51
|
D’Addario CA, Lanier GM, Jacob C, Bauer N, Hewes JL, Bhadra A, Gupte SA. Differences in the expression of DNA methyltransferases and demethylases in leukocytes and the severity of pulmonary arterial hypertension between ethnic groups. Physiol Rep 2022; 10:e15282. [PMID: 35581740 PMCID: PMC9114656 DOI: 10.14814/phy2.15282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 04/29/2023] Open
Abstract
The loss of ten-eleven translocation (TET2) methylcytosine dioxygenase expression contributes to the pathobiology of pulmonary arterial hypertension (PAH). However, whether the expression and activity of other TETs and DNA methyltransferases (DNMTs) are altered in PAH remains enigmatic. Therefore, our objective was to determine the expression of DNMT (1, 3a, and 3b) and TET (1, 2, and 3) and their total activity. We assessed the expression of DNMT and TET enzymes in the leukocytes and their activity in extracellular vesicles (EVs). Expression of DNMT (1, 3a, and 3b), TET (2 and 3) in leukocytes, and total activity in EVs, from PAH patients was higher than in healthy controls. Additionally, we noticed there were difference in expression of these epigenetic enzyme based on ethnicity and found higher DNMT1 and lower TET2/TET3 expression in Caucasian than Hispanic/African American (combine) patients. Since loss-of-function mutation(s) and down-regulation of TET enzymes are associated with hematological malignancies and cytokine production, we determined the expression of genes that encode cytokines in samples of Caucasian and Hispanic/African American patients. Expression of IL6, CSF2, and CCL5 genes were higher in the leukocytes of Caucasian than Hispanic/African American patients, and CSF2 and CCL5 negatively correlated with the decreased expression of TET3. Interestingly, the expression of gene encoding CD34, a marker of myeloid and lymphoid precursor cells, and CD163, a monocyte/macrophage protein, was higher in the leukocytes of Caucasian than Hispanic/African American patients. Furthermore, Hispanic/African American patients having higher TET2/TET3 expression had higher pulmonary capillary wedge pressure. In conclusion, our results revealed higher DNMT1 and lower TET2/TET3 in Caucasian than Hispanic/African American patients together potentially augmented genes encoding inflammation causing cytokines, and CD34+ -derived immunogenic cells, and the severity of PAH.
Collapse
Affiliation(s)
| | - Gregg M. Lanier
- Department of Cardiology, and Heart and Vascular InstituteWestchester Medical Center and New York Medical CollegeValhallaNYUSA
| | - Christina Jacob
- Department of PharmacologyNew York Medical CollegeValhallaNYUSA
| | - Natalie Bauer
- Department of PharmacologyCollege of MedicineUniversity of South AlabamaMobileALUSA
| | - Jenny L. Hewes
- Department of PharmacologyCollege of MedicineUniversity of South AlabamaMobileALUSA
| | - Aritra Bhadra
- Department of PharmacologyCollege of MedicineUniversity of South AlabamaMobileALUSA
| | - Sachin A. Gupte
- Department of PharmacologyNew York Medical CollegeValhallaNYUSA
| |
Collapse
|
52
|
Eder JM, Sacco RE. Ex vivo activated CD4+ T cells from young calves exhibit Th2-biased effector function with distinct metabolic reprogramming compared to adult cows. Vet Immunol Immunopathol 2022; 248:110418. [DOI: 10.1016/j.vetimm.2022.110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
|
53
|
Karacay C, Prietl B, Harer C, Ehall B, Haudum CW, Bounab K, Franz J, Eisenberg T, Madeo F, Kolb D, Hingerl K, Hausl M, Magnes C, Mautner SI, Kotzbeck P, Pieber TR. The effect of spermidine on autoimmunity and beta cell function in NOD mice. Sci Rep 2022; 12:4502. [PMID: 35296698 PMCID: PMC8927410 DOI: 10.1038/s41598-022-08168-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Spermidine is a natural polyamine which was shown to prolong lifespan of organisms and to improve cardiac and cognitive function. Spermidine was also reported to reduce inflammation and modulate T-cells. Autophagy is one of the mechanisms that spermidine exerts its effect. Autophagy is vital for β-cell homeostasis and autophagy deficiency was reported to lead to exacerbated diabetes in mice. The effect of spermidine in type 1 diabetes pathogenesis remains to be elucidated. Therefore, we examined the effect of spermidine treatment in non-obese diabetic (NOD) mice, a mouse model for type 1 diabetes. NOD mice were given untreated or spermidine-treated water ad libitum from 4 weeks of age until diabetes onset or 35 weeks of age. We found that treatment with 10 mM spermidine led to higher diabetes incidence in NOD mice despite unchanged pancreatic insulitis. Spermidine modulated tissue polyamine levels and elevated signs of autophagy in pancreas. Spermidine led to increased proportion of pro-inflammatory T-cells in pancreatic lymph nodes (pLN) in diabetic mice. Spermidine elevated the proportion of regulatory T-cells in early onset mice, whereas it reduced the proportion of regulatory T-cells in late onset mice. In summary spermidine treatment led to higher diabetes incidence and elevated proportion of T-cells in pLN.
Collapse
Affiliation(s)
- Ceren Karacay
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Barbara Prietl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- CBmed GmbH- Center for Biomarker Research in Medicine, Graz, Austria
| | - Clemens Harer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Barbara Ehall
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Christoph W Haudum
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- CBmed GmbH- Center for Biomarker Research in Medicine, Graz, Austria
| | - Kaddour Bounab
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Joakim Franz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- BioTechMed Graz, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Frank Madeo
- BioTechMed Graz, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Kerstin Hingerl
- Core Facility Ultrastructure Analysis, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Markus Hausl
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Christoph Magnes
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Selma I Mautner
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, Graz, Austria
- Joanneum Research Forschungsgesellschaft mbH COREMED - Cooperative Centre for Regenerative Medicine, Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
- CBmed GmbH- Center for Biomarker Research in Medicine, Graz, Austria.
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria.
| |
Collapse
|
54
|
De Jesus A, Keyhani-Nejad F, Pusec CM, Goodman L, Geier JA, Stoolman JS, Stanczyk PJ, Nguyen T, Xu K, Suresh KV, Chen Y, Rodriguez AE, Shapiro JS, Chang HC, Chen C, Shah KP, Ben-Sahra I, Layden BT, Chandel NS, Weinberg SE, Ardehali H. Hexokinase 1 cellular localization regulates the metabolic fate of glucose. Mol Cell 2022; 82:1261-1277.e9. [PMID: 35305311 PMCID: PMC8995391 DOI: 10.1016/j.molcel.2022.02.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/12/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
The product of hexokinase (HK) enzymes, glucose-6-phosphate, can be metabolized through glycolysis or directed to alternative metabolic routes, such as the pentose phosphate pathway (PPP) to generate anabolic intermediates. HK1 contains an N-terminal mitochondrial binding domain (MBD), but its physiologic significance remains unclear. To elucidate the effect of HK1 mitochondrial dissociation on cellular metabolism, we generated mice lacking the HK1 MBD (ΔE1HK1). These mice produced a hyper-inflammatory response when challenged with lipopolysaccharide. Additionally, there was decreased glucose flux below the level of GAPDH and increased upstream flux through the PPP. The glycolytic block below GAPDH is mediated by the binding of cytosolic HK1 with S100A8/A9, resulting in GAPDH nitrosylation through iNOS. Additionally, human and mouse macrophages from conditions of low-grade inflammation, such as aging and diabetes, displayed increased cytosolic HK1 and reduced GAPDH activity. Our data indicate that HK1 mitochondrial binding alters glucose metabolism through regulation of GAPDH.
Collapse
Affiliation(s)
- Adam De Jesus
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Farnaz Keyhani-Nejad
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Carolina M Pusec
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lauren Goodman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Justin A Geier
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Joshua S Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paulina J Stanczyk
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Tivoli Nguyen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Kai Xu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Krishna V Suresh
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Yihan Chen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arianne E Rodriguez
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason S Shapiro
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Hsiang-Chun Chang
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Chunlei Chen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kriti P Shah
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian T Layden
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Samuel E Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hossein Ardehali
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
55
|
Wani GA, Sprenger HG, Ndoci K, Chandragiri S, Acton RJ, Schatton D, Kochan SMV, Sakthivelu V, Jevtic M, Seeger JM, Müller S, Giavalisco P, Rugarli EI, Motori E, Langer T, Bergami M. Metabolic control of adult neural stem cell self-renewal by the mitochondrial protease YME1L. Cell Rep 2022; 38:110370. [PMID: 35172139 DOI: 10.1016/j.celrep.2022.110370] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 01/17/2023] Open
Abstract
The transition between quiescence and activation in neural stem and progenitor cells (NSPCs) is coupled with reversible changes in energy metabolism with key implications for lifelong NSPC self-renewal and neurogenesis. How this metabolic plasticity is ensured between NSPC activity states is unclear. We find that a state-specific rewiring of the mitochondrial proteome by the i-AAA peptidase YME1L is required to preserve NSPC self-renewal. YME1L controls the abundance of numerous mitochondrial substrates in quiescent NSPCs, and its deletion activates a differentiation program characterized by broad metabolic changes causing the irreversible shift away from a fatty-acid-oxidation-dependent state. Conditional Yme1l deletion in adult NSPCs in vivo results in defective self-renewal and premature differentiation, ultimately leading to NSPC pool depletion. Our results disclose an important role for YME1L in coordinating the switch between metabolic states of NSPCs and suggest that NSPC fate is regulated by compartmentalized changes in protein network dynamics.
Collapse
Affiliation(s)
- Gulzar A Wani
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Hans-Georg Sprenger
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Kristiano Ndoci
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Srikanth Chandragiri
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Richard James Acton
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Désirée Schatton
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sandra M V Kochan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Vignesh Sakthivelu
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Milica Jevtic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Jens M Seeger
- Institute for Molecular Immunology, CECAD Research Center and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Stefan Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Molecular Medicine, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Elena I Rugarli
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Molecular Medicine, Robert-Koch-Str. 21, 50931 Cologne, Germany; Institute of Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Elisa Motori
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Molecular Medicine, Robert-Koch-Str. 21, 50931 Cologne, Germany; Institute of Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| |
Collapse
|
56
|
Han C, Ge M, Ho PC, Zhang L. Fueling T-cell Antitumor Immunity: Amino Acid Metabolism Revisited. Cancer Immunol Res 2021; 9:1373-1382. [PMID: 34716193 DOI: 10.1158/2326-6066.cir-21-0459] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
T cells are the key players in eliminating malignant tumors. Adoptive transfer of tumor antigen-specific T cells and immune checkpoint blockade has yielded durable antitumor responses in the clinic, but not all patients respond initially and some that do respond eventually have tumor progression. Thus, new approaches to enhance the utility of immunotherapy are needed. T-cell activation and differentiation status are tightly controlled at the transcriptional, epigenetic, and metabolic levels. Amino acids are involved in multiple steps of T-cell antitumor immunity, including T-cell activation, proliferation, effector function, memory formation as well as functional exhaustion. In this review, we briefly discuss how amino acid metabolism is linked to T-cell fate decisions and summarize how amino acid deprivation or accumulation of certain amino acid metabolites within the tumor microenvironment diminishes T-cell functionality. Furthermore, we discuss potential strategies for immunotherapy via modulating amino acid metabolism either in T cells intrinsically or extrinsically to achieve therapeutic efficacy.
Collapse
Affiliation(s)
- Chenfeng Han
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Minmin Ge
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lianjun Zhang
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
57
|
Takahashi H, Nomura H, Iriki H, Kubo A, Isami K, Mikami Y, Mukai M, Sasaki T, Yamagami J, Kudoh J, Ito H, Kamata A, Kurebayashi Y, Yoshida H, Yoshimura A, Sun HW, Suematsu M, O’Shea JJ, Kanno Y, Amagai M. Cholesterol 25-hydroxylase is a metabolic switch to constrain T cell-mediated inflammation in the skin. Sci Immunol 2021; 6:eabb6444. [PMID: 34623903 PMCID: PMC9780739 DOI: 10.1126/sciimmunol.abb6444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interleukin-27 (IL-27) is an immunoregulatory cytokine whose essential function is to limit immune responses. We found that the gene encoding cholesterol 25-hydroxylase (Ch25h) was induced in CD4+ T cells by IL-27, enhanced by transforming growth factor–β (TGF-β), and antagonized by T-bet. Ch25h catalyzes cholesterol to generate 25-hydroxycholesterol (25OHC), which was subsequently released to the cellular milieu, functioning as a modulator of T cell response. Extracellular 25OHC suppressed cholesterol biosynthesis in T cells, inhibited cell growth, and induced nutrient deprivation cell death without releasing high-mobility group box 1 (HMGB1). This growth inhibitory effect was specific to actively proliferating cells with high cholesterol demand and was reversed when extracellular cholesterol was replenished. Ch25h-expressing CD4+ T cells that received IL-27 and TGF-β signals became refractory to 25OHC-mediated growth inhibition in vitro. Nonetheless, IL-27–treated T cells negatively affected viability of bystander cells in a paracrine manner, but only if the bystander cells were in the early phases of activation. In mouse models of skin inflammation due to autoreactive T cells or chemically induced hypersensitivity, genetic deletion of Ch25h or Il27ra led to worse outcomes. Thus, Ch25h is an immunoregulatory metabolic switch induced by IL-27 and dampens excess bystander T effector expansion in tissues through its metabolite derivative, 25OHC. This study reveals regulation of cholesterol metabolism as a modality for controlling tissue inflammation and thus represents a mechanism underlying T cell immunoregulatory functions.
Collapse
Affiliation(s)
- Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hisashi Nomura
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hisato Iriki
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akiko Kubo
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Isami
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yohei Mikami
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD 20892, USA
- Present address: Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Miho Mukai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Yamagami
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Kudoh
- Laboratory of Gene Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiromi Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Aki Kamata
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Akihiko Yoshimura
- Department of Immunology and Microbiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jonh J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| |
Collapse
|
58
|
Halaby MJ, McGaha TL. Amino Acid Transport and Metabolism in Myeloid Function. Front Immunol 2021; 12:695238. [PMID: 34456909 PMCID: PMC8397459 DOI: 10.3389/fimmu.2021.695238] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Regulation of amino acid availability and metabolism in immune cells is essential for immune system homeostasis and responses to exogenous and endogenous challenges including microbial infection, tumorigenesis and autoimmunity. In myeloid cells the consumption of amino acids such as arginine and tryptophan and availability of their metabolites are key drivers of cellular identity impacting development, functional polarization to an inflammatory or regulatory phenotype, and interaction with other immune cells. In this review, we discuss recent developments and emerging concepts in our understanding of the impact amino acid availability and consumption has on cellular phenotype focusing on two key myeloid cell populations, macrophages and myeloid derived suppressor cells (MDSCs). We also highlight the potential of myeloid-specific of amino acid transporters and catabolic enzymes as immunotherapy targets in a variety of conditions such as cancer and autoimmune disease discussing the opportunities and limitations in targeting these pathways for clinical therapy.
Collapse
Affiliation(s)
- Marie Jo Halaby
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Immunology, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
59
|
Wagner A, Wang C, Fessler J, DeTomaso D, Avila-Pacheco J, Kaminski J, Zaghouani S, Christian E, Thakore P, Schellhaass B, Akama-Garren E, Pierce K, Singh V, Ron-Harel N, Douglas VP, Bod L, Schnell A, Puleston D, Sobel RA, Haigis M, Pearce EL, Soleimani M, Clish C, Regev A, Kuchroo VK, Yosef N. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 2021; 184:4168-4185.e21. [PMID: 34216539 PMCID: PMC8621950 DOI: 10.1016/j.cell.2021.05.045] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.
Collapse
Affiliation(s)
- Allon Wagner
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Johannes Fessler
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David DeTomaso
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - James Kaminski
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Zaghouani
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Christian
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Brandon Schellhaass
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elliot Akama-Garren
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Noga Ron-Harel
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Vivian Paraskevi Douglas
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Lloyd Bod
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Daniel Puleston
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Raymond A Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marcia Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Manoocher Soleimani
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87121, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Vijay K Kuchroo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
60
|
Icard P, Loi M, Wu Z, Ginguay A, Lincet H, Robin E, Coquerel A, Berzan D, Fournel L, Alifano M. Metabolic Strategies for Inhibiting Cancer Development. Adv Nutr 2021; 12:1461-1480. [PMID: 33530098 PMCID: PMC8321873 DOI: 10.1093/advances/nmaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, France
- Normandie Université, UNICAEN, INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer Centre François Baclesse, Caen, France
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Mauro Loi
- Radiotherapy Department, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Zherui Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Antonin Ginguay
- Service de Biochimie, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, AP-HP, Paris, France
- EA4466 Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie de Paris, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Hubert Lincet
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | - Edouard Robin
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Antoine Coquerel
- INSERM U1075, Comete “Mobilités: Attention, Orientation, Chronobiologie”, Université Caen, Caen, France
| | - Diana Berzan
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
61
|
Fu Z, Dean JW, Xiong L, Dougherty MW, Oliff KN, Chen ZME, Jobin C, Garrett TJ, Zhou L. Mitochondrial transcription factor A in RORγt + lymphocytes regulate small intestine homeostasis and metabolism. Nat Commun 2021; 12:4462. [PMID: 34294718 PMCID: PMC8298438 DOI: 10.1038/s41467-021-24755-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
RORγt+ lymphocytes, including interleukin 17 (IL-17)-producing gamma delta T (γδT17) cells, T helper 17 (Th17) cells, and group 3 innate lymphoid cells (ILC3s), are important immune regulators. Compared to Th17 cells and ILC3s, γδT17 cell metabolism and its role in tissue homeostasis remains poorly understood. Here, we report that the tissue milieu shapes splenic and intestinal γδT17 cell gene signatures. Conditional deletion of mitochondrial transcription factor A (Tfam) in RORγt+ lymphocytes significantly affects systemic γδT17 cell maintenance and reduces ILC3s without affecting Th17 cells in the gut. In vivo deletion of Tfam in RORγt+ lymphocytes, especially in γδT17 cells, results in small intestine tissue remodeling and increases small intestine length by enhancing the type 2 immune responses in mice. Moreover, these mice show dysregulation of the small intestine transcriptome and metabolism with less body weight but enhanced anti-helminth immunity. IL-22, a cytokine produced by RORγt+ lymphocytes inhibits IL-13-induced tuft cell differentiation in vitro, and suppresses the tuft cell-type 2 immune circuit and small intestine lengthening in vivo, highlighting its key role in gut tissue remodeling.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | - Kristen N Oliff
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Zong-Ming E Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Christian Jobin
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
62
|
Metabolomic Reprogramming of C57BL/6-Macrophages during Early Infection with L. amazonensis. Int J Mol Sci 2021; 22:ijms22136883. [PMID: 34206906 PMCID: PMC8267886 DOI: 10.3390/ijms22136883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Leishmania survival inside macrophages depends on factors that lead to the immune response evasion during the infection. In this context, the metabolic scenario of the host cell-parasite relationship can be crucial to understanding how this parasite can survive inside host cells due to the host's metabolic pathways reprogramming. In this work, we aimed to analyze metabolic networks of bone marrow-derived macrophages from C57BL/6 mice infected with Leishmania amazonensis wild type (La-WT) or arginase knocked out (La-arg-), using the untargeted Capillary Electrophoresis-Mass Spectrometry (CE-MS) approach to assess metabolomic profile. Macrophages showed specific changes in metabolite abundance upon Leishmania infection, as well as in the absence of parasite-arginase. The absence of L. amazonensis-arginase promoted the regulation of both host and parasite urea cycle, glycine and serine metabolism, ammonia recycling, metabolism of arginine, proline, aspartate, glutamate, spermidine, spermine, methylhistidine, and glutathione metabolism. The increased L-arginine, L-citrulline, L-glutamine, oxidized glutathione, S-adenosylmethionine, N-acetylspermidine, trypanothione disulfide, and trypanothione levels were observed in La-WT-infected C57BL/6-macrophage compared to uninfected. The absence of parasite arginase increased L-arginine, argininic acid, and citrulline levels and reduced ornithine, putrescine, S-adenosylmethionine, glutamic acid, proline, N-glutamyl-alanine, glutamyl-arginine, trypanothione disulfide, and trypanothione when compared to La-WT infected macrophage. Moreover, the absence of parasite arginase leads to an increase in NO production levels and a higher infectivity rate at 4 h of infection. The data presented here show a host-dependent regulation of metabolomic profiles of C57BL/6 macrophages compared to the previously observed BALB/c macrophages infected with L. amazonensis, an important fact due to the dual and contrasting macrophage phenotypes of those mice. In addition, the Leishmania-arginase showed interference with the urea cycle, glycine, and glutathione metabolism during host-pathogen interactions.
Collapse
|
63
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
64
|
Proto MC, Fiore D, Piscopo C, Pagano C, Galgani M, Bruzzaniti S, Laezza C, Gazzerro P, Bifulco M. Lipid homeostasis and mevalonate pathway in COVID-19: Basic concepts and potential therapeutic targets. Prog Lipid Res 2021; 82:101099. [PMID: 33915202 PMCID: PMC8074527 DOI: 10.1016/j.plipres.2021.101099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Despite encouraging progresses achieved in the management of viral diseases, efficient strategies to counteract infections are still required. The current global challenge highlighted the need to develop a rapid and cost-effective strategy to counteract the SARS-CoV-2 pandemic. Lipid metabolism plays a crucial role in viral infections. Viruses can use the host lipid machinery to support their life cycle and to impair the host immune response. The altered expression of mevalonate pathway-related genes, induced by several viruses, assures survival and spread in host tissue. In some infections, statins, HMG-CoA-reductase inhibitors, reduce cholesterol in the plasma membrane of permissive cells resulting in lower viral titers and failure to internalize the virus. Statins can also counteract viral infections through their immunomodulatory, anti-inflammatory and anti-thrombotic effects. Beyond statins, interfering with the mevalonate pathway could have an adjuvant effect in therapies aimed at mitigating endothelial dysfunction and deregulated inflammation in viral infection. In this review we depicted the historical and current evidence highlighting how lipid homeostasis and mevalonate pathway targeting represents a valid approach to rapidly neutralize viruses, focusing our attention to their potential use as effective targets to hinder SARS-CoV-2 morbidity and mortality. Pros and cons of statins and Mevalonate-pathway inhibitors have been also dissected.
Collapse
Affiliation(s)
- Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy
| | - Mario Galgani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy; Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy
| | - Sara Bruzzaniti
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy; Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
65
|
Lu X, Zhang J, Liu H, Ma W, Yu L, Tan X, Wang S, Ren F, Li X, Li X. Cannabidiol attenuates pulmonary arterial hypertension by improving vascular smooth muscle cells mitochondrial function. Theranostics 2021; 11:5267-5278. [PMID: 33859746 PMCID: PMC8039951 DOI: 10.7150/thno.55571] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Pulmonary arterial hypertension (PAH) is a chronic disease associated with enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) and dysfunctional mitochondria, and the clinical therapeutic option for PAH is very limited. Recent studies showed that cannabidiol (CBD), a non-psychoactive constituent of cannabinoids, possessed antioxidant effect towards several cardiovascular diseases, whereas the mechanistic effect of CBD in PAH is unknown. Methods: In this study, the effects of CBD in PAH were determined by analyzing its preventive and therapeutic actions in PAH rodent models in vivo and PASMCs' proliferation test in vitro. Additionally, CBD's roles in mitochondrial function and oxidant stress were also assessed in PASMCs. Results: We found that CBD reversed the pathological changes observed in both Sugen-hypoxia and monocrotaline-induced PAH rodent models in a cannabinoid receptors-independent manner. Our results also demonstrated that CBD significantly inhibited the PASMCs' proliferation in PAH mice with less inflammation and reactive oxygen species levels. Moreover, CBD alleviated rodent PAH by recovering mitochondrial energy metabolism, normalizing the hypoxia-induced oxidant stress, reducing the lactate overaccumulation and abnormal glycolysis. Conclusions: Taken together, these findings confirm an important role for CBD in PAH pathobiology.
Collapse
|
66
|
Bhargava P, Smith MD, Mische L, Harrington E, Fitzgerald KC, Martin K, Kim S, Reyes AA, Gonzalez-Cardona J, Volsko C, Tripathi A, Singh S, Varanasi K, Lord HN, Meyers K, Taylor M, Gharagozloo M, Sotirchos ES, Nourbakhsh B, Dutta R, Mowry EM, Waubant E, Calabresi PA. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J Clin Invest 2021; 130:3467-3482. [PMID: 32182223 DOI: 10.1172/jci129401] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the CNS. Bile acids are cholesterol metabolites that can signal through receptors on cells throughout the body, including in the CNS and the immune system. Whether bile acid metabolism is abnormal in MS is unknown. Using global and targeted metabolomic profiling, we identified lower levels of circulating bile acid metabolites in multiple cohorts of adult and pediatric patients with MS compared with controls. In white matter lesions from MS brain tissue, we noted the presence of bile acid receptors on immune and glial cells. To mechanistically examine the implications of lower levels of bile acids in MS, we studied the in vitro effects of an endogenous bile acid, tauroursodeoxycholic acid (TUDCA), on astrocyte and microglial polarization. TUDCA prevented neurotoxic (A1) polarization of astrocytes and proinflammatory polarization of microglia in a dose-dependent manner. TUDCA supplementation in experimental autoimmune encephalomyelitis reduced the severity of disease through its effects on G protein-coupled bile acid receptor 1 (GPBAR1). We demonstrate that bile acid metabolism was altered in MS and that bile acid supplementation prevented polarization of astrocytes and microglia to neurotoxic phenotypes and ameliorated neuropathology in an animal model of MS. These findings identify dysregulated bile acid metabolism as a potential therapeutic target in MS.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Leah Mische
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily Harrington
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Kyle Martin
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sol Kim
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Christina Volsko
- Department of Neuroscience, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ajai Tripathi
- Department of Neuroscience, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Sonal Singh
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kesava Varanasi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hannah-Noelle Lord
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Keya Meyers
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle Taylor
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
67
|
Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes 2021; 13:1-22. [PMID: 33590776 PMCID: PMC7899087 DOI: 10.1080/19490976.2021.1882927] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 02/04/2023] Open
Abstract
The interaction disorder between gut microbiota and its host has been documented in different non-communicable diseases (NCDs) such as metabolic syndrome, neurodegenerative disease, and autoimmune disease. The majority of these altered interactions arise through metabolic cross-talk between gut microbiota and host immune system, inducing a low-grade chronic inflammation that characterizes all NCDs. In this review, we discuss the contribution of bacterial metabolites to immune signaling pathways involved in NCDs. We then review recent advances that aid to rationally design microbial therapeutics. A deeper understanding of these intersections between host and gut microbiota metabolism using metabolomics-based system biology platform promises to reveal the fundamental mechanisms that drive metabolic predispositions to disease and suggest new avenues to use microbial therapeutic opportunities for NCDs treatment and prevention. Abbreviations: NCDs: non-communicable disease, IBD: inflammatory bowel disease, IL: interleukin, T2D: type 2 diabetes, SCFAs: short-chain fatty acids, HDAC: histone deacetylases, GPCR: G-protein coupled receptors, 5-HT: 5-hydroxytryptamine receptor signaling, DCs: dendritic cells, IECs: intestinal epithelial cells, T-reg: T regulatory cell, NF-κB: nuclear factor κB, TNF-α: tumor necrosis factor alpha, Th: T helper cell, CNS: central nervous system, ECs: enterochromaffin cells, NSAIDs: non-steroidal anti-inflammatory drugs, AhR: aryl hydrocarbon receptor, IDO: indoleamine 2,3-dioxygenase, QUIN: quinolinic acid, PC: phosphatidylcholine, TMA: trimethylamine, TMAO: trimethylamine N-oxide, CVD: cardiovascular disease, NASH: nonalcoholic steatohepatitis, BAs: bile acids, FXR: farnesoid X receptor, CDCA: chenodeoxycholic acid, DCA: deoxycholic acid, LCA: lithocholic acid, UDCA: ursodeoxycholic acid, CB: cannabinoid receptor, COBRA: constraint-based reconstruction and analysis.
Collapse
Affiliation(s)
- F. Hosseinkhani
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - A. Heinken
- Division of System Biomedicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - I. Thiele
- Division of System Biomedicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - P. W. Lindenburg
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Research Group Metabolomics, Faculty Science & Technology, Leiden Centre for Applied Bioscience, University of Applied Sciences, Leiden, Netherlands
| | - A. C. Harms
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - T. Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
68
|
Surace L, Doisne JM, Croft CA, Thaller A, Escoll P, Marie S, Petrosemoli N, Guillemot V, Dardalhon V, Topazio D, Cama A, Buchrieser C, Taylor N, Amit I, Musumeci O, Di Santo JP. Dichotomous metabolic networks govern human ILC2 proliferation and function. Nat Immunol 2021; 22:1367-1374. [PMID: 34686862 PMCID: PMC8553616 DOI: 10.1038/s41590-021-01043-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/09/2021] [Indexed: 01/20/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) represent innate homologs of type 2 helper T cells (TH2) that participate in immune defense and tissue homeostasis through production of type 2 cytokines. While T lymphocytes metabolically adapt to microenvironmental changes, knowledge of human ILC2 metabolism is limited, and its key regulators are unknown. Here, we show that circulating 'naive' ILC2s have an unexpected metabolic profile with a higher level of oxidative phosphorylation (OXPHOS) than natural killer (NK) cells. Accordingly, ILC2s are severely reduced in individuals with mitochondrial disease (MD) and impaired OXPHOS. Metabolomic and nutrient receptor analysis revealed ILC2 uptake of amino acids to sustain OXPHOS at steady state. Following activation with interleukin-33 (IL-33), ILC2s became highly proliferative, relying on glycolysis and mammalian target of rapamycin (mTOR) to produce IL-13 while continuing to fuel OXPHOS with amino acids to maintain cellular fitness and proliferation. Our results suggest that proliferation and function are metabolically uncoupled in human ILC2s, offering new strategies to target ILC2s in disease settings.
Collapse
Affiliation(s)
- Laura Surace
- grid.428999.70000 0001 2353 6535Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France
| | - Jean-Marc Doisne
- grid.428999.70000 0001 2353 6535Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France
| | - Carys A. Croft
- grid.428999.70000 0001 2353 6535Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Anna Thaller
- grid.428999.70000 0001 2353 6535Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Pedro Escoll
- grid.428999.70000 0001 2353 6535Biology of Intracellular Bacteria Unit, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Solenne Marie
- grid.428999.70000 0001 2353 6535Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France
| | - Natalia Petrosemoli
- grid.428999.70000 0001 2353 6535Bioinformatics and Biostatistics Hub, Center of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, Paris, France
| | - Vincent Guillemot
- grid.428999.70000 0001 2353 6535Bioinformatics and Biostatistics Hub, Center of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, Paris, France
| | - Valerie Dardalhon
- grid.121334.60000 0001 2097 0141Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Davide Topazio
- Department of Otolaryngology, Hospital ‘Mazzini’, Teramo, Italy
| | - Antonia Cama
- Department of Maxillofacial and Otolaryngology, Hospital ‘F. Renzetti’, Lanciano, Italy
| | - Carmen Buchrieser
- grid.428999.70000 0001 2353 6535Biology of Intracellular Bacteria Unit, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Naomi Taylor
- grid.121334.60000 0001 2097 0141Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Ido Amit
- grid.13992.300000 0004 0604 7563Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Olimpia Musumeci
- grid.10438.3e0000 0001 2178 8421Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - James P. Di Santo
- grid.428999.70000 0001 2353 6535Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France
| |
Collapse
|
69
|
Wu R, Chen X, Kang S, Wang T, Gnanaprakasam JR, Yao Y, Liu L, Fan G, Burns MR, Wang R. De novo synthesis and salvage pathway coordinately regulate polyamine homeostasis and determine T cell proliferation and function. SCIENCE ADVANCES 2020; 6:eabc4275. [PMID: 33328226 PMCID: PMC7744078 DOI: 10.1126/sciadv.abc4275] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/22/2020] [Indexed: 05/05/2023]
Abstract
Robust and effective T cell-mediated immune responses require proper allocation of metabolic resources through metabolic pathways to sustain the energetically costly immune response. As an essential class of polycationic metabolites ubiquitously present in all living organisms, the polyamine pool is tightly regulated by biosynthesis and salvage pathway. We demonstrated that arginine is a major carbon donor and glutamine is a minor carbon donor for polyamine biosynthesis in T cells. Accordingly, the dependence of T cells can be partially relieved by replenishing the polyamine pool. In response to the blockage of biosynthesis, T cells can rapidly restore the polyamine pool through a compensatory increase in extracellular polyamine uptake, indicating a layer of metabolic plasticity. Simultaneously blocking synthesis and uptake depletes the intracellular polyamine pool, inhibits T cell proliferation, and suppresses T cell inflammation, indicating the potential therapeutic value of targeting the polyamine pool for managing inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ruohan Wu
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Siwen Kang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Jn Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Yufeng Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lingling Liu
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA.
| |
Collapse
|
70
|
Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2020; 158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory and neurodegenerative diseases are characterized by the recruitment of circulating blood-borne innate and adaptive immune cells into the central nervous system (CNS). These leukocytes sustain the detrimental response in the CNS by releasing pro-inflammatory mediators that induce activation of local glial cells, blood-brain barrier (BBB) dysfunction, and neural cell death. However, infiltrating peripheral immune cells could also dampen CNS inflammation and support tissue repair. Recent advances in the field of immunometabolism demonstrate the importance of metabolic reprogramming for the activation and functionality of such innate and adaptive immune cell populations. In particular, an increasing body of evidence suggests that the activity of metabolites and metabolic enzymes could influence the pathogenic potential of immune cells during neuroinflammatory and neurodegenerative disorders. In this review, we discuss the role of intracellular metabolic cues in regulating leukocyte-mediated CNS damage in Alzheimer's and Parkinson's disease, multiple sclerosis and stroke, highlighting the therapeutic potential of drugs targeting metabolic pathways for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Marah C Runtsch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
71
|
Soto‐Heredero G, Gómez de las Heras MM, Gabandé‐Rodríguez E, Oller J, Mittelbrunn M. Glycolysis - a key player in the inflammatory response. FEBS J 2020; 287:3350-3369. [PMID: 32255251 PMCID: PMC7496292 DOI: 10.1111/febs.15327] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The inflammatory response involves the activation of several cell types to fight insults caused by a plethora of agents, and to maintain the tissue homoeostasis. On the one hand, cells involved in the pro-inflammatory response, such as inflammatory M1 macrophages, Th1 and Th17 lymphocytes or activated microglia, must rapidly provide energy to fuel inflammation, which is essentially accomplished by glycolysis and high lactate production. On the other hand, regulatory T cells or M2 macrophages, which are involved in immune regulation and resolution of inflammation, preferentially use fatty acid oxidation through the TCA cycle as a main source for energy production. Here, we discuss the impact of glycolytic metabolism at the different steps of the inflammatory response. Finally, we review a wide variety of molecular mechanisms which could explain the relationship between glycolytic metabolites and the pro-inflammatory phenotype, including signalling events, epigenetic remodelling, post-transcriptional regulation and post-translational modifications. Inflammatory processes are a common feature of many age-associated diseases, such as cardiovascular and neurodegenerative disorders. The finding that immunometabolism could be a master regulator of inflammation broadens the avenue for treating inflammation-related pathologies through the manipulation of the vascular and immune cell metabolism.
Collapse
Affiliation(s)
- Gonzalo Soto‐Heredero
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - Manuel M. Gómez de las Heras
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
| | - Enrique Gabandé‐Rodríguez
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - Jorge Oller
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - María Mittelbrunn
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| |
Collapse
|
72
|
Goll JB, Li S, Edwards JL, Bosinger SE, Jensen TL, Wang Y, Hooper WF, Gelber CE, Sanders KL, Anderson EJ, Rouphael N, Natrajan MS, Johnson RA, Sanz P, Hoft D, Mulligan MJ. Transcriptomic and Metabolic Responses to a Live-Attenuated Francisella tularensis Vaccine. Vaccines (Basel) 2020; 8:vaccines8030412. [PMID: 32722194 PMCID: PMC7563297 DOI: 10.3390/vaccines8030412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/29/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022] Open
Abstract
The immune response to live-attenuated Francisella tularensis vaccine and its host evasion mechanisms are incompletely understood. Using RNA-Seq and LC–MS on samples collected pre-vaccination and at days 1, 2, 7, and 14 post-vaccination, we identified differentially expressed genes in PBMCs, metabolites in serum, enriched pathways, and metabolites that correlated with T cell and B cell responses, or gene expression modules. While an early activation of interferon α/β signaling was observed, several innate immune signaling pathways including TLR, TNF, NF-κB, and NOD-like receptor signaling and key inflammatory cytokines such as Il-1α, Il-1β, and TNF typically activated following infection were suppressed. The NF-κB pathway was the most impacted and the likely route of attack. Plasma cells, immunoglobulin, and B cell signatures were evident by day 7. MHC I antigen presentation was more actively up-regulated first followed by MHC II which coincided with the emergence of humoral immune signatures. Metabolomics analysis showed that glycolysis and TCA cycle-related metabolites were perturbed including a decline in pyruvate. Correlation networks that provide hypotheses on the interplay between changes in innate immune, T cell, and B cell gene expression signatures and metabolites are provided. Results demonstrate the utility of transcriptomics and metabolomics for better understanding molecular mechanisms of vaccine response and potential host–pathogen interactions.
Collapse
Affiliation(s)
- Johannes B. Goll
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (W.F.H.); (C.E.G.)
| | - Shuzhao Li
- Departments of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.L.); (Y.W.)
| | - James L. Edwards
- Department of Chemistry, Saint Louis University, St Louis, MO 63103, USA; (J.L.E.); (K.L.S.)
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Secret Path, Atlanta, GA 30329, USA;
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (N.R.); (M.S.N.)
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Travis L. Jensen
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (W.F.H.); (C.E.G.)
| | - Yating Wang
- Departments of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.L.); (Y.W.)
| | - William F. Hooper
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (W.F.H.); (C.E.G.)
| | - Casey E. Gelber
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (W.F.H.); (C.E.G.)
| | - Katherine L. Sanders
- Department of Chemistry, Saint Louis University, St Louis, MO 63103, USA; (J.L.E.); (K.L.S.)
| | - Evan J. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Nadine Rouphael
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (N.R.); (M.S.N.)
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Muktha S. Natrajan
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (N.R.); (M.S.N.)
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Robert A. Johnson
- Biomedical Advanced Research and Development Authority, U. S. Department of Health and Human Services, Washington, DC 20201, USA;
| | - Patrick Sanz
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA;
| | - Daniel Hoft
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO 63104, USA;
| | - Mark J. Mulligan
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Division of Infectious Diseases and Immunology, Department of Medicine, and New York University (NYU) Langone Vaccine Center, NYU School of Medicine, New York, NY 10016, USA
- Correspondence: ; Tel.: +1-212-263-9410; Fax: +1-646-501-4645
| |
Collapse
|
73
|
Affiliation(s)
- Francesca Di Cara
- Department of Microbiology and Immunology-IWK Health Centre- Dalhousie University, Halifax (NS), Canada
| |
Collapse
|
74
|
Qiu J, Villa M, Sanin DE, Buck MD, O'Sullivan D, Ching R, Matsushita M, Grzes KM, Winkler F, Chang CH, Curtis JD, Kyle RL, Van Teijlingen Bakker N, Corrado M, Haessler F, Alfei F, Edwards-Hicks J, Maggi LB, Zehn D, Egawa T, Bengsch B, Klein Geltink RI, Jenuwein T, Pearce EJ, Pearce EL. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep 2020; 27:2063-2074.e5. [PMID: 31091446 DOI: 10.1016/j.celrep.2019.04.022] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
Competition for nutrients like glucose can metabolically restrict T cells and contribute to their hyporesponsiveness during cancer. Metabolic adaptation to the surrounding microenvironment is therefore key for maintaining appropriate cell function. For instance, cancer cells use acetate as a substrate alternative to glucose to fuel metabolism and growth. Here, we show that acetate rescues effector function in glucose-restricted CD8+ T cells. Mechanistically, acetate promotes histone acetylation and chromatin accessibility and enhances IFN-γ gene transcription and cytokine production in an acetyl-CoA synthetase (ACSS)-dependent manner. Ex vivo acetate treatment increases IFN-γ production by exhausted T cells, whereas reducing ACSS expression in T cells impairs IFN-γ production by tumor-infiltrating lymphocytes and tumor clearance. Thus, hyporesponsive T cells can be epigenetically remodeled and reactivated by acetate, suggesting that pathways regulating the use of substrates alternative to glucose could be therapeutically targeted to promote T cell function during cancer.
Collapse
Affiliation(s)
- Jing Qiu
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Michael D Buck
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Reagan Ching
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Mai Matsushita
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Katarzyna M Grzes
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Frances Winkler
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | - Jonathan D Curtis
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ryan L Kyle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Mauro Corrado
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Fabian Haessler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Francesca Alfei
- School of Life Science, Technical University of Munich, 80333 Munich, Germany
| | - Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Leonard B Maggi
- ICCE Institute and Department of Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dietmar Zehn
- School of Life Science, Technical University of Munich, 80333 Munich, Germany
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bertram Bengsch
- BIOSS Center for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
75
|
Kitagawa A, Kizub I, Jacob C, Michael K, D'Alessandro A, Reisz JA, Grzybowski M, Geurts AM, Rocic P, Gupte R, Miano JM, Gupte SA. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean G6PD Variant. Hypertension 2020; 76:523-532. [PMID: 32507041 DOI: 10.1161/hypertensionaha.120.14772] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies suggest that individuals in the Mediterranean region with a loss-of-function, nonsynonymous single nucleotide polymorphism (S188F), in glucose-6-phosphate dehydrogenase (G6pd) are less susceptible to vascular diseases. However, this association has not yet been experimentally proven. Here, we set out to determine whether the Mediterranean mutation confers protection from vascular diseases and to discover the underlying protective mechanism. We generated a rat model with the Mediterranean single nucleotide polymorphism (G6PDS188F) using CRISPR-Cas9 genome editing. In rats carrying the mutation, G6PD activity, but not expression, was reduced to 20% of wild-type (WT) littermates. Additionally, unbiased metabolomics analysis revealed that the pentose phosphate pathway and other ancillary metabolic pathways connected to the pentose phosphate pathway were reduced (P<0.05) in the arteries of G6PDS188F versus WT rats. Intriguingly, G6PDS188F mutants, as compared with WT rats, developed less large arterial stiffness and hypertension evoked by high-fat diet and nitric oxide synthase inhibition with L-NG-nitroarginine methyl ester. Intravenous injection of a voltage-gated L-type Ca2+ channel agonist (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate; Bay K8644) acutely increased blood pressure in WT but not in G6PDS188F rats. Finally, our results suggested that (1) lower resting membrane potential of smooth muscle caused by increased expression of K+ channel proteins and (2) decreased voltage-gated Ca2+ channel activity in smooth muscle contributed to reduced hypertension and arterial stiffness evoked by L-NG-nitroarginine methyl ester and high-fat diet to G6PDS188F mutants as compared with WT rats. In summary, a mutation resulting in the replacement of a single amino acid (S188F) in G6PD, the rate-limiting enzyme in the pentose phosphate pathway, ascribed properties to the vascular smooth muscle that shields the organism from risk factors associated with vascular diseases.
Collapse
Affiliation(s)
- Atsushi Kitagawa
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Igor Kizub
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Christina Jacob
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Kevin Michael
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Petra Rocic
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | | | - Joseph M Miano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University (J.M.M.)
| | - Sachin A Gupte
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| |
Collapse
|
76
|
Ramalho R, Rao M, Zhang C, Agrati C, Ippolito G, Wang FS, Zumla A, Maeurer M. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Semin Immunopathol 2020; 42:279-313. [PMID: 32519148 PMCID: PMC7282544 DOI: 10.1007/s00281-020-00798-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.
Collapse
Affiliation(s)
- Renata Ramalho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Applied Nutrition Studies Group G.E.N.A.-IUEM), Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | | | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.
- I Medizinische Klinik, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
77
|
Social media in aid of post disaster management. TRANSFORMING GOVERNMENT- PEOPLE PROCESS AND POLICY 2020. [DOI: 10.1108/tg-09-2019-0088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
This paper aims to examine tweet posts regarding Typhoon Washi to contend the usefulness of social media and big data as an aid of post-disaster management. Through topic modelling and content analysis, this study examines the priorities of the victims expressed in Twitter and how the priorities changed over a year.
Design/methodology/approach
Social media, particularly Twitter, was where the data gathered. Using big data technology, the gathered data were processed and analysed according to the objectives of the study. Topic modelling was used in clustering words from different topics. Clustered words were then used for content analysis in determining the needs of the victims. Word frequency count was also used in determining what words were repeatedly used during the course period. To validate the gathered data online, government documents were requested and concerned government agencies were also interviewed.
Finding
Findings of this study argue that housing and relief goods have been the top priorities of the victims. Victims are seeking relief goods, especially when they are in evacuation centres. Also, the lack of legal basis hinders government officials from integrating social media information unto policymaking.
Research limitation
This study only reports Twitter posts containing keywords either, Sendong, SendongPH, Washi or TyphoonWashi. The keywords were determined based on the words that trended after Typhoon Washi struck.
Practical implication
For social media and big data to be adoptable and efficacious, supporting and facilitating conditions are necessary. Structural, technical and financial support, as well as legal framework, should be in place. Maintaining and sustaining positive attitude towards it should be taken care of.
Originality/value
Although many studies have been conducted on the usefulness of social media in times of disaster, many of these focused on the use of social media as medium that can efficiently spread information, and little has been done on how the government can use both social media and big data in collecting and analysing the needs of the victims. This study fills those gaps in social big data literature.
Collapse
|
78
|
Ma J, Wei K, Liu J, Tang K, Zhang H, Zhu L, Chen J, Li F, Xu P, Chen J, Liu J, Fang H, Tang L, Wang D, Zeng L, Sun W, Xie J, Liu Y, Huang B. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat Commun 2020; 11:1769. [PMID: 32286295 PMCID: PMC7156451 DOI: 10.1038/s41467-020-15636-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Our current understanding of how sugar metabolism affects inflammatory pathways in macrophages is incomplete. Here, we show that glycogen metabolism is an important event that controls macrophage-mediated inflammatory responses. IFN-γ/LPS treatment stimulates macrophages to synthesize glycogen, which is then channeled through glycogenolysis to generate G6P and further through the pentose phosphate pathway to yield abundant NADPH, ensuring high levels of reduced glutathione for inflammatory macrophage survival. Meanwhile, glycogen metabolism also increases UDPG levels and the receptor P2Y14 in macrophages. The UDPG/P2Y14 signaling pathway not only upregulates the expression of STAT1 via activating RARβ but also promotes STAT1 phosphorylation by downregulating phosphatase TC45. Blockade of this glycogen metabolic pathway disrupts acute inflammatory responses in multiple mouse models. Glycogen metabolism also regulates inflammatory responses in patients with sepsis. These findings show that glycogen metabolism in macrophages is an important regulator and indicate strategies that might be used to treat acute inflammatory diseases.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Keke Wei
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Junwei Liu
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Huafeng Zhang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Liyan Zhu
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jie Chen
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071, China
| | - Fei Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Pingwei Xu
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jie Chen
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jincheng Liu
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Haiqing Fang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Liang Tang
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Dianheng Wang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Liping Zeng
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Weiwei Sun
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jing Xie
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.,Clinical Immunology Center, CAMS, Beijing, 100005, China
| | - Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.,Clinical Immunology Center, CAMS, Beijing, 100005, China
| | - Bo Huang
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China. .,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China. .,Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China. .,Clinical Immunology Center, CAMS, Beijing, 100005, China.
| |
Collapse
|
79
|
Joshi SR, Kitagawa A, Jacob C, Hashimoto R, Dhagia V, Ramesh A, Zheng C, Zhang H, Jordan A, Waddell I, Leopold J, Hu CJ, McMurtry IF, D'Alessandro A, Stenmark KR, Gupte SA. Hypoxic activation of glucose-6-phosphate dehydrogenase controls the expression of genes involved in the pathogenesis of pulmonary hypertension through the regulation of DNA methylation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L773-L786. [PMID: 32159369 PMCID: PMC7191486 DOI: 10.1152/ajplung.00001.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is considered important in the pathogenesis of the occlusive vasculopathy observed in pulmonary hypertension (PH). However, the mechanisms that link reprogrammed metabolism to aberrant expression of genes, which modulate functional phenotypes of cells in PH, remain enigmatic. Herein, we demonstrate that, in mice, hypoxia-induced PH was prevented by glucose-6-phosphate dehydrogenase deficiency (G6PDDef), and further show that established severe PH in Cyp2c44-/- mice was attenuated by knockdown with G6PD shRNA or by G6PD inhibition with an inhibitor (N-ethyl-N'-[(3β,5α)-17-oxoandrostan-3-yl]urea, NEOU). Mechanistically, G6PDDef, knockdown and inhibition in lungs: 1) reduced hypoxia-induced changes in cytoplasmic and mitochondrial metabolism, 2) increased expression of Tet methylcytosine dioxygenase 2 (Tet2) gene, and 3) upregulated expression of the coding genes and long noncoding (lnc) RNA Pint, which inhibits cell growth, by hypomethylating the promoter flanking region downstream of the transcription start site. These results suggest functional TET2 is required for G6PD inhibition to increase gene expression and to reverse hypoxia-induced PH in mice. Furthermore, the inhibitor of G6PD activity (NEOU) decreased metabolic reprogramming, upregulated TET2 and lncPINT, and inhibited growth of control and diseased smooth muscle cells isolated from pulmonary arteries of normal individuals and idiopathic-PAH patients, respectively. Collectively, these findings demonstrate a previously unrecognized function for G6PD as a regulator of DNA methylation. These findings further suggest that G6PD acts as a link between reprogrammed metabolism and aberrant gene regulation and plays a crucial role in regulating the phenotype of cells implicated in the pathogenesis of PH, a debilitating disorder with a high mortality rate.
Collapse
Affiliation(s)
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Christina Jacob
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Ryota Hashimoto
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Amrit Ramesh
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Connie Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hui Zhang
- Division of Pediatric Critical Care Medicine, Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Jane Leopold
- Department of Medicine, Division of Cardiology, Brigham Women and Children's Hospital, Harvard School of Medicine, Boston, Massachusetts
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ivan F McMurtry
- Departments of Pharmacology and Internal Medicine and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Division of Pediatric Critical Care Medicine, Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
80
|
Su JS, Qin FY, Liu Y, Zhang Y. Four new polyynes from Codonopsis pilosula collected in Yunnan province, China. Nat Prod Res 2020; 35:3548-3555. [PMID: 31960727 DOI: 10.1080/14786419.2020.1712390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Choushenpilosulynes D-G (1-4): four new polyynes were isolated from the roots of Codonopsis pilosula (Campanulaceae) cultivated in Yunnan province, China. Their structures were identified by spectroscopic methods. Bioactive evaluation showed that choushenpilosulynes E (2) and F (3) demonstrated potent inhibitory effect on lipid formation induced by 100 μM oleic acid stimulation. In addition, choushenpilosulyne F (3) uncovered inhibitory activity against the expression of human 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and squalene monooxygenase (SQLE) gene transcript in HepG2 cells.
Collapse
Affiliation(s)
- Jin-Song Su
- School of Ethnic medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu-Ying Qin
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Yi Zhang
- School of Ethnic medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
81
|
Di Cara F, Andreoletti P, Trompier D, Vejux A, Bülow MH, Sellin J, Lizard G, Cherkaoui-Malki M, Savary S. Peroxisomes in Immune Response and Inflammation. Int J Mol Sci 2019; 20:ijms20163877. [PMID: 31398943 PMCID: PMC6721249 DOI: 10.3390/ijms20163877] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
The immune response is essential to protect organisms from infection and an altered self. An organism’s overall metabolic status is now recognized as an important and long-overlooked mediator of immunity and has spurred new explorations of immune-related metabolic abnormalities. Peroxisomes are essential metabolic organelles with a central role in the synthesis and turnover of complex lipids and reactive species. Peroxisomes have recently been identified as pivotal regulators of immune functions and inflammation in the development and during infection, defining a new branch of immunometabolism. This review summarizes the current evidence that has helped to identify peroxisomes as central regulators of immunity and highlights the peroxisomal proteins and metabolites that have acquired relevance in human pathologies for their link to the development of inflammation, neuropathies, aging and cancer. This review then describes how peroxisomes govern immune signaling strategies such as phagocytosis and cytokine production and their relevance in fighting bacterial and viral infections. The mechanisms by which peroxisomes either control the activation of the immune response or trigger cellular metabolic changes that activate and resolve immune responses are also described.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Pierre Andreoletti
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Doriane Trompier
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Anne Vejux
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Margret H Bülow
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Julia Sellin
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Gérard Lizard
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Mustapha Cherkaoui-Malki
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France.
| |
Collapse
|
82
|
Geltink RIK, Kyle RL, Pearce EL. Unraveling the Complex Interplay Between T Cell Metabolism and Function. Annu Rev Immunol 2019; 36:461-488. [PMID: 29677474 DOI: 10.1146/annurev-immunol-042617-053019] [Citation(s) in RCA: 562] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolism drives function, on both an organismal and a cellular level. In T cell biology, metabolic remodeling is intrinsically linked to cellular development, activation, function, differentiation, and survival. After naive T cells are activated, increased demands for metabolic currency in the form of ATP, as well as biomass for cell growth, proliferation, and the production of effector molecules, are met by rewiring cellular metabolism. Consequently, pharmacological strategies are being developed to perturb or enhance selective metabolic processes that are skewed in immune-related pathologies. Here we review the most recent advances describing the metabolic changes that occur during the T cell lifecycle. We discuss how T cell metabolism can have profound effects on health and disease and where it might be a promising target to treat a variety of pathologies.
Collapse
Affiliation(s)
- Ramon I Klein Geltink
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany;
| | - Ryan L Kyle
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany;
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany;
| |
Collapse
|
83
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence. RECENT FINDINGS Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots. The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and selective distribution of antiretroviral drugs, the sequestration of infected immune cells within fat depots likely represents a major challenge for cure efforts.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
84
|
Lee SU, Li CF, Mortales CL, Pawling J, Dennis JW, Grigorian A, Demetriou M. Increasing cell permeability of N-acetylglucosamine via 6-acetylation enhances capacity to suppress T-helper 1 (TH1)/TH17 responses and autoimmunity. PLoS One 2019; 14:e0214253. [PMID: 30913278 PMCID: PMC6435169 DOI: 10.1371/journal.pone.0214253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/08/2019] [Indexed: 12/27/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) branching of Asn (N)-linked glycans inhibits pro-inflammatory T cell responses and models of autoimmune diseases such as Multiple Sclerosis (MS). Metabolism controls N-glycan branching in T cells by regulating de novo hexosamine pathway biosynthesis of UDP-GlcNAc, the donor substrate for the Golgi branching enzymes. Activated T cells switch metabolism from oxidative phosphorylation to aerobic glycolysis and glutaminolysis. This reduces flux of glucose and glutamine into the hexosamine pathway, thereby inhibiting de novo UDP-GlcNAc synthesis and N-glycan branching. Salvage of GlcNAc into the hexosamine pathway overcomes this metabolic suppression to restore UDP-GlcNAc synthesis and N-glycan branching, thereby promoting anti-inflammatory T regulatory (Treg) over pro-inflammatory T helper (TH) 17 and TH1 differentiation to suppress autoimmunity. However, GlcNAc activity is limited by the lack of a cell surface transporter and requires high doses to enter cells via macropinocytosis. Here we report that GlcNAc-6-acetate is a superior pro-drug form of GlcNAc. Acetylation of amino-sugars improves cell membrane permeability, with subsequent de-acetylation by cytoplasmic esterases allowing salvage into the hexosamine pathway. Per- and bi-acetylation of GlcNAc led to toxicity in T cells, whereas mono-acetylation at only the 6 > 3 position raised N-glycan branching greater than GlcNAc without inducing significant toxicity. GlcNAc-6-acetate inhibited T cell activation/proliferation, TH1/TH17 responses and disease progression in Experimental Autoimmune Encephalomyelitis (EAE), a mouse model of MS. Thus, GlcNAc-6-Acetate may provide an improved therapeutic approach to raise N-glycan branching, inhibit pro-inflammatory T cell responses and treat autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Sung-Uk Lee
- Department of Neurology, University of California, Irvine, Irvine, California, United States of America
- Glixis Therapeutics, LLC, Santa Rosa, California, United States of America
| | - Carey F. Li
- Department of Neurology, University of California, Irvine, Irvine, California, United States of America
| | - Christie-Lynn Mortales
- Department of Microbiology & Molecular Genetics, University of California, Irvine, Irvine, California, United States of America
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - James W. Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ani Grigorian
- Glixis Therapeutics, LLC, Santa Rosa, California, United States of America
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Irvine, Irvine, California, United States of America
- Institute for Immunology, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
85
|
Puchalska P, Martin SE, Huang X, Lengfeld JE, Daniel B, Graham MJ, Han X, Nagy L, Patti GJ, Crawford PA. Hepatocyte-Macrophage Acetoacetate Shuttle Protects against Tissue Fibrosis. Cell Metab 2019; 29:383-398.e7. [PMID: 30449686 PMCID: PMC6559243 DOI: 10.1016/j.cmet.2018.10.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/20/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Metabolic plasticity has been linked to polarized macrophage function, but mechanisms connecting specific fuels to tissue macrophage function remain unresolved. Here we apply a stable isotope tracing, mass spectrometry-based untargeted metabolomics approach to reveal the metabolome penetrated by hepatocyte-derived glucose and ketone bodies. In both classically and alternatively polarized macrophages, [13C]acetoacetate (AcAc) labeled ∼200 chemical features, but its reduced form D-[13C]β-hydroxybutyrate (D-βOHB) labeled almost none. [13C]glucose labeled ∼500 features, and while unlabeled AcAc competed with only ∼15% of them, the vast majority required the mitochondrial enzyme succinyl-coenzyme A-oxoacid transferase (SCOT). AcAc carbon labeled metabolites within the cytoplasmic glycosaminoglycan pathway, which regulates tissue fibrogenesis. Accordingly, livers of mice lacking SCOT in macrophages were predisposed to accelerated fibrogenesis. Exogenous AcAc, but not D-βOHB, ameliorated diet-induced hepatic fibrosis. These data support a hepatocyte-macrophage ketone shuttle that segregates AcAc from D-βOHB, coordinating the fibrogenic response to hepatic injury via mitochondrial metabolism in tissue macrophages.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA; Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Shannon E Martin
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Xiaojing Huang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Chemistry, Washington University, St. Louis, MO 63110, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin E Lengfeld
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA
| | - Bence Daniel
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, Saint Petersburg, FL 33701, USA
| | | | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Barshop Institute for Longevity and Aging Studies, Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Laszlo Nagy
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, Saint Petersburg, FL 33701, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, Saint Petersburg, FL 33701, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA; Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
86
|
Jung J, Zeng H, Horng T. Metabolism as a guiding force for immunity. Nat Cell Biol 2019; 21:85-93. [PMID: 30602764 DOI: 10.1038/s41556-018-0217-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
Recent studies indicate that cellular metabolism plays a key role in supporting immune cell maintenance and development. Here, we review how metabolism guides immune cell activation and differentiation to distinct cellular states, and how differential regulation of metabolism allows for context-dependent support during activation and lineage commitment. We discuss emerging principles of metabolic support of immune cell function in physiology and disease, as well as their general relevance to the field of cell biology.
Collapse
Affiliation(s)
- Jonathan Jung
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Hu Zeng
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA. .,Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| | - Tiffany Horng
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,ShanghaiTech University, Shanghai, China.
| |
Collapse
|
87
|
Liao GF, Wu ZH, Liu Y, Yan YM, Lu RM, Cheng YX. Ganocapenoids A–D: Four new aromatic meroterpenoids from Ganoderma capense. Bioorg Med Chem Lett 2019; 29:143-147. [DOI: 10.1016/j.bmcl.2018.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
88
|
Dong L, Qin DP, Di QQ, Liu Y, Chen WL, Wang SM, Cheng YX. Commiphorines A and B, unprecedented sesquiterpenoid dimers from Resina Commiphora with striking activities on anti-inflammation and lipogenesis inhibition. Org Chem Front 2019. [DOI: 10.1039/c9qo01046g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commiphorines A (1) and B (2), two dimeric sesquiterpenoids featuring unusual polycyclic systems, and two intermediates 3 and 4, were isolated from Resina Commiphora.
Collapse
Affiliation(s)
- Lu Dong
- Guangdong Key Laboratory for Genome Stability & Disease Prevention
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| | - Da-Peng Qin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| | - Qian-Qian Di
- Guangdong Key Laboratory for Genome Stability & Disease Prevention
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| | - Ying Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| | - Wei-Lin Chen
- Guangdong Key Laboratory for Genome Stability & Disease Prevention
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| | - Shu-Mei Wang
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Yong-Xian Cheng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| |
Collapse
|
89
|
Huang J, Xue M, Zhang J, Yu H, Gu Y, Du M, Ye W, Wan B, Jin M, Zhang Y. Protective role of GPR120 in the maintenance of pregnancy by promoting decidualization via regulation of glucose metabolism. EBioMedicine 2018; 39:540-551. [PMID: 30578080 PMCID: PMC6355327 DOI: 10.1016/j.ebiom.2018.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background Intake of ω-3 PUFAs have been demonstrated to have positive effects on pregnancy outcome, whose receptor, GPR120, regulates several cellular functions including differentiation, metabolism and immune reaction. However, whether GPR120 is involved in decidualization and pregnancy remains unknown. Methods Decidua tissue from women with normal pregnancy and spontaneous abortion were collected to determine the expression profile of GPR120. Abortion mouse models and artificially induced deciduoma in mice were established to evaluate the effect of GPR120 on pregnancy outcome and in vivo decidualization. HESCs and primary DSCs were used to explore the roles of GPR120 in decidualization and mechanisms involved. Findings We found that GPR120 functioned to promote decidualization by upregulating glucose uptake and pentose-phosphate pathway (PPP) of human endometrial stromal cells. Firstly, the expression of GPR120 in decidua of spontaneous abortion was downregulated compared to normal decidua. Lack of GPR120 predisposed mice to LPS or RU486 induced abortion. Decidualization was augmented by GPR120 via improving GLUT1-mediated glucose uptake and G6PD- mediated PPP. FOXO1 was upregulated by GPR120 via activation of ERK1/2 and AMPK signaling and increased the expression of GLUT1. Furthermore, the expression of chemokines and cytokines in decidual stromal cells was enhanced by GPR120. Lastly, GPR120 agonist ameliorated LPS-induced abortion in the mice. Interpretation GPR120 plays significant roles in decidualization and the maintenance of pregnancy, which might be a potential target for diagnosis and treatment of spontaneous abortion. Fund Ministry of Science and Technology of China, National Natural Science Foundation of China, the Program of Science and Technology Commission of Shanghai Municipality.
Collapse
Affiliation(s)
- Jiefang Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Mingxing Xue
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongshuang Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wenfeng Ye
- The First People's Hospital of Changzhou, Changzhou, China
| | - Bing Wan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Min Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yanyun Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Institutes for Translational Medicine, Soochow University, Suzhou, China.
| |
Collapse
|
90
|
Chauhan P, Saha B. Metabolic regulation of infection and inflammation. Cytokine 2018; 112:1-11. [PMID: 30472107 DOI: 10.1016/j.cyto.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Immunometabolic framework provides a way to understand the immune regulation via cell intrinsic metabolic fluxes and metabolites during infections, tumors, and inflammatory disorders. During these diseases, the immune cells are activated requiring more energy and moderating their metabolic functions. The two categories of metabolic alterations are therefore causally associated with energy derivation and cellular functions. Pathogens, tumors and inflammation target energy metabolism, primarily glucose uptake, glucose catabolism, gluconeogenesis for continuing lipid metabolism through mainstream pathways such as glycolysis, tricarboxylic acid cycle, mitochondrial respiration and pentose phosphate pathway. Many biosynthetic pathways such as those of cholesterol, ceramide, sphingolipids, and fatty acids are altered explaining the metabolic interface in molecular pathogenesis in various infectious and non-infectious inflammatory diseases. The emerging immune-metabolic framework also identifies the key regulatory elements such as metabolites, signalling intermediates and transcription factors. These regulatory elements play key roles in deciding the fate of an infection, tumor or autoimmune diseases. The original research articles and the review articles in this Special issue of Cytokine on "Infection, Inflammation and Immunometabolomes" highlight these aspects of metabolic reprogramming and the role of some 'metabolomic regulators' in controlling the outcome of infectious and non-infectious diseases. In this Editorial, we introduce the readers to these articles discussing the elements in immune-metabolic framework.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- Trident Academy of Creative Technology, Bhubaneswar 750019, India
| |
Collapse
|
91
|
Schulze A, Yuneva M. The big picture: exploring the metabolic cross-talk in cancer. Dis Model Mech 2018; 11:11/8/dmm036673. [PMID: 30154190 PMCID: PMC6124556 DOI: 10.1242/dmm.036673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabolic reprogramming is now well established as one of the hallmarks of cancer. The renewed interest in this topic has spurred a remarkable advance in our understanding of the metabolic alterations in cancer cells and in the tumour microenvironment. Initially, this research focussed on identifying the metabolic processes that provided cancer cells with building blocks for growth or to prevent oxidative damage and death. In addition to providing detailed insight into the mechanisms by which oncogenic signalling pathways modulate metabolic processes, this research also revealed multiple nodes within the metabolic network that can be targeted for the selective elimination of cancer cells. However, recent years have seen a paradigm shift in the field of cancer metabolism; while early studies focussed mainly on the metabolic processes within a cancer cell, recent approaches also consider the impact of metabolic cross-talk between different cell types within the tumour or study cancer within the organismal metabolic context. The Review articles presented in this themed Special Collection of Disease Models & Mechanisms aim to provide an overview of the recent advances in the field. The Collection also contains research articles that describe how metabolic inhibition can improve the efficacy of targeted therapy and introduce a new zebrafish model to study metabolic tumour-host interactions. We also present 'A model for life' interviews: a new interview with Karen Vousden and a previously published one with Lewis Cantley that provide insight into these two leaders' personal scientific journeys that resulted in seminal discoveries in the field of cancer metabolism. In this Editorial, we summarise some of the key insights obtained from studying cancer metabolism. We also describe some of the many exciting developments in the field and discuss its future challenges.
Collapse
Affiliation(s)
- Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany .,Comprehensive Cancer Center Mainfranken, Josef-Schneider-Str.6, 97080 Würzburg, Germany
| | - Mariia Yuneva
- Oncogenes and Tumour Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
92
|
Ji DY, Park SH, Park SJ, Kim KH, Ku CR, Shin DY, Yoon JS, Lee DY, Lee EJ. Comparative assessment of Graves' disease and main extrathyroidal manifestation, Graves' ophthalmopathy, by non-targeted metabolite profiling of blood and orbital tissue. Sci Rep 2018; 8:9262. [PMID: 29915201 PMCID: PMC6006143 DOI: 10.1038/s41598-018-27600-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/05/2018] [Indexed: 01/19/2023] Open
Abstract
Graves' disease (GD) is an autoimmune disorder that causes the overproduction of thyroid hormones and consequent cascade of systemic metabolism dysfunction. Moreover, Graves' ophthalmopathy (GO) is the main extrathyroidal manifestation of Graves' disease (GD). The goal of the study was to identify metabolic signatures in association with diagnostic biomarkers of GD without GO and GO, respectively. Ninety metabolites were profiled and analyzed based on a non-targeted primary metabolite profiling from plasma samples of 21 GD patients without GO, 26 subjects with GO, and 32 healthy subjects. Multivariate statistics showed a clear discrimination between healthy controls and disease group (R2Y = 0.518, Q2 = 0.478) and suggested a biomarker panel consisting of 10 metabolites. Among them, most of metabolites showed the positive association with the levels of thyrotropin receptor antibodies. With combination of proline and 1,5-anhydroglucitol, which were identified as GO-specific modulators, the re-constructed biomarker model greatly improved the statistical power and also facilitated simultaneous discrimination among healthy control, GO, and GD without GO groups (AUC = 0.845-0.935). Finally, the comparative analysis of tissue metabolite profiles from GO patients proposed putative metabolic linkage between orbital adipose/connective tissues and the biofluidic consequences, in which fumarate, proline, phenylalanine, and glycerol were coordinately altered with the blood metabolites.
Collapse
Affiliation(s)
- Dong Yoon Ji
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, Republic of Korea
| | - Se Hee Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, Republic of Korea
| | - Kyoung Heon Kim
- The Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Cheol Ryong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Yeob Shin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Yup Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, Republic of Korea.
| | - Eun Jig Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
93
|
Reddy VP, Chinta KC, Saini V, Glasgow JN, Hull TD, Traylor A, Rey-Stolle F, Soares MP, Madansein R, Rahman MA, Barbas C, Nargan K, Naidoo T, Ramdial PK, George JF, Agarwal A, Steyn AJC. Ferritin H Deficiency in Myeloid Compartments Dysregulates Host Energy Metabolism and Increases Susceptibility to Mycobacterium tuberculosis Infection. Front Immunol 2018; 9:860. [PMID: 29774023 PMCID: PMC5943674 DOI: 10.3389/fimmu.2018.00860] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Iron is an essential factor for the growth and virulence of Mycobacterium tuberculosis (Mtb). However, little is known about the mechanisms by which the host controls iron availability during infection. Since ferritin heavy chain (FtH) is a major intracellular source of reserve iron in the host, we hypothesized that the lack of FtH would cause dysregulated iron homeostasis to exacerbate TB disease. Therefore, we used knockout mice lacking FtH in myeloid-derived cell populations to study Mtb disease progression. We found that FtH plays a critical role in protecting mice against Mtb, as evidenced by increased organ burden, extrapulmonary dissemination, and decreased survival in Fth-/- mice. Flow cytometry analysis showed that reduced levels of FtH contribute to an excessive inflammatory response to exacerbate disease. Extracellular flux analysis showed that FtH is essential for maintaining bioenergetic homeostasis through oxidative phosphorylation. In support of these findings, RNAseq and mass spectrometry analyses demonstrated an essential role for FtH in mitochondrial function and maintenance of central intermediary metabolism in vivo. Further, we show that FtH deficiency leads to iron dysregulation through the hepcidin-ferroportin axis during infection. To assess the clinical significance of our animal studies, we performed a clinicopathological analysis of iron distribution within human TB lung tissue and showed that Mtb severely disrupts iron homeostasis in distinct microanatomic locations of the human lung. We identified hemorrhage as a major source of metabolically inert iron deposition. Importantly, we observed increased iron levels in human TB lung tissue compared to healthy tissue. Overall, these findings advance our understanding of the link between iron-dependent energy metabolism and immunity and provide new insight into iron distribution within the spectrum of human pulmonary TB. These metabolic mechanisms could serve as the foundation for novel host-directed strategies.
Collapse
Affiliation(s)
- Vineel P. Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Krishna C. Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel N. Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Travis D. Hull
- Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amie Traylor
- Nephrology Research and Training Center, University of Alabama at Birmingham and Birmingham VA Medical Center, Birmingham, AL, United States
| | - Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | | | - Rajhmun Madansein
- Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Kievershen Nargan
- Department of Anatomical Pathology, National Health Laboratory Service, University of KwaZulu-Natal, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Threnesan Naidoo
- Department of Anatomical Pathology, National Health Laboratory Service, University of KwaZulu-Natal, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Pratistadevi K. Ramdial
- Department of Anatomical Pathology, National Health Laboratory Service, University of KwaZulu-Natal, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - James F. George
- Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anupam Agarwal
- Nephrology Research and Training Center, University of Alabama at Birmingham and Birmingham VA Medical Center, Birmingham, AL, United States
| | - Adrie J. C. Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Africa Health Research Institute (AHRI), Durban, South Africa
- UAB Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
94
|
Affiliation(s)
- Mai Matsushita
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward J. Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
95
|
MacPherson S, Kilgour M, Lum JJ. Understanding lymphocyte metabolism for use in cancer immunotherapy. FEBS J 2018; 285:2567-2578. [PMID: 29611301 DOI: 10.1111/febs.14454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
Like all dividing cells, naïve T cells undergo a predictable sequence of events to enter the cell cycle starting from G0 and progressing to G1 , S and finally G2 /M. This methodical series of steps ensures fidelity in the generation of two identical T cells during a single round of division. To achieve this, T cells must activate or inactivate metabolic pathways at discrete times during each phase of the cell cycle. This permits the generation of substrates to support biosynthesis, bioenergetics and the epigenetic changes required for proper differentiation and function. The precursors that feed into these pathways are often shared, highlighting the complex relationship between metabolism and cellular processes that are essential to lymphocytes. It is therefore not surprising that different T cell subtypes exhibit unique metabolic dependencies that change as they mature and go through specialized differentiation programmes. The importance of the influence of metabolism on T cells is underscored by the emerging field of cancer immunotherapy, where autologous T cells can be manufactured ex vivo then infused as a form of curative treatment for human cancers. This review will highlight some of the recent knowledge on T lymphocyte metabolism and give a perspective on the practical implications for cellular-based immunotherapy.
Collapse
Affiliation(s)
- Sarah MacPherson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
| | - Marisa Kilgour
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Canada
| |
Collapse
|
96
|
Liu JW, Liu Y, Yan YM, Yang J, Lu XF, Cheng YX. Commiphoratones A and B, Two Sesquiterpene Dimers from Resina Commiphora. Org Lett 2018; 20:2220-2223. [PMID: 29582665 DOI: 10.1021/acs.orglett.8b00561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia-Wang Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yong-Ming Yan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xi-Feng Lu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yong-Xian Cheng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
- Henan University of Chinese Medicine, Zhengzhou 450008, China
| |
Collapse
|
97
|
Song YY, Liu Y, Yan YM, Lu XF, Cheng YX. Phenolic Compounds from Belamcanda chinensis Seeds. Molecules 2018; 23:molecules23030580. [PMID: 29510567 PMCID: PMC6017503 DOI: 10.3390/molecules23030580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022] Open
Abstract
Two new sucrose derivatives, namely, belamcanosides A (1) and B (2), together with five other known compounds (3−7), were isolated from the seeds of Belamcanda chinensis (L.) DC. Their structures were identified based on spectroscopic data. Especially, the absolute configurations of fructose and glucose residues in 1 and 2 were assigned by acid hydrolysis, followed by derivatization and gas chromatography (GC) analysis. Among the known compounds, (−)-hopeaphenol (3), (+)-syringaresinol (4), and quercetin (5), were isolated from B. chinensis for the first time. In addition, biological evaluation of 1 and 2 against cholesterol synthesis and metabolism at the gene level was carried out. The results showed that compounds 1 and 2 could regulate the expression of cholesterol synthesis and metabolism-associated genes, including 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), squalene epoxidase (SQLE), low density lipoprotein receptor (LDLR), and sortilin (SORT1) genes in HepG2 cells.
Collapse
Affiliation(s)
- Ying-Ying Song
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Yong-Ming Yan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xi-Feng Lu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Yong-Xian Cheng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450008, China.
| |
Collapse
|
98
|
Lee YS, Wollam J, Olefsky JM. An Integrated View of Immunometabolism. Cell 2018; 172:22-40. [PMID: 29328913 PMCID: PMC8451723 DOI: 10.1016/j.cell.2017.12.025] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
The worldwide obesity epidemic has emerged as a major cause of insulin resistance and Type 2 diabetes. Chronic tissue inflammation is a well-recognized feature of obesity, and the field of immunometabolism has witnessed many advances in recent years. Here, we review the major features of our current understanding with respect to chronic obesity-related inflammation in metabolic tissues and focus on how these inflammatory changes affect insulin sensitivity, insulin secretion, food intake, and glucose homeostasis. There is a growing appreciation of the varied and sometimes integrated crosstalk between cells within a tissue (intraorgan) and tissues within an organism (interorgan) that supports inflammation in the context of metabolic dysregulation. Understanding these pathways and modes of communication has implications for translational studies. We also briefly summarize the state of this field with respect to potential current and developing therapeutics.
Collapse
Affiliation(s)
- Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Joshua Wollam
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jerrold M Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
99
|
Prohibitin: a potential therapeutic target in tyrosine kinase signaling. Signal Transduct Target Ther 2017; 2:17059. [PMID: 29263933 PMCID: PMC5730683 DOI: 10.1038/sigtrans.2017.59] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 09/07/2017] [Indexed: 11/10/2022] Open
Abstract
Prohibitin is a pleiotropic protein that has roles in fundamental cellular processes, such as cellular proliferation and mitochondrial housekeeping, and in cell- or tissue-specific functions, such as adipogenesis and immune cell functions. The different functions of prohibitin are mediated by its cell compartment-specific attributes, which include acting as an adaptor molecule in membrane signaling, a scaffolding protein in mitochondria, and a transcriptional co-regulator in the nucleus. However, the precise relationship between its distinct cellular localization and diverse functions remain largely unknown. Accumulating evidence suggests that the phosphorylation of prohibitin plays a role in a number of cell signaling pathways and in intracellular trafficking. Herein, we discuss the known and potential importance of the site-specific phosphorylation of prohibitin in regulating these features. We will discuss this in the context of new evidence from tissue-specific transgenic mouse models of prohibitin, including a mutant prohibitin lacking a crucial tyrosine phosphorylation site. We conclude with the opinion that prohibitin can be used as a potential target for tyrosine kinase signal transduction-targeting therapy, including in insulin, growth factors, and immune signaling pathways.
Collapse
|
100
|
|