51
|
Gulla K, Cibelli N, Cooper JW, Fuller HC, Schneiderman Z, Witter S, Zhang Y, Changela A, Geng H, Hatcher C, Narpala S, Tsybovsky Y, Zhang B, Vrc Production Program, McDermott AB, Kwong PD, Gowetski DB. A non-affinity purification process for GMP production of prefusion-closed HIV-1 envelope trimers from clades A and C for clinical evaluation. Vaccine 2021; 39:3379-3387. [PMID: 34020817 PMCID: PMC8243839 DOI: 10.1016/j.vaccine.2021.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Metastable glycosylated immunogens present challenges for GMP manufacturing. The HIV-1 envelope (Env) glycoprotein trimer is covered by N-linked glycan comprising half its mass and requires both trimer assembly and subunit cleavage to fold into a prefusion-closed conformation. This conformation, the vaccine-desired antigenic state, is both metastable to structural rearrangement and labile to subunit dissociation. Prior reported GMP manufacturing for a soluble trimer stabilized in a near-native state by disulfide (SOS) and Ile-to-Pro (IP) mutations has employed affinity methods based on antibody 2G12, which recognizes only ~30% of circulating HIV strains. Here, we develop a scalable manufacturing process based on commercially available, non-affinity resins, and we apply the process to current GMP (cGMP) production of trimers from clades A and C, which have been found to boost cross-clade neutralizing responses in vaccine-test species. The clade A trimer, which we named "BG505 DS-SOSIP.664", contained an engineered disulfide (201C-433C; DS) within gp120, which further stabilized this trimer in a prefusion-closed conformation resistant to CD4-induced triggering. BG505 DS-SOSIP.664 was expressed in a CHO-DG44 stable cell line and purified with initial and final tangential flow filtration steps, three commercially available resin-based chromatography steps, and two orthogonal viral clearance steps. The non-affinity purification enabled efficient scale-up, with a 250 L-scale cGMP run yielding 9.6 g of purified BG505 DS-SOSIP.664. Antigenic analysis indicated retention of a prefusion-closed conformation, including recognition by apex-directed and fusion peptide-directed antibodies. The developed manufacturing process was suitable for 50 L-scale production of a second prefusion-stabilized Env trimer vaccine candidate, ConC-FP8v2 RnS-3mut-2G-SOSIP.664, yielding 7.8 g of this consensus clade C trimer. The successful process development and purification scale-up of HIV-1 Env trimers from different clades by using commercially available materials provide experimental demonstration for cGMP manufacturing of trimeric HIV-Env vaccine immunogens, in an antigenically desired conformation, without the use of costly affinity resins.
Collapse
Affiliation(s)
- Krishana Gulla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Cibelli
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W Cooper
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haley C Fuller
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zachary Schneiderman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Witter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaqiu Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Hatcher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vrc Production Program
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Daniel B Gowetski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
52
|
Abstract
HIV is a virus that remains a major health concern and results in an infection that has no cure even after over 30 years since its discovery. As such, HIV vaccine discovery continues to be an area of intensive research. In this review, we summarize the most recent HIV vaccine efficacy trials, clinical trials initiated within the last 3 years, and discuss prominent improvements that have been made in prophylactic HIV vaccine designs.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
53
|
Douglass N, van Diepen MT, Chapman R, Galant S, Margolin E, Ximba P, Hermanus T, Moore PL, Williamson AL. Modifications to the HIV-1 SAAVI MVA-C vaccine improve in vitro expression and in vivo immunogenicity. Vaccine 2020; 39:463-468. [PMID: 33342638 DOI: 10.1016/j.vaccine.2020.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/01/2022]
Abstract
Two HIV-1 vaccines (SAAVI DNA-C2 and SAAVI MVA-C) were previously developed in South Africa and tested in preclinical studies and Phase 1 clinical trials. Here we report on improvements made to the SAAVI MVA-C vaccine design which include: the use of different promoters for both the Gag and Env genes, replacement of the native Gag gene with an in silico designed subtype C mosaic Gag antigen which forms virus-like particles and the modification of Env by sequence changes to improve stability and transport to the cell surface. A head-to-head comparison of the newly conceived MVAGD5 candidate vaccine with SAAVI MVA-C showed increased in vitro expression of both Env and Gag, and superior immunogenicity in rabbits. MVAGD5 induced high levels of binding antibodies to Env and Tier 1A and 1B neutralizing antibodies, neither of which were induced by SAAVI MVA-C.
Collapse
Affiliation(s)
- Nicola Douglass
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| | - Michiel T van Diepen
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Shireen Galant
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa; Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Phindile Ximba
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Tandile Hermanus
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, Durban, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
54
|
Margolin E, Crispin M, Meyers A, Chapman R, Rybicki EP. A Roadmap for the Molecular Farming of Viral Glycoprotein Vaccines: Engineering Glycosylation and Glycosylation-Directed Folding. FRONTIERS IN PLANT SCIENCE 2020; 11:609207. [PMID: 33343609 PMCID: PMC7744475 DOI: 10.3389/fpls.2020.609207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 05/03/2023]
Abstract
Immunization with recombinant glycoprotein-based vaccines is a promising approach to induce protective immunity against viruses. However, the complex biosynthetic maturation requirements of these glycoproteins typically necessitate their production in mammalian cells to support their folding and post-translational modification. Despite these clear advantages, the incumbent costs and infrastructure requirements with this approach can be prohibitive in developing countries, and the production scales and timelines may prove limiting when applying these production systems to the control of pandemic viral outbreaks. Plant molecular farming of viral glycoproteins has been suggested as a cheap and rapidly scalable alternative production system, with the potential to perform post-translational modifications that are comparable to mammalian cells. Consequently, plant-produced glycoprotein vaccines for seasonal and pandemic influenza have shown promise in clinical trials, and vaccine candidates against the newly emergent severe acute respiratory syndrome coronavirus-2 have entered into late stage preclinical and clinical testing. However, many other viral glycoproteins accumulate poorly in plants, and are not appropriately processed along the secretory pathway due to differences in the host cellular machinery. Furthermore, plant-derived glycoproteins often contain glycoforms that are antigenically distinct from those present on the native virus, and may also be under-glycosylated in some instances. Recent advances in the field have increased the complexity and yields of biologics that can be produced in plants, and have now enabled the expression of many viral glycoproteins which could not previously be produced in plant systems. In contrast to the empirical optimization that predominated during the early years of molecular farming, the next generation of plant-made products are being produced by developing rational, tailor-made approaches to support their production. This has involved the elimination of plant-specific glycoforms and the introduction into plants of elements of the biosynthetic machinery from different expression hosts. These approaches have resulted in the production of mammalian N-linked glycans and the formation of O-glycan moieties in planta. More recently, plant molecular engineering approaches have also been applied to improve the glycan occupancy of proteins which are not appropriately glycosylated, and to support the folding and processing of viral glycoproteins where the cellular machinery differs from the usual expression host of the protein. Here we highlight recent achievements and remaining challenges in glycoengineering and the engineering of glycosylation-directed folding pathways in plants, and discuss how these can be applied to produce recombinant viral glycoproteins vaccines.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Ann Meyers
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
55
|
Wang Q, Ma B, Liang Q, Zhu A, Wang H, Fu L, Han X, Shi X, Xiang Y, Shang H, Zhang L. Stabilized diverse HIV-1 envelope trimers for vaccine design. Emerg Microbes Infect 2020; 9:775-786. [PMID: 32241249 PMCID: PMC7178897 DOI: 10.1080/22221751.2020.1745093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022]
Abstract
One of the major goals in HIV-1 vaccine development is to achieve properly folded and stabilized envelope glycoprotein (Env) trimers that mimic the native Env on the mature virion. Here, we design and characterize uncleaved prefusion-optimized (UFO) trimers for 12 Envs currently circulating in China. Biochemical and biophysical characterization of these UFO trimers identified two subtype B/B' Envs, CNE6 and MG13, which exhibited the highest trimer content and stability at a level comparable to the subtype A reference, BG505. Replacing the gp41 ectodomain (gp41ECTO) of CRF01_AE trimers with that of CNE6, MG13, and BG505 resulted in chimeric constructs with significantly improved trimer content and stability. Negative-stain electron microscopy (EM) confirmed the structural integrity of these chimeric UFO trimers with CNE6 gp41ECTO. Antibody binding assays showed that the chimeric trimers shared similar antigenic profiles to those with their original gp41ECTO domains. Our results thus revealed the intrinsic differences among HIV-1 Envs of diverse origins and the critical role of gp41ECTO in stabilizing the trimeric spike. By taking advantage of naturally stable Envs, gp41ECTO swapping may represent a universal approach for the generation of stable trimers with the desired structural and antigenic properties for downstream in vivo evaluation and vaccine development.
Collapse
Affiliation(s)
- Qian Wang
- Comprehensive AIDS Research Center and Center for Global Health and Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Bingting Ma
- Center for Global Health and Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Qingtai Liang
- Comprehensive AIDS Research Center and Center for Global Health and Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Angqi Zhu
- Comprehensive AIDS Research Center and Center for Global Health and Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Hua Wang
- Comprehensive AIDS Research Center and Center for Global Health and Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Lili Fu
- Comprehensive AIDS Research Center and Center for Global Health and Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of the Ministry of Health, Department of Laboratory Medicine, No. 1 Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xuanling Shi
- Comprehensive AIDS Research Center and Center for Global Health and Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Ye Xiang
- Center for Global Health and Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of the Ministry of Health, Department of Laboratory Medicine, No. 1 Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Center for Global Health and Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
56
|
Harnessing early life immunity to develop a pediatric HIV vaccine that can protect through adolescence. PLoS Pathog 2020; 16:e1008983. [PMID: 33180867 PMCID: PMC7660516 DOI: 10.1371/journal.ppat.1008983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
57
|
Yao L, Wang JY, Bao LN, Fan MX, Bai Y, Chen WJ, Yuan C, Yuan L, Wang J, Li Y, Zhuang M, Ling H. DNA adjuvant Amiloride conjunct long immunization interval promote higher antibody responses to HIV-1 gp41 and gp140 immunogens. Vaccine 2020; 38:7445-7454. [PMID: 33041100 DOI: 10.1016/j.vaccine.2020.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/22/2020] [Accepted: 09/27/2020] [Indexed: 11/26/2022]
Abstract
Recent studies have revealed that the interface of gp120 and gp41 and some parts of gp41 are also critical epitopes for elicitation of broadly neutralizing antibodies. Therefore, potential trimeric gp41 or gp140 immunogen candidates are needed. Previously, we developed a trimer motif MTQ and demonstrated that it could help formation of trimeric gp120 and gp140 proteins. In the present study, we immunized Balb/c mice using trimeric gp41-expressing plasmid for prime and monomeric gp41 or trimeric gp140 protein as well as a mutant (Q577A) for boost. The antibody responses in the context of regimens with various immunization intervals and DNA adjuvants including praziquantel (PZQ), cimetidine (CIM), and amiloride (AML) were evaluated. We found that these three adjuvants were not enough to elicit remarkable specific Abs after gp41 DNA immunization, while AML could significantly promote humoral immune responses after protein boosts. Long immunization interval could induce the specific binding Abs earlier and higher and maintain a high level of Abs in the following 27 weeks after final protein boost. Moreover, two times of protein boosts with DNA adjuvant and a longer time interval achieved a higher titer of specific Abs than three times of protein boosts with a shorter time interval. Q577A mutant was benefit for trimeric gp140 boost in the production of binding Abs but harmful to inducing neutralizing Abs, while this mutant in monomeric gp41 presented the opposite trend which may be associated with the immunogen structures. This study highlights the significance of DNA adjuvant Amiloride and long immunization interval in promoting antibody responses and provides new insights into effective HIV immunization regimen design in the future.
Collapse
Affiliation(s)
- Lan Yao
- Department of Parasitology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Li-Na Bao
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Meng-Xuan Fan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Yang Bai
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Wen-Jiang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Chen Yuan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Li Yuan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Jing Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China.
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China; Department of Parasitology, Harbin Medical University, Harbin, China.
| |
Collapse
|
58
|
Probing the Structure of the HIV-1 Envelope Trimer Using Aspartate Scanning Mutagenesis. J Virol 2020; 94:JVI.01426-20. [PMID: 32817217 DOI: 10.1128/jvi.01426-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
HIV-1 envelope (Env) glycoprotein gp160 exists as a trimer of heterodimers on the viral surface. In most structures of the soluble ectodomain of trimeric HIV-1 envelope glycoprotein, the regions from 512 to 517 of the fusion peptide and from 547 to 568 of the N-heptad repeat are disordered. We used aspartate scanning mutagenesis of subtype B strain JRFL Env as an alternate method to probe residue burial in the context of cleaved, cell surface-expressed Env, as buried residues should be intolerant to substitution with Asp. The data are inconsistent with a fully disordered 547 to 568 stretch, as residues 548, 549, 550, 555, 556, 559, 562, and 566 to 569 are all sensitive to Asp substitution. In the fusion peptide region, residues 513 and 515 were also sensitive to Asp substitution, suggesting that the fusion peptide may not be fully exposed in native Env. gp41 is metastable in the context of native trimer. Introduction of Asp at residues that are exposed in the prefusion state but buried in the postfusion state is expected to destabilize the postfusion state and any intermediate states where the residue is buried. We therefore performed soluble CD4 (sCD4)-induced gp120 shedding experiments to identify Asp mutants at residues 551, 554 to 559, 561 to 567, and 569 that could prevent gp120 shedding. We also observed similar mutational effects on shedding for equivalent mutants in the context of clade C Env from isolate 4-2J.41. These substitutions can potentially be used to stabilize native-like trimer derivatives that are used as HIV-1 vaccine immunogens.IMPORTANCE In most crystal structures of the soluble ectodomain of the HIV-1 Env trimer, some residues in the fusion and N-heptad repeat regions are disordered. Whether this is true in the context of native, functional Env on the virion surface is not known. This knowledge may be useful for stabilizing Env in its prefusion conformation and will also help to improve understanding of the viral entry process. Burial of the charged residue Asp in a protein structure is highly destabilizing. We therefore used Asp scanning mutagenesis to probe the burial of apparently disordered residues in native Env and to examine the effect of mutations in these regions on Env stability and conformation as probed by antibody binding to cell surface-expressed Env, CD4-induced shedding of HIV-1 gp120, and viral infectivity studies. Mutations that prevent shedding can potentially be used to stabilize native-like Env constructs for use as vaccine immunogens.
Collapse
|
59
|
Das S, Kumar R, Ahmed S, Parray HA, Samal S. Efficiently cleaved HIV-1 envelopes: can they be important for vaccine immunogen development? Ther Adv Vaccines Immunother 2020; 8:2515135520957763. [PMID: 33103053 PMCID: PMC7549152 DOI: 10.1177/2515135520957763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.
Collapse
Affiliation(s)
- Supratik Das
- THSTI-IAVI HIV Vaccine Design Program,
Translational Health Science and Technology Institute, NCR Biotech Science
Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad,
Haryana 121001, India
| | - Rajesh Kumar
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shubbir Ahmed
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Hilal Ahmad Parray
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
60
|
Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil SMC, Kopp M, Li D, Parks R, Hsu AL, Borgnia MJ, Haynes BF, Acharya P. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat Struct Mol Biol 2020; 27:925-933. [PMID: 32699321 PMCID: PMC8581954 DOI: 10.1038/s41594-020-0479-4] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023]
Abstract
The coronavirus (CoV) spike (S) protein, involved in viral-host cell fusion, is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available β-CoV S-protein structures. Despite an overall similarity in domain organization, we found that S-proteins from different β-CoVs display distinct configurations. Based on this analysis, we developed two soluble ectodomain constructs for the SARS-CoV-2 S-protein, in which the highly immunogenic and mobile receptor binding domain (RBD) is either locked in the all-RBDs 'down' position or adopts 'up' state conformations more readily than the wild-type S-protein. These results demonstrate that the conformation of the S-protein can be controlled via rational design and can provide a framework for the development of engineered CoV S-proteins for vaccine applications.
Collapse
Affiliation(s)
- Rory Henderson
- Duke Human Vaccine Institute, Durham, NC, USA.
- Duke University, Department of Medicine, Durham, NC, USA.
| | - Robert J Edwards
- Duke Human Vaccine Institute, Durham, NC, USA
- Duke University, Department of Medicine, Durham, NC, USA
| | | | | | | | | | - Megan Kopp
- Duke Human Vaccine Institute, Durham, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Durham, NC, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Durham, NC, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Durham, NC, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC, USA
- Duke University, Department of Medicine, Durham, NC, USA
- Duke University, Department of Immunology, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, USA.
- Duke University, Department of Surgery, Durham, NC, USA.
| |
Collapse
|
61
|
Ahmed S, Shrivastava T, Kumar R, Kumar M, Banerjee M, Kumar N, Bansal M, Das S, Samal S. Design and characterization of a germ-line targeting soluble, native-like, trimeric HIV-1 Env lacking key glycans from the V1V2-loop. Biochim Biophys Acta Gen Subj 2020; 1865:129733. [PMID: 32949621 DOI: 10.1016/j.bbagen.2020.129733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) is the primary target for broadly neutralizing antibodies (bNAbs) which can block infection. The current design strategy of soluble forms of Env in native-like trimeric conformation induces neutralizing antibodies with minimal breadth and potency. Extensive shielding by N-glycans on the surface of the HIV-1 Env acts as an immune evasion mechanism by restricting B cell recognition of conserved neutralizing determinants. An alternate approach is to design Env protein with glycan deletion to expose the protein surface. METHODS A stable native-like trimeric Env with glycan holes at potentially immunogenic locations is expected to elicit better induction of germ-line B-cells due to exposure of the immunogenic regions. However, the extent and consequences of glycan removal from the trimer apex that form an important epitope is not explored. In this work, we have designed a construct with glycans deleted from the trimer apex of an Indian clade C origin Env that has previously been characterized for immunogenicity, to understand the impact of deglycosylation on the structural and functional integrity as well as on the antibody binding properties. RESULTS The V1V2 glycan-deleted protein maintains native-like trimeric conformation with improved accessibility of the V1V2-directed germ-line antibodies. Furthermore, we showed that the protein binds specifically to quaternary conformation-dependent bnAbs but minimally to non-neutralizing antibodies. CONCLUSIONS This study provide an important design aspect of HIV-1 Env-based immunogens with glycan holes in the apex region that could be useful in eliciting apex directed antibodies in immunization studies.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| | - Tripti Shrivastava
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Mohit Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Naresh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manish Bansal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Supratik Das
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
62
|
Kumar S, Ju B, Shapero B, Lin X, Ren L, Zhang L, Li D, Zhou Z, Feng Y, Sou C, Mann CJ, Hao Y, Sarkar A, Hou J, Nunnally C, Hong K, Wang S, Ge X, Su B, Landais E, Sok D, Zwick MB, He L, Zhu J, Wilson IA, Shao Y. A V H1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite. SCIENCE ADVANCES 2020; 6:eabb1328. [PMID: 32938661 PMCID: PMC7494343 DOI: 10.1126/sciadv.abb1328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/31/2020] [Indexed: 05/03/2023]
Abstract
An oligomannose patch around the V3 base of HIV-1 envelope glycoprotein (Env) is recognized by multiple classes of broadly neutralizing antibodies (bNAbs). Here, we investigated the bNAb response to the V3 glycan supersite in an HIV-1-infected Chinese donor by Env-specific single B cell sorting, structural and functional studies, and longitudinal analysis of antibody and virus repertoires. Monoclonal antibodies 438-B11 and 438-D5 were isolated that potently neutralize HIV-1 with moderate breadth, are encoded by the VH1-69 germline gene, and have a disulfide-linked long HCDR3 loop. Crystal structures of Env-bound and unbound antibodies revealed heavy chain-mediated recognition of the glycan supersite with a unique angle of approach and a critical role of the intra-HCDR3 disulfide. The mechanism of viral escape was examined via single-genome amplification/sequencing and glycan mutations around the N332 supersite. Our findings further emphasize the V3 glycan supersite as a prominent target for Env-based vaccine design.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bin Ju
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
| | - Benjamin Shapero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Lei Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Zehua Zhou
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Colin J Mann
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yanling Hao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiali Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Christian Nunnally
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Shuo Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Xiangyang Ge
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui Province 230601, China
| | - Elise Landais
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Devin Sok
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China.
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
63
|
Antanasijevic A, Ueda G, Brouwer PJM, Copps J, Huang D, Allen JD, Cottrell CA, Yasmeen A, Sewall LM, Bontjer I, Ketas TJ, Turner HL, Berndsen ZT, Montefiori DC, Klasse PJ, Crispin M, Nemazee D, Moore JP, Sanders RW, King NP, Baker D, Ward AB. Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathog 2020; 16:e1008665. [PMID: 32780770 PMCID: PMC7418955 DOI: 10.1371/journal.ppat.1008665] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Two-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Computational design of protein nanoparticles with differing sizes and geometries enables combination with antigens of choice to test novel multimerization concepts in immunization strategies where the goal is to improve the induction and maturation of neutralizing antibody lineages. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to an underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. When the immunogenicity of ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle or as soluble proteins were compared in rabbits, the two immunogens elicited similar serum antibody binding titers against the trimer component. Neutralizing antibody titers were slightly elevated in the animals given the nanoparticle immunogen and were initially more focused to the trimer apex. Altogether, our findings indicate that tetrahedral nanoparticles can be successfully applied for presentation of HIV Env trimer immunogens; however, the optimal implementation to different immunization strategies remains to be determined.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - George Ueda
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | | | - Jeffrey Copps
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - Deli Huang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Christopher A. Cottrell
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - Anila Yasmeen
- Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Leigh M. Sewall
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Ilja Bontjer
- Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Thomas J. Ketas
- Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Hannah L. Turner
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - Zachary T. Berndsen
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Per Johan Klasse
- Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - David Nemazee
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - John P. Moore
- Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Rogier W. Sanders
- Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Neil P. King
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Andrew B. Ward
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
64
|
Andrabi R, Pallesen J, Allen JD, Song G, Zhang J, de Val N, Gegg G, Porter K, Su CY, Pauthner M, Newman A, Bouton-Verville H, Garces F, Wilson IA, Crispin M, Hahn BH, Haynes BF, Verkoczy L, Ward AB, Burton DR. The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Rep 2020; 27:2426-2441.e6. [PMID: 31116986 PMCID: PMC6533203 DOI: 10.1016/j.celrep.2019.04.082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 04/17/2019] [Indexed: 12/03/2022] Open
Abstract
Epitope-targeted HIV vaccine design seeks to focus antibody responses to broadly neutralizing antibody (bnAb) sites by sequential immunization. A chimpanzee simian immunodeficiency virus (SIV) envelope (Env) shares a single bnAb site, the variable loop 2 (V2)-apex, with HIV, suggesting its possible utility in an HIV immunization strategy. Here, we generate a chimpanzee SIV Env trimer, MT145K, which displays selective binding to HIV V2-apex bnAbs and precursor versions, but no binding to other HIV specificities. We determine the structure of the MT145K trimer by cryo-EM and show that its architecture is remarkably similar to HIV Env. Immunization of an HIV V2-apex bnAb precursor Ab-expressing knockin mouse with the chimpanzee MT145K trimer induces HIV V2-specific neutralizing responses. Subsequent boosting with an HIV trimer cocktail induces responses that exhibit some virus cross-neutralization. Overall, the chimpanzee MT145K trimer behaves as expected from design both in vitro and in vivo and is an attractive potential component of a sequential immunization regimen to induce V2-apex bnAbs. A designed chimpanzee SIV Env trimer binds HIV V2-apex bnAbs specifically The trimer (MT145K) is engineered to bind inferred unmutated versions of HIV V2-apex bnAbs The cryo-EM structure of the SIV MT145K trimer closely resembles that of HIV trimers The MT145K SIV trimer induces HIV-specific nAb responses in a favorable animal model
Collapse
Affiliation(s)
- Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D Allen
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jinsong Zhang
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Natalia de Val
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gavin Gegg
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katelyn Porter
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ching-Yao Su
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthias Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda Newman
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hilary Bouton-Verville
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fernando Garces
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; School of Biological Sciences, University of Southampton, Southampton, UK
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurent Verkoczy
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA; San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02114, USA.
| |
Collapse
|
65
|
González-Feliciano JA, Akamine P, Capó-Vélez CM, Delgado-Vélez M, Dussupt V, Krebs SJ, Wojna V, Polonis VR, Baerga-Ortiz A, Lasalde-Dominicci JA. A recombinant gp145 Env glycoprotein from HIV-1 expressed in two different cell lines: Effects on glycosylation and antigenicity. PLoS One 2020; 15:e0231679. [PMID: 32559193 PMCID: PMC7304579 DOI: 10.1371/journal.pone.0231679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022] Open
Abstract
The envelope glycoprotein (Env) of the human immunodeficiency virus (HIV), has been the primary target for the development of a protective vaccine against infection. The extensive N-linked glycosylation on Env is an important consideration as it may affect efficacy, stability, and expression yields. The expression host has been shown to influence the extent and type of glycosylation that decorates the protein target. Here, we report the glycosylation profile of the candidate subtype C immunogen CO6980v0c22 gp145, which is currently in Phase I clinical trials, produced in two different host cells: CHO-K1 and Expi293F. The amino acid sequence for both glycoproteins was confirmed to be identical by peptide mass fingerprinting. However, the isoelectric point of the proteins differed; 4.5–5.5 and 6.0–7.0 for gp145 produced in CHO-K1 and Expi293F, respectively. These differences in pI were eliminated by enzymatic treatment with sialidase, indicating a large difference in the incorporation of sialic acid between hosts. This dramatic difference in the number of sialylated glycans between hosts was confirmed by analysis of PNGase F-released glycans using MALDI-ToF MS. These differences in glycosylation, however, did not greatly translate into differences in antibody recognition. Biosensor assays showed that gp145 produced in CHO-K1 had similar affinity toward the broadly neutralizing antibodies, 2G12 and PG16, as the gp145 produced in Expi293F. Additionally, both immunogens showed the same reactivity against plasma of HIV-infected patients. Taken together, these results support the notion that there are sizeable differences in the glycosylation of Env depending on the expression host. How these differences translate to vaccine efficacy remains unknown.
Collapse
Affiliation(s)
| | - Pearl Akamine
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Coral M. Capó-Vélez
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Manuel Delgado-Vélez
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Valerie Wojna
- Division of Neurology, Internal Medicine Department and NeuroHIV Research Program, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Abel Baerga-Ortiz
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- * E-mail: (ABO); (JALD)
| | - José A. Lasalde-Dominicci
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
- * E-mail: (ABO); (JALD)
| |
Collapse
|
66
|
Chuang GY, Lai YT, Boyington JC, Cheng C, Geng H, Narpala S, Rawi R, Schmidt SD, Tsybovsky Y, Verardi R, Xu K, Yang Y, Zhang B, Chambers M, Changela A, Corrigan AR, Kong R, Olia AS, Ou L, Sarfo EK, Wang S, Wu W, Doria-Rose NA, McDermott AB, Mascola JR, Kwong PD. Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. J Virol 2020; 94:e00074-20. [PMID: 32295908 PMCID: PMC7307166 DOI: 10.1128/jvi.00074-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 01/21/2023] Open
Abstract
HIV-1 envelope (Env) trimers, stabilized in a prefusion-closed conformation, can elicit humoral responses capable of neutralizing HIV-1 strains closely matched in sequence to the immunizing strain. One strategy to increase elicited neutralization breadth involves vaccine priming of immune responses against a target site of vulnerability, followed by vaccine boosting of these responses with prefusion-closed Env trimers. This strategy has succeeded at the fusion peptide (FP) site of vulnerability in eliciting cross-clade neutralizing responses in standard vaccine-test animals. However, the breadth and potency of the elicited responses have been less than optimal. Here, we identify three mutations (3mut), Met302, Leu320, and Pro329, that stabilize the apex of the Env trimer in a prefusion-closed conformation and show antigenically, structurally, and immunogenically that combining 3mut with other approaches (e.g., repair and stabilize and glycine-helix breaking) yields well-behaved clade C-Env trimers capable of boosting the breadth of FP-directed responses. Crystal structures of these trimers confirmed prefusion-closed apexes stabilized by hydrophobic patches contributed by Met302 and Leu320, with Pro329 assuming canonically restricted dihedral angles. We substituted the N-terminal eight residues of FP (FP8, residues 512 to 519) of these trimers with the second most prevalent FP8 sequence (FP8v2, AVGLGAVF) and observed a 3mut-stabilized consensus clade C-Env trimer with FP8v2 to boost the breadth elicited in guinea pigs of FP-directed responses induced by immunogens containing the most prevalent FP8 sequence (FP8v1, AVGIGAVF). Overall, 3mut can stabilize the Env trimer apex, and the resultant apex-stabilized Env trimers can be used to expand the neutralization breadth elicited against the FP site of vulnerability.IMPORTANCE A major hurdle to the development of an effective HIV-1 vaccine is the elicitation of serum responses capable of neutralizing circulating strains of HIV, which are extraordinarily diverse in sequence and often highly neutralization resistant. Recently, we showed how sera with 20 to 30% neutralization breadth could, nevertheless, be elicited in standard vaccine test animals by priming with the most prevalent N-terminal 8 residues of the HIV-1 fusion peptide (FP8), followed by boosting with a stabilized BG505-envelope (Env) trimer. Here, we show that subsequent boosting with a 3mut-apex-stabilized consensus C-Env trimer, modified to have the second most prevalent FP8 sequence, elicits higher neutralization breadth than that induced by continued boosting with the stabilized BG505-Env trimer. With increased neutralizing breadth elicited by boosting with a heterologous trimer containing the second most prevalent FP8 sequence, the fusion peptide-directed immune-focusing approach moves a step closer toward realizing an effective HIV-1 vaccine regimen.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Winston Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW We will discuss recent advances in the development of nanoparticle vaccines presenting HIV-1 envelope trimer vaccines and the immunological mechanisms by which they act. RECENT FINDINGS The multivalent presentation of Env trimers on nanoparticles is a promising strategy to increase Env immunogenicity. Recent studies have shed light on how Env nanoparticles increase lymph node trafficking and germinal center formation by using the lectin-mediated complement pathway and enhancing the interaction with naïve B cells. Meanwhile, research on different nanoparticle platforms has resulted in improved designs, such as liposomes with improved stability, and the emergence of novel platforms such as protein nanoparticles that self-assemble in vitro. Immmunogenicity studies with these nanoparticles delineate the advantages and expose the limitations of the different nanoparticle platforms. SUMMARY It is becoming increasingly clear that HIV-1 vaccine research might benefit greatly from using nanoparticles presenting Env trimers, particularly during the priming stage of immunization. Among the different nanoparticles that are being pursued, in vitro-assembling nanoparticles allow for greater control of Env quality making them a promising nanoparticle platform.
Collapse
|
68
|
Malherbe DC, Wibmer CK, Nonyane M, Reed J, Sather DN, Spencer DA, Schuman JT, Guo B, Pandey S, Robins H, Park B, Fuller DH, Sacha JB, Moore PL, Hessell AJ, Haigwood NL. Rapid Induction of Multifunctional Antibodies in Rabbits and Macaques by Clade C HIV-1 CAP257 Envelopes Circulating During Epitope-Specific Neutralization Breadth Development. Front Immunol 2020; 11:984. [PMID: 32582155 PMCID: PMC7280454 DOI: 10.3389/fimmu.2020.00984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
We report here on HIV-1 immunization results in rabbits and macaques co-immunized with clade C gp160 DNA and gp140 trimeric envelope vaccines, a strategy similar to a recent clinical trial that showed improved speed and magnitude of humoral responses. Clade C envelopes were isolated from CAP257, an individual who developed a unique temporal pattern of neutralization breadth development, comprising three separate "Waves" targeting distinct Env epitopes and different HIV clades. We used phylogeny and neutralization criteria to down-select envelope vaccine candidates, and confirmed antigenicity of our antigens by interaction with well-characterized broadly neutralizing monoclonal antibodies. Using these envelopes, we performed rabbit studies that screened for immunogenicity of CAP257 Envs from timepoints preceding peak neutralization breadth in each Wave. Selected CAP257 envelopes from Waves 1 and 2, during the first 2 years of infection that were highly immunogenic in rabbits were then tested in macaques. We found that in rabbits and macaques, co-immunization of DNA, and protein envelope-based vaccines induced maximum binding and neutralizing antibody titers with three immunizations. No further benefit was obtained with additional immunizations. The vaccine strategies recapitulated the Wave-specific epitope targeting observed in the CAP257 participant, and elicited Tier 1A, 1B, and Tier 2 heterologous neutralization. CAP257 envelope immunogens also induced the development of ADCC and TFH responses in macaques, and these responses positively correlated with heterologous neutralization. Together, the results from two animal models in this study have implications for identifying effective vaccine immunogens. We used a multi-step strategy to (1) select an Env donor with well-characterized neutralization breadth development; (2) study Env phylogeny for potential immunogens circulating near peak breadth timepoints during the first 2 years of infection; (3) test down-selected Envs for antigenicity; (4) screen down-selected Envs in an effective vaccine regimen in rabbits; and (5) advance the most immunogenic Envs to NHP studies. The results were an induction of high titers of HIV-1 envelope-specific antibodies with increasing avidity and cross-clade neutralizing antibodies with effector functions that together may improve the potential for protection in a pre-clinical SHIV model.
Collapse
Affiliation(s)
- Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Molati Nonyane
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Jason Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - D Noah Sather
- Center for Global Infectious Disease Center, Seattle Children's Hospital Research Foundation, Seattle, WA, United States
| | - David A Spencer
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | | | - Biwei Guo
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Harlan Robins
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Byung Park
- Biostatistics Unit, Primate Genetic Program Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Deborah H Fuller
- AIDS Division, Department of Microbiology, Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.,Division of Medical Virology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States.,Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
69
|
Glycopeptide epitope facilitates HIV-1 envelope specific humoral immune responses by eliciting T cell help. Nat Commun 2020; 11:2550. [PMID: 32439962 PMCID: PMC7242320 DOI: 10.1038/s41467-020-16319-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
The inherent molecular complexity of human pathogens requires that mammals evolved an adaptive immune system equipped to handle presentation of non-conventional MHC ligands derived from disease-causing agents, such as HIV-1 envelope (Env) glycoprotein. Here, we report that a CD4+ T cell repertoire recognizes a glycopeptide epitope on gp120 presented by MHCII pathway. This glycopeptide is strongly immunogenic in eliciting glycan-dependent cellular and humoral immune responses. The glycopeptide specific CD4+ T cells display a prominent feature of Th2 and Th17 differentiation and exert high efficacy and potency to help Env trimer humoral immune responses. Glycopeptide-induced CD4+ T cell response prior to Env trimer immunization elicits neutralizing antibody development and production of antibodies facilitating uptake of immunogens by antigen-presenting cells. Our identification of gp120 glycopeptide–induced, T cell–specific immune responses offers a foundation for developing future knowledge-based vaccines that elicit strong and long-lasting protective immune responses against HIV-1 infection. T cells recognize peptide antigens presented in the context of MHC but can additionally recognize non-conventional ligands. Here the authors show T cells specific for a HIV-1 associated glycopeptide antigen presented by MHC class II help envelope (Env) trimer induced humoral immune responses.
Collapse
|
70
|
Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil S, Kopp M, Hsu A, Borgnia M, Parks R, Haynes BF, Acharya P. Controlling the SARS-CoV-2 Spike Glycoprotein Conformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.18.102087. [PMID: 32511343 PMCID: PMC7252579 DOI: 10.1101/2020.05.18.102087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The coronavirus (CoV) viral host cell fusion spike (S) protein is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available β-CoV S-protein structures. We found that despite overall similarity in domain organization, different β-CoV strains display distinct S-protein configurations. Based on this analysis, we developed two soluble ectodomain constructs in which the highly immunogenic and mobile receptor binding domain (RBD) is locked in either the all-RBDs 'down' position or is induced to display a previously unobserved in SARS-CoV-2 2-RBDs 'up' configuration. These results demonstrate that the conformation of the S-protein can be controlled via rational design and provide a framework for the development of engineered coronavirus spike proteins for vaccine applications.
Collapse
Affiliation(s)
- Rory Henderson
- Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Medicine, Durham NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Medicine, Durham NC 27710, USA
| | | | | | | | | | - Megan Kopp
- Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Allen Hsu
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario Borgnia
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Medicine, Durham NC 27710, USA
- Duke University, Department of Immunology, Durham NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Surgery, Durham NC 27710, USA
| |
Collapse
|
71
|
Malladi SK, Schreiber D, Pramanick I, Sridevi MA, Goldenzweig A, Dutta S, Fleishman SJ, Varadarajan R. One-step sequence and structure-guided optimization of HIV-1 envelope gp140. Curr Res Struct Biol 2020; 2:45-55. [PMID: 33688632 PMCID: PMC7939140 DOI: 10.1016/j.crstbi.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stabilization of the metastable envelope glycoprotein (Env) of HIV-1 is hypothesized to improve induction of broadly neutralizing antibodies. We improved the expression yield and stability of the HIV-1 envelope glycoprotein BG505SOSIP.664 gp140 by means of a previously described automated sequence and structure-guided computational thermostabilization approach, PROSS. This combines sequence conservation information with computational assessment of mutant stabilization, thus taking advantage of the extensive natural sequence variation present in HIV-1 Env. PROSS is used to design three gp140 variants with 17–45 mutations relative to the parental construct. One of the designs is experimentally observed to have a fourfold improvement in yield and a 4 °C increment in thermostability. In addition, the designed immunogens have similar antigenicity profiles to the native flexible linker version of wild type, BG505SOSIP.664 gp140 (NFL Wt) to major epitopes targeted by broadly neutralizing antibodies. PROSS eliminates the laborious process of screening many variants for stability and functionality, providing a proof of principle of the method for stabilization and improvement of yield without compromising antigenicity for next generation complex, highly glycosylated vaccine candidates. One-step stabilization of HIV-1 Env gp140. One-step yield improvement of HIV-1 Env gp140. Native-like oligomeric conformation of designed vaccine candidates. Unaltered antigenicity of designed vaccine candidates.
Collapse
Affiliation(s)
| | - David Schreiber
- Department of BioMolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ishika Pramanick
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | | - Adi Goldenzweig
- Department of BioMolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, India
| |
Collapse
|
72
|
Ximba P, Chapman R, Meyers AE, Margolin E, van Diepen MT, Williamson AL, Rybicki EP. Characterization and Immunogenicity of HIV Envelope gp140 Zera ® Tagged Antigens. Front Bioeng Biotechnol 2020; 8:321. [PMID: 32328488 PMCID: PMC7160593 DOI: 10.3389/fbioe.2020.00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
HIV-1 envelope glycoprotein (Env) remains the most relevant target for the elicitation of functional antibodies to HIV by vaccination. However, soluble Env antigens often do not elicit the desired immune responses. Delivering subunit antigens on particulate nanoparticles is an established approach to improve their immunogenicity. In this study the sequence encoding Zera®, a proline-rich domain derived from the γ-zein storage protein, was fused to either the C- or N-terminus of the superinfecting HIV-1 CAP256 gp140 envelope: Zera® generally induces the formation of protein bodies (PBs), which can significantly improve both the immunogenicity and yields of the partner protein. The expression of gp140-Zera® and Zera®-gp140 (N- and C-terminal fusions respectively) in mammalian cells was confirmed by western blot analysis and immunostaining. However, isopycnic ultracentrifugation showed that neither gp140-Zera® nor Zera®-gp140 accumulated in characteristic electron-dense PBs. gp140-Zera® elicited higher binding antibody titers in rabbits to autologous gp140 and V1V2 scaffold than Zera®-gp140. Rabbit anti-gp140-Zera® sera also had significantly higher Tier 1A neutralizing antibody titers than anti-Zera®-gp140 sera. Neither gp140-Zera® nor Zera®-gp140-specific sera neutralized Tier 1B or autologous Tier 2 viruses. These results showed that HIV-1 gp140 tagged with Zera® at either the N- or C-termini elicited high titers of gp140 and V1V2 binding antibodies, and low levels of Tier 1 neutralizing antibodies in rabbits.
Collapse
Affiliation(s)
- Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michiel T van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
73
|
Jones LD, Moody MA, Thompson AB. Innovations in HIV-1 Vaccine Design. Clin Ther 2020; 42:499-514. [PMID: 32035643 PMCID: PMC7102617 DOI: 10.1016/j.clinthera.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The field of HIV-1 vaccinology has evolved during the last 30 years from the first viral vector HIV gene insert constructs to vaccination regimens using a myriad of strategies. These strategies now include germline-targeting, lineage-based, and structure-guided immunogen design. This narrative review outlines the historical context of HIV vaccinology and subsequently highlights the scientific discoveries during the last 6 years that promise to propel the field forward. METHODS We conducted a search of 2 electronic databases, PubMed and EMBASE, for experimental studies that involved new HIV immunogen designs between 2013 and 2019. During the title and abstract reviews, publications were excluded if they were written in language other than English and/or were a letter to the editor, a commentary, or a conference-only presentation. We then used ClinicalTrials.gov to identify completed and ongoing clinical trials using these strategies. FINDINGS The HIV vaccinology field has undergone periods of significant growth during the last 3 decades. Findings elucidated in preclinical studies have revealed the importance of the interaction between the cellular and humoral immune system. As a result, several new rationally designed vaccine strategies have been developed and explored in the last 6 years, including native-like envelope trimers, nanoparticle, and mRNA vaccine design strategies among others. Several of these strategies have shown enough promise in animal models to progress toward first-in-human Phase I clinical trials. IMPLICATIONS Rapid developments in preclinical and early-phase clinical studies suggest that a tolerable and effective HIV vaccine may be on the horizon.
Collapse
Affiliation(s)
- Letitia D Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - M Anthony Moody
- Duke University School of Medicine and Duke Human Vaccine Institute, Durham, NC, USA
| | - Amelia B Thompson
- Duke University School of Medicine and Duke Human Vaccine Institute, Durham, NC, USA.
| |
Collapse
|
74
|
Proteins mimicking epitope of HIV-1 virus neutralizing antibody induce virus-neutralizing sera in mice. EBioMedicine 2020; 47:247-256. [PMID: 31544770 PMCID: PMC6796546 DOI: 10.1016/j.ebiom.2019.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 01/26/2023] Open
Abstract
Background The development of an effective vaccine preventing HIV-1 infection is hindered by the enormous antigenic variability and unique biochemical and immunological properties of HIV-1 Env glycoprotein, the most promising target for HIV-1 neutralizing antibody. Functional studies of rare elite neutralizers led to the discovery of broadly neutralizing antibodies. Methods We employed a highly complex combinatorial protein library derived from a 5 kDa albumin-binding domain scaffold, fused with support protein of total 38 kDa, to screen for binders of broadly neutralizing antibody VRC01 paratope. The most specific binders were used for immunization of experimental mice to elicit Env-specific antibodies and to test their neutralization activity using a panel of HIV-1 clade C and B pseudoviruses. Findings Three most specific binders designated as VRA017, VRA019, and VRA177 exhibited high specificity to VRC01 antibody. Immunized mice produced Env-binding antibodies which neutralize eight of twelve HIV-1 Tier 2 pseudoviruses. Molecular modelling revealed a shape complementarity between VRA proteins and a part of VRC01 gp120 interacting surface. Interpretation This strategy based on the identification of protein replicas of broadly neutralizing antibody paratope represents a novel approach in HIV-1 vaccine development. This approach is not affected by low immunogenicity of neutralization-sensitive epitopes, variability, and unique biochemical properties of HIV-1 Env used as a crucial antigen in the majority of contemporary tested vaccines. Fund Czech Health Research Council 15-32198A, Ministry of Health, Czech Republic.
Collapse
|
75
|
Phad GE, Pushparaj P, Tran K, Dubrovskaya V, Àdori M, Martinez-Murillo P, Vázquez Bernat N, Singh S, Dionne G, O’Dell S, Bhullar K, Narang S, Sorini C, Villablanca EJ, Sundling C, Murrell B, Mascola JR, Shapiro L, Pancera M, Martin M, Corcoran M, Wyatt RT, Karlsson Hedestam GB. Extensive dissemination and intraclonal maturation of HIV Env vaccine-induced B cell responses. J Exp Med 2020; 217:e20191155. [PMID: 31704807 PMCID: PMC7041718 DOI: 10.1084/jem.20191155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
Well-ordered HIV-1 envelope glycoprotein (Env) trimers are prioritized for clinical evaluation, and there is a need for an improved understanding about how elicited B cell responses evolve following immunization. To accomplish this, we prime-boosted rhesus macaques with clade C NFL trimers and identified 180 unique Ab lineages from ∼1,000 single-sorted Env-specific memory B cells. We traced all lineages in high-throughput heavy chain (HC) repertoire (Rep-seq) data generated from multiple immune compartments and time points and expressed several as monoclonal Abs (mAbs). Our results revealed broad dissemination and high levels of somatic hypermutation (SHM) of most lineages, including tier 2 virus neutralizing lineages, following boosting. SHM was highest in the Ab complementarity determining regions (CDRs) but also surprisingly high in the framework regions (FRs), especially FR3. Our results demonstrate the capacity of the immune system to affinity-mature large numbers of Env-specific B cell lineages simultaneously, supporting the use of regimens consisting of repeated boosts to improve each Ab, even those belonging to less expanded lineages.
Collapse
Affiliation(s)
- Ganesh E. Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Tran
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Viktoriya Dubrovskaya
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Paola Martinez-Murillo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Néstor Vázquez Bernat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Suruchi Singh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gilman Dionne
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Komal Bhullar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Sorini
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eduardo J. Villablanca
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Marcel Martin
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Richard T. Wyatt
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | |
Collapse
|
76
|
Chapman R, van Diepen M, Galant S, Kruse E, Margolin E, Ximba P, Hermanus T, Moore P, Douglass N, Williamson AL, Rybicki E. Immunogenicity of HIV-1 Vaccines Expressing Chimeric Envelope Glycoproteins on the Surface of Pr55 Gag Virus-Like Particles. Vaccines (Basel) 2020; 8:vaccines8010054. [PMID: 32013223 PMCID: PMC7158678 DOI: 10.3390/vaccines8010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) is present on the surface of the virion at a very low density compared to most other enveloped viruses. Substitution of various parts of the stalk domain of Env (gp41) with the corresponding elements from other viral glycoproteins has been shown to increase Env spike density on the cell membrane and surface of virus-like particles (VLPs). In this study, chimeric Env antigens were generated by replacing the transmembrane and cytoplasmic domains of HIV-1 Env with the corresponding regions from the influenza H5 hemagglutinin (HA) (gp140HA2tr) and by replacing the entire gp41 region of Env with the HA2 subunit of HA (gp120HA2). Recombinant DNA and modified vaccinia Ankara (MVA) vaccines expressing HIV-1 subtype C mosaic Gag and gp150 Env or either of the chimeras were generated. Surprisingly, no significant differences were found in the levels of expression of gp150 Env or either of the chimeras on the surface of cells or on Gag VLPs. Differences were, however, observed in the binding of different monoclonal antibodies to the HIV-1 Env. Monoclonal antibodies, which recognized a V1 / V2 quaternary epitope at the tip of the native Env trimer, bound gp150 and gp140HA2tr chimera but failed to bind to the gp120HA2 chimera. Autologous Tier 2 neutralizing antibodies (NAbs) were produced by rabbits inoculated with DNA and MVA vaccines expressing the gp140HA2tr chimera or gp150 Env, but not those immunized with the gp120HA2 Env. These results showed that the addition of an HA2 stalk to HIV-1 gp120 did not improve immunogenicity, but rather that the full-length gp150 was required for optimal presentation of epitopes for the elicitation of a neutralizing antibody response to HIV-1.
Collapse
Affiliation(s)
- Rosamund Chapman
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Correspondence:
| | - Michiel van Diepen
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Shireen Galant
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Elizabeth Kruse
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Emmanuel Margolin
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7701, South Africa
| | - Phindile Ximba
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Tandile Hermanus
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Penny Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, Durban 4013, South Africa
| | - Nicola Douglass
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Edward Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
77
|
Henderson R, Lu M, Zhou Y, Mu Z, Parks R, Han Q, Hsu AL, Carter E, Blanchard SC, Edwards RJ, Wiehe K, Saunders KO, Borgnia MJ, Bartesaghi A, Mothes W, Haynes BF, Acharya P, Munir Alam S. Disruption of the HIV-1 Envelope allosteric network blocks CD4-induced rearrangements. Nat Commun 2020; 11:520. [PMID: 31980614 PMCID: PMC6981184 DOI: 10.1038/s41467-019-14196-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/18/2019] [Indexed: 11/24/2022] Open
Abstract
The trimeric HIV-1 Envelope protein (Env) mediates viral-host cell fusion via a network of conformational transitions, with allosteric elements in each protomer orchestrating host receptor-induced exposure of the co-receptor binding site and fusion elements. To understand the molecular details of this allostery, here, we introduce Env mutations aimed to prevent CD4-induced rearrangements in the HIV-1 BG505 Env trimer. Binding analysis and single-molecule Förster Resonance Energy Transfer confirm that these mutations prevent CD4-induced transitions of the HIV-1 Env. Structural analysis by single-particle cryo-electron microscopy performed on the BG505 SOSIP mutant Env proteins shows rearrangements in the gp120 topological layer contacts with gp41. Displacement of a conserved tryptophan (W571) from its typical pocket in these Env mutants renders the Env insensitive to CD4 binding. These results reveal the critical function of W571 as a conformational switch in Env allostery and receptor-mediated viral entry and provide insights on Env conformation that are relevant for vaccine design.
Collapse
Affiliation(s)
- Rory Henderson
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, 27708, USA
| | - Zekun Mu
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Qifeng Han
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Elizabeth Carter
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
- St. Jude Children's Research Hospital, Department of Structural Biology, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - R J Edwards
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC, 27708, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
78
|
Abstract
Monoclonal based therapeutics have always been looked at as a futuristic natural way we could take care of pathogens and many diseases. However, in order to develop, establish and realize monoclonal based therapy we need to understand how the immune system contains or kill pathogens. Antibody complexes serve the means to decode this black box. We have discussed examples of antibody complexes both at biochemical and structural levels to understand and appreciate how discoveries in the field of antibody complexes have started to decoded mechanism of viral invasion and create potential vaccine targets against many pathogens. Antibody complexes have made advancement in our knowledge about the molecular interaction between antibody and antigen. It has also led to identification of potent protective monoclonal antibodies. Further use of selective combination of monoclonal antibodies have provided improved protection against deadly diseases. The administration of newly designed and improved immunogen has been used as potential vaccine. Therefore, antibody complexes are important tools to develop new vaccine targets and design an improved combination of monoclonal antibodies for passive immunization or protection with very little or no side effects.
Collapse
Affiliation(s)
- Reetesh Raj Akhouri
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | - Gunnar Wilken
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ulf Skoglund
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
79
|
Aldon Y, Kratochvil S, Shattock RJ, McKay PF. Chemokine-Adjuvanted Plasmid DNA Induces Homing of Antigen-Specific and Non-Antigen-Specific B and T Cells to the Intestinal and Genital Mucosae. THE JOURNAL OF IMMUNOLOGY 2020; 204:903-913. [PMID: 31915263 PMCID: PMC6994839 DOI: 10.4049/jimmunol.1901184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023]
Abstract
Plasmid DNA is a promising vaccine platform that together with electroporation can elicit significant systemic Ab responses; however, immunity at mucosal sites remains low. In this study, we sought to program T and B cells to home to the gastrointestinal and vaginal mucosae using genetic chemokine adjuvants and assessed their impact on immune homeostasis in various distinct immune compartments. BALB/c mice were immunized i.m. with plasmid DNA encoding a model Ag HIV-1 Env gp140 and selected chemokines/cytokine and boosted intravaginally with gp140 recombinant protein. Isolated splenocytes, intestinal lymphocytes, and genital lymphocytes as well as serum and intestinal luminal contents were assessed for Ag-specific reactivity. In addition, flow cytometric analysis was performed to determine the impact on immune homeostasis at these sites. Different molecular chemokine/cytokine adjuvants effected significant alterations to the recruitment of B and T cells to the spleen, vaginal and intestinal mucosae, for example CCL25 enhanced splenic and vaginal Ag-specific T cell responses whereas CCL28 increased the levels of specific T cells only in the vaginal mucosa. The levels of Ab could be modulated in the systemic circulation, as well as the vaginal vault and intestinal lumen, with CCL20 playing a central role. Our data demonstrate that the CCL20, CCL25, and CCL28 genetic chemokine adjuvants enhance the vaccine Ag-specific humoral and cellular responses and induce homing to the intestinal and female genital mucosae.
Collapse
Affiliation(s)
- Yoann Aldon
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Sven Kratochvil
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Robin J Shattock
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Paul F McKay
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
80
|
Broadly neutralizing antibodies and vaccine design against HIV-1 infection. Front Med 2019; 14:30-42. [PMID: 31858368 PMCID: PMC8320319 DOI: 10.1007/s11684-019-0721-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Remarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I (HIV-1) through antiretroviral therapy. However, vaccine development has remained challenging. Recent discoveries in broadly neutralizing monoclonal antibodies (bNAbs) has led to the development of multiple novel vaccine approaches for inducing bNAbs-like antibody response. Structural and dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein (Env) during infection. Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and development.
Collapse
|
81
|
Aldon Y, McKay PF, Allen J, Ozorowski G, Felfödiné Lévai R, Tolazzi M, Rogers P, He L, de Val N, Fábián K, Scarlatti G, Zhu J, Ward AB, Crispin M, Shattock RJ. Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers. Cell Rep 2019; 24:3324-3338.e5. [PMID: 30232012 PMCID: PMC6167709 DOI: 10.1016/j.celrep.2018.08.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/16/2018] [Accepted: 08/17/2018] [Indexed: 11/17/2022] Open
Abstract
The HIV-1-envelope glycoprotein (Env) is the main target of antigen design for antibody-based prophylactic vaccines. The generation of broadly neutralizing antibodies (bNAb) likely requires the appropriate presentation of stabilized trimers preventing exposure of non-neutralizing antibody (nNAb) epitopes. We designed a series of membrane-bound Envs with increased trimer stability through the introduction of key stabilization mutations. We derived a stabilized HIV-1 trimer, ConSOSL.UFO.750, which displays a dramatic reduction in nNAb binding while maintaining high quaternary and MPER-specific bNAb binding. Its soluble counterpart, ConSOSL.UFO.664, displays similar antigenicity, and its native-like Env structure is confirmed by negative stain-EM and glycosylation profiling of the soluble ConSOSL.UFO.664 trimer. A rabbit immunization study demonstrated that the ConSOSL.UFO.664 can induce autologous tier 2 neutralization. We have successfully designed a stabilized native-like Env trimer amenable to nucleic acid or viral vector-based vaccination strategies. DNA-expressed closed pre-fusion native-like Env with preserved MPER exposure Env antigenicity varies across cell types and assays Muscle cells present properly folded and glycosylated membrane-bound Envs Fully glycosylated ConSOSL.UFO.664 induces autologous tier 2 neutralization
Collapse
Affiliation(s)
- Yoann Aldon
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Paul F McKay
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Joel Allen
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Réka Felfödiné Lévai
- Department of Immunology, National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Paul Rogers
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Linling He
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katalin Fábián
- Department of Immunology, National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robin J Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
82
|
del Moral-Sánchez I, Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev Vaccines 2019; 18:1127-1143. [PMID: 31791150 PMCID: PMC6961309 DOI: 10.1080/14760584.2019.1690458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains. All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.Areas covered: We describe the different strategies that have been explored to improve the breadth and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engineered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination strategies, nanoparticles and nucleic acid-based vaccines.Expert opinion: A combination of the strategies described in this review and future approaches are probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting NAb responses.
Collapse
Affiliation(s)
- Iván del Moral-Sánchez
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Kwinten Sliepen Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
83
|
Critical design criteria for engineering a nanoparticulate HIV-1 vaccine. J Control Release 2019; 317:322-335. [PMID: 31786187 DOI: 10.1016/j.jconrel.2019.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Inducing a long-lasting as well as broad and potent immune response by generating broadly neutralizing antibodies is a major goal and at the same time the main challenge of preventive HIV-1 vaccine design. Immunization with soluble, stabilized and native-like envelope (Env) glycoprotein so far only led to low neutralization breadth and displayed low immunogenicity. A promising approach to generate a potent immune response is the presentation of Env on the surface of nanoparticles. In this review, we will focus on two key processes essential for the induction of immune response that can be addressed by specific features of nanoparticulate carriers: first, the trafficking to and within distinct compartments of the lymph node, and second, the use of multivalent Env display allowing for high avidity interactions. To optimize these pivotal steps critical design criteria should be considered for the presentation of Env on nanoparticles. These include an optimal particle size below 100 nm, distances between two adjacent Env antigens of approximately 10-15 nm, an appropriate orientation of Env, and finally, the stability of both the Env attachment and the nanoparticle platform. Hence, an interdisciplinary approach that combines a suitable delivery system and a straightforward presentation of the Env antigen may have the potential to drive the immune response towards increased breadth and potency.
Collapse
|
84
|
Dubrovskaya V, Tran K, Ozorowski G, Guenaga J, Wilson R, Bale S, Cottrell CA, Turner HL, Seabright G, O'Dell S, Torres JL, Yang L, Feng Y, Leaman DP, Vázquez Bernat N, Liban T, Louder M, McKee K, Bailer RT, Movsesyan A, Doria-Rose NA, Pancera M, Karlsson Hedestam GB, Zwick MB, Crispin M, Mascola JR, Ward AB, Wyatt RT. Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity 2019; 51:915-929.e7. [PMID: 31732167 PMCID: PMC6891888 DOI: 10.1016/j.immuni.2019.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023]
Abstract
The elicitation of broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) trimer remains a major vaccine challenge. Most cross-conserved protein determinants are occluded by self-N-glycan shielding, limiting B cell recognition of the underlying polypeptide surface. The exceptions to the contiguous glycan shield include the conserved receptor CD4 binding site (CD4bs) and glycoprotein (gp)41 elements proximal to the furin cleavage site. Accordingly, we performed heterologous trimer-liposome prime:boosting in rabbits to drive B cells specific for cross-conserved sites. To preferentially expose the CD4bs to B cells, we eliminated proximal N-glycans while maintaining the native-like state of the cleavage-independent NFL trimers, followed by gradual N-glycan restoration coupled with heterologous boosting. This approach successfully elicited CD4bs-directed, cross-neutralizing Abs, including one targeting a unique glycan-protein epitope and a bNAb (87% breadth) directed to the gp120:gp41 interface, both resolved by high-resolution cryoelectron microscopy. This study provides proof-of-principle immunogenicity toward eliciting bNAbs by vaccination.
Collapse
Affiliation(s)
- Viktoriya Dubrovskaya
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen Tran
- International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Javier Guenaga
- International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard Wilson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shridhar Bale
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gemma Seabright
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lifei Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Feng
- International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Néstor Vázquez Bernat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Tyler Liban
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mark Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Arlette Movsesyan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard T Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
85
|
Damm D, Rojas-Sánchez L, Theobald H, Sokolova V, Wyatt RT, Überla K, Epple M, Temchura V. Calcium Phosphate Nanoparticle-Based Vaccines as a Platform for Improvement of HIV-1 Env Antibody Responses by Intrastructural Help. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1389. [PMID: 31569763 PMCID: PMC6835376 DOI: 10.3390/nano9101389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
Abstract
Incorporation of immunodominant T-helper epitopes of licensed vaccines into virus-like particles (VLP) allows to harness T-helper cells induced by the licensed vaccines to provide intrastructural help (ISH) for B-cell responses against the surface proteins of the VLPs. To explore whether ISH could also improve antibody responses to calcium phosphate (CaP) nanoparticle vaccines we loaded the nanoparticle core with a universal T-helper epitope of Tetanus toxoid (p30) and functionalized the surface of CaP nanoparticles with stabilized trimers of the HIV-1 envelope (Env) resulting in Env-CaP-p30 nanoparticles. In contrast to soluble Env trimers, Env containing CaP nanoparticles induced activation of naïve Env-specific B-cells in vitro. Mice previously vaccinated against Tetanus raised stronger humoral immune responses against Env after immunization with Env-CaP-p30 than mice not vaccinated against Tetanus. The enhancing effect of ISH on anti-Env antibody levels was not attended with increased Env-specific IFN-γ CD4 T-cell responses that otherwise may potentially influence the susceptibility to HIV-1 infection. Thus, CaP nanoparticles functionalized with stabilized HIV-1 Env trimers and heterologous T-helper epitopes are able to recruit heterologous T-helper cells induced by a licensed vaccine and improve anti-Env antibody responses by intrastructural help.
Collapse
Affiliation(s)
- Dominik Damm
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Leonardo Rojas-Sánchez
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany.
| | - Hannah Theobald
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany.
| | - Richard T Wyatt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany.
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
86
|
Fu M, Hu K, Hu H, Ni F, Du T, Shattock RJ, Hu Q. Antigenicity and immunogenicity of HIV-1 gp140 with different combinations of glycan mutation and V1/V2 region or V3 crown deletion. Vaccine 2019; 37:7501-7508. [PMID: 31564450 DOI: 10.1016/j.vaccine.2019.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
The carbohydrate moieties on HIV-1 envelope glycoprotein (Env) act as shields to mask conserved neutralizing epitopes, while the hyperimmunogenic variable regions are immunodominant in inducing non-neutralizing antibodies, representing the major challenge for using Env as a vaccine candidate to induce broadly neutralizing antibodies (bNAbs). In this study, we designed a series of HIV-1 gp140 constructs with the removal of N276/N463 glycans, deletion of the V1/V2 region and the V3 crown, alone or in combination. We first demonstrated that all the constructs had a comparable level of expression and were mainly expressed as trimers. Following purification of gp140s from mammalian cells, we measured their binding to bNAbs and non-NAbs in vitro and capability in inducing bNAbs in vivo. Antibody binding assay showed that removal of N276/N463 glycans together with the deletion of V1/V2 region enhanced the binding of gp140s to CD4-binding site-targeting bNAbs VRC01 and 3BNC117, and CD4-induced epitopes-targeting non-NAbs A32, 17b and F425 A1g8, whereas further deletion of V3 crown in the gp140 mutants demonstrated slightly compromised binding capability to these Abs. Immunogenicity study showed that the above mutations did not lead to the induction of a higher Env-specific IgG response via either DNA-DNA or DNA-protein prime-boost strategies in mice, while neutralization assay did not show an apparent difference between wild type and mutated gp140s. Taken together, our results indicate that removal of glycans at N276/N463 and deletion of the V1/V2 region can expose the CD4-binding site and CD4-induced epitopes, but such exposure alone appears incapable of enhancing the induction of bNAbs in mice, informing that additional modification or/and immunization strategies are needed. In addition, the strategies which we established for producing gp140 proteins and for analyzing the antigenicity and immunogenicity of gp140 provide useful means for further vaccine design and assessment.
Collapse
Affiliation(s)
- Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute for Infection and Immunity, St George's University of London, London SW17 0RE, United Kingdom
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Robin J Shattock
- Section of Infectious Diseases, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute for Infection and Immunity, St George's University of London, London SW17 0RE, United Kingdom.
| |
Collapse
|
87
|
Wilmschen S, Schmitz JE, Kimpel J. Viral Vectors for the Induction of Broadly Neutralizing Antibodies against HIV. Vaccines (Basel) 2019; 7:vaccines7030119. [PMID: 31546894 PMCID: PMC6789710 DOI: 10.3390/vaccines7030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Extensive research on generating an efficient HIV vaccine is ongoing. A major aim of HIV vaccines is the induction of long-lasting, broadly neutralizing antibodies (bnAbs) that can confer sterile immunity for a prolonged period of time. Several strategies have been explored to reach this goal, i.e. protein immunization, DNA, or viral vectors, or a combination thereof. In this review, we give an overview of approaches using viral vectors for the induction of HIV-specific bnAbs. Many pre-clinical studies were performed using various replication-competent and -incompetent vectors. Amongst them, poxviral and adenoviral vectors were the most prevalent ones. In many studies, viral vectors were combined with a DNA prime or a protein boost. However, neutralizing antibodies were mainly induced against the homologous HIV-1 vaccine strain or tier 1 viruses, and in rare cases, against tier 2 viruses, indicating the need for improved antigens and vaccination strategies. Furthermore, we also review next generation Env antigens that are currently being used in protein vaccination approaches and point out how they could be utilized in viral vectors.
Collapse
Affiliation(s)
- Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
88
|
AIDS Vaccine Research Subcommittee (AVRS) Consultation: Early-Life Immunization Strategies against HIV Acquisition. mSphere 2019; 4:4/4/e00320-19. [PMID: 31315966 PMCID: PMC6637046 DOI: 10.1128/msphere.00320-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This report summarizes a consultation meeting convened by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), on 12 September 2017 to discuss the scientific rationale for selectively testing relevant HIV vaccine candidates in early life that are designed to initiate immune responses for lifelong protective immunity. The urgent need to develop interventions providing durable protective immunity to HIV before sexual debut coupled with the practicality of infant vaccine schedules supports optimizing infant HIV vaccines as a high priority. The panelists discussed the unique opportunities and challenges of testing candidate HIV vaccines in the context of distinct early-life immunity. Key developments providing rationale and grounds for cautious optimism regarding evaluation of early-life HIV vaccines include recent studies of early-life immune ontogeny, studies of HIV-infected infants demonstrating relatively rapid generation of broadly neutralizing antibodies (bNAbs), discovery of novel adjuvants active in early life, and cutting-edge sample-sparing systems biology and immunologic assays promising deep insight into vaccine action in infants. Multidisciplinary efforts toward the goal of an infant HIV vaccine are under way and should be nurtured and amplified.IMPORTANCE Young adults represent one of the highest-risk groups for new HIV infections and the only group in which morbidity continues to increase. Therefore, an HIV vaccine to prevent HIV acquisition in adolescence is a top priority. The introduction of any vaccine during adolescence is challenging. This meeting discussed the opportunities and challenges of testing HIV vaccine candidates in the context of the infant immune system given recent advances in our knowledge of immune ontogeny and adjuvant design and studies demonstrating that HIV-infected infants generate broadly neutralizing antibodies, a main target of HIV vaccines, more rapidly than adults. Considering the global success of pediatric vaccines, the concept of an HIV vaccine introduced in early life holds merit and warrants testing.
Collapse
|
89
|
Yuan M, Cottrell CA, Ozorowski G, van Gils MJ, Kumar S, Wu NC, Sarkar A, Torres JL, de Val N, Copps J, Moore JP, Sanders RW, Ward AB, Wilson IA. Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host Microbe 2019; 25:873-883.e5. [PMID: 31194940 PMCID: PMC6579543 DOI: 10.1016/j.chom.2019.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/02/2019] [Accepted: 04/19/2019] [Indexed: 11/25/2022]
Abstract
The fusion peptide (FP) of HIV-1 envelope glycoprotein (Env) is essential for mediating viral entry. Detection of broadly neutralizing antibodies (bnAbs) that interact with the FP has revealed it as a site of vulnerability. We delineate X-ray and cryo-electron microscopy (cryo-EM) structures of bnAb ACS202, from an HIV-infected elite neutralizer, with an FP and with a soluble Env trimer (AMC011 SOSIP.v4.2) derived from the same patient. We show that ACS202 CDRH3 forms a "β strand" interaction with the exposed hydrophobic FP and recognizes a continuous region of gp120, including a conserved N-linked glycan at N88. A cryo-EM structure of another previously identified bnAb VRC34.01 with AMC011 SOSIP.v4.2 shows that it also penetrates through glycans to target the FP. We further demonstrate that the FP can twist and present different conformations for recognition by bnAbs, which enables approach to Env from diverse angles. The variable recognition of FP by bnAbs thus provides insights for vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
90
|
Seabright GE, Doores KJ, Burton DR, Crispin M. Protein and Glycan Mimicry in HIV Vaccine Design. J Mol Biol 2019; 431:2223-2247. [PMID: 31028779 PMCID: PMC6556556 DOI: 10.1016/j.jmb.2019.04.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023]
Abstract
Antigenic mimicry is a fundamental tenet of structure-based vaccinology. Vaccine strategies for the human immunodeficiency virus type 1 (HIV-1) focus on the mimicry of its envelope spike (Env) due to its exposed location on the viral membrane and role in mediating infection. However, the virus has evolved to minimize the immunogenicity of conserved epitopes on the envelope spike. This principle is starkly illustrated by the presence of an extensive array of host-derived glycans, which act to shield the underlying protein from antibody recognition. Despite these hurdles, a subset of HIV-infected individuals eventually develop broadly neutralizing antibodies that recognize these virally presented glycans. Effective HIV-1 immunogens are therefore likely to involve some degree of mimicry of both the protein and glycan components of Env. As such, considerable efforts have been made to characterize the structure of the envelope spike and its glycan shield. This review summarizes the recent progress made in this field, with an emphasis on our growing understanding of the factors shaping the glycan shield of Env derived from both virus and soluble immunogens. We argue that recombinant mimics of the envelope spike are currently capable of capturing many features of the native viral glycan shield. Finally, we explore strategies through which the immunogenicity of Env glycans may be enhanced in the development of future immunogens.
Collapse
Affiliation(s)
- Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK; Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
91
|
Sarkar S, Piepenbrink MS, Basu M, Thakar J, Keefer MC, Hessell AJ, Haigwood NL, Kobie JJ. IL-33 enhances the kinetics and quality of the antibody response to a DNA and protein-based HIV-1 Env vaccine. Vaccine 2019; 37:2322-2330. [PMID: 30926296 PMCID: PMC6506229 DOI: 10.1016/j.vaccine.2019.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Induction of a sustained and broad antibody (Ab) response is a major goal in developing a protective HIV-1 vaccine. DNA priming alone shows reduced levels of immunogenicity; however, when combined with protein boosting is an attractive vaccination strategy for induction of humoral responses. Using the VC10014 DNA and protein-based vaccine consisting of HIV-1 envelope (Env) gp160 plasmids and trimeric gp140 proteins derived from an HIV-1 clade B infected subject who developed broadly neutralizing serum Abs, and which has been previously demonstrated to induce Tier 2 heterologous neutralizing Abs in rhesus macaques, we evaluated whether MPLA and IL-33 when administered during the DNA priming phase enhances the humoral response in mice. The addition of IL-33 during the gp160 DNA priming phase resulted in high titer gp120-specific plasma IgG after the first immunization. The IL-33 treated mice had higher plasma IgG Ab avidity, breadth, and durability after DNA and protein co-immunization with alum adjuvant as compared to MPLA and alum only treated mice. IL-33 was also associated with a significant IgM Env-specific response and expansion of peritoneal and splenic B-1b B cells. These results indicate that DNA priming in the presence of exogenous IL-33 qualitatively alters the HIV-1 Env-specific humoral response, improving the kinetics and breadth of potentially protective Ab.
Collapse
Affiliation(s)
- Sanghita Sarkar
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael S Piepenbrink
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Madhubanti Basu
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Juilee Thakar
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C Keefer
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - James J Kobie
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
92
|
Ancestral sequences from an elite neutralizer proximal to the development of neutralization resistance as a potential source of HIV vaccine immunogens. PLoS One 2019; 14:e0213409. [PMID: 30969970 PMCID: PMC6457492 DOI: 10.1371/journal.pone.0213409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022] Open
Abstract
A major challenge in HIV vaccine development is the identification of immunogens able to elicit broadly neutralizing antibodies (bNAbs). While remarkable progress has been made in the isolation and characterization of bNAbs, the epitopes they recognize appear to be poorly immunogenic. Thus, none of the candidate vaccines developed to date has induced satisfactory levels of neutralizing antibodies to the HIV envelope protein (Env). One approach to the problem of poor immunogenicity is to build vaccines based on envelope (env) genes retrieved from rare individuals termed elite neutralizers (ENs) who at one time possessed specific sequences that stimulated the formation of bNAbs. Env proteins selected from these individuals could possess uncommon, yet to be defined, structural features that enhance the immunogenicity of epitopes recognized by bNAbs. Here we describe the recovery of envs from an EN that developed unusually broad and potent bNAbs. As longitudinal specimens were not available, we combined plasma and provirus sequences acquired from a single time-point to infer a phylogenetic tree. Combining ancestral reconstruction data with virus neutralization data allowed us to sift through the myriad of virus quasi-species that evolved in this individual to identify envelope sequences from the nodes that appeared to define the transition from neutralization sensitive envs to the neutralization resistant envs that occur in EN plasma. Synthetic genes from these nodes were functional in infectivity assays and sensitive to neutralization by bNAbs, and may provide a novel source of immunogens for HIV vaccine development.
Collapse
|
93
|
Lei L, Yang YR, Tran K, Wang Y, Chiang CI, Ozorowski G, Xiao Y, Ward AB, Wyatt RT, Li Y. The HIV-1 Envelope Glycoprotein C3/V4 Region Defines a Prevalent Neutralization Epitope following Immunization. Cell Rep 2019; 27:586-598.e6. [PMID: 30970260 PMCID: PMC6458978 DOI: 10.1016/j.celrep.2019.03.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/07/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Despite recent progress in engineering native trimeric HIV-1 envelope glycoprotein (Env) mimics as vaccine candidates, Env trimers often induce vaccine-matched neutralizing antibody (NAb) responses. Understanding the specificities of autologous NAb responses and the underlying molecular mechanisms restricting the neutralization breadth is therefore informative to improve vaccine efficacy. Here, we delineate the response specificity by single B cell sorting and serum analysis of guinea pigs immunized with BG505 SOSIP.664 Env trimers. Our results reveal a prominent immune target containing both conserved and strain-specific residues in the C3/V4 region of Env in trimer-vaccinated animals. The defined NAb response shares a high degree of similarity with the early NAb response developed by a naturally infected infant from whom the HIV virus strain BG505 was isolated and later developed a broadly NAb response. Our study describes strain-specific responses and their possible evolution pathways, thereby highlighting the potential to broaden NAb responses by immunogen re-design.
Collapse
Affiliation(s)
- Lin Lei
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Yuhe R Yang
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen Tran
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yimeng Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard T Wyatt
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center of Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
94
|
Prime-Boost Immunizations with DNA, Modified Vaccinia Virus Ankara, and Protein-Based Vaccines Elicit Robust HIV-1 Tier 2 Neutralizing Antibodies against the CAP256 Superinfecting Virus. J Virol 2019; 93:JVI.02155-18. [PMID: 30760570 PMCID: PMC6450106 DOI: 10.1128/jvi.02155-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/26/2019] [Indexed: 12/31/2022] Open
Abstract
A vaccine regimen that elicits broadly neutralizing antibodies (bNAbs) is a major goal in HIV-1 vaccine research. In this study, we assessed the immunogenicity of the CAP256 superinfecting viral envelope (CAP256 SU) protein delivered by modified vaccinia virus Ankara (MVA) and DNA vaccines in different prime-boost combinations followed by a soluble protein (P) boost. The envelope protein (Env) contained a flexible glycine linker and I559P mutation. Trimer-specific bNAbs PGT145, PG16, and CAP256 VRC26_08 efficiently bound to the membrane-bound CAP256 envelope expressed on the surface of cells transfected or infected with the DNA and MVA vaccines. The vaccines were tested in two different vaccination regimens in rabbits. Both regimens elicited autologous tier 2 neutralizing antibodies (NAbs) and high-titer binding antibodies to the matching CAP256 Env and CAP256 V1V2 loop scaffold. The immunogenicity of DNA and MVA vaccines expressing membrane-bound Env alone was compared to that of Env stabilized in a more native-like conformation on the surface of Gag virus-like particles (VLPs). The inclusion of Gag in the DNA and MVA vaccines resulted in earlier development of tier 2 NAbs for both vaccination regimens. In addition, a higher proportion of the rabbits primed with DNA and MVA vaccines that included Gag developed tier 2 NAbs than did those primed with vaccine expressing Env alone. Previously, these DNA and MVA vaccines expressing subtype C mosaic HIV-1 Gag were shown to elicit strong T cell responses in mice. Here we show that when the CAP256 SU envelope protein is included, these vaccines elicit autologous tier 2 NAbs.IMPORTANCE A vaccine is urgently needed to combat HIV-1, particularly in sub-Saharan Africa, which remains disproportionately affected by the AIDS pandemic and accounts for the majority of new infections and AIDS-related deaths. In this study, two different vaccination regimens were compared. Rabbits that received two DNA primes followed by two modified vaccinia virus Ankara (MVA) and two protein inoculations developed better immune responses than those that received two MVA and three protein inoculations. In addition, DNA and MVA vaccines that expressed mosaic Gag VLPs presenting a stabilized Env antigen elicited better responses than Env alone, which supports the inclusion of Gag VLPs in an HIV-1 vaccine.
Collapse
|
95
|
Ananthaswamy N, Fang Q, AlSalmi W, Jain S, Chen Z, Klose T, Sun Y, Liu Y, Mahalingam M, Chand S, Tovanabutra S, Robb ML, Rossmann MG, Rao VB. A sequestered fusion peptide in the structure of an HIV-1 transmitted founder envelope trimer. Nat Commun 2019; 10:873. [PMID: 30787293 PMCID: PMC6382815 DOI: 10.1038/s41467-019-08825-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
The envelope protein of human immunodeficiency virus-1 (HIV-1) and its fusion peptide are essential for cell entry and vaccine design. Here, we describe the 3.9-Å resolution structure of an envelope protein trimer from a very early transmitted founder virus (CRF01_AE T/F100) complexed with Fab from the broadly neutralizing antibody (bNAb) 8ANC195. The overall T/F100 trimer structure is similar to other reported "closed" state prefusion trimer structures. In contrast, the fusion peptide, which is exposed to solvent in reported closed structures, is sequestered (buried) in the hydrophobic core of the T/F100 trimer. A buried conformation has previously been observed in "open" state structures formed after CD4 receptor binding. The T/F100 trimer binds poorly to bNAbs including the fusion peptide-specific bNAbs PGT151 and VRC34.01. The T/F100 structure might represent a prefusion state, intermediate between the closed and open states. These observations are relevant to mechanisms of HIV-1 transmission and vaccine design.
Collapse
Affiliation(s)
- Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Qianglin Fang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Wadad AlSalmi
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Swati Jain
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Zhenguo Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.,The Fifth People's Hospital of Shanghai & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yingyuan Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yue Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Subhash Chand
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, 20910, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, 20910, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
96
|
Bresk CA, Hofer T, Wilmschen S, Krismer M, Beierfuß A, Effantin G, Weissenhorn W, Hogan MJ, Jordan APO, Gelman RS, Montefiori DC, Liao HX, Schmitz JE, Haynes BF, von Laer D, Kimpel J. Induction of Tier 1 HIV Neutralizing Antibodies by Envelope Trimers Incorporated into a Replication Competent Vesicular Stomatitis Virus Vector. Viruses 2019; 11:v11020159. [PMID: 30769947 PMCID: PMC6409518 DOI: 10.3390/v11020159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
A chimeric vesicular stomatitis virus with the glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, is a potent viral vaccine vector that overcomes several of the limitations of wild-type VSV. Here, we evaluated the potential of VSV-GP as an HIV vaccine vector. We introduced genes for different variants of the HIV-1 envelope protein Env, i.e., secreted or membrane-anchored, intact or mutated furin cleavage site or different C-termini, into the genome of VSV-GP. We found that the addition of the Env antigen did not attenuate VSV-GP replication. All HIV-1 Env variants were expressed in VSV-GP infected cells and some were incorporated very efficiently into VSV-GP particles. Crucial epitopes for binding of broadly neutralizing antibodies against HIV-1 such as MPER (membrane-proximal external region), CD4 binding site, V1V2 and V3 loop were present on the surface of VSV-GP-Env particles. Binding of quaternary antibodies indicated a trimeric structure of VSV-GP incorporated Env. We detected high HIV-1 antibody titers in mice and showed that vectors expressing membrane-anchored Env elicited higher antibody titers than vectors that secreted Envs. In rabbits, Tier 1A HIV-1 neutralizing antibodies were detectable after prime immunization and titers further increased after boosting with a second immunization. Taken together, VSV-GP-Env is a promising vector vaccine against HIV-1 infection since this vector permits incorporation of native monomeric and/or trimeric HIV-1 Env into a viral membrane.
Collapse
Affiliation(s)
- C Anika Bresk
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Tamara Hofer
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Marina Krismer
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Anja Beierfuß
- Central Laboratory Animal Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Grégory Effantin
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 38044 Grenoble, France.
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 38044 Grenoble, France.
| | - Michael J Hogan
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrea P O Jordan
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Rebecca S Gelman
- Dana-Farber Cancer Institute, Harvard Medical School and Harvard School of Public Health, Boston, MA 02215, USA.
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
97
|
Kumar S, Sarkar A, Pugach P, Sanders RW, Moore JP, Ward AB, Wilson IA. Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein fusion peptide. Nat Commun 2019; 10:763. [PMID: 30770829 PMCID: PMC6377653 DOI: 10.1038/s41467-019-08738-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/25/2019] [Indexed: 02/04/2023] Open
Abstract
The N-terminal fusion peptide (FP) of the human immunodeficiency virus (HIV)-1 envelope glycoprotein (Env) gp41 subunit plays a critical role in cell entry. However, capturing the structural flexibility in the unbound FP is challenging in the native Env trimer. Here, FP conformational isomerism is observed in two crystal structures of a soluble clade B transmitted/founder virus B41 SOSIP.664 Env with broadly neutralizing antibodies (bNAbs) PGT124 and 35O22 to aid in crystallization and that are not specific for binding to the FP. Large rearrangements in the FP and fusion peptide proximal region occur around M530, which remains anchored in the tryptophan clasp (gp41 W623, W628, W631) in the B41 Env prefusion state. Further, we redesigned the FP at position 518 to reinstate the bNAb VRC34.01 epitope. These findings provide further structural evidence for the dynamic nature of the FP and how a bNAb epitope can be restored during vaccine design. The fusion peptide (FP) of HIV envelope (Env) is critical in the cell entry process. Here, Kumar et al. present crystal structures of B41 SOSIP.664 Env trimer and show the dynamic nature of the FP and proximal region, which likely relates to conformational rearrangements required for membrane fusion.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Pavel Pugach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Rogier W Sanders
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.,Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
98
|
Karch CP, Bai H, Torres OB, Tucker CA, Michael NL, Matyas GR, Rolland M, Burkhard P, Beck Z. Design and characterization of a self-assembling protein nanoparticle displaying HIV-1 Env V1V2 loop in a native-like trimeric conformation as vaccine antigen. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:206-216. [DOI: 10.1016/j.nano.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
|
99
|
Zhang P, Gorman J, Geng H, Liu Q, Lin Y, Tsybovsky Y, Go EP, Dey B, Andine T, Kwon A, Patel M, Gururani D, Uddin F, Guzzo C, Cimbro R, Miao H, McKee K, Chuang GY, Martin L, Sironi F, Malnati MS, Desaire H, Berger EA, Mascola JR, Dolan MA, Kwong PD, Lusso P. Interdomain Stabilization Impairs CD4 Binding and Improves Immunogenicity of the HIV-1 Envelope Trimer. Cell Host Microbe 2019; 23:832-844.e6. [PMID: 29902444 DOI: 10.1016/j.chom.2018.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/04/2018] [Accepted: 05/02/2018] [Indexed: 01/29/2023]
Abstract
The HIV-1 envelope (Env) spike is a trimer of gp120/gp41 heterodimers that mediates viral entry. Binding to CD4 on the host cell membrane is the first essential step for infection but disrupts the native antigenic state of Env, posing a key obstacle to vaccine development. We locked the HIV-1 Env trimer in a pre-fusion configuration, resulting in impaired CD4 binding and enhanced binding to broadly neutralizing antibodies. This design was achieved via structure-guided introduction of neo-disulfide bonds bridging the gp120 inner and outer domains and was successfully applied to soluble trimers and native gp160 from different HIV-1 clades. Crystallization illustrated the structural basis for CD4-binding impairment. Immunization of rabbits with locked trimers from two different clades elicited neutralizing antibodies against tier-2 viruses with a repaired glycan shield regardless of treatment with a functional CD4 mimic. Thus, interdomain stabilization provides a widely applicable template for the design of Env-based HIV-1 vaccines.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yin Lin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Eden P Go
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Barna Dey
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tsion Andine
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Alice Kwon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mit Patel
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Deepali Gururani
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ferzan Uddin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Christina Guzzo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Raffaello Cimbro
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Loïc Martin
- CEA, Joliot, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Francesca Sironi
- Department of Biological and Technological Research, San Raffaele Scientific Institute, Milan 20122, Italy
| | - Mauro S Malnati
- Department of Biological and Technological Research, San Raffaele Scientific Institute, Milan 20122, Italy
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Edward A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
100
|
Margolin E, Chapman R, Meyers AE, van Diepen MT, Ximba P, Hermanus T, Crowther C, Weber B, Morris L, Williamson AL, Rybicki EP. Production and Immunogenicity of Soluble Plant-Produced HIV-1 Subtype C Envelope gp140 Immunogens. FRONTIERS IN PLANT SCIENCE 2019; 10:1378. [PMID: 31737007 PMCID: PMC6831737 DOI: 10.3389/fpls.2019.01378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/07/2019] [Indexed: 05/11/2023]
Abstract
The development of effective vaccines is urgently needed to curb the spread of human immunodeficiency virus type 1 (HIV-1). A major focal point of current HIV vaccine research is the production of soluble envelope (Env) glycoproteins which reproduce the structure of the native gp160 trimer. These antigens are produced in mammalian cells, which requires a sophisticated infrastructure for manufacture that is mostly absent in developing countries. The production of recombinant proteins in plants is an attractive alternative for the potentially cheap and scalable production of vaccine antigens, especially for developing countries. In this study, we developed a transient expression system in Nicotiana benthamiana for the production of soluble HIV Env gp140 antigens based on two rationally selected virus isolates (CAP256 SU and Du151). The scalability of the platform was demonstrated and both affinity and size exclusion chromatography (SEC) were explored for recovery of the recombinant antigens. Rabbits immunized with lectin affinity-purified antigens developed high titres of binding antibodies, including against the V1V2 loop region, and neutralizing antibodies against Tier 1 viruses. The removal of aggregated Env species by gel filtration resulted in the elicitation of superior binding and neutralizing antibodies. Furthermore, a heterologous prime-boost regimen employing a recombinant modified vaccinia Ankara (rMVA) vaccine, followed by boosts with the SEC-purified protein, significantly improved the immunogenicity. To our knowledge, this is the first study to assess the immunogenicity of a near-full length plant-derived Env vaccine immunogen.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann E. Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Ann E. Meyers,
| | - Michiel T. van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Carol Crowther
- National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Brandon Weber
- Structural Biology Research Unit, Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|