responsible for drug dependence and addiction. Some transcription regulators have been associated with opioid addiction, but relationship between analgesic effects of opioids and dependence behaviors mediated by them at the molecular level has not been thoroughly investigated. In this paper, we developed a new computational strategy that identifies novel targets and potential therapeutic molecular compounds for opioid dependence and addiction. We employed several statistical and machine learning techniques and identified differentially expressed genes over time which were associated with dependence-related behaviors after exposure to either morphine or heroin, as well as potential transcription regulators that regulate these genes, using time course gene expression data from mouse striatum. Moreover, our findings revealed that some of these dependence-associated genes and transcription regulators are known to play key roles in opioid-mediated analgesia and tolerance, suggesting that an intricate relationship between opioid-induce pain-related pathways and dependence may develop at an early stage during opioid exposure. Finally, we determined small compounds that can potentially target the dependence-associated genes and transcription regulators. These compounds may facilitate development of effective therapy for opioid dependence and addiction. We also built a database (http://daportals.org) for all opioid-induced dependence-associated genes and transcription regulators that we discovered, as well as the small compounds that target those genes and transcription regulators.
Collapse
Affiliation(s)
- Xiaojun Wu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Siwei Xie
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Lirong Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peihao Fan
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Songwei Ge
- School of Information, Renmin University of China, Beijing, China
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wei Wu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
77
|
Smith PLP, Mottahedin A, Svedin P, Mohn CJ, Hagberg H, Ek J, Mallard C. Peripheral myeloid cells contribute to brain injury in male neonatal mice. J Neuroinflammation 2018; 15:301. [PMID: 30376851 PMCID: PMC6208095 DOI: 10.1186/s12974-018-1344-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background Neonatal brain injury is increasingly understood to be linked to inflammatory processes that involve specialised CNS and peripheral immune interactions. However, the role of peripheral myeloid cells in neonatal hypoxic-ischemic (HI) brain injury remains to be fully investigated. Methods We employed the Lys-EGFP-ki mouse that allows enhanced green fluorescent protein (EGFP)-positive mature myeloid cells of peripheral origin to be easily identified in the CNS. Using both flow cytometry and confocal microscopy, we investigated the accumulation of total EGFP+ myeloid cells and myeloid cell subtypes: inflammatory monocytes, resident monocytes and granulocytes, in the CNS for several weeks following induction of cerebral HI in postnatal day 9 mice. We used antibody treatment to curb brain infiltration of myeloid cells and subsequently evaluated HI-induced brain injury. Results We demonstrate a temporally biphasic pattern of inflammatory monocyte and granulocyte infiltration, characterised by peak infiltration at 1 day and 7 days after hypoxia-ischemia. This occurs against a backdrop of continuous low-level resident monocyte infiltration. Antibody-mediated depletion of circulating myeloid cells reduced immune cell accumulation in the brain and reduced neuronal loss in male but not female mice. Conclusion This study offers new insight into sex-dependent central-peripheral immune communication following neonatal brain injury and merits renewed interest in the roles of granulocytes and monocytes in lesion development. Electronic supplementary material The online version of this article (10.1186/s12974-018-1344-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter L P Smith
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Amin Mottahedin
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Carl-Johan Mohn
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.,Institute of Clinical Sciences, Department of Obstetrics and Gynaecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joakim Ek
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
78
|
Zhang J, Jing Y, Zhang H, Bilkey DK, Liu P. Maternal immune activation altered microglial immunoreactivity in the brain of postnatal day 2 rat offspring. Synapse 2018; 73:e22072. [PMID: 30256454 DOI: 10.1002/syn.22072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
Abstract
Microglia, the resident immune cells of the central nervous system, play critical roles in neurodevelopment, synaptic pruning, and neuronal wiring. Early in development, microglia migrate via the tangential and radial migration pathways to their final destinations and mature gradually, a process that includes morphological changes. Recent research has implicated microglial abnormality in the etiology of schizophrenia. Since prenatal exposure to viral or bacterial infections due to maternal immune activation (MIA) leads to increased risk of schizophrenia in the offspring during adulthood, the present study systematically investigated how MIA induced by polyinosinic:polycytidylic acid (a mimic of viral double-stranded RNA) affected microglial immunoreactivity along the migration and maturation trajectories in the brains of male and female rat offspring on postnatal day (PND) 2. The immunohistochemistry revealed significant changes in the density of IBA-1 immunoreactive cells in the corpus callosum, somatosensory cortex, striatum, and the subregions of the hippocampus of the MIA offspring. The male and female MIA offspring displayed markedly altered microglial immunoreactivity in both the tangential and radial migration, as well as maturation, pathways when compared to their sex- and age-matched controls as evidenced by morphology-based cell counting. Given the important roles of microglia in synaptic pruning and neuronal wiring and survival, these changes may lead to structural and functional neurodevelopmental abnormalities, and so contribute to the functional deficits observed in juvenile and adult MIA offspring. Future research is required to systematically determine how MIA affects microglial migration and maturation in rat offspring.
Collapse
Affiliation(s)
- Jiaxian Zhang
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| | - Yu Jing
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| | - Hu Zhang
- School of Pharmacy, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| | - David K Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| | - Ping Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
79
|
Hattori Y, Miyata T. Microglia extensively survey the developing cortex via the CXCL12/CXCR4 system to help neural progenitors to acquire differentiated properties. Genes Cells 2018; 23:915-922. [PMID: 30144249 DOI: 10.1111/gtc.12632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/04/2023]
Abstract
Neocortical development proceeds through the formation of new zones in which neural-lineage cells are organized based on their differentiation status. Although microglia initially distribute homogeneously throughout the growing cerebral wall, they accumulate in the inner cytogenic zone, the ventricular zone (VZ) and the subventricular zone (SVZ) in the mid-embryonic stage. However, the roles of these cells remain to be elucidated. In this study, we found that microglia, despite being only a minor population of the cells that constitute the cerebral wall, promote the differentiation of neural progenitor cells by frequently moving throughout the cortex; their migration is mediated by the CXCL12/CXCR4 system. Pulse-chase experiments confirmed that microglia help Pax6+ stem-like cells to differentiate into Tbr2+ intermediate progenitors. Further, monitoring of microglia by live imaging showed that administration of AMD3100, an antagonist of CXCR4, dampened microglial movement and decreased microglial surveillance throughout the cortex. In particular, arrest of microglial motion led to a prominent decrease in the abundance of Tbr2+ cells in the SVZ. Based on our findings, we propose that extensive surveillance by microglia contributes to the efficient functioning of these cells, thereby regulating the differentiation of neural stem-like cells.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
80
|
Giles J, Perrott M, Roe W, Shrestha K, Aberdein D, Morel P, Dunowska M. Viral RNA load and histological changes in tissues following experimental infection with an arterivirus of possums (wobbly possum disease virus). Virology 2018; 522:73-80. [PMID: 30014860 PMCID: PMC7126967 DOI: 10.1016/j.virol.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022]
Abstract
Tissues from Australian brushtail possums (Trichosurus vulpecula) that had been experimentally infected with wobbly possum disease (WPD) virus (WPDV) were examined to elucidate pathogenesis of WPDV infection. Mononuclear inflammatory cell infiltrates were present in livers, kidneys, salivary glands and brains of WPD-affected possums. Specific staining was detected by immunohistochemistry within macrophages in the livers and kidneys, and undefined cell types in the brains. The highest viral RNA load was found in macrophage-rich tissues. The detection of viral RNA in the salivary gland, serum, kidney, bladder and urine is compatible with transmission via close physical contact during encounters such as fighting or grooming, or by contact with an environment that has been contaminated with saliva or urine. Levels of viral RNA remained high in all tissues tested throughout the study, suggesting that on-going virus replication and evasion of the immune responses may be important in the pathogenesis of disease.
Collapse
Affiliation(s)
- Julia Giles
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Matthew Perrott
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Wendi Roe
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Kshitiz Shrestha
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Danielle Aberdein
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Patrick Morel
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand.
| |
Collapse
|
81
|
Fehrenbach M, Tjwa M, Bechmann I, Krueger M. Decreased microglial numbers in Vav1-Cre + :dicer knock-out mice suggest a second source of microglia beyond yolk sac macrophages. Ann Anat 2018; 218:190-198. [DOI: 10.1016/j.aanat.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/05/2023]
|
82
|
Zhao X, Eyo UB, Murguan M, Wu LJ. Microglial interactions with the neurovascular system in physiology and pathology. Dev Neurobiol 2018; 78:604-617. [PMID: 29318762 PMCID: PMC5980686 DOI: 10.1002/dneu.22576] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/01/2018] [Accepted: 01/06/2018] [Indexed: 01/11/2023]
Abstract
Microglia as immune cells of the central nervous system (CNS) play significant roles not only in pathology but also in physiology, such as shaping of the CNS during development and its proper maintenance in maturity. Emerging research is showing a close association between microglia and the neurovasculature that is critical for brain energy supply. In this review, we summarize the current literature on microglial interaction with the vascular system in the normal and diseased brain. First, we highlight data that indicate interesting potential involvement of microglia in developmental angiogenesis. Then we discuss the evidence for microglial participation with the vasculature in neuropathologies from brain tumors to acute injuries such as ischemic stroke to chronic neurodegenerative conditions. We conclude by suggesting future areas of research to advance the field in light of current technical progress and outstanding questions. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 604-617, 2018.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Ukpong B. Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Madhuvika Murguan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
83
|
Menassa DA, Gomez-Nicola D. Microglial Dynamics During Human Brain Development. Front Immunol 2018; 9:1014. [PMID: 29881376 PMCID: PMC5976733 DOI: 10.3389/fimmu.2018.01014] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Microglial cells are thought to colonize the human cerebrum between the 4th and 24th gestational weeks. Rodent studies have demonstrated that these cells originate from yolk sac progenitors though it is not clear whether this directly pertains to human development. Our understanding of microglial cell dynamics in the developing human brain comes mostly from postmortem studies demonstrating that the beginning of microglial colonization precedes the appearance of the vasculature, the blood–brain barrier, astrogliogenesis, oligodendrogenesis, neurogenesis, migration, and myelination of the various brain areas. Furthermore, migrating microglial populations cluster by morphology and express differential markers within the developing brain and according to developmental age. With the advent of novel technologies such as RNA-sequencing in fresh human tissue, we are beginning to identify the molecular features of the adult microglial signature. However, this is may not extend to the much more dynamic and rapidly changing antenatal microglial population and this is further complicated by the scarcity of tissue resources. In this brief review, we first describe the various historic schools of thought that had debated the origin of microglial cells while examining the evidence supporting the various theories. We then proceed to examine the evidence we have accumulated on microglial dynamics in the developing human brain, present evidence from rodent studies on the functional role of microglia during development and finally identify limitations for the used approaches in human studies and highlight under investigated questions.
Collapse
Affiliation(s)
- David A Menassa
- Biological Sciences, Faculty of Natural and Environmental Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Natural and Environmental Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
84
|
Distribution and Morphological Features of Microglia in the Developing Cerebral Cortex of Gyrencephalic Mammals. Neurochem Res 2018; 43:1075-1085. [PMID: 29616442 DOI: 10.1007/s11064-018-2520-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/23/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Microglia have been attracting much attention because of their fundamental importance in both the mature brain and the developing brain. Though important roles of microglia in the developing cerebral cortex of mice have been uncovered, their distribution and roles in the developing cerebral cortex in gyrencephalic higher mammals have remained elusive. Here we examined the distribution and morphology of microglia in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that a number of microglia were accumulated in the germinal zones (GZs), especially in the outer subventricular zone (OSVZ), which is a GZ found in higher mammals. Furthermore, we uncovered that microglia extended their processes tangentially along inner fiber layer (IFL)-like fibers in the developing ferret cortex. The OSVZ and the IFL are the prominent features of the cerebral cortex of higher mammals. Our findings indicate that microglia may play important roles in the OSVZ and the IFL in the developing cerebral cortex of higher mammals.
Collapse
|
85
|
Regan T, Gill AC, Clohisey SM, Barnett MW, Pariante CM, Harrison NA, Hume DA, Bullmore ET, Freeman TC. Effects of anti-inflammatory drugs on the expression of tryptophan-metabolism genes by human macrophages. J Leukoc Biol 2018; 103:681-692. [PMID: 29377288 PMCID: PMC5918594 DOI: 10.1002/jlb.3a0617-261r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/04/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Several lines of evidence link macrophage activation and inflammation with (monoaminergic) nervous systems in the etiology of depression. IFN treatment is associated with depressive symptoms, whereas anti‐TNFα therapies elicit positive mood. This study describes the actions of 2 monoaminergic antidepressants (escitalopram, nortriptyline) and 3 anti‐inflammatory drugs (indomethacin, prednisolone, and anti‐TNFα antibody) on the response of human monocyte‐derived macrophages (MDMs) from 6 individuals to LPS or IFN‐α. Expression profiling revealed robust changes in the MDM transcriptome (3294 genes at P < 0.001) following LPS challenge, whereas a more limited subset of genes (499) responded to IFNα. Contrary to published reports, administered at nontoxic doses, neither monoaminergic antidepressant significantly modulated the transcriptional response to either inflammatory challenge. Each anti‐inflammatory drug had a distinct impact on the expression of inflammatory cytokines and on the profile of inducible gene expression—notably on the regulation of enzymes involved in metabolism of tryptophan. Inter alia, the effect of anti‐TNFα antibody confirmed a predicted autocrine stimulatory loop in human macrophages. The transcriptional changes were predictive of tryptophan availability and kynurenine synthesis, as analyzed by targeted metabolomic studies on cellular supernatants. We suggest that inflammatory processes in the brain or periphery could impact on depression by altering the availability of tryptophan for serotonin synthesis and/or by increasing production of neurotoxic kynurenine.
Collapse
Affiliation(s)
- Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| | - Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln, Lincolnshire, UK
| | - Sara M Clohisey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Department of Psychological Medicine, Institute of Psychiatry, Kings College London, London, UK
| | - Neil A Harrison
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK.,ImmunoPsychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Scotland, UK
| |
Collapse
|
86
|
Low D, Ginhoux F. Recent advances in the understanding of microglial development and homeostasis. Cell Immunol 2018; 330:68-78. [PMID: 29366562 DOI: 10.1016/j.cellimm.2018.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 01/04/2023]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). These pivotal cells arise early during embryonic development and provide both developmental support and immune protection to the brain. In adults, microglia contribute to brain homeostasis and mediate an intriguing interplay between the CNS and the gut microbiota. When dysregulated, microglia are also implicated in numerous neurological disorders, and thus fully understanding their regulation and functions will facilitate rational design of therapies to alleviate these conditions; however it remains unclear how the multiple factors modulating microglial activity are integrated at the organism and cellular levels. In this review, we will discuss recent advances in the understanding of microglial regulation and highlight the key questions that remain to be answered around microglial development, homeostasis and functions.
Collapse
Affiliation(s)
- Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
87
|
VanRyzin JW, Pickett LA, McCarthy MM. Microglia: Driving critical periods and sexual differentiation of the brain. Dev Neurobiol 2018; 78:580-592. [PMID: 29243403 DOI: 10.1002/dneu.22569] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
The proverbial role of microglia during brain development is shifting from passive members of the brain's immune system to active participants that are able to dictate enduring outcomes. Despite these advances, little attention has been paid to one of the most critical components of early brain development-sexual differentiation. Mounting evidence suggests that the normal developmental functions microglia perform-cell number regulation and synaptic connectivity-may be involved in the sex-specific patterning of the brain during these early sensitive periods, and may have lasting sex-dependent and sex-independent effects on behavior. In this review, we outline the known functions of microglia during developmental sensitive periods, and highlight the role they play in the establishment of sex differences in brain and behavior. We also propose a framework for how researchers can incorporate microglia in their study of sex differences and vice versa. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 580-592, 2018.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Lindsay A Pickett
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Margaret M McCarthy
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
88
|
Jones ME, Lebonville CL, Paniccia JE, Balentine ME, Reissner KJ, Lysle DT. Hippocampal interleukin-1 mediates stress-enhanced fear learning: A potential role for astrocyte-derived interleukin-1β. Brain Behav Immun 2018; 67:355-363. [PMID: 28963000 PMCID: PMC5696098 DOI: 10.1016/j.bbi.2017.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is associated with immune dysregulation. We have previously shown that severe stress exposure in a preclinical animal model of the disorder, stress-enhanced fear learning (SEFL), is associated with an increase in hippocampal interleukin-1β (IL-1β) and that blocking central IL-1 after the severe stress prevents the development of SEFL. Here, we tested whether blocking hippocampal IL-1 signaling is sufficient to prevent enhanced fear learning and identified the cellular source of stress-induced IL-1β in this region. Experiment 1 tested whether intra-dorsal hippocampal (DH) infusions of interleukin-1 receptor antagonist (IL-1RA, 1.25µg per hemisphere) 24 and 48h after stress exposure prevents the development of enhanced fear learning. Experiment 2 used triple fluorescence immunohistochemistry to examine hippocampal alterations in IL-1β, glial fibrillary acidic protein (GFAP), an astrocyte-specific marker, and ionized calcium binding adaptor molecule -1 (Iba-1), a microglial-specific marker, 48h after exposure to the severe stressor of the SEFL paradigm. Intra-DH IL-1RA prevented SEFL and stress-induced IL-1β was primarily colocalized with astrocytes in the hippocampus. Further, hippocampal GFAP immunoreactivity was not altered, whereas hippocampal Iba-1 immunoreactivity was significantly attenuated following severe stress. These data suggest that hippocampal IL-1 signaling is critical to the development of SEFL and that astrocytes are a predominant source of stress-induced IL-1β.
Collapse
|
89
|
Marcol W, Ślusarczyk W, Larysz-Brysz M, Łabuzek K, Kapustka B, Staszkiewicz R, Rosicka P, Kalita K, Węglarz W, Lewin-Kowalik J. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats. Exp Ther Med 2017; 14:4869-4877. [PMID: 29201191 PMCID: PMC5704303 DOI: 10.3892/etm.2017.5130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/28/2017] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (P<0.05). MRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some positive effects for the regeneration of the white matter.
Collapse
Affiliation(s)
- Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Wojciech Ślusarczyk
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Magdalena Larysz-Brysz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Łabuzek
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Bartosz Kapustka
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Paulina Rosicka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Katarzyna Kalita
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Władysław Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
90
|
Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat Rev Neurosci 2017; 18:658-670. [PMID: 28931944 DOI: 10.1038/nrn.2017.110] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The final stage of brain development is associated with the generation and maturation of neuronal synapses. However, the same period is also associated with a peak in synapse elimination - a process known as synaptic pruning - that has been proposed to be crucial for the maturation of remaining synaptic connections. Recent studies have pointed to a key role for glial cells in synaptic pruning in various parts of the nervous system and have identified a set of critical signalling pathways between glia and neurons. At the same time, brain imaging and post-mortem anatomical studies suggest that insufficient or excessive synaptic pruning may underlie several neurodevelopmental disorders, including autism, schizophrenia and epilepsy. Here, we review current data on the cellular, physiological and molecular mechanisms of glial-cell-dependent synaptic pruning and outline their potential contribution to neurodevelopmental disorders.
Collapse
|
91
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
92
|
Krishnan ML, Van Steenwinckel J, Schang AL, Yan J, Arnadottir J, Le Charpentier T, Csaba Z, Dournaud P, Cipriani S, Auvynet C, Titomanlio L, Pansiot J, Ball G, Boardman JP, Walley AJ, Saxena A, Mirza G, Fleiss B, Edwards AD, Petretto E, Gressens P. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nat Commun 2017; 8:428. [PMID: 28874660 PMCID: PMC5585205 DOI: 10.1038/s41467-017-00422-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Preterm birth places infants in an adverse environment that leads to abnormal brain development and cerebral injury through a poorly understood mechanism known to involve neuroinflammation. In this study, we integrate human and mouse molecular and neuroimaging data to investigate the role of microglia in preterm white matter damage. Using a mouse model where encephalopathy of prematurity is induced by systemic interleukin-1β administration, we undertake gene network analysis of the microglial transcriptomic response to injury, extend this by analysis of protein-protein interactions, transcription factors and human brain gene expression, and translate findings to living infants using imaging genomics. We show that DLG4 (PSD95) protein is synthesised by microglia in immature mouse and human, developmentally regulated, and modulated by inflammation; DLG4 is a hub protein in the microglial inflammatory response; and genetic variation in DLG4 is associated with structural differences in the preterm infant brain. DLG4 is thus apparently involved in brain development and impacts inter-individual susceptibility to injury after preterm birth.Inflammation mediated by microglia plays a key role in brain injury associated with preterm birth, but little is known about the microglial response in preterm infants. Here, the authors integrate molecular and imaging data from animal models and preterm infants, and find that microglial expression of DLG4 plays a role.
Collapse
Affiliation(s)
- Michelle L Krishnan
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Juliette Van Steenwinckel
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Anne-Laure Schang
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Jun Yan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Johanna Arnadottir
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Tifenn Le Charpentier
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Zsolt Csaba
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Pascal Dournaud
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Sara Cipriani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Constance Auvynet
- Pierre and Marie Curie University, UMRS-1135, Sorbonne Paris Cité, F-75006, Paris, France
| | - Luigi Titomanlio
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
| | - Julien Pansiot
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - James P Boardman
- Medical Research Council/University of Edinburgh Centre for Reproductive Health, Edinburgh, EH16 4TJ, UK
| | - Andrew J Walley
- Cell Biology and Genetics Research Centre, St. George's University of London, London, SW17 0RE, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Ghazala Mirza
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK
- Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - Enrico Petretto
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Pierre Gressens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France.
- PremUP, F-75006, Paris, France.
| |
Collapse
|
93
|
Martín-Estebané M, Navascués J, Sierra-Martín A, Martín-Guerrero SM, Cuadros MA, Carrasco MC, Marín-Teva JL. Onset of microglial entry into developing quail retina coincides with increased expression of active caspase-3 and is mediated by extracellular ATP and UDP. PLoS One 2017; 12:e0182450. [PMID: 28763502 PMCID: PMC5538646 DOI: 10.1371/journal.pone.0182450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the embryonic retina by inducing chemokinesis in these cells.
Collapse
Affiliation(s)
- María Martín-Estebané
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Julio Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ana Sierra-Martín
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Miguel A. Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María-Carmen Carrasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José L. Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
94
|
Holtman IR, Skola D, Glass CK. Transcriptional control of microglia phenotypes in health and disease. J Clin Invest 2017; 127:3220-3229. [PMID: 28758903 DOI: 10.1172/jci90604] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microglia are the main resident macrophage population of the CNS and perform numerous functions required for CNS development, homeostasis, immunity, and repair. Many lines of evidence also indicate that dysregulation of microglia contributes to the pathogenesis of neurodegenerative and behavioral diseases. These observations provide a compelling argument to more clearly define the mechanisms that control microglia identity and function in health and disease. In this Review, we present a conceptual framework for how different classes of transcription factors interact to select and activate regulatory elements that control microglia development and their responses to internal and external signals. We then describe functions of specific transcription factors in normal and pathological contexts and conclude with a consideration of open questions to be addressed in the future.
Collapse
Affiliation(s)
- Inge R Holtman
- Department of Cellular and Molecular Medicine, UCSD, San Diego, California, USA.,Department of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Dylan Skola
- Department of Cellular and Molecular Medicine, UCSD, San Diego, California, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, UCSD, San Diego, California, USA.,Department of Medicine, UCSD, San Diego, California, USA
| |
Collapse
|
95
|
Abstract
Microglial cells are the resident tissue macrophages of the CNS and are widely recognized for their immune surveillance of the healthy CNS. In addition to this well-accepted function, recent findings point to major roles for microglia in instructing and regulating the proper function of the neuronal networks in the adult CNS, but these cells are also involved in creating neuronal networks by orchestrating construction of the whole network during development. In this Review, we highlight recent findings about the steady-state functions of microglial cells, the factors that are important for physiological microglial function, and how microglia help to maintain tissue homeostasis in the CNS.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Department of Life Sciences and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
96
|
Abstract
Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.
Collapse
|
97
|
Abstract
The concept of the immunological privilege of the central nervous system (CNS) has had a profound influence on studies of interactions between the immune system and the CNS. At one time there was considerable debate as to whether there were any cells in the CNS of myeloid origin, but we now know that there are a number of populations of myeloid cells in specialized compartments of the CNS and that there is an ongoing bidirectional dialogue between the CNS and the immune system. We briefly review what we know of the different myeloid populations, in particular the microglia: their phenotype and function; their role in CNS homeostasis; and also their role in pathology, focusing on chronic neurodegeneration.
Collapse
|
98
|
Wong EL, Stowell RD, Majewska AK. What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder. Front Synaptic Neurosci 2017; 9:11. [PMID: 28674490 PMCID: PMC5474469 DOI: 10.3389/fnsyn.2017.00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Alcohol exposure during gestation can lead to severe defects in brain development and lifelong physical, behavioral and learning deficits that are classified under the umbrella term fetal alcohol spectrum disorder (FASD). Sadly, FASD is diagnosed at an alarmingly high rate, affecting 2%-5% of live births in the United States, making it the most common non-heritable cause of mental disability. Currently, no standard therapies exist that are effective at battling FASD symptoms, highlighting a pressing need to better understand the underlying mechanisms by which alcohol affects the developing brain. While it is clear that sensory and cognitive deficits are driven by inappropriate development and remodeling of the neural circuits that mediate these processes, alcohol's actions acutely and long-term on the brain milieu are diverse and complex. Microglia, the brain's immune cells, have been thought to be a target for alcohol during development because of their exquisite ability to rapidly detect and respond to perturbations affecting the brain. Additionally, our view of these immune cells is rapidly changing, and recent studies have revealed a myriad of microglial physiological functions critical for normal brain development and long-term function. A clear and complete understanding of how microglial roles on this end of the spectrum may be altered in FASD is currently lacking. Such information could provide important insights toward novel therapeutic targets for FASD treatment. Here we review the literature that links microglia to neural circuit remodeling and provide a discussion of the current understanding of how developmental alcohol exposure affects microglial behavior in the context of developing brain circuits.
Collapse
Affiliation(s)
- Elissa L. Wong
- Department of Environmental Medicine, University of Rochester Medical CenterRochester, NY, United States
| | - Rianne D. Stowell
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| |
Collapse
|
99
|
Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 2017; 18:385-392. [PMID: 28323268 DOI: 10.1038/ni.3703] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
Myeloid cells in the central nervous system (CNS) represent a heterogeneous class of innate immune cells that contribute to the maintenance of tissue homeostasis differentially during development and adulthood. The subsets of CNS myeloid cells identified so far, including parenchymal microglia and non-parenchymal meningeal, perivascular and choroid-plexus macrophages, as well as disease-associated monocytes, have classically been distinguished on the basis of their surface epitope expression, localization and morphology. However, studies using cell-specific targeting, in vivo imaging, single-cell expression analysis and other sophisticated tools have now increased the depth of knowledge of this immune-cell compartment and call for reevaluation of the traditional views on the origin, fate and function of distinct CNS myeloid subsets. The concepts of CNS macrophage biology that are emerging from these new insights have broad implications for the understanding and treatment of CNS diseases.
Collapse
|
100
|
Abstract
肝脏巨噬细胞来源和功能复杂, 包括肝脏固有巨噬细胞和单核细胞来源的浸润巨噬细胞, 在宿主防御机制及维持机体内环境稳定中起着重要作用, 也是参与肝脏损伤和修复的主要细胞成分. 解析不同来源肝脏巨噬细胞在不同病因导致肝损伤过程中表型分化、生物学作用的动态变化及其分子机制, 对理解肝损伤的病理过程, 探索以肝脏巨噬细胞为靶点预防和治疗肝损伤以及肝纤维化的方案具有重要意义.
Collapse
|