51
|
Sarkar MS, Madabhavi I. SARS-CoV-2 variants of concern: a review. Monaldi Arch Chest Dis 2022. [DOI: 10.4081/monaldi.2022.2337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
The virus that causes severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the genus Beta coronavirus and the family Coronaviridae. The SARS-CoV-2 virus is a positive sense, non-segmented single-strand RNA virus that causes coronavirus disease 2019 (COVID-19), which was first reported in December 2019 in Wuhan, China. COVID-19 is now a worldwide pandemic. Globally, several newer variants have been identified; however, only a few of them are of concern (VOCs). VOCs differ in terms of infectivity, transmissibility, disease severity, drug efficacy, and neutralization efficacy by monoclonal antibodies, convalescent sera, or vaccines. VOCs reported from various parts of the world include B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617/B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron). These VOCs are the result of mutations, with some based on spike proteins. Mutations may also cause molecular diagnostic tests to fail to detect the few VOCs, leading to a delayed diagnosis, increased community spread, and delayed treatment. We searched PubMed, EMBASE, Covariant, Stanford variants database, and CINAHL from December 2019 to February 2022 using the following search terms: Variant of Concern, SARS-CoV-2, Omicron, etc. All types of research were chosen. All research methods were considered. This review discusses the various VOCs, as well as their mutations, infectivity, transmissibility, and neutralization efficacy.
Collapse
|
52
|
Jeong HW, Kim SM, Jung MK, Noh JY, Yoo JS, Kim EH, Kim YI, Yu K, Jang SG, Gil J, Casel MA, Rare R, Choi JH, Kim HS, Kim JH, Um J, Kim C, Kim Y, Chin BS, Jung S, Choi JY, Song KH, Kim YD, Park JS, Song JY, Shin EC, Choi YK. Enhanced antibody responses in fully vaccinated individuals against pan-SARS-CoV-2 variants following Omicron breakthrough infection. Cell Rep Med 2022; 3:100764. [PMID: 36182684 PMCID: PMC9482837 DOI: 10.1016/j.xcrm.2022.100764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/14/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022]
Abstract
Omicron has become the globally dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, creating additional challenges due to its ability to evade neutralization. Here, we report that neutralizing antibodies against Omicron variants are undetected following COVID-19 infection with ancestral or past SARS-CoV-2 variant viruses or after two-dose mRNA vaccination. Compared with two-dose vaccination, a three-dose vaccination course induces broad neutralizing antibody responses with improved durability against different SARS-CoV-2 variants, although neutralizing antibody titers against Omicron remain low. Intriguingly, among individuals with three-dose vaccination, Omicron breakthrough infection substantially augments serum neutralizing activity against a broad spectrum of SARS-CoV-2 variants, including Omicron variants BA.1, BA.2, and BA.5. Additionally, after Omicron breakthrough infection, memory T cells respond to the spike proteins of both ancestral and Omicron SARS-CoV-2 by producing cytokines with polyfunctionality. These results suggest that Omicron breakthrough infection following three-dose mRNA vaccination induces pan-SARS-CoV-2 immunity that may protect against emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Hye Won Jeong
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Se-Mi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Min Kyung Jung
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Ji-Seung Yoo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Kwangmin Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Juryeon Gil
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mark Anthony Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Rollon Rare
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Jeong Ho Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hee-Sung Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Jun Hyoung Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Jihye Um
- Public Health Research Institute, National Medical Center, Seoul 04564, Republic of Korea
| | - Chaeyoon Kim
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Yeonjae Kim
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul 04564, Republic of Korea
| | - Bum Sik Chin
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul 04564, Republic of Korea
| | - Sungmin Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyoung-Ho Song
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Yong-Dae Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Jun-Sun Park
- Public Health Research Institute, National Medical Center, Seoul 04564, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Republic of Korea.
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
53
|
Marzi R, Bassi J, Silacci-Fregni C, Bartha I, Muoio F, Culap K, Sprugasci N, Lombardo G, Saliba C, Cameroni E, Cassotta A, Low JS, Walls AC, McCallum M, Tortorici MA, Bowen JE, Dellota EA, Dillen JR, Czudnochowski N, Pertusini L, Terrot T, Lepori V, Tarkowski M, Riva A, Biggiogero M, Pellanda AF, Garzoni C, Ferrari P, Ceschi A, Giannini O, Havenar-Daughton C, Telenti A, Arvin A, Virgin HW, Sallusto F, Veesler D, Lanzavecchia A, Corti D, Piccoli L. Maturation of SARS-CoV-2 Spike-specific memory B cells drives resilience to viral escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.30.509852. [PMID: 36203553 PMCID: PMC9536037 DOI: 10.1101/2022.09.30.509852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Roberta Marzi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Jessica Bassi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Istvan Bartha
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Francesco Muoio
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Culap
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Gloria Lombardo
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Christian Saliba
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | | | - Josh R Dillen
- Vir Biotechnology, San Francisco, CA, United States of America
| | | | - Laura Pertusini
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Tatiana Terrot
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | | | - Maciej Tarkowski
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Agostino Riva
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Maira Biggiogero
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | | | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Paolo Ferrari
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Clinical School, University of New South Wales, Sydney, Australia
| | - Alessandro Ceschi
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Science of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | | | - Amalio Telenti
- Vir Biotechnology, San Francisco, CA, United States of America
| | - Ann Arvin
- Vir Biotechnology, San Francisco, CA, United States of America
| | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States of America
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | | | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| |
Collapse
|
54
|
Parmar M, Thumar R, Sheth J, Patel D. Designing multi-epitope based peptide vaccine targeting spike protein SARS-CoV-2 B1.1.529 (Omicron) variant using computational approaches. Struct Chem 2022; 33:2243-2260. [PMID: 36160688 PMCID: PMC9485025 DOI: 10.1007/s11224-022-02027-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 10/26/2022]
Abstract
Millions of lives have been infected since the SARS-CoV-2 outbreak in 2019. The high human-to-human transmission rate has warranted a need for a vaccine to protect people. Although some vaccines are in use, due to the high mutation rate in the SARS-CoV-2 multiple variants, the current vaccines may not be sufficient to immunize people against new variant threats. One of the emerging concern variants is B1.1.529 (Omicron), which carries ~ 30 mutations in the Spike protein (S) of SARS-CoV-2 and is predicted to evade antibody recognition even from vaccinated people. We used a structure-based approach and an epitope prediction server to develop a Multi-Epitope based Subunit Vaccine (MESV) involving SARS-CoV-2 B1.1.529 variant spike glycoprotein. The predicted epitope with better antigenicity and non-toxicity was used for designing and predicting vaccine construct features and structure models. In addition, the MESV construct In silico cloning in the pET28a expression vector predicted the construct to be highly translational. The proposed MESV vaccine construct was also subjected to immune simulation prediction and was found to be highly antigenic and elicit a cell-mediated immune response. Therefore, the proposed MESV in the present study has the potential to be evaluated further for vaccine production against the newly identified B1.1.529 (Omicron) variant of concern. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02027-6.
Collapse
Affiliation(s)
- Meet Parmar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Ritik Thumar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Jigar Sheth
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Dhaval Patel
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
- Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar, 382355 Gujarat India
| |
Collapse
|
55
|
Hederman AP, Natarajan H, Wiener JA, Wright PF, Bloch EM, Tobian AA, Redd AD, Blankson JN, Rottenstreich A, Zarbiv G, Wolf D, Goetghebuer T, Marchant A, Ackerman ME. SARS-CoV-2 mRNA vaccination elicits broad and potent Fc effector functions to VOCs in vulnerable populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.15.22280000. [PMID: 36172122 PMCID: PMC9516864 DOI: 10.1101/2022.09.15.22280000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 variants have continuously emerged even as highly effective vaccines have been widely deployed. Reduced neutralization observed against variants of concern (VOC) raises the question as to whether other antiviral antibody activities are similarly compromised, or if they might compensate for lost neutralization activity. In this study, the breadth and potency of antibody recognition and effector function was surveyed in both healthy individuals as well as immunologically vulnerable subjects following either natural infection or receipt of an mRNA vaccine. Considering pregnant women as a model cohort with higher risk of severe illness and death, we observed similar binding and functional breadth for healthy and immunologically vulnerable populations. In contrast, considerably greater functional antibody breadth and potency across VOC was associated with vaccination than prior infection. However, greater antibody functional activity targeting the endemic coronavirus OC43 was noted among convalescent individuals, illustrating a dichotomy in recognition between close and distant human coronavirus strains that was associated with exposure history. Probing the full-length spike and receptor binding domain (RBD) revealed that antibody-mediated Fc effector functions were better maintained against full-length spike as compared to RBD. This analysis of antibody functions in healthy and vulnerable populations across a panel of SARS-CoV-2 VOC and extending through endemic alphacoronavirus strains suggests the differential potential for antibody effector functions to contribute to protecting vaccinated and convalescent subjects as the pandemic progresses and novel variants continue to evolve. One Sentence Summary As compared to natural infection with SARS-CoV-2, vaccination drives superior functional antibody breadth raising hopes for candidate universal CoV vaccines.
Collapse
Affiliation(s)
| | - Harini Natarajan
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Joshua A. Wiener
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Peter F. Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Aaron A.R. Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew D. Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joel N. Blankson
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amihai Rottenstreich
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center
| | - Gila Zarbiv
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Dana Wolf
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Tessa Goetghebuer
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
- Pediatric Department, CHU St Pierre, Brussels, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
56
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
57
|
Dolton G, Rius C, Hasan MS, Wall A, Szomolay B, Behiry E, Whalley T, Southgate J, Fuller A, Morin T, Topley K, Tan LR, Goulder PJR, Spiller OB, Rizkallah PJ, Jones LC, Connor TR, Sewell AK. Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope. Cell 2022; 185:2936-2951.e19. [PMID: 35931021 PMCID: PMC9279490 DOI: 10.1016/j.cell.2022.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 01/06/2023]
Abstract
We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Md Samiul Hasan
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Barbara Szomolay
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK; Systems Immunology Research Institute, Cardiff University, CF14 4XN Cardiff, Wales, UK
| | - Enas Behiry
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Thomas Whalley
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, Wales, UK
| | - Joel Southgate
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, Wales, UK
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Katie Topley
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Li Rong Tan
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, OX3 9DU Oxford, England, UK
| | - Owen B Spiller
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Pierre J Rizkallah
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Lucy C Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK; Centre for Clinical Research, Royal Glamorgan Hospital, Ynysmaerdy CF72 8XR, UK
| | - Thomas R Connor
- Systems Immunology Research Institute, Cardiff University, CF14 4XN Cardiff, Wales, UK; School of Biosciences, Cardiff University, CF10 3AX Cardiff, Wales, UK; Pathogen genomics Unit, Public Health Wales NHS Trust, CF14 4XW Cardiff, Wales, UK.
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK; Systems Immunology Research Institute, Cardiff University, CF14 4XN Cardiff, Wales, UK.
| |
Collapse
|
58
|
Feng Z, Cui S, Lyu B, Liang Z, Li F, Shen L, Xu H, Yang P, Wang Q, Zhang D, Pan Y. Genomic characteristics of SARS-CoV-2 in Beijing, China, 2021. BIOSAFETY AND HEALTH 2022; 4:253-257. [PMID: 35578696 PMCID: PMC9095075 DOI: 10.1016/j.bsheal.2022.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022] Open
Abstract
At present, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, which has emerged multiple variants and brought a threat to global public health. To analyze the genomic characteristics and variations of SARS-CoV-2 imported into Beijing, we collected the respiratory tract specimens of 112 cases of coronavirus disease 2019 (COVID-19) from January to September 2021 in Beijing, China, including 40 local cases and 72 imported cases. The whole-genome sequences of the viruses were sequenced by the next-generation sequencing method. Variant markers and phylogenic features of SARS-CoV-2 were analyzed. Our results showed that in all 112 sequences, the mutations were concentrated in spike protein. D614G was found in all sequences, and mutations including L452R, T478K, P681R/H, and D950N in some cases. Furthermore, 112 sequences belonged to 23 lineages by phylogenetic analysis. B.1.1.7 (Alpha) and B.1.617.2 (Delta) lineages were dominant. Our study drew a variation image of SARS-CoV-2 and could help evaluate the potential risk of COVID-19 for pandemic preparedness and response.
Collapse
Affiliation(s)
- Zhaomin Feng
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Shujuan Cui
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Lyu
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhichao Liang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Fu Li
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Lingyu Shen
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Hui Xu
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Peng Yang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Daitao Zhang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yang Pan
- Beijing Center for Disease Prevention and Control, Beijing 100013, China,Corresponding author: Beijing Center for Disease Prevention and Control, Beijing 100013, China
| |
Collapse
|
59
|
Roshdy WH, Kandeil A, El-Shesheny R, Khalifa MK, Al-Karmalawy AA, Showky S, Naguib A, Elguindy N, Fahim M, Abu Elsood H, El Taweel A, Salamony A, Mohsen A, Kayali G, Ali MA, Kandeel A. Insight into Genetic Characteristics of Identified SARS-CoV-2 Variants in Egypt from March 2020 to May 2021. Pathogens 2022; 11:pathogens11080834. [PMID: 35894057 PMCID: PMC9330621 DOI: 10.3390/pathogens11080834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first detected in Egypt in February 2020. Data about the prevalence rates of the SARS-CoV-2 lineages are relatively scarce. To understand the genetic characteristics of SARS-CoV-2 in Egypt during several waves of the pandemic, we analyzed sequences of 1256 Egyptian SARS-CoV-2 full genomes from March 2020 to May 2021. From one wave to the next, dominant strains have been observed to be replaced by other dominant strains. We detected an emerging lineage of SARS-CoV-2 in Egypt that shares mutations with the variant of concern (VOC). The neutralizing capacity of sera collected from cases infected with C.36.3 against dominant strains detected in Egypt showed a higher cross reactivity of sera with C.36.3 compared to other strains. Using in silico tools, mutations in the spike of SARS-CoV-2 induced a difference in binding affinity to the viral receptor. The C.36 lineage is the most dominant SARS-CoV-2 lineage in Egypt, and the heterotrophic antigenicity of SARS-CoV-2 variants is asymmetric. These results highlight the value of genetic and antigenic analyses of circulating strains in regions where published sequences are limited.
Collapse
Affiliation(s)
- Wael H. Roshdy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo 11613, Egypt; (M.K.K.); (S.S.); (A.N.); (N.E.); (A.S.)
- Correspondence: (W.H.R.); (M.A.A.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (R.E.-S.); (A.E.T.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (R.E.-S.); (A.E.T.)
| | - Mohamed K. Khalifa
- Central Public Health Laboratory, Ministry of Health and Population, Cairo 11613, Egypt; (M.K.K.); (S.S.); (A.N.); (N.E.); (A.S.)
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt;
| | - Shymaa Showky
- Central Public Health Laboratory, Ministry of Health and Population, Cairo 11613, Egypt; (M.K.K.); (S.S.); (A.N.); (N.E.); (A.S.)
| | - Amel Naguib
- Central Public Health Laboratory, Ministry of Health and Population, Cairo 11613, Egypt; (M.K.K.); (S.S.); (A.N.); (N.E.); (A.S.)
| | - Nancy Elguindy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo 11613, Egypt; (M.K.K.); (S.S.); (A.N.); (N.E.); (A.S.)
| | - Manal Fahim
- Department of Surveillance and Epidemiology, Ministry of Health and Population, Cairo 11613, Egypt; (M.F.); (H.A.E.)
| | - Hanaa Abu Elsood
- Department of Surveillance and Epidemiology, Ministry of Health and Population, Cairo 11613, Egypt; (M.F.); (H.A.E.)
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (R.E.-S.); (A.E.T.)
| | - Azza Salamony
- Central Public Health Laboratory, Ministry of Health and Population, Cairo 11613, Egypt; (M.K.K.); (S.S.); (A.N.); (N.E.); (A.S.)
| | - Amira Mohsen
- Egypt Country Office, World Health Organization, Cairo 11613, Egypt;
| | | | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (R.E.-S.); (A.E.T.)
- Correspondence: (W.H.R.); (M.A.A.)
| | - Amr Kandeel
- Preventive Sector, Ministry of Health and Population, Cairo 11613, Egypt;
| |
Collapse
|
60
|
Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther 2022; 7:202. [PMID: 35764603 PMCID: PMC9240077 DOI: 10.1038/s41392-022-01039-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
The persistent COVID-19 pandemic since 2020 has brought an enormous public health burden to the global society and is accompanied by various evolution of the virus genome. The consistently emerging SARS-CoV-2 variants harboring critical mutations impact the molecular characteristics of viral proteins and display heterogeneous behaviors in immune evasion, transmissibility, and the clinical manifestation during infection, which differ each strain and endow them with distinguished features during populational spread. Several SARS-CoV-2 variants, identified as Variants of Concern (VOC) by the World Health Organization, challenged global efforts on COVID-19 control due to the rapid worldwide spread and enhanced immune evasion from current antibodies and vaccines. Moreover, the recent Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, 510060, Guangzhou, China.
| |
Collapse
|
61
|
Dubé C, Paris-Robidas S, Andreani G, Gutzeit C, D'Aoust MA, Ward BJ, Trépanier S. Broad neutralization against SARS-CoV-2 variants induced by ancestral and B.1.351 AS03-Adjuvanted recombinant Plant-Derived Virus-Like particle vaccines. Vaccine 2022; 40:4017-4025. [PMID: 35654621 PMCID: PMC9135691 DOI: 10.1016/j.vaccine.2022.05.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023]
Abstract
Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulting in the coronavirus disease 2019 (COVID-19) has afflicted hundreds of millions of people in a worldwide pandemic. Several safe and effective COVID-19 vaccines are now available. However, the rapid emergence of variants and risk of viral escape from vaccine-induced immunity emphasize the need to develop broadly protective vaccines. A recombinant plant-derived virus-like particle vaccine for the ancestral COVID-19 (CoVLP) recently authorized by Canadian Health Authorities and a modified CoVLP.B1351 targeting the B.1.351 variant (both formulated with the adjuvant AS03) were assessed in homologous and heterologous prime-boost regimen in mice. Both strategies induced strong and broadly cross-reactive neutralizing antibody (NAb) responses against several Variants of Concern (VOCs), including B.1.351/Beta, B.1.1.7/Alpha, P.1/Gamma, B.1.617.2/Delta and B.1.1.529/Omicron strains. The neutralizing antibody (NAb) response was robust with both primary vaccination strategies and tended to be higher for almost all VOCs following the heterologous prime-boost regimen.
Collapse
Affiliation(s)
- Charlotte Dubé
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Sarah Paris-Robidas
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Guadalupe Andreani
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Cindy Gutzeit
- GlaxoSmithKline Biologicals, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Marc-André D'Aoust
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Brian J Ward
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada; Research Institute of the McGill University Health Centre, 1001 Decarie St, Montreal, QC H4A 3J1, Canada
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada.
| |
Collapse
|
62
|
Yoon E, Kim D, Jeon H, Kwon Y, Jang Y, Kim S, Hwang KY. Severe acute respiratory syndrome coronavirus 2 variants-Possibility of universal vaccine design: A review. Comput Struct Biotechnol J 2022; 20:3533-3544. [PMID: 35765543 PMCID: PMC9221512 DOI: 10.1016/j.csbj.2022.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022] Open
Abstract
Both novel and conventional vaccination strategies have been implemented worldwide since the onset of coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite various medical advances in the treatment and prevention of the spread of this contagious disease, it remains a major public health threat with a high mortality rate. As several lethal SARS-CoV-2 variants continue to emerge, the development of several vaccines and medicines, each with certain advantages and disadvantages, is underway. Additionally, many modalities are at various stages of research and development or clinical trials. Here, we summarize emerging SARS-CoV-2 variants, including delta, omicron, and "stealth omicron," as well as available oral drugs for COVID-19. We also discuss possible antigen candidates other than the receptor-binding domain protein for the development of a universal COVID-19 vaccine. The present review will serve as a helpful resource for future vaccine and drug development to combat COVID-19.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- Antigen
- COVID-19
- COVID-19, coronavirus disease 2019
- Coronavirus
- FDA, Food and Drug Administration
- FP, fusion peptide
- HE, hemagglutinin-esterase
- HIV, human immunodeficiency virus
- HR1, heptad repeat 1
- HR2, heptad repeat 2
- Oral drug
- RBD, receptor binding domain
- Receptor-binding domain
- S1-CTD, S1 C-terminal domain
- S1-NTD, S1 N-terminal domain
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- TMPRSS2, transmembrane protease serine 2
- Universal vaccine
- mAbs, monoclonal antibodies
Collapse
Affiliation(s)
- Eunhye Yoon
- Division of Biotechnology, College of Life Sciences and Biotechnology, Seoul 02841, South Korea
| | - Dahyun Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Seoul 02841, South Korea
| | - Hyeeun Jeon
- Division of Biotechnology, College of Life Sciences and Biotechnology, Seoul 02841, South Korea
| | - Yejin Kwon
- Division of Biotechnology, College of Life Sciences and Biotechnology, Seoul 02841, South Korea
| | - Yejin Jang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Seoul 02841, South Korea
| | - Sulhee Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Seoul 02841, South Korea
- Institute of Bioresource, Korea University, Seoul 02841, South Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Seoul 02841, South Korea
- Institute of Bioresource, Korea University, Seoul 02841, South Korea
| |
Collapse
|
63
|
Syrbu SA, Kiselev AN, Lebedev MA, Gubarev YA, Yurina ES, Lebedeva NS. Interaction of 5-[4'-( N-Methyl-1,3-benzimidazol-2-yl)phenyl]-10,15,20-tri-( N-methyl-3'-pyridyl)porphyrin Triiodide with SARS-CoV-2 Spike Protein. RUSS J GEN CHEM+ 2022; 92:1005-1010. [PMID: 35756101 PMCID: PMC9207844 DOI: 10.1134/s1070363222060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/17/2022] [Accepted: 04/10/2022] [Indexed: 11/22/2022]
Abstract
The results of experimental studies of the interaction of the S-protein with a monohetaryl-substituted porphyrin containing a benzimidazole residue are presented. It has been revealed that the S-protein forms high-affinity complexes with the specified porphyrin. The porphyrin binding by the SARS-CoV-2 S-protein has proceeded stepwise; at the first stage, the driving force of the complexation is electrostatic interaction between the surface negatively charged regions of the protein and cationic substituents of the porphyrin. At the second stage, the target complex of the S-protein with the porphyrin is formed. It has been established that the introduction of 5-[4'-(N-methyl-1,3-benzimidazol-2-yl)phenyl]-10,15,20-tri-(N-methyl-3'-pyridyl)porphyrin triiodide into a solution of the S-protein complex with the angiotensin-converting enzyme leads to the replacement of the latter with the porphyrin. Displacement of the angiotensin-converting enzyme from the complex with the S-protein under the action of 5-[4'-(N-methyl-1,3-benzimidazol-2-yl)phenyl]-10,15,20-tri-(N-methyl-3'-pyridyl)porphyrin triiodide is the experimental evidence for the porphyrin binding at the receptor-binding domain of the S-protein.
Collapse
Affiliation(s)
- S A Syrbu
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - A N Kiselev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia.,Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - M A Lebedev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia.,Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - Yu A Gubarev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - E S Yurina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - N Sh Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| |
Collapse
|
64
|
Balloux F, Tan C, Swadling L, Richard D, Jenner C, Maini M, van Dorp L. The past, current and future epidemiological dynamic of SARS-CoV-2. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac003. [PMID: 35872966 PMCID: PMC9278178 DOI: 10.1093/oxfimm/iqac003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.
Collapse
Affiliation(s)
- François Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672 Singapore, Singapore
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Charlotte Jenner
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Mala Maini
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
65
|
Ballmann R, Hotop SK, Bertoglio F, Steinke S, Heine PA, Chaudhry MZ, Jahn D, Pucker B, Baldanti F, Piralla A, Schubert M, Čičin-Šain L, Brönstrup M, Hust M, Dübel S. ORFeome Phage Display Reveals a Major Immunogenic Epitope on the S2 Subdomain of SARS-CoV-2 Spike Protein. Viruses 2022; 14:1326. [PMID: 35746797 PMCID: PMC9229677 DOI: 10.3390/v14061326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The development of antibody therapies against SARS-CoV-2 remains a challenging task during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against the receptor binding domain (RBD) of the spike, and therefore lose neutralization efficacy against emerging SARS-CoV-2 variants, which frequently mutate in the RBD region. Previously, phage display has been used to identify epitopes of antibody responses against several diseases. Such epitopes have been applied to design vaccines or neutralize antibodies. Here, we constructed an ORFeome phage display library for the SARS-CoV-2 genome. Open reading frames (ORFs) representing the SARS-CoV-2 genome were displayed on the surface of phage particles in order to identify enriched immunogenic epitopes from COVID-19 patients. Library quality was assessed by both NGS and epitope mapping of a monoclonal antibody with a known binding site. The most prominent epitope captured represented parts of the fusion peptide (FP) of the spike. It is associated with the cell entry mechanism of SARS-CoV-2 into the host cell; the serine protease TMPRSS2 cleaves the spike within this sequence. Blocking this mechanism could be a potential target for non-RBD binding therapeutic anti-SARS-CoV-2 antibodies. As mutations within the FP amino acid sequence have been rather rare among SARS-CoV-2 variants so far, this may provide an advantage in the fight against future virus variants.
Collapse
Affiliation(s)
- Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Sven-Kevin Hotop
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - M. Zeeshan Chaudhry
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Dieter Jahn
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany;
| | - Boas Pucker
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstr 1, 38106 Braunschweig, Germany;
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Fondazione Policlinico, 27100 Pavia, Italy;
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Fondazione Policlinico, 27100 Pavia, Italy;
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Luka Čičin-Šain
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| |
Collapse
|
66
|
Ghimire D, Han Y, Lu M. Structural Plasticity and Immune Evasion of SARS-CoV-2 Spike Variants. Viruses 2022; 14:1255. [PMID: 35746726 PMCID: PMC9229035 DOI: 10.3390/v14061255] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
The global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly affected every human life and overloaded the health care system worldwide. Limited therapeutic options combined with the consecutive waves of the infection and emergence of novel SARS-CoV-2 variants, especially variants of concern (VOCs), have prolonged the COVID-19 pandemic and challenged its control. The Spike (S) protein on the surface of SARS-CoV-2 is the primary target exposed to the host and essential for virus entry into cells. The parental (Wuhan-Hu-1 or USA/WA1 strain) S protein is the virus-specific component of currently implemented vaccines. However, S is most prone to mutations, potentially shifting the dynamics of virus-host interactions by affecting S conformational/structural profiles. Scientists have rapidly resolved atomic structures of S VOCs and elucidated molecular details of these mutations, which can inform the design of S-directed novel therapeutics and broadly protective vaccines. Here, we discuss recent findings on S-associated virus transmissibility and immune evasion of SARS-CoV-2 VOCs and experimental approaches used to profile these properties. We summarize the structural studies that document the structural flexibility/plasticity of S VOCs and the potential roles of accumulated mutations on S structures and functions. We focus on the molecular interpretation of structures of the S variants and its insights into the molecular mechanism underlying antibody evasion and host cell-receptor binding.
Collapse
Affiliation(s)
- Dibya Ghimire
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA;
| | | | - Maolin Lu
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA;
| |
Collapse
|
67
|
Abstract
Measuring SARS-CoV-2 neutralizing antibodies after vaccination or natural infection remains a priority in the ongoing COVID-19 pandemic to determine immunity, especially against newly emerging variants. The gold standard for assessing antibody-mediated immunity against SARS-CoV-2 are cell-based live virus neutralization assays. These assays usually take several days, thereby limiting test capacities and the availability of rapid results. In this study, therefore, we developed a faster live virus assay, which detects neutralizing antibodies through the early measurement of antibody-mediated intracellular virus reduction by SARS-CoV-2 qRT-PCR. In our assay, Vero E6 cells are infected with virus isolates preincubated with patient sera and controls. After 24 h, the intracellular viral load is determined by qRT-PCR using a standard curve to calculate percent neutralization. Utilizing COVID-19 convalescent-phase sera, we show that our novel assay generates results with high sensitivity and specificity as we detected antiviral activity for all tested convalescent-phase sera, but no antiviral activity in prepandemic sera. The assay showed a strong correlation with a conventional virus neutralization assay (rS = 0.8910), a receptor-binding domain ELISA (rS = 0.8485), and a surrogate neutralization assay (rS = 0.8373), proving that quantifying intracellular viral RNA can be used to measure seroneutralization. Our assay can be adapted easily to new variants, as demonstrated by our cross-neutralization experiments. This characteristic is key for rapidly determining immunity against newly emerging variants. Taken together, the novel assay presented here reduces turnaround time significantly while making use of a highly standardized and sensitive SARS-CoV-2 qRT-PCR method as a readout.
Collapse
|
68
|
Childs L, Dick DW, Feng Z, Heffernan JM, Li J, Röst G. Modeling waning and boosting of COVID-19 in Canada with vaccination. Epidemics 2022; 39:100583. [PMID: 35665614 PMCID: PMC9132433 DOI: 10.1016/j.epidem.2022.100583] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/04/2021] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, has caused devastating health and economic impacts around the globe since its appearance in late 2019. The advent of effective vaccines leads to open questions on how best to vaccinate the population. To address such questions, we developed a model of COVID-19 infection by age that includes the waning and boosting of immunity against SARS-CoV-2 in the context of infection and vaccination. The model also accounts for changes to infectivity of the virus, such as public health mitigation protocols over time, increases in the transmissibility of variants of concern, changes in compliance to mask wearing and social distancing, and changes in testing rates. The model is employed to study public health mitigation and vaccination of the COVID-19 epidemic in Canada, including different vaccination programs (rollout by age), and delays between doses in a two-dose vaccine. We find that the decision to delay the second dose of vaccine is appropriate in the Canadian context. We also find that the benefits of a COVID-19 vaccination program in terms of reductions in infections is increased if vaccination of 15-19 year olds are included in the vaccine rollout.
Collapse
Affiliation(s)
- Lauren Childs
- Mathematics, Center for Emerging and Zoonotic Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - David W Dick
- Mathematics and Statistics, Centre for Disease Modelling, York University, Toronto, Canada
| | - Zhilan Feng
- Mathematics, Purdue University, West Lafayette IN, USA; National Science Foundation, Alexandria, VA, USA
| | - Jane M Heffernan
- Mathematics and Statistics, Centre for Disease Modelling, York University, Toronto, Canada.
| | - Jing Li
- Mathematics, California State University, Northridge, CA, USA
| | - Gergely Röst
- Mathematics, University of Szeged, Szeged, Hungary
| |
Collapse
|
69
|
Casasnovas JM, Margolles Y, Noriega MA, Guzmán M, Arranz R, Melero R, Casanova M, Corbera JA, Jiménez-de-Oya N, Gastaminza P, Garaigorta U, Saiz JC, Martín-Acebes MÁ, Fernández LÁ. Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Front Immunol 2022; 13:863831. [PMID: 35547740 PMCID: PMC9082315 DOI: 10.3389/fimmu.2022.863831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence of SARS-CoV-2 variants that escape from immune neutralization are challenging vaccines and antibodies developed to stop the COVID-19 pandemic. Thus, it is important to establish therapeutics directed toward multiple or specific SARS-CoV-2 variants. The envelope spike (S) glycoprotein of SARS-CoV-2 is the key target of neutralizing antibodies (Abs). We selected a panel of nine nanobodies (Nbs) from dromedary camels immunized with the receptor-binding domain (RBD) of the S, and engineered Nb fusions as humanized heavy chain Abs (hcAbs). Nbs and derived hcAbs bound with subnanomolar or picomolar affinities to the S and its RBD, and S-binding cross-competition clustered them in two different groups. Most of the hcAbs hindered RBD binding to its human ACE2 (hACE2) receptor, blocked cell entry of viruses pseudotyped with the S protein and neutralized SARS-CoV-2 infection in cell cultures. Four potent neutralizing hcAbs prevented the progression to lethal SARS-CoV-2 infection in hACE2-transgenic mice, demonstrating their therapeutic potential. Cryo-electron microscopy identified Nb binding epitopes in and out the receptor binding motif (RBM), and showed different ways to prevent virus binding to its cell entry receptor. The Nb binding modes were consistent with its recognition of SARS-CoV-2 RBD variants; mono and bispecific hcAbs efficiently bound all variants of concern except omicron, which emphasized the immune escape capacity of this latest variant.
Collapse
Affiliation(s)
- José M Casasnovas
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Yago Margolles
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - María A Noriega
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - María Guzmán
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Rocío Arranz
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Roberto Melero
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mercedes Casanova
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan Alberto Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Arucas, Arucas, Spain
| | - Nereida Jiménez-de-Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA, CSIC), Madrid, Spain
| | - Pablo Gastaminza
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Urtzi Garaigorta
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA, CSIC), Madrid, Spain
| | - Miguel Ángel Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA, CSIC), Madrid, Spain
| | - Luis Ángel Fernández
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
70
|
Kim J, Cheon S, Ahn I. NGS data vectorization, clustering, and finding key codons in SARS-CoV-2 variations. BMC Bioinformatics 2022; 23:187. [PMID: 35581558 PMCID: PMC9113074 DOI: 10.1186/s12859-022-04718-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
The rapid global spread and dissemination of SARS-CoV-2 has provided the virus with numerous opportunities to develop several variants. Thus, it is critical to determine the degree of the variations and in which part of the virus those variations occurred. Therefore, in this study, methods that could be used to vectorize the sequence data, perform clustering analysis, and visualize the results were proposed using machine learning methods. To conduct this study, a total of 224,073 cases of SARS-CoV-2 sequence data were collected through NCBI and GISAID, and the data were visualized using dimensionality reduction and clustering analysis models such as T-SNE and DBSCAN. The SARS-CoV-2 virus, which was first detected, was distinguished from different variations, including Omicron and Delta, in the cluster results. Furthermore, it was possible to examine which codon changes in the spike protein caused the variants to be distinguished using feature importance extraction models such as Random Forest or Shapely Value. The proposed method has the advantage of being able to analyse and visualize a large amount of data at once compared to the existing tree-based sequence data analysis. The proposed method was able to identify and visualize significant changes between the SARS-CoV-2 virus, which was first detected in Wuhan, China, in December 2019, and the newly formed mutant virus group. As a result of clustering analysis using sequence data, it was possible to confirm the formation of clusters among various variants in a two-dimensional graph, and by extracting the importance of variables, it was possible to confirm which codon changes played a major role in distinguishing variants. Furthermore, since the proposed method can handle a variety of data sequences, it can be used for all kinds of diseases, including influenza and SARS-CoV-2. Therefore, the proposed method has the potential to become widely used for the effective analysis of disease variations.
Collapse
Affiliation(s)
- Juhyeon Kim
- Department of Data-Centric Problem Solving Research, Korea Institute of Science and Technology Information, Yuseong-gu, Daejeon, Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea.,Department of Industrial Engineering, Ajou University, Suwon, South Korea
| | - Saeyeon Cheon
- Applied Artificial Intelligence Major, University of Science & Technology, Yuseong-gu, Daejeon, Korea
| | - Insung Ahn
- Department of Data-Centric Problem Solving Research, Korea Institute of Science and Technology Information, Yuseong-gu, Daejeon, Korea. .,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea. .,Applied Artificial Intelligence Major, University of Science & Technology, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
71
|
Westendorf K, Žentelis S, Wang L, Foster D, Vaillancourt P, Wiggin M, Lovett E, van der Lee R, Hendle J, Pustilnik A, Sauder JM, Kraft L, Hwang Y, Siegel RW, Chen J, Heinz BA, Higgs RE, Kallewaard NL, Jepson K, Goya R, Smith MA, Collins DW, Pellacani D, Xiang P, de Puyraimond V, Ricicova M, Devorkin L, Pritchard C, O'Neill A, Dalal K, Panwar P, Dhupar H, Garces FA, Cohen CA, Dye JM, Huie KE, Badger CV, Kobasa D, Audet J, Freitas JJ, Hassanali S, Hughes I, Munoz L, Palma HC, Ramamurthy B, Cross RW, Geisbert TW, Menachery V, Lokugamage K, Borisevich V, Lanz I, Anderson L, Sipahimalani P, Corbett KS, Yang ES, Zhang Y, Shi W, Zhou T, Choe M, Misasi J, Kwong PD, Sullivan NJ, Graham BS, Fernandez TL, Hansen CL, Falconer E, Mascola JR, Jones BE, Barnhart BC. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep 2022; 39:110812. [PMID: 35568025 PMCID: PMC9035363 DOI: 10.1016/j.celrep.2022.110812] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.
Collapse
Affiliation(s)
| | | | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Denisa Foster
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Peter Vaillancourt
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | | | - Erica Lovett
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | | | - Jörg Hendle
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Anna Pustilnik
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - J Michael Sauder
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Lucas Kraft
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | - Yuri Hwang
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | | | - Jinbiao Chen
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | - Kevin Jepson
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | - Rodrigo Goya
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | - Maia A Smith
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | | | | | - Ping Xiang
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | | | | | | | | | - Aoise O'Neill
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | - Kush Dalal
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | - Pankaj Panwar
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | | | | | - Courtney A Cohen
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA
| | - Kathleen E Huie
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA
| | - Catherine V Badger
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA
| | - Darwyn Kobasa
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada; University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jonathan Audet
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada; University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Joshua J Freitas
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Saleema Hassanali
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Ina Hughes
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Luis Munoz
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Holly C Palma
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | | | - Robert W Cross
- University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vineet Menachery
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kumari Lokugamage
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Iliana Lanz
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | - Lisa Anderson
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | | | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Carl L Hansen
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | | | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan E Jones
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA.
| | | |
Collapse
|
72
|
Cantoni D, Mayora-Neto M, Thakur N, Elrefaey AME, Newman J, Vishwanath S, Nadesalingam A, Chan A, Smith P, Castillo-Olivares J, Baxendale H, Charleston B, Heeney J, Bailey D, Temperton N. Pseudotyped Bat Coronavirus RaTG13 is efficiently neutralised by convalescent sera from SARS-CoV-2 infected patients. Commun Biol 2022; 5:409. [PMID: 35505237 PMCID: PMC9065041 DOI: 10.1038/s42003-022-03325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.
Collapse
Affiliation(s)
- Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, UK
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, UK
| | - Nazia Thakur
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Joseph Newman
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
| | - Sneha Vishwanath
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Andrew Chan
- DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK
| | - Peter Smith
- DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK
| | | | | | | | - Jonathan Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK.
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, UK.
| |
Collapse
|
73
|
Seow J, Graham C, Hallett SR, Lechmere T, Maguire TJA, Huettner I, Cox D, Khan H, Pickering S, Roberts R, Waters A, Ward CC, Mant C, Pitcher MJ, Spencer J, Fox J, Malim MH, Doores KJ. ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants. Cell Rep 2022; 39:110757. [PMID: 35477023 PMCID: PMC9010245 DOI: 10.1016/j.celrep.2022.110757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Although the antibody response to COVID-19 vaccination has been studied extensively at the polyclonal level using immune sera, little has been reported on the antibody response at the monoclonal level. Here, we isolate a panel of 44 anti-SARS-CoV-2 monoclonal antibodies (mAbs) from an individual who received two doses of the ChAdOx1 nCoV-19 (AZD1222) vaccine at a 12-week interval. We show that, despite a relatively low serum neutralization titer, Spike-reactive IgG+ B cells are still detectable 9 months post-boost. Furthermore, mAbs with potent neutralizing activity against the current SARS-CoV-2 variants of concern (Alpha, Gamma, Beta, Delta, and Omicron) are present. The vaccine-elicited neutralizing mAbs form eight distinct competition groups and bind epitopes overlapping with neutralizing mAbs elicited following SARS-CoV-2 infection. AZD1222-elicited mAbs are more mutated than mAbs isolated from convalescent donors 1-2 months post-infection. These findings provide molecular insights into the AZD1222 vaccine-elicited antibody response.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sadie R Hallett
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Daniel Cox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Hataf Khan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | - Anele Waters
- Harrison Wing, Guy's and St Thomas' NHS Trust, London, UK
| | - Christopher C Ward
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Christine Mant
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Julie Fox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Harrison Wing, Guy's and St Thomas' NHS Trust, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
74
|
van Gils MJ, Lavell A, van der Straten K, Appelman B, Bontjer I, Poniman M, Burger JA, Oomen M, Bouhuijs JH, van Vught LA, Slim MA, Schinkel M, Wynberg E, van Willigen HDG, Grobben M, Tejjani K, van Rijswijk J, Snitselaar JL, Caniels TG, Amsterdam UMC COVID-19 S3/HCW study group, Vlaar APJ, Prins M, de Jong MD, de Bree GJ, Sikkens JJ, Bomers MK, Sanders RW. Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study. PLoS Med 2022; 19:e1003991. [PMID: 35580156 PMCID: PMC9113667 DOI: 10.1371/journal.pmed.1003991] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/18/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. METHODS AND FINDINGS In a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; p<0.05), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 18 [95% CI 11-30] and 14 [95% CI 8-25] IU/ml, respectively; p<0.001). VOCs neutralization was reduced in all vaccine groups, with the greatest reduction in neutralization GMT observed against the Omicron variant (fold change 0.03 [95% CI 0.02-0.04], p<0.001). The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. We used linear regression and linear mixed model analysis. All results were adjusted for possible confounding of age and sex. Study limitations include the lack of cellular immunity data. CONCLUSIONS Overall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination.
Collapse
Affiliation(s)
- Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Joey H. Bouhuijs
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Lonneke A. van Vught
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marleen A. Slim
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elke Wynberg
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
| | - Hugo D. G. van Willigen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jonne L. Snitselaar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Tom G. Caniels
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Amsterdam UMC COVID-19 S3/HCW study group
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, the Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jonne J. Sikkens
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marije K. Bomers
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
75
|
Liu Z, Wu H, Egland KA, Gilliland TC, Dunn MD, Luke TC, Sullivan EJ, Klimstra WB, Bausch CL, Whelan SPJ. Human immunoglobulin from transchromosomic bovines hyperimmunized with SARS-CoV-2 spike antigen efficiently neutralizes viral variants. Hum Vaccin Immunother 2022; 18:1940652. [PMID: 34228597 PMCID: PMC8290372 DOI: 10.1080/21645515.2021.1940652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with amino-acid substitutions and deletions in spike protein (S) can reduce the effectiveness of monoclonal antibodies (mAbs) and may compromise immunity induced by vaccines. We report a polyclonal, fully human, anti-SARS-CoV-2 immunoglobulin produced in transchromosomic bovines (Tc-hIgG-SARS-CoV-2) hyperimmunized with two doses of plasmid DNA encoding the SARS-CoV-2 Wuhan strain S gene, followed by repeated immunization with S protein purified from insect cells. The resulting Tc-hIgG-SARS-CoV-2, termed SAB-185, efficiently neutralizes SARS-CoV-2, and vesicular stomatitis virus (VSV) SARS-CoV-2 chimeras in vitro. Neutralization potency was retained for S variants including S477N, E484K, and N501Y, substitutions present in recent variants of concern. In contrast to the ease of selection of escape variants with mAbs and convalescent human plasma, we were unable to isolate VSV-SARS-CoV-2 mutants resistant to Tc-hIgG-SARS-CoV-2 neutralization. This fully human immunoglobulin that potently inhibits SARS-CoV-2 infection may provide an effective therapeutic to combat COVID-19.
Collapse
Affiliation(s)
- Zhuoming Liu
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Hua Wu
- , SAB Biotherapeutics Inc, Sioux Fall, SD, USA
| | | | | | - Matthew D. Dunn
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | - Sean P. J. Whelan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
76
|
Nkanga C, Ortega-Rivera OA, Shin MD, Moreno-Gonzalez MA, Steinmetz NF. Injectable Slow-Release Hydrogel Formulation of a Plant Virus-Based COVID-19 Vaccine Candidate. Biomacromolecules 2022; 23:1812-1825. [PMID: 35344365 PMCID: PMC9003890 DOI: 10.1021/acs.biomac.2c00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/09/2022] [Indexed: 01/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a potent immunogenic adjuvant and epitope display platform for the development of vaccines against cancers and infectious diseases, including coronavirus disease 2019. However, the proteinaceous CPMV nanoparticles are rapidly degraded in vivo. Multiple doses are therefore required to ensure long-lasting immunity, which is not ideal for global mass vaccination campaigns. Therefore, we formulated CPMV nanoparticles in injectable hydrogels to achieve slow particle release and prolonged immunostimulation. Liquid formulations were prepared from chitosan and glycerophosphate (GP) before homogenization with CPMV particles at room temperature. The formulations containing high-molecular-weight chitosan and 0-4.5 mg mL-1 CPMV gelled rapidly at 37 °C (5-8 min) and slowly released cyanine 5-CPMV particles in vitro and in vivo. Importantly, when a hydrogel containing CPMV displaying severe acute respiratory syndrome coronavirus 2 spike protein epitope 826 (amino acid 809-826) was administered to mice as a single subcutaneous injection, it elicited an antibody response that was sustained over 20 weeks, with an associated shift from Th1 to Th2 bias. Antibody titers were improved at later time points (weeks 16 and 20) comparing the hydrogel versus soluble vaccine candidates; furthermore, the soluble vaccine candidates retained Th1 bias. We conclude that CPMV nanoparticles can be formulated effectively in chitosan/GP hydrogels and are released as intact particles for several months with conserved immunotherapeutic efficacy. The injectable hydrogel containing epitope-labeled CPMV offers a promising single-dose vaccine platform for the prevention of future pandemics as well as a strategy to develop long-lasting plant virus-based nanomedicines.
Collapse
Affiliation(s)
- Christian
Isalomboto Nkanga
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Oscar A. Ortega-Rivera
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Matthew D. Shin
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Miguel A. Moreno-Gonzalez
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Nicole F. Steinmetz
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department
of Bioengineering, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Department
of Radiology, University of California San
Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Institute
for Materials Discovery and Design, University
of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| |
Collapse
|
77
|
Tan ZW, Tee WV, Samsudin F, Guarnera E, Bond PJ, Berezovsky IN. Allosteric perspective on the mutability and druggability of the SARS-CoV-2 Spike protein. Structure 2022; 30:590-607.e4. [PMID: 35063064 PMCID: PMC8772014 DOI: 10.1016/j.str.2021.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/03/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022]
Abstract
Recent developments in the SARS-CoV-2 pandemic point to its inevitable transformation into an endemic disease, urging both refinement of diagnostics for emerging variants of concern (VOCs) and design of variant-specific drugs in addition to vaccine adjustments. Exploring the structure and dynamics of the SARS-CoV-2 Spike protein, we argue that the high-mutability characteristic of RNA viruses coupled with the remarkable flexibility and dynamics of viral proteins result in a substantial involvement of allosteric mechanisms. While allosteric effects of mutations should be considered in predictions and diagnostics of new VOCs, allosteric drugs advantageously avoid escape mutations via non-competitive inhibition originating from alternative distal locations. The exhaustive allosteric signaling and probing maps presented herein provide a comprehensive picture of allostery in the spike protein, making it possible to locate potential mutations that could work as new VOC "drivers" and to determine binding patches that may be targeted by newly developed allosteric drugs.
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Wei-Ven Tee
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Firdaus Samsudin
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579, Singapore
| | - Igor N Berezovsky
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579, Singapore.
| |
Collapse
|
78
|
Molecular Dynamics and MM-PBSA Analysis of the SARS-CoV-2 Gamma Variant in Complex with the hACE-2 Receptor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072370. [PMID: 35408761 PMCID: PMC9000566 DOI: 10.3390/molecules27072370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/04/2023]
Abstract
The SARS-CoV-2 virus, since its appearance in 2019, has caused millions of cases and deaths. To date, there is no effective treatment or a vaccine that is fully protective. Despite the efforts made by governments and health institutions around the globe to control its propagation, the evolution of the virus has accelerated, diverging into hundreds of variants. However, not all of them are variants of concern (VoC’s). VoC’s have appeared in different regions and throughout the two years of the pandemic they have spread around the world. Specifically, in South America, the gamma variant (previously known as P.1) appeared in early 2021, bringing with it a second wave of infections. This variant contains the N501Y, E484K and K417T mutations in the receptor binding domain (RBD) of the spike protein. Although these mutations have been described experimentally, there is still no clarity regarding their role in the stabilization of the complex with the human angiotensin converting enzyme 2 (hACE-2) receptor. In this article we dissect the influence of mutations on the interaction with the hACE-2 receptor using molecular dynamics and estimations of binding affinity through a screened version of the molecular mechanics Poisson Boltzmann surface area (MM-PBSA) and interaction entropy. Our results indicate that mutations E484K and K417T compensate each other in terms of binding affinity, while the mutation N501Y promotes a more convoluted effect. This effect consists in the adoption of a cis configuration in the backbone of residue Y495 within the RBD, which in turn promotes polar interactions with the hACE-2 receptor. These results not only correlate with experimental observations and complement previous knowledge, but also expose new features associated with the specific contribution of concerned mutations. Additionally, we propose a recipe to assess the residue-specific contribution to the interaction entropy.
Collapse
|
79
|
Ahamad S, Ali H, Secco I, Giacca M, Gupta D. Anti-Fungal Drug Anidulafungin Inhibits SARS-CoV-2 Spike-Induced Syncytia Formation by Targeting ACE2-Spike Protein Interaction. Front Genet 2022; 13:866474. [PMID: 35401674 PMCID: PMC8990323 DOI: 10.3389/fgene.2022.866474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Drug repositioning continues to be the most effective, practicable possibility to treat COVID-19 patients. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters target cells by binding to the ACE2 receptor via its spike (S) glycoprotein. We used molecular docking-based virtual screening approaches to categorize potential antagonists, halting ACE2-spike interactions by utilizing 450 FDA-approved chemical compounds. Three drug candidates (i.e., anidulafungin, lopinavir, and indinavir) were selected, which show high binding affinity toward the ACE2 receptor. The conformational stability of selected docked complexes was analyzed through molecular dynamics (MD) simulations. The MD simulation trajectories were assessed and monitored for ACE2 deviation, residue fluctuation, the radius of gyration, solvent accessible surface area, and free energy landscapes. The inhibitory activities of the selected compounds were eventually tested in-vitro using Vero and HEK-ACE2 cells. Interestingly, besides inhibiting SARS-CoV-2 S glycoprotein induced syncytia formation, anidulafungin and lopinavir also blocked S-pseudotyped particle entry into target cells. Altogether, anidulafungin and lopinavir are ranked the most effective among all the tested drugs against ACE2 receptor-S glycoprotein interaction. Based on these findings, we propose that anidulafungin is a novel potential drug targeting ACE2, which warrants further investigation for COVID-19 treatment.
Collapse
Affiliation(s)
- Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Hashim Ali
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ilaria Secco
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
| | - Mauro Giacca
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
80
|
Flores-Vega VR, Monroy-Molina JV, Jiménez-Hernández LE, Torres AG, Santos-Preciado JI, Rosales-Reyes R. SARS-CoV-2: Evolution and Emergence of New Viral Variants. Viruses 2022; 14:653. [PMID: 35458383 PMCID: PMC9025907 DOI: 10.3390/v14040653] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent responsible for the coronavirus disease 2019 (COVID-19). The high rate of mutation of this virus is associated with a quick emergence of new viral variants that have been rapidly spreading worldwide. Several mutations have been documented in the receptor-binding domain (RBD) of the viral spike protein that increases the interaction between SARS-CoV-2 and its cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Mutations in the spike can increase the viral spread rate, disease severity, and the ability of the virus to evade either the immune protective responses, monoclonal antibody treatments, or the efficacy of current licensed vaccines. This review aimed to highlight the functional virus classification used by the World Health Organization (WHO), Phylogenetic Assignment of Named Global Outbreak (PANGO), Global Initiative on Sharing All Influenza Data (GISAID), and Nextstrain, an open-source project to harness the scientific and public health potential of pathogen genome data, the chronological emergence of viral variants of concern (VOCs) and variants of interest (VOIs), the major findings related to the rate of spread, and the mutations in the spike protein that are involved in the evasion of the host immune responses elicited by prior SARS-CoV-2 infections and by the protection induced by vaccination.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico; (V.R.F.-V.); (J.V.M.-M.); (J.I.S.-P.)
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3000, Alcaldía Coyoacán, Mexico City 04910, Mexico;
| | - Jessica Viridiana Monroy-Molina
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico; (V.R.F.-V.); (J.V.M.-M.); (J.I.S.-P.)
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3000, Alcaldía Coyoacán, Mexico City 04910, Mexico;
| | - Luis Enrique Jiménez-Hernández
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3000, Alcaldía Coyoacán, Mexico City 04910, Mexico;
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - José Ignacio Santos-Preciado
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico; (V.R.F.-V.); (J.V.M.-M.); (J.I.S.-P.)
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico; (V.R.F.-V.); (J.V.M.-M.); (J.I.S.-P.)
| |
Collapse
|
81
|
Sievers BL, Chakraborty S, Xue Y, Gelbart T, Gonzalez JC, Cassidy AG, Golan Y, Prahl M, Gaw SL, Arunachalam PS, Blish CA, Boyd SD, Davis MM, Jagannathan P, Nadeau KC, Pulendran B, Singh U, Scheuermann RH, Frieman MB, Vashee S, Wang TT, Tan GS. Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. Sci Transl Med 2022; 14:eabn7842. [PMID: 35025672 PMCID: PMC8891085 DOI: 10.1126/scitranslmed.abn7842] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 01/29/2023]
Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that have mutations associated with increased transmission and antibody escape have arisen over the course of the current pandemic. Although the current vaccines have largely been effective against past variants, the number of mutations found on the Omicron (B.1.1.529) spike protein appear to diminish the protection conferred by preexisting immunity. Using vesicular stomatitis virus (VSV) pseudoparticles expressing the spike protein of several SARS-CoV-2 variants, we evaluated the magnitude and breadth of the neutralizing antibody response over time in individuals after infection and in mRNA-vaccinated individuals. We observed that boosting increases the magnitude of the antibody response to wild-type (D614), Beta, Delta, and Omicron variants; however, the Omicron variant was the most resistant to neutralization. We further observed that vaccinated healthy adults had robust and broad antibody responses, whereas responses may have been reduced in vaccinated pregnant women, underscoring the importance of learning how to maximize mRNA vaccine responses in pregnant populations. Findings from this study show substantial heterogeneity in the magnitude and breadth of responses after infection and mRNA vaccination and may support the addition of more conserved viral antigens to existing SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
| | - Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94305 USA
| | - Yong Xue
- J. Craig Venter Institute, La Jolla, CA, 92037 and Rockville, MD, 20850 USA
| | - Terri Gelbart
- J. Craig Venter Institute, La Jolla, CA, 92037 and Rockville, MD, 20850 USA
| | - Joseph C. Gonzalez
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94305 USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305 USA
| | - Arianna G. Cassidy
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94115 USA
| | - Yarden Golan
- Department of Bioengineering and Therapeutic Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94115 USA
| | - Mary Prahl
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of California, San Francisco, CA, 94115 USA
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94115 USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305 USA
| | - Catherine A. Blish
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94305 USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305 USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158 USA
| | - Scott D. Boyd
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford, CA, 94305 USA
| | - Mark M. Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305 USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305 USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94305 USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305 USA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford, CA, 94305 USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305 USA
| | - Upinder Singh
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94305 USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305 USA
| | | | - Matthew B. Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Sanjay Vashee
- J. Craig Venter Institute, La Jolla, CA, 92037 and Rockville, MD, 20850 USA
| | - Taia T. Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94305 USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305 USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305 USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158 USA
| | - Gene S. Tan
- J. Craig Venter Institute, La Jolla, CA, 92037 and Rockville, MD, 20850 USA
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, 92037 USA
| |
Collapse
|
82
|
Oliveira GS, Silva-Flannery L, da Silva JF, Siza C, Esteves RJ, Marston BJ, Morgan J, Plucinski M, Roca TP, Silva AMPD, Pereira SS, Salcedo JMV, Pereira D, Naveca FG, Vieira Dall'Acqua DS. Active surveillance and early detection of community transmission of SARS-CoV-2 Mu variant (B.1.621) in the Brazilian Amazon. J Med Virol 2022; 94:3410-3415. [PMID: 35233783 PMCID: PMC9088640 DOI: 10.1002/jmv.27686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/09/2022]
Abstract
Through active surveillance and contact tracing from outpatients, we aimed to identify and characterize SARS-CoV-2 variants circulating in Porto Velho, Rondônia a city in the Brazilian Amazon. As part of a prospective cohort, we gather information from 2,506 individuals among COVID-19 patients and household contacts. Epidemiological data, nasopharyngeal swabs, and blood samples were collected from all participants. Nasopharyngeal swabs were tested for antigen rapid diagnostic test and reverse transcription polymerase chain reaction (RT-PCR) followed by genomic sequencing. Blood samples underwent ELISA testing for IgA, IgG and IgM antibody levels. From 757 specimens sequenced, three were identified as Mu variant, none of the individuals carrying this variant had travel history in the previous 15 days before diagnosis. One case was asymptomatic and two presented mild symptoms. Two infected individuals from different household caring virus with additional amino acid substitutions ORF7a P45L and ORF1a T1055A compared to the Mu virus reference sequence. One patient presented IgG levels. Our results highlight that genomic surveillance for SARS-CoV-2 variants can assist in detecting the emergency of SARS-CoV-2 variants in the community, prior to its identification in other parts of the country. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tárcio Peixoto Roca
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz, Fiocruz, Rondônia, Brazil
| | | | | | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz, Fiocruz, Rondônia, Brazil.,Centro de Pesquisa em Medicina Tropical, CEPEM, Rondônia, Brazil
| | - Dhelio Pereira
- Centro de Pesquisa em Medicina Tropical, CEPEM, Rondônia, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Amazonas, Brazil
| | - Deusilene Souza Vieira Dall'Acqua
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz, Fiocruz, Rondônia, Brazil.,Laboratório de Engenharia de Anticorpos, Fiocruz, Rondônia, Brazil
| | | |
Collapse
|
83
|
Noori M, Nejadghaderi SA, Arshi S, Carson‐Chahhoud K, Ansarin K, Kolahi A, Safiri S. Potency of BNT162b2 and mRNA-1273 vaccine-induced neutralizing antibodies against severe acute respiratory syndrome-CoV-2 variants of concern: A systematic review of in vitro studies. Rev Med Virol 2022; 32:e2277. [PMID: 34286893 PMCID: PMC8420542 DOI: 10.1002/rmv.2277] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022]
Abstract
BNT162b2 and mRNA-1273 are two types of mRNA-based vaccine platforms that have received emergency use authorization. The emergence of novel severe acute respiratory syndrome (SARS-CoV-2) variants has raised concerns of reduced sensitivity to neutralization by their elicited antibodies. We aimed to systematically review the most recent in vitro studies evaluating the effectiveness of BNT162b2 and mRNA-1273 induced neutralizing antibodies against SARS-CoV-2 variants of concern. We searched PubMed, Scopus, and Web of Science in addition to bioRxiv and medRxiv with terms including 'SARS-CoV-2', 'BNT162b2', 'mRNA-1273', and 'neutralizing antibody' up to June 29, 2021. A modified version of the Consolidated Standards of Reporting Trials (CONSORT) checklist was used for assessing included study quality. A total 36 in vitro studies meeting the eligibility criteria were included in this systematic review. B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) are four SARS-CoV-2 variants that have recently been identified as variants of concern. Included studies implemented different methods regarding pseudovirus or live virus neutralization assays for measuring neutralization titres against utilized viruses. After two dose vaccination by BNT162b2 or mRNA-1273, the B.1.351 variant had the least sensitivity to neutralizing antibodies, while B.1.1.7 variant had the most sensitivity; that is, it was better neutralized relative to the comparator strain. P.1 and B.1.617.2 variants had an intermediate level of impaired naturalization activity of antibodies elicited by prior vaccination. Our review suggests that immune sera derived from vaccinated individuals might show reduced protection of individuals immunized with mRNA vaccines against more recent SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research CommitteeSchool of MedicineIran University of Medical SciencesTehranIran
| | - Seyed Aria Nejadghaderi
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Shahnam Arshi
- Social Determinants of Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Kristin Carson‐Chahhoud
- Australian Centre for Precision HealthAllied Health and Human PerformanceUniversity of South AustraliaSouth AustraliaAustralia
- School of MedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Khalil Ansarin
- Rahat Breath and Sleep Research CenterTabriz University of Medical SciencesTabrizIran
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical SciencesTabrizIran
| | - Ali‐Asghar Kolahi
- Social Determinants of Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Saeid Safiri
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Community MedicineFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
84
|
Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Rep Med 2022; 3:100528. [PMID: 35233549 PMCID: PMC8784613 DOI: 10.1016/j.xcrm.2022.100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the “down” conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing. S glycoprotein formaldehyde cross-linking stabilizes S in the prefusion conformation Vaccination of cynomolgus macaques with S lipid particles induces neutralization Vaccination protects macaques against a SARS-CoV-2 challenge Sterilizing protection correlates with nasopharyngeal anti-S IgG and IgA titers
Collapse
|
85
|
Kaplonek P, Fischinger S, Cizmeci D, Bartsch YC, Kang J, Burke JS, Shin SA, Dayal D, Martin P, Mann C, Amanat F, Julg B, Nilles EJ, Musk ER, Menon AS, Krammer F, Saphire EO, Andrea Carfi, Alter G. mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern. Immunity 2022; 55:355-365.e4. [PMID: 35090580 PMCID: PMC8733218 DOI: 10.1016/j.immuni.2022.01.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/16/2021] [Accepted: 01/04/2022] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 mRNA vaccines confer robust protection against COVID-19, but the emergence of variants has generated concerns regarding the protective efficacy of the currently approved vaccines, which lose neutralizing potency against some variants. Emerging data suggest that antibody functions beyond neutralization may contribute to protection from the disease, but little is known about SARS-CoV-2 antibody effector functions. Here, we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOCs). Although the neutralizing responses to VOCs decreased in both groups, the Fc-mediated responses were distinct. In convalescent individuals, although antibodies exhibited robust binding to VOCs, they showed compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies also bound robustly to VOCs but continued to interact with Fc-receptors and mediate antibody effector functions. These data point to a resilience in the mRNA-vaccine-induced humoral immune response that may continue to offer protection from SARS-CoV-2 VOCs independent of neutralization.
Collapse
Affiliation(s)
| | | | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Jaewon Kang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - John S Burke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sally A Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Diana Dayal
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | | | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Elon R Musk
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Anil S Menon
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Ollman Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
86
|
Naresh GKRS, Guruprasad L. Mutations in the receptor-binding domain of human SARS CoV-2 spike protein increases its affinity to bind human ACE-2 receptor. J Biomol Struct Dyn 2022; 41:2368-2381. [PMID: 35109768 DOI: 10.1080/07391102.2022.2032354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The severe acute respiratory syndrome virus-2 (SARS CoV-2) infection has resulted in the current global pandemic. The binding of SARS CoV-2 spike protein receptor-binding domain (RBD) to the human angiotensin converting enzyme-2 (ACE-2) receptor causes the host infection. The spike protein has undergone several mutations with reference to the initial strain isolated during December 2019 from Wuhan, China. A number of these mutant strains have been reported as variants of concern and as variants being monitored. Some of these mutants are known to be responsible for increased transmissibility of the virus. The reason for the increased transmissibility caused by the point mutations can be understood by studying the structural implications and inter-molecular interactions in the binding of viral spike protein RBD and human ACE-2. Here, we use the crystal structure of the RBD in complex with ACE-2 available in the public domain and analyse the 250 ns molecular dynamics (MD) simulations of wild-type and mutants; K417N, K417T, N440K, N501Y, L452R, T478K, E484K and S494P. The ionic, hydrophobic and hydrogen bond interactions, amino acid residue flexibility, binding energies and structural variations are characterized. The MD simulations provide clues to the molecular mechanisms of ACE-2 receptor binding in wild-type and mutant complexes. The mutant spike proteins RBD were associated with greater binding affinity with ACE-2 receptor. Communicated by Ramaswamy H. Sarma.
Collapse
|
87
|
Cassaniti I, Bergami F, Percivalle E, Gabanti E, Sammartino JC, Ferrari A, Adzasehoun KMG, Zavaglio F, Zelini P, Comolli G, Sarasini A, Piralla A, Ricciardi A, Zuccaro V, Maggi F, Novazzi F, Simonelli L, Varani L, Lilleri D, Baldanti F. Humoral and cell-mediated response against SARS-CoV-2 variants elicited by mRNA vaccine BNT162b2 in healthcare workers: a longitudinal observational study. Clin Microbiol Infect 2022; 28:301.e1-301.e8. [PMID: 34582981 PMCID: PMC8464022 DOI: 10.1016/j.cmi.2021.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To assess the humoral and cell-mediated response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicited by the mRNA BNT162b2 vaccine in SARS-CoV-2-experienced and -naive subjects against a reference strain and SARS-CoV-2 variants. METHODS The humoral response (including neutralizing antibodies) and T-cell-mediated response elicited by BNT162b2 vaccine in 145 healthcare workers (both naive and positive for previous SARS-CoV-2 infection) were evaluated. In a subset of subjects, the effect of SARS-CoV-2 variants on antibody level and cell-mediated response was also investigated. RESULTS Overall, 125/127 naive subjects (98.4%) developed both neutralizing antibodies and specific T cells after the second dose of vaccine. Moreover, the antibody and T-cell responses were effective against viral variants since SARS-CoV-2 NT Abs were still detectable in 55/68 (80.9%) and 25/29 (86.2%) naive subjects when sera were challenged against β and δ variants, respectively. T-cell response was less affected, with no significant difference in the frequency of responders (p 0.369). Of note, two doses of vaccine were able to elicit sustained neutralizing antibody activity against all the SARS-CoV-2 variants tested in SARS-CoV-2-experienced subjects. CONCLUSIONS BNT162b2 vaccine elicited a sustained humoral and cell-mediated response in immunocompetent subjects after two-dose administration of the vaccine, and the response seemed to be less affected by SARS-CoV-2 variants, the only exceptions being the β and δ variants. Increased immunogenicity, also against SARS-CoV-2 variant strains, was observed in SARS-CoV-2-experienced subjects. These results suggest that triple exposure to SARS-CoV-2 antigens might be proposed as valuable strategy for vaccination campaigns.
Collapse
Affiliation(s)
- Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Surgical Diagnostic and Paediatric Sciences, Università degli Studi di Pavia, Italy
| | - Federica Bergami
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Gabanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Josè Camilla Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Kodjo Messan Guy Adzasehoun
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Zavaglio
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paola Zelini
- Obstetrics and Gynaecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuditta Comolli
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Biochemistry-Biotechnology and Advanced Diagnostics, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonella Sarasini
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Valentina Zuccaro
- Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabrizio Maggi
- Laboratory of Microbiology, ASST Sette Laghi, Varese, Italy; Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Federica Novazzi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Luca Simonelli
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Daniele Lilleri
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Surgical Diagnostic and Paediatric Sciences, Università degli Studi di Pavia, Italy
| |
Collapse
|
88
|
da Silva SJR, de Lima SC, da Silva RC, Kohl A, Pena L. Viral Load in COVID-19 Patients: Implications for Prognosis and Vaccine Efficacy in the Context of Emerging SARS-CoV-2 Variants. Front Med (Lausanne) 2022; 8:836826. [PMID: 35174189 PMCID: PMC8841511 DOI: 10.3389/fmed.2021.836826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The worldwide spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an unprecedented public health crisis in the 21st century. As the pandemic evolves, the emergence of SARS-CoV-2 has been characterized by the emergence of new variants of concern (VOCs), which resulted in a catastrophic impact on SARS-CoV-2 infection. In light of this, research groups around the world are unraveling key aspects of the associated illness, coronavirus disease 2019 (COVID-19). A cumulative body of data has indicated that the SARS-CoV-2 viral load may be a determinant of the COVID-19 severity. Here we summarize the main characteristics of the emerging variants of SARS-CoV-2, discussing their impact on viral transmissibility, viral load, disease severity, vaccine breakthrough, and lethality among COVID-19 patients. We also provide a rundown of the rapidly expanding scientific evidence from clinical studies and animal models that indicate how viral load could be linked to COVID-19 prognosis and vaccine efficacy among vaccinated individuals, highlighting the differences compared to unvaccinated individuals.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Suelen Cristina de Lima
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Ronaldo Celerino da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| |
Collapse
|
89
|
Winklmeier S, Eisenhut K, Taskin D, Rübsamen H, Gerhards R, Schneider C, Wratil PR, Stern M, Eichhorn P, Keppler OT, Klein M, Mader S, Kümpfel T, Meinl E. Persistence of functional memory B cells recognizing SARS-CoV-2 variants despite loss of specific IgG. iScience 2022; 25:103659. [PMID: 34957380 PMCID: PMC8686444 DOI: 10.1016/j.isci.2021.103659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023] Open
Abstract
Although some COVID-19 patients maintain SARS-CoV-2-specific serum immunoglobulin G (IgG) for more than 6 months postinfection, others eventually lose IgG levels. We assessed the persistence of SARS-CoV-2-specific B cells in 17 patients, 5 of whom had lost specific IgGs after 5-8 months. Differentiation of blood-derived B cells in vitro revealed persistent SARS-CoV-2-specific IgG B cells in all patients, whereas IgA B cells were maintained in 11. Antibodies derived from cultured B cells blocked binding of viral receptor-binding domain (RBD) to the cellular receptor ACE-2, had neutralizing activity to authentic virus, and recognized the RBD of the variant of concern Alpha similarly to the wild type, whereas reactivity to Beta and Gamma were decreased. Thus, differentiation of memory B cells could be more sensitive for detecting previous infection than measuring serum antibodies. Understanding the persistence of SARS-CoV-2-specific B cells even in the absence of specific serum IgG will help to promote long-term immunity.
Collapse
Affiliation(s)
- Stephan Winklmeier
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Katharina Eisenhut
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Damla Taskin
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Heike Rübsamen
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Ramona Gerhards
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Celine Schneider
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Paul R. Wratil
- Max von Pettenkofer Institute & GeneCenter, Virology, LMU Munich, 80336 Munich, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute & GeneCenter, Virology, LMU Munich, 80336 Munich, Germany
| | - Peter Eichhorn
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Oliver T. Keppler
- Max von Pettenkofer Institute & GeneCenter, Virology, LMU Munich, 80336 Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simone Mader
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
- Corresponding author
| |
Collapse
|
90
|
Jeffery-Smith A, Burton AR, Lens S, Rees-Spear C, Davies J, Patel M, Gopal R, Muir L, Aiano F, Doores KJ, Chow JY, Ladhani SN, Zambon M, McCoy LE, Maini MK. SARS-CoV-2-specific memory B cells can persist in the elderly who have lost detectable neutralizing antibodies. J Clin Invest 2022; 132:e152042. [PMID: 34843448 PMCID: PMC8759779 DOI: 10.1172/jci152042] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Memory B cells (MBCs) can provide a recall response able to supplement waning antibodies (Abs) with an affinity-matured response better able to neutralize variant viruses. We studied a cohort of elderly care home residents and younger staff (median age of 87 years and 56 years, respectively), who had survived COVID-19 outbreaks with only mild or asymptomatic infection. The cohort was selected because of its high proportion of individuals who had lost neutralizing antibodies (nAbs), thus allowing us to specifically investigate the reserve immunity from SARS-CoV-2-specific MBCs in this setting. Class-switched spike and receptor-binding domain (RBD) tetramer-binding MBCs persisted 5 months after mild or asymptomatic SARS-CoV-2 infection, irrespective of age. The majority of spike- and RBD-specific MBCs had a classical phenotype, but we found that activated MBCs, indicating possible ongoing antigenic stimulation or inflammation, were expanded in the elderly group. Spike- and RBD-specific MBCs remained detectable in the majority of individuals who had lost nAbs, although at lower frequencies and with a reduced IgG/IgA isotype ratio. Functional spike-, S1 subunit of the spike protein- (S1-), and RBD-specific recall was also detectable by enzyme-linked immune absorbent spot (ELISPOT) assay in some individuals who had lost nAbs, but was significantly impaired in the elderly. Our findings demonstrate that a reserve of SARS-CoV-2-specific MBCs persists beyond the loss of nAbs but highlight the need for careful monitoring of functional defects in spike- and RBD-specific B cell immunity in the elderly.
Collapse
Affiliation(s)
- Anna Jeffery-Smith
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
- Virus Reference Department, Public Health England (now called UK Health Security Agency [UKHSA]), London, United Kingdom
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Alice R. Burton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
| | - Sabela Lens
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
| | - Jessica Davies
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
| | - Monika Patel
- Virus Reference Department, Public Health England (now called UK Health Security Agency [UKHSA]), London, United Kingdom
| | - Robin Gopal
- Virus Reference Department, Public Health England (now called UK Health Security Agency [UKHSA]), London, United Kingdom
| | - Luke Muir
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
| | - Felicity Aiano
- Immunisation and Countermeasures Division, Public Health England (now called UKHSA), London, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - J. Yimmy Chow
- London Coronavirus Response Cell, Public Health England (now called UKHSA), London, United Kingdom
| | - Shamez N. Ladhani
- Immunisation and Countermeasures Division, Public Health England (now called UKHSA), London, United Kingdom
| | - Maria Zambon
- Virus Reference Department, Public Health England (now called UK Health Security Agency [UKHSA]), London, United Kingdom
| | - Laura E. McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
| |
Collapse
|
91
|
Caldera-Crespo LA, Paidas MJ, Roy S, Schulman CI, Kenyon NS, Daunert S, Jayakumar AR. Experimental Models of COVID-19. Front Cell Infect Microbiol 2022; 11:792584. [PMID: 35096645 PMCID: PMC8791197 DOI: 10.3389/fcimb.2021.792584] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 is the most consequential pandemic of the 21st century. Since the earliest stage of the 2019-2020 epidemic, animal models have been useful in understanding the etiopathogenesis of SARS-CoV-2 infection and rapid development of vaccines/drugs to prevent, treat or eradicate SARS-CoV-2 infection. Early SARS-CoV-1 research using immortalized in-vitro cell lines have aided in understanding different cells and receptors needed for SARS-CoV-2 infection and, due to their ability to be easily manipulated, continue to broaden our understanding of COVID-19 disease in in-vivo models. The scientific community determined animal models as the most useful models which could demonstrate viral infection, replication, transmission, and spectrum of illness as seen in human populations. Until now, there have not been well-described animal models of SARS-CoV-2 infection although transgenic mouse models (i.e. mice with humanized ACE2 receptors with humanized receptors) have been proposed. Additionally, there are only limited facilities (Biosafety level 3 laboratories) available to contribute research to aid in eventually exterminating SARS-CoV-2 infection around the world. This review summarizes the most successful animal models of SARS-CoV-2 infection including studies in Non-Human Primates (NHPs) which were found to be susceptible to infection and transmitted the virus similarly to humans (e.g., Rhesus macaques, Cynomolgus, and African Green Monkeys), and animal models that do not require Biosafety level 3 laboratories (e.g., Mouse Hepatitis Virus models of COVID-19, Ferret model, Syrian Hamster model). Balancing safety, mimicking human COVID-19 and robustness of the animal model, the Murine Hepatitis Virus-1 Murine model currently represents the most optimal model for SARS-CoV-2/COVID19 research. Exploring future animal models will aid researchers/scientists in discovering the mechanisms of SARS-CoV-2 infection and in identifying therapies to prevent or treat COVID-19.
Collapse
Affiliation(s)
- Luis A Caldera-Crespo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- St. George's University Graduate Medical Education Program, University Centre Grenada, West Indies, Grenada
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carl I Schulman
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Norma Sue Kenyon
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, FL, United States
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- University of Miami Clinical and Translational Science Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
92
|
Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, James W, Gordon S, Pepper MS. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol 2022; 12:809244. [PMID: 35046961 PMCID: PMC8761766 DOI: 10.3389/fimmu.2021.809244] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new beta coronavirus that emerged at the end of 2019 in the Hubei province of China. SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020. Herd or community immunity has been proposed as a strategy to protect the vulnerable, and can be established through immunity from past infection or vaccination. Whether SARS-CoV-2 infection results in the development of a reservoir of resilient memory cells is under investigation. Vaccines have been developed at an unprecedented rate and 7 408 870 760 vaccine doses have been administered worldwide. Recently emerged SARS-CoV-2 variants are more transmissible with a reduced sensitivity to immune mechanisms. This is due to the presence of amino acid substitutions in the spike protein, which confer a selective advantage. The emergence of variants therefore poses a risk for vaccine effectiveness and long-term immunity, and it is crucial therefore to determine the effectiveness of vaccines against currently circulating variants. Here we review both SARS-CoV-2-induced host immune activation and vaccine-induced immune responses, highlighting the responses of immune memory cells that are key indicators of host immunity. We further discuss how variants emerge and the currently circulating variants of concern (VOC), with particular focus on implications for vaccine effectiveness. Finally, we describe new antibody treatments and future vaccine approaches that will be important as we navigate through the COVID-19 pandemic.
Collapse
Affiliation(s)
- Priyal Mistry
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Fatima Barmania
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kimberly Peta
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adéle Strydom
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ignatius M. Viljoen
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - William James
- James and Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
93
|
Bano I, Sharif M, Alam S. Genetic drift in the genome of SARS COV-2 and its global health concern. J Med Virol 2022; 94:88-98. [PMID: 34524697 PMCID: PMC8661852 DOI: 10.1002/jmv.27337] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/12/2021] [Indexed: 01/04/2023]
Abstract
The outbreak of the current coronavirus disease (COVID-19) occurred in late 2019 and quickly spread all over the world. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to a genetically diverse group that mutates continuously leading to the emergence of multiple variants. Although a few antiviral agents and anti-inflammatory medicines are available, thousands of individuals have passed away due to emergence of new viral variants. Thus, proper surveillance of the SARS-CoV-2 genome is needed for the rapid identification of developing mutations over time, which are of the major concern if they occur specifically in the surface spike proteins of the virus (neutralizing analyte). This article reviews the potential mutations acquired by the SARS-CoV2 since the pandemic began and their significant impact on the neutralizing efficiency of vaccines and validity of the diagnostic assays.
Collapse
Affiliation(s)
- Iqra Bano
- Department of MicrobiologyThe University of HaripurHaripurPakistan
| | - Mehmoona Sharif
- Department of MicrobiologyQuaid I Azam UniversityIslamabadPakistan
| | - Sadia Alam
- Department of MicrobiologyThe University of HaripurHaripurPakistan
| |
Collapse
|
94
|
Pecetta S, Kratochvil S, Kato Y, Vadivelu K, Rappuoli R. Immunology and Technology of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines. Pharmacol Rev 2022; 74:313-339. [PMID: 35101964 DOI: 10.1124/pharmrev.120.000285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have experienced an enormous cohesive effort of the scientific community to understand how the immune system reacts to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how to elicit protective immunity via vaccination. This effort resulted in the development of vaccines in record time with high levels of safety, efficacy, and real-life effectiveness. However, the rapid diffusion of viral variants that escape protective antibodies prompted new studies to understand SARS-CoV-2 vulnerabilities and strategies to guide follow-up actions to increase, and maintain, the protection offered by vaccines. In this review, we report the main findings on human immunity to SARS-CoV-2 after natural infection and vaccination; we dissect the immunogenicity and efficacy of the different vaccination strategies that resulted in products widely used in the population; and we describe the impact of viral variants on vaccine-elicited immunity, summarizing the main discoveries and challenges to stay ahead of SARS-CoV-2 evolution. SIGNIFICANCE STATEMENT: This study reviewed findings on human immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), analyzed the immunogenicity and efficacy of the various vaccines currently used in large vaccination campaigns or candidates in advanced clinical development, and discussed the challenging task to ensure high protective efficacy against the rapidly evolving SARS-CoV-2 virus. This manuscript was completed prior to the emergence of the Omicron variant and to global vaccine boosting efforts.
Collapse
Affiliation(s)
- Simone Pecetta
- Research and Development Centre, GSK, Siena, Italy (S.P., K.V., R.R.); Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts (S.K.); IconOVir Bio, San Diego, California (Y.K.); and La Jolla Institute for Immunology, La Jolla, California (Y.K.)
| | - Sven Kratochvil
- Research and Development Centre, GSK, Siena, Italy (S.P., K.V., R.R.); Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts (S.K.); IconOVir Bio, San Diego, California (Y.K.); and La Jolla Institute for Immunology, La Jolla, California (Y.K.)
| | - Yu Kato
- Research and Development Centre, GSK, Siena, Italy (S.P., K.V., R.R.); Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts (S.K.); IconOVir Bio, San Diego, California (Y.K.); and La Jolla Institute for Immunology, La Jolla, California (Y.K.)
| | - Kumaran Vadivelu
- Research and Development Centre, GSK, Siena, Italy (S.P., K.V., R.R.); Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts (S.K.); IconOVir Bio, San Diego, California (Y.K.); and La Jolla Institute for Immunology, La Jolla, California (Y.K.)
| | - Rino Rappuoli
- Research and Development Centre, GSK, Siena, Italy (S.P., K.V., R.R.); Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts (S.K.); IconOVir Bio, San Diego, California (Y.K.); and La Jolla Institute for Immunology, La Jolla, California (Y.K.)
| |
Collapse
|
95
|
Khateeb D, Gabrieli T, Sofer B, Hattar A, Cordela S, Chaouat A, Spivak I, Lejbkowicz I, Almog R, Mandelboim M, Bar-On Y. SARS-CoV-2 variants with reduced infectivity and varied sensitivity to the BNT162b2 vaccine are developed during the course of infection. PLoS Pathog 2022; 18:e1010242. [PMID: 35020754 PMCID: PMC8789181 DOI: 10.1371/journal.ppat.1010242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
In-depth analysis of SARS-CoV-2 quasispecies is pivotal for a thorough understating of its evolution during infection. The recent deployment of COVID-19 vaccines, which elicit protective anti-spike neutralizing antibodies, has stressed the importance of uncovering and characterizing SARS-CoV-2 variants with mutated spike proteins. Sequencing databases have allowed to follow the spread of SARS-CoV-2 variants that are circulating in the human population, and several experimental platforms were developed to study these variants. However, less is known about the SARS-CoV-2 variants that are developed in the respiratory system of the infected individual. To gain further insight on SARS-CoV-2 mutagenesis during natural infection, we preformed single-genome sequencing of SARS-CoV-2 isolated from nose-throat swabs of infected individuals. Interestingly, intra-host SARS-CoV-2 variants with mutated S genes or N genes were detected in all individuals who were analyzed. These intra-host variants were present in low frequencies in the swab samples and were rarely documented in current sequencing databases. Further examination of representative spike variants identified by our analysis showed that these variants have impaired infectivity capacity and that the mutated variants showed varied sensitivity to neutralization by convalescent plasma and to plasma from vaccinated individuals. Notably, analysis of the plasma neutralization activity against these variants showed that the L1197I mutation at the S2 subunit of the spike can affect the plasma neutralization activity. Together, these results suggest that SARS-CoV-2 intra-host variants should be further analyzed for a more thorough characterization of potential circulating variants.
Collapse
Affiliation(s)
- Dina Khateeb
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tslil Gabrieli
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bar Sofer
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adi Hattar
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sapir Cordela
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abigael Chaouat
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ilia Spivak
- Department of Pediatrics B, Ruth Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa, Israel
| | | | - Ronit Almog
- Epidemiology Unit and Biobank, Rambam Health Care Campus, Haifa, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Israel
| | - Yotam Bar-On
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
96
|
Lee JY, Wing PAC, Gala DS, Noerenberg M, Järvelin AI, Titlow J, Zhuang X, Palmalux N, Iselin L, Thompson MK, Parton RM, Prange-Barczynska M, Wainman A, Salguero FJ, Bishop T, Agranoff D, James W, Castello A, McKeating JA, Davis I. Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. eLife 2022; 11:74153. [PMID: 35049501 PMCID: PMC8776252 DOI: 10.7554/elife.74153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.
Collapse
Affiliation(s)
- Jeffrey Y Lee
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Peter AC Wing
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Dalia S Gala
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Marko Noerenberg
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Aino I Järvelin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Joshua Titlow
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Louisa Iselin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Mary Kay Thompson
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Richard M Parton
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | | | - Tammie Bishop
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Daniel Agranoff
- Department of Infectious Diseases, University Hospitals Sussex NHS Foundation TrustBrightonUnited Kingdom
| | - William James
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom,James & Lillian Martin Centre, Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | - Alfredo Castello
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Jane A McKeating
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Ilan Davis
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| |
Collapse
|
97
|
Park G, Hwang BH. SARS-CoV-2 Variants: Mutations and Effective Changes. BIOTECHNOL BIOPROC E 2021; 26:859-870. [PMID: 34975266 PMCID: PMC8713537 DOI: 10.1007/s12257-021-0327-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022]
Abstract
One of the primary threats to the goal of controlling and eventually defeating SARS-CoV-2 is that of mutation. Recognizing this, a great amount of effort and dedicated study is being given to the matter. Due to the novel coronavirus's general prevalence and rate of mutation, this is an extremely dynamic area with constant new developments. Therefore, understanding the virus's pathogenesis and how mutations affect it is crucial. This review attempts to aid in understanding the currently most important strains and what primary changes they entail in connection to more specific mutations, and how they each affect infectivity, antigen resistance, and other properties. In an attempt to maintain relevance to the time at which this paper will be published, priority has been given to variants classified by the WHO and the CDC as of Sep. 23, 2021, as "Variants of Concern". Of particular interest in B.1.1.7, B.1.351, B.1.617.2, P.1 are the mutations affecting the Spike protein and Receptor Binding Domain, as they directly affect infectivity and susceptibility to neutralization. Certain mutations (D614G, E484K, N501Y, K417N, L452R and P681R) have appeared across several different strains, often accompanied by others that may be complementary working together to confer increased infectivity, fitness, or resistance to neutralization. We anticipate that the understanding of such COVID-19 mutations will, in the near future, prove important for diagnosis, treatment development, and vaccine development.
Collapse
Affiliation(s)
- Gene Park
- Whitmore School, Morgantown, WV 26505 USA
| | - Byeong Hee Hwang
- Division of Bioengineering, Incheon National University, Incheon, 22012 Korea
- Department of Bio·nanobioengineering, Incheon National University, Incheon, 22012 Korea
| |
Collapse
|
98
|
Alkhatib M, Svicher V, Salpini R, Ambrosio FA, Bellocchi MC, Carioti L, Piermatteo L, Scutari R, Costa G, Artese A, Alcaro S, Shafer R, Ceccherini-Silberstein F. SARS-CoV-2 Variants and Their Relevant Mutational Profiles: Update Summer 2021. Microbiol Spectr 2021; 9:e0109621. [PMID: 34787497 PMCID: PMC8597642 DOI: 10.1128/spectrum.01096-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic caused by it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been undergoing a genetic diversification leading to the emergence of new variants. Nevertheless, a clear definition of the genetic signatures underlying the circulating variants is still missing. Here, we provide a comprehensive insight into mutational profiles characterizing each SARS-CoV-2 variant, focusing on spike mutations known to modulate viral infectivity and/or antigenicity. We focused on variants and on specific relevant mutations reported by GISAID, Nextstrain, Outbreak.info, Pango, and Stanford database websites that were associated with any clinical/diagnostic impact, according to published manuscripts. Furthermore, 1,223,338 full-length high-quality SARS-CoV-2 genome sequences were retrieved from GISAID and used to accurately define the specific mutational patterns in each variant. Finally, mutations were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, this review sheds light and assists in defining the genetic signatures characterizing the currently circulating variants and their clinical relevance. IMPORTANCE Since the emergence of SARS-CoV-2, several recurrent mutations, particularly in the spike protein, arose during human-to-human transmission or spillover events between humans and animals, generating distinct worrisome variants of concern (VOCs) or of interest (VOIs), designated as such due to their clinical and diagnostic impacts. Characterizing these variants and their related mutations is important in tracking SAR-CoV-2 evolution and understanding the efficacy of vaccines and therapeutics based on monoclonal antibodies, convalescent-phase sera, and direct antivirals. Our study provides a comprehensive survey of the mutational profiles characterizing the important SARS-CoV-2 variants, focusing on spike mutations and highlighting other protein mutations.
Collapse
Affiliation(s)
- Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Campus S. Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | | | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rossana Scutari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Campus S. Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Catanzaro, Italy
- Net4Science Academic Spin-Off, Campus S. Venuta, Università Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus S. Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Catanzaro, Italy
- Net4Science Academic Spin-Off, Campus S. Venuta, Università Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus S. Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Catanzaro, Italy
- Net4Science Academic Spin-Off, Campus S. Venuta, Università Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Robert Shafer
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
99
|
Brinkkemper M, Brouwer PJM, Maisonnasse P, Grobben M, Caniels TG, Poniman M, Burger JA, Bontjer I, Oomen M, Bouhuijs JH, van der Linden CA, Villaudy J, van der Velden YU, Sliepen K, van Gils MJ, Le Grand R, Sanders RW. A third SARS-CoV-2 spike vaccination improves neutralization of variants-of-concern. NPJ Vaccines 2021; 6:146. [PMID: 34862406 PMCID: PMC8642392 DOI: 10.1038/s41541-021-00411-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
The emergence of SARS-CoV-2 variants that are more resistant to antibody-mediated neutralization pose a new hurdle in combating the COVID-19 pandemic. Although vaccines based on the original Wuhan sequence have been shown to be effective at preventing COVID-19, their efficacy is likely to be decreased against more neutralization-resistant variants-of-concern (VOC), in particular, the Beta variant originating in South Africa. We assessed, in mice, rabbits, and non-human primates, whether a third vaccination with experimental Wuhan-based Spike vaccines could alleviate this problem. Our data show that a third immunization improves neutralizing antibody titers against the variants-of-concern, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2). After three vaccinations, the level of neutralization against Beta was similar to the level of neutralization against the original strain after two vaccinations, suggesting that simply providing a third immunization could nullify the reduced activity of current vaccines against VOC.
Collapse
Affiliation(s)
- Mitch Brinkkemper
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Pauline Maisonnasse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Marloes Grobben
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Tom G Caniels
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Joey H Bouhuijs
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Cynthia A van der Linden
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Julien Villaudy
- AIMM Therapeutics BV, Amsterdam, 1105, BA, The Netherlands
- J&S Preclinical Solutions, Oss, 5345, RR, The Netherlands
| | - Yme U van der Velden
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, 1105, AZ, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
100
|
Heggestad JT, Britton RJ, Kinnamon DS, Wall SA, Joh DY, Hucknall AM, Olson LB, Anderson JG, Mazur A, Wolfe CR, Oguin TH, Sullenger BA, Burke TW, Kraft BD, Sempowski GD, Woods CW, Chilkoti A. Rapid test to assess the escape of SARS-CoV-2 variants of concern. SCIENCE ADVANCES 2021; 7:eabl7682. [PMID: 34860546 PMCID: PMC8641938 DOI: 10.1126/sciadv.abl7682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 05/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are concerning in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a rapid test, termed CoVariant-SCAN, that detects neutralizing antibodies (nAbs) capable of blocking interactions between the angiotensin-converting enzyme 2 receptor and the spike protein of wild-type (WT) SARS-CoV-2 and three other variants: B.1.1.7, B.1.351, and P.1. Using CoVariant-SCAN, we assessed neutralization/blocking of monoclonal antibodies and plasma from COVID-19–positive and vaccinated individuals. For several monoclonal antibodies and most plasma samples, neutralization against B.1.351 and P.1 variants is diminished relative to WT, while B.1.1.7 is largely cross-neutralized. We also showed that we can rapidly adapt the platform to detect nAbs against an additional variant—B.1.617.2 (Delta)—without reengineering or reoptimizing the assay. Results using CoVariant-SCAN are consistent with live virus neutralization assays and demonstrate that this easy-to-deploy test could be used to rapidly assess nAb response against multiple SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jacob T. Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Rhett J. Britton
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - David S. Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Simone A. Wall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Daniel Y. Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Angus M. Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Lyra B. Olson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jack G. Anderson
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Anna Mazur
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Cameron R. Wolfe
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas H. Oguin
- Department of Medicine and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bruce A. Sullenger
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Bryan D. Kraft
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory D. Sempowski
- Department of Medicine and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Department of Medicine and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|