51
|
Kreer C, Gruell H, Mora T, Walczak AM, Klein F. Exploiting B Cell Receptor Analyses to Inform on HIV-1 Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010013. [PMID: 31906351 PMCID: PMC7157687 DOI: 10.3390/vaccines8010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
The human antibody repertoire is generated by the recombination of different gene segments as well as by processes of somatic mutation. Together these mechanisms result in a tremendous diversity of antibodies that are able to combat various pathogens including viruses and bacteria, or malignant cells. In this review, we summarize the opportunities and challenges that are associated with the analyses of the B cell receptor repertoire and the antigen-specific B cell response. We will discuss how recent advances have increased our understanding of the antibody response and how repertoire analyses can be exploited to inform on vaccine strategies, particularly against HIV-1.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
52
|
Durham ND, Agrawal A, Waltari E, Croote D, Zanini F, Fouch M, Davidson E, Smith O, Carabajal E, Pak JE, Doranz BJ, Robinson M, Sanz AM, Albornoz LL, Rosso F, Einav S, Quake SR, McCutcheon KM, Goo L. Broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics. eLife 2019; 8:e52384. [PMID: 31820734 PMCID: PMC6927745 DOI: 10.7554/elife.52384] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bNAbs) against the four dengue virus serotypes (DENV1-4) that are spreading into new territories is an important goal of vaccine design. To define bNAb targets, we characterized 28 antibodies belonging to expanded and hypermutated clonal families identified by transcriptomic analysis of single plasmablasts from DENV-infected individuals. Among these, we identified J9 and J8, two somatically related bNAbs that potently neutralized DENV1-4. Mutagenesis studies showed that the major recognition determinants of these bNAbs are in E protein domain I, distinct from the only known class of human bNAbs against DENV with a well-defined epitope. B cell repertoire analysis from acute-phase peripheral blood suggested that J9 and J8 followed divergent somatic hypermutation pathways, and that a limited number of mutations was sufficient for neutralizing activity. Our study suggests multiple B cell evolutionary pathways leading to DENV bNAbs targeting a new epitope that can be exploited for vaccine design.
Collapse
Affiliation(s)
| | | | - Eric Waltari
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Derek Croote
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Fabio Zanini
- Department of BioengineeringStanford UniversityStanfordUnited States
| | | | | | - Olivia Smith
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - John E Pak
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUnited States
- Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUnited States
| | - Ana M Sanz
- Clinical Research CenterFundación Valle del LiliCaliColombia
| | - Ludwig L Albornoz
- Pathology and Laboratory DepartmentFundación Valle del LiliCaliColombia
| | - Fernando Rosso
- Clinical Research CenterFundación Valle del LiliCaliColombia
- Department of Internal Medicine, Division of Infectious DiseasesFundación Valle del LiliCaliColombia
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUnited States
- Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUnited States
| | - Stephen R Quake
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of BioengineeringStanford UniversityStanfordUnited States
| | | | - Leslie Goo
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
53
|
Zhang Z, Wei X, Lin Y, Huang F, Shao J, Qi J, Deng T, Li Z, Gao S, Li S, Yu H, Zhao Q, Li S, Gu Y, Xia N. HIV-1 Membrane-Proximal External Region Fused to Diphtheria Toxin Domain-A Elicits 4E10-Like Antibodies in Mice. Immunol Lett 2019; 213:30-38. [PMID: 31356841 DOI: 10.1016/j.imlet.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
Abstract
The production of broadly neutralizing antibodies (bNAbs) is a major goal in the development of an HIV-1 vaccine. The membrane-proximal external region (MPER) of gp41, which plays a critical role in the virus membrane fusion process, is highly conserved and targeted by bNAbs 2F5, 4E10, and 10E8. As such, MPER could be a promising epitope for vaccine design. In this study, diphtheria toxin domain A (CRM197, amino acids 1-191) was used as a scaffold to display the 2F5 and 4E10 epitopes of MPER, named CRM197-A-2F5 and CRM197-A-4E10. Modest neutralizing activities were detected against HIV-1 clade B and D viruses in the sera from mice immunized with CRM197-A-4E10. Monoclonal antibodies raised from CRM197-A-4E10 could neutralize several HIV-1 strains, and epitope-mapping analysis indicated that some antibodies recognized the same amino acids as 4E10. Collectively, we show that 4E10-like antibodies can be induced by displaying MPER epitopes using an appropriate scaffold. These results provide insights for HIV-1 MPER-based immunogens design.
Collapse
Affiliation(s)
- Zhiqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiang Wei
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yanling Lin
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fang Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jia Shao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jialong Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingting Deng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zizhen Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuangquan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shaoyong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
54
|
Wu BR, Eltahla AA, Keoshkerian E, Walker MR, Underwood A, Brasher NA, Agapiou D, Lloyd AR, Bull RA. A method for detecting hepatitis C envelope specific memory B cells from multiple genotypes using cocktail E2 tetramers. J Immunol Methods 2019; 472:65-74. [PMID: 31226262 DOI: 10.1016/j.jim.2019.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/16/2023]
Abstract
Hepatitis C (HCV) is a rapidly mutating RNA virus, with a strong propensity to cause chronic infection and progressive liver disease. Recent evidence has shown that early appearance of neutralizing antibodies in primary infection is associated with clearance. Little is known about the characteristics of HCV-specific B cells and their correlation with outcomes in primary infection, as there is a lack of sensitive tools for HCV-specific B cells which are present at very low frequency. We describe the development and optimisation of tetramer staining for flow cytometric detection of HCV-specific B cells using a cocktail of two recombinant HCV Envelope-2 (rE2) glycoproteins (from genotype 1a and 3a; Gt1a and Gt3a) and streptavidin dyes. The optimal weight to weight (w/w) ratio of streptavidin-phycoerythrin (PE) and rE2 proteins were determined for sensitive detection using HCV E2-specific hybridoma cell lines and peripheral blood mononuclear cells (PBMC) from HCV-infected individuals. In a cross-sectional set of PBMC samples collected from 33 subjects with either chronic infection or previous clearance, HCV E2-specific B cells (CD19+CD20+CD10-IgD-tetramer+) were detected in 29 subjects (87.8%), with a mean frequency of 0.45% (0.012-2.20%). To validate the specificity of tetramer staining, 367 HCV E2-specific B cells were single cell sorted from 9 PBMC samples before monoclonal antibodies (mAbs) were synthesised, with 87.5% being reactive to E2 via ELISA. Of these mAbs, 284 and 246 clones were reactive to either Gt1a or Gt3a E2 proteins, respectively. This is a sensitive and robust method for future studies investigating B cell responses against the HCV Envelope protein.
Collapse
Affiliation(s)
- Bing-Ru Wu
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Auda A Eltahla
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Elizabeth Keoshkerian
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Melanie R Walker
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Alex Underwood
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicholas A Brasher
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - David Agapiou
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Andrew R Lloyd
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Rowena A Bull
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia.
| |
Collapse
|
55
|
Schoofs T, Barnes CO, Suh-Toma N, Golijanin J, Schommers P, Gruell H, West AP, Bach F, Lee YE, Nogueira L, Georgiev IS, Bailer RT, Czartoski J, Mascola JR, Seaman MS, McElrath MJ, Doria-Rose NA, Klein F, Nussenzweig MC, Bjorkman PJ. Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity 2019; 50:1513-1529.e9. [PMID: 31126879 PMCID: PMC6591006 DOI: 10.1016/j.immuni.2019.04.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 envelope (Env) inform vaccine design and are potential therapeutic agents. We identified SF12 and related bNAbs with up to 62% neutralization breadth from an HIV-infected donor. SF12 recognized a glycan-dominated epitope on Env's silent face and was potent against clade AE viruses, which are poorly covered by V3-glycan bNAbs. A 3.3Å cryo-EM structure of a SF12-Env trimer complex showed additional contacts to Env protein residues by SF12 compared with VRC-PG05, the only other known donor-derived silentface antibody, explaining SF12's increased neutralization breadth, potency, and resistance to Env mutation routes. Asymmetric binding of SF12 was associated with distinct N-glycan conformations across Env protomers, demonstrating intra-Env glycan heterogeneity. Administrating SF12 to HIV-1-infected humanized mice suppressed viremia and selected for viruses lacking the N448gp120 glycan. Effective bNAbs can therefore be raised against HIV-1 Env's silent face, suggesting their potential for HIV-1 prevention, therapy, and vaccine development.
Collapse
Affiliation(s)
- Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Westridge High School, 324 Madeline Drive, Pasadena, CA 91105, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Franziska Bach
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
56
|
Lyski ZL, Messer WB. Approaches to Interrogating the Human Memory B-Cell and Memory-Derived Antibody Repertoire Following Dengue Virus Infection. Front Immunol 2019; 10:1276. [PMID: 31244836 PMCID: PMC6562360 DOI: 10.3389/fimmu.2019.01276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Memory B-cells (MBCs) are potential antibody secreting immune cells that differentiate and mature following host exposure to a pathogen. Following differentiation, MBCs remain in peripheral circulation after recovery and are poised to secrete antigen-specific antibodies if and when they are re-exposed to their cognate antigen. Consequently, MBCs form the founder population and provide one of the first lines of pathogen-specific defense against reinfection. The role MBCs play is complicated for viruses that are heterologous, such as dengue virus (DENV), which exist as antigenically different serotypes. On second infection with a different serotype, MBCs from initial dengue infection rapidly proliferate and secrete antibodies: many of these MBC derived antibodies will be cross-reactive and weakly neutralizing, while some antibodies may recognize epitopes conserved across serotypes and have the capacity to broadly neutralize 2 or more serotypes. It is also possible that a new population of MBCs and antibodies specific for the second virus serotype need to arise for long-term broader immunity to develop. Methods to interrogate and track memory B cell responses are important for evaluating both natural immunity and vaccine response. However, the low abundance of MBCs for any specific pathogen makes it challenging to interrogate frequency, specificity, and breadth for the pathogen of interest. This review discusses current approaches that have been used to interrogate the memory B cell immune response against viral pathogens in general and DENV specifically. Including strengths, limitations, and future directions. Single-cell approaches could help uncover the DENV specific MBC antibody repertoire, and improved methods for isolating DENV specific monoclonal antibodies from human peripheral blood cells would allow for a functional analysis of the anti-DENV repertoire.
Collapse
Affiliation(s)
- Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, United States
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
57
|
Abstract
Vaccination represents one of the major advances in the field of health. The first vaccines were produced on a rather empirical concept based on the so-called 3I strategy: isolation, inactivation, injection. More recently, protein vaccines have emerged. However, the emergence of new pathogens, the inefficiency of these vaccine strategies to protect against several infections, the need to be able to develop new vaccines quickly and at low cost have led to the development of new types of vaccines. In this context vaccines based on the use of the nucleic acid coding sequences of the antigens of interest (viral vectors, DNA vaccines, RNA vaccines) have been developed in order to improve the efficiency of the currently available vaccines and to propose generic platforms potentially usable against a large number of different pathogens. In addition to the use of these new vaccines, ongoing vaccine research is benefiting from technological developments aimed at optimally delivering vaccines, targeting, for example, dendritic cells, and better characterizing the antigens of interest through the use of vaccines of reverse vaccinology.
Collapse
Affiliation(s)
- Jean-Daniel Lelièvre
- Vaccine Research Institute, CHU Henri Mondor, 51 avenue Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Service d’immunologie clinique et maladies infectieuses, CHU Henri Mondor, APHP, 51 avenue Maréchal de Lattre de Tassigny, 94010 Créteil, France
- IMRB, équipe 16, CHU Henri Mondor, 51 avenue Maréchal de Lattre de Tassigny, 94010 Créteil, France
- UPEC, 8, rue du Général Sarrail 94010 Créteil Cedex, France
| |
Collapse
|
58
|
Zimmermann M, Rose N, Lindner JM, Kim H, Gonçalves AR, Callegari I, Syedbasha M, Kaufmann L, Egli A, Lindberg RLP, Kappos L, Traggiai E, Sanderson NSR, Derfuss T. Antigen Extraction and B Cell Activation Enable Identification of Rare Membrane Antigen Specific Human B Cells. Front Immunol 2019; 10:829. [PMID: 31040853 PMCID: PMC6477023 DOI: 10.3389/fimmu.2019.00829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Determining antigen specificity is vital for understanding B cell biology and for producing human monoclonal antibodies. We describe here a powerful method for identifying B cells that recognize membrane antigens expressed on cells. The technique depends on two characteristics of the interaction between a B cell and an antigen-expressing cell: antigen-receptor-mediated extraction of antigen from the membrane of the target cell, and B cell activation. We developed the method using influenza hemagglutinin as a model viral membrane antigen, and tested it using acetylcholine receptor (AChR) as a model membrane autoantigen. The technique involves co-culturing B cells with adherent, bioorthogonally labeled cells expressing GFP-tagged antigen, and sorting GFP-capturing, newly activated B cells. Hemagglutinin-specific B cells isolated this way from vaccinated human donors expressed elevated CD20, CD27, CD71, and CD11c, and reduced CD21, and their secreted antibodies blocked hemagglutination and neutralized viral infection. Antibodies cloned from AChR-capturing B cells derived from patients with myasthenia gravis bound specifically to the receptor on cell membrane. The approach is sensitive enough to detect antigen-specific B cells at steady state, and can be adapted for any membrane antigen.
Collapse
Affiliation(s)
- Maria Zimmermann
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Natalie Rose
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - John M Lindner
- Novartis Institute for BioMedical Research, Basel, Switzerland.,BioMed X Innovation Center, Heidelberg, Germany
| | - Hyein Kim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ana Rita Gonçalves
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland
| | - Ilaria Callegari
- Neuroscience Consortium, Monza Policlinico and Pavia Mondino, University of Pavia, Pavia, Italy
| | | | - Lukas Kaufmann
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Division of Clinical Microbiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raija L P Lindberg
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Departments of Medicine, Neurologic Clinic and Policlinic, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | | | - Nicholas S R Sanderson
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- Department of Medicine, Neurologic Clinic and Policlinic, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW Several anti-HIV-1 broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency that target different HIV-1 envelope epitopes have been identified. bNAbs are an attractive new strategy for HIV-1 prevention and therapy, and potentially, for long-term remission or cure. Here, we discuss findings from early clinical studies that have evaluated these novel bNAbs. RECENT FINDINGS Phase 1 studies of bNAbs targeting two distinct HIV-1 envelope epitopes have demonstrated their favorable safety and pharmacokinetic profile. Single bNAb infusions led to significant, but transient, decline in viremia with selection of escape variants. A single bNAb also delayed viral rebound in ART-treated participants who discontinued ART. Importantly, in-vivo efficacy was related to antibody potency and to the level of preexisting resistance. Studies in animal models showed that bNAbs can clear HIV-infected cells and modulate host immune responses. These findings suggest that bNAbs may target the latent HIV reservoir in humans and could contribute to long-term remission of HIV-1 infection. SUMMARY bNAbs may offer advantages over traditional ART for both the prevention and treatment of HIV-1 infection. In addition, bNAbs may target the latent viral reservoir. bNAb combinations and bNAbs engineered for prolonged half-life and increased potency are currently undergoing clinical evaluation.
Collapse
|
60
|
Caskey M, Klein F, Nussenzweig MC. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat Med 2019; 25:547-553. [PMID: 30936546 PMCID: PMC7322694 DOI: 10.1038/s41591-019-0412-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
Combination anti-retroviral therapy (ART) has revolutionized the treatment and prevention of HIV-1 infection. Taken daily, ART prevents and suppresses the infection. However, ART interruption almost invariably leads to rebound viremia in infected individuals due to a long-lived latent reservoir of integrated proviruses. Therefore, ART must be administered on a life-long basis. Here we review recent preclinical and clinical studies suggesting that immunotherapy may be an alternative or an adjuvant to ART because, in addition to preventing new infections, anti-HIV-1 antibodies clear the virus, directly kill infected cells and produce immune complexes that can enhance host immunity to the virus.
Collapse
Affiliation(s)
- Marina Caskey
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY, USA.
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, Cologne, Germany.
- German Center for Infection Research, partner site Bonn-Cologne, Cologne, Germany.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA.
| |
Collapse
|
61
|
Liu Y, Tan HX, Koutsakos M, Jegaskanda S, Esterbauer R, Tilmanis D, Aban M, Kedzierska K, Hurt AC, Kent SJ, Wheatley AK. Cross-lineage protection by human antibodies binding the influenza B hemagglutinin. Nat Commun 2019; 10:324. [PMID: 30659197 PMCID: PMC6338745 DOI: 10.1038/s41467-018-08165-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
Influenza B viruses (IBV) drive a significant proportion of influenza-related hospitalisations yet are understudied compared to influenza A. Current vaccines target the head of the viral hemagglutinin (HA) which undergoes rapid mutation, significantly reducing vaccine effectiveness. Improved vaccines to control IBV are needed. Here we developed novel IBV HA probes to interrogate humoral responses to IBV in humans. A significant proportion of IBV HA-specific B cells recognise both B/Victoria/2/87-like and B/Yamagata/16/88-like lineages in a distinct pattern of cross-reactivity. Monoclonal antibodies (mAbs) were reconstituted from IBV HA-specific B cells, including mAbs providing broad protection in murine models of lethal IBV infection. Protection was mediated by neutralising antibodies targeting the receptor binding domain, or via Fc-mediated functions of non-neutralising antibodies binding alternative epitopes including the IBV HA stem. This work defines antigenic cross-recognition between IBV lineages and provides guidance for the rational design of improved IBV vaccines for broad and durable protection. Immune recognition of Influenza B virus (IBV) is poorly understood. Here, Liu et al. use flow cytometry to characterize IBV-specific memory B cell responses following seasonal vaccination and show that elicited cross-reactive antibodies can protect against infection, providing a platform for vaccine design.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Danielle Tilmanis
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Malet Aban
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Aeron C Hurt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia. .,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia. .,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
62
|
Shah HB, Smith K, Wren JD, Webb CF, Ballard JD, Bourn RL, James JA, Lang ML. Insights From Analysis of Human Antigen-Specific Memory B Cell Repertoires. Front Immunol 2019; 9:3064. [PMID: 30697210 PMCID: PMC6340933 DOI: 10.3389/fimmu.2018.03064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
Memory B cells that are generated during an infection or following vaccination act as sentinels to guard against future infections. Upon repeat antigen exposure memory B cells differentiate into new antibody-secreting plasma cells to provide rapid and sustained protection. Some pathogens evade or suppress the humoral immune system, or induce memory B cells with a diminished ability to differentiate into new plasma cells. This leaves the host vulnerable to chronic or recurrent infections. Single cell approaches coupled with next generation antibody gene sequencing facilitate a detailed analysis of the pathogen-specific memory B cell repertoire. Monoclonal antibodies that are generated from antibody gene sequences allow a functional analysis of the repertoire. This review discusses what has been learned thus far from analysis of diverse pathogen-specific memory B cell compartments and describes major differences in their repertoires. Such information may illuminate ways to advance the goal of improving vaccine and therapeutic antibody design.
Collapse
Affiliation(s)
- Hemangi B Shah
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kenneth Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jonathan D Wren
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Biochemistry and Molecular Biology and Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Carol F Webb
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Division of Rheumatology, Immunology and Allergy, Department of Cell Biology and Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebecka L Bourn
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
63
|
Abstract
The majority of lymphomas originate from B cells at the germinal center stage. Preferential selection of B-cell clones by a limited set of antigens has been suggested to drive lymphoma development. While recent studies in chronic lymphocytic leukemia have shown that self-reactive B-cell receptors (BCR) can generate cell-autonomous signaling and proliferation, our knowledge about the role of BCRs for the development or survival of other lymphomas remains limited. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire at single-cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow-cytometric isolation of single human B cells to the reverse transcription-polymerase chain reaction (RT-PCR)-based amplification of the expressed immunoglobulin (Ig) transcripts (IGH, IGK, and IGL) and their subsequent cloning into expression vectors for the in vitro production of recombinant monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B-cell lymphomas by single-cell sequencing of Ig transcripts and on the antibody reactivity of human lymphoma B cells.
Collapse
Affiliation(s)
- Hedda Wardemann
- Division of B-Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Christian E Busse
- Division of B-Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
64
|
Therapeutic Antibody Discovery in Infectious Diseases Using Single-Cell Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:89-102. [PMID: 29943298 DOI: 10.1007/978-981-13-0502-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the discovery of mouse hybridoma technology by Kohler and Milstein in 1975, significant progress has been made in monoclonal antibody production. Advances in B cell immortalization and phage display technologies have generated a myriad of valuable monoclonal antibodies for diagnosis and treatment. Technological breakthroughs in various fields of 'omics have shed crucial insights into cellular heterogeneity of a biological system in which the functional individuality of a single cell must be considered. Based on this important concept, remarkable discoveries in single-cell analysis have made in identifying and isolating functional B cells that produce beneficial therapeutic monoclonal antibodies. In this review, we will discuss three traditional methods of antibody discovery. Recent technological platforms for single-cell antibody discovery will be reviewed. We will discuss the application of the single-cell analysis in finding therapeutic antibodies for human immunodeficiency virus and emerging Zika arbovirus.
Collapse
|
65
|
Gruell H, Klein F. Antibody-mediated prevention and treatment of HIV-1 infection. Retrovirology 2018; 15:73. [PMID: 30445968 PMCID: PMC6240265 DOI: 10.1186/s12977-018-0455-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/30/2018] [Indexed: 01/11/2023] Open
Abstract
Novel broadly neutralizing antibodies targeting HIV-1 hold promise for their use in the prevention and treatment of HIV-1 infection. Pre-clinical results have encouraged the evaluation of these antibodies in healthy and HIV-1-infected humans. In first clinical trials, highly potent broadly neutralizing antibodies have demonstrated their safety and significant antiviral activity by reducing viremia and delaying the time to viral rebound in individuals interrupting antiretroviral therapy. While emerging antibody-resistant viral variants have indicated limitations of antibody monotherapy, strategies to enhance the efficacy of broadly neutralizing antibodies in humans are under investigation. These include the use of antibody combinations to prevent viral escape, antibody modifications to increase the half-life and the co-administration of latency-reversing agents to target the cellular reservoir of HIV-1. We provide an overview of the results of pre-clinical and clinical studies of broadly HIV-1 neutralizing antibodies, discuss their implications and highlight approaches for the ongoing advancement into humans.
Collapse
Affiliation(s)
- Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
- German Center for Infection Research, Partner-Site Bonn-Cologne, Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
- German Center for Infection Research, Partner-Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
66
|
Mendoza P, Gruell H, Nogueira L, Pai JA, Butler AL, Millard K, Lehmann C, Suárez I, Oliveira TY, Lorenzi JCC, Cohen YZ, Wyen C, Kümmerle T, Karagounis T, Lu CL, Handl L, Unson-O'Brien C, Patel R, Ruping C, Schlotz M, Witmer-Pack M, Shimeliovich I, Kremer G, Thomas E, Seaton KE, Horowitz J, West AP, Bjorkman PJ, Tomaras GD, Gulick RM, Pfeifer N, Fätkenheuer G, Seaman MS, Klein F, Caskey M, Nussenzweig MC. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 2018; 561:479-484. [PMID: 30258136 PMCID: PMC6166473 DOI: 10.1038/s41586-018-0531-2] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/30/2018] [Indexed: 11/26/2022]
Abstract
Individuals infected with HIV-1 require lifelong antiretroviral therapy, because interruption of treatment leads to rapid rebound viraemia. Here we report on a phase 1b clinical trial in which a combination of 3BNC117 and 10-1074, two potent monoclonal anti-HIV-1 broadly neutralizing antibodies that target independent sites on the HIV-1 envelope spike, was administered during analytical treatment interruption. Participants received three infusions of 30 mg kg-1 of each antibody at 0, 3 and 6 weeks. Infusions of the two antibodies were generally well-tolerated. The nine enrolled individuals with antibody-sensitive latent viral reservoirs maintained suppression for between 15 and more than 30 weeks (median of 21 weeks), and none developed viruses that were resistant to both antibodies. We conclude that the combination of the anti-HIV-1 monoclonal antibodies 3BNC117 and 10-1074 can maintain long-term suppression in the absence of antiretroviral therapy in individuals with antibody-sensitive viral reservoirs.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Anti-HIV Agents/administration & dosage
- Anti-HIV Agents/immunology
- Anti-HIV Agents/therapeutic use
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/adverse effects
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Binding Sites, Antibody
- Broadly Neutralizing Antibodies
- Carrier State/drug therapy
- Carrier State/immunology
- Carrier State/virology
- Drug Combinations
- Drug Resistance, Viral
- Female
- HIV Antibodies/administration & dosage
- HIV Antibodies/adverse effects
- HIV Antibodies/immunology
- HIV Antibodies/therapeutic use
- HIV Envelope Protein gp160/immunology
- HIV Infections/drug therapy
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/immunology
- HIV-1/isolation & purification
- Historically Controlled Study
- Humans
- Infusions, Intravenous
- Male
- Middle Aged
- Phylogeny
- Viremia/drug therapy
- Viremia/immunology
- Viremia/prevention & control
- Viremia/virology
- Virus Activation/immunology
- Virus Latency/immunology
- Young Adult
Collapse
Affiliation(s)
- Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn-Cologne, Cologne, Germany
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Joy A Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Allison L Butler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Katrina Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Clara Lehmann
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Yehuda Z Cohen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Christoph Wyen
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | - Tim Kümmerle
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | - Theodora Karagounis
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Lisa Handl
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | | | - Roshni Patel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Carola Ruping
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Cologne, Germany
| | - Maggi Witmer-Pack
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Gisela Kremer
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Eleonore Thomas
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Kelly E Seaton
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Jill Horowitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Roy M Gulick
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Medical Faculty, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, partner site Tübingen, Tübingen, Germany
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn-Cologne, Cologne, Germany
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Cologne, Germany.
- German Center for Infection Research, partner site Bonn-Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
67
|
Luque S, Lúcia M, Crespo E, Jarque M, Grinyó JM, Bestard O. A multicolour HLA-specific B-cell FluoroSpot assay to functionally track circulating HLA-specific memory B cells. J Immunol Methods 2018; 462:23-33. [PMID: 30075182 DOI: 10.1016/j.jim.2018.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/18/2023]
Abstract
Emerging evidence suggests that donor-reactive memory B cells (mBC) play a key role inducing antibody-mediated rejection (ABMR) after solid organ transplantation and show a broader antigen repertoire than plasma cells thus, being potentially present even in absence of donor-specific antibodies. Therefore, the development of novel immune assays capable of quantifying circulating donor-reactive mBC in organ transplantation is highly warranted. We developed a novel HLA-specific B-cell FluoroSpot assay capable of enumerating multiple HLA-specific Antibody Secreting Cells (ASC) originated from circulating mBC after in-vitro polyclonal activation. We performed a thorough characterization of distinct selective in-vitro mBC activation methods based on either the TLR7,8 agonist R848 plus Interleukin-2 or an anti-CD40 agonist monoclonal antibody, assessed optimal activation culture conditions, cell sources, activation time-frame as well as the advantage of measuring HLA-specific IgG-ASC as compared to HLA-IgG Ab detected in supernatants of in-vitro stimulated B-cell to characterize anti-HLA alloreactivity. Notably, using fluorescently-labeled multimerized HLA molecules as detection matrix, we show the ability of this assay to precisely quantify multiple anti-HLA mBC specificities. In conclusion, evaluating circulating donor-reactive mBC using new technology may provide novel insight of the pathogenesis of humoral rejection and may help identifying transplant recipients at high risk of allograft rejection.
Collapse
Affiliation(s)
- Sergi Luque
- Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain
| | - Marc Lúcia
- Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain
| | - Elena Crespo
- Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain
| | - Marta Jarque
- Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain
| | - Josep M Grinyó
- Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona University, Barcelona, Spain
| | - Oriol Bestard
- Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona University, Barcelona, Spain.
| |
Collapse
|
68
|
Detection of lipoarabinomannan in urine and serum of HIV-positive and HIV-negative TB suspects using an improved capture-enzyme linked immuno absorbent assay and gas chromatography/mass spectrometry. Tuberculosis (Edinb) 2018; 111:178-187. [PMID: 30029905 DOI: 10.1016/j.tube.2018.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 11/22/2022]
Abstract
TB diagnosis and treatment monitoring in resource limited regions rely heavily on serial sputum smear microscopy and bacterial culture. These microbiological methods are time-consuming, expensive and lack adequate sensitivity. The WHO states that improved TB diagnosis and treatment is imperative to achieve an end to the TB epidemic by 2030. Commercially available lipoarabinomannan (LAM) detection tools perform at low sensitivity that are highly dependent on the underlying immunological status of the patient; those with advanced HIV infection perform well. In this study, we have applied two novel strategies towards the sensitive diagnosis of TB infection based on LAM: Capture ELISA to detect LAM in paired urine and serum samples using murine and human monoclonal antibodies, essentially relying on LAM as an 'immuno-marker'; and, secondly, detection of α-d-arabinofuranose and tuberculostearic acid (TBSA)- 'chemical-markers' unique to mycobacterial cell wall polysaccharides/lipoglycans by our recently developed gas chromatography/mass spectrometry (GC/MS) method. Blinded urine specimens, with microbiologically confirmed active pulmonary TB or non TB (HIV+/HIV-) were tested by the aforementioned assays. LAM in patient urine was detected in a concentration range of 3-28 ng/mL based on GC/MS detection of the two LAM-surrogates, d-arabinose and tuberculostearic acid (TBSA) correctly classifying TB status with sensitivity > 99% and specificity = 84%. The ELISA assay had high sensitivity (98%) and specificity (92%) and the results were in agreement with GC/MS analysis. Both tests performed well in their present form particularly for HIV-negative/TB-positive urine samples. Among the HIV+/TB+ samples, 52% were found to have >10 ng/mL urinary LAM. The detected amounts of LAM present in the urine samples also appears to be associated with the gradation of the sputum smear, linking elevated LAM levels with higher mycobacterial burden (odds ratio = 1.08-1.43; p = 0.002). In this small set, ELISA was also applied to parallel serum samples confirming that serum could be an additional reservoir for developing a LAM-based immunoassay for diagnosis of TB.
Collapse
|
69
|
Abstract
Vaccine design efforts against the human immunodeficiency virus (HIV) have been greatly stimulated by the observation that many infected patients eventually develop highly potent broadly neutralizing antibodies (bnAbs). Importantly, these bnAbs have evolved to recognize not only the two protein components of the viral envelope protein (Env) but also the numerous glycans that form a protective barrier on the Env protein. Because Env is heavily glycosylated compared to host glycoproteins, the glycans have become targets for the antibody response. Therefore, considerable efforts have been made in developing and validating biophysical methods to elucidate the complex structure of the Env-spike glycoprotein, with its combination of glycan and protein epitopes. We illustrate here how the application of robust biophysical methods has transformed our understanding of the structure and function of the HIV Env spike and stimulated innovation in vaccine design strategies that takes into account the essential glycan components.
Collapse
Affiliation(s)
- Max Crispin
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom;
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; ,
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; , .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
70
|
Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells. J Virol 2018; 92:JVI.01883-17. [PMID: 29237833 PMCID: PMC5809738 DOI: 10.1128/jvi.01883-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/03/2017] [Indexed: 11/20/2022] Open
Abstract
Recently discovered broadly neutralizing antibodies (bNAbs) against HIV-1 demonstrate extensive breadth and potency against diverse HIV-1 strains and represent a promising approach for the treatment and prevention of HIV-1 infection. The breadth and potency of these antibodies have primarily been evaluated by using panels of HIV-1 Env-pseudotyped viruses produced in 293T cells expressing molecularly cloned Env proteins. Here we report on the ability of five bNAbs currently in clinical development to neutralize circulating primary HIV-1 isolates derived from peripheral blood mononuclear cells (PBMCs) and compare the results to those obtained with the pseudovirus panels used to characterize the bNAbs. The five bNAbs demonstrated significantly less breadth and potency against clinical isolates produced in PBMCs than against Env-pseudotyped viruses. The magnitude of this difference in neutralizing activity varied, depending on the antibody epitope. Glycan-targeting antibodies showed differences of only 3- to 4-fold, while antibody 10E8, which targets the membrane-proximal external region, showed a nearly 100-fold decrease in activity between published Env-pseudotyped virus panels and PBMC-derived primary isolates. Utilizing clonal PBMC-derived primary isolates and molecular clones, we determined that the observed discrepancy in bNAb performance is due to the increased sensitivity to neutralization exhibited by 293T-produced Env-pseudotyped viruses. We also found that while full-length molecularly cloned viruses produced in 293T cells exhibit greater sensitivity to neutralization than PBMC-derived viruses do, Env-pseudotyped viruses produced in 293T cells generally exhibit even greater sensitivity to neutralization. As the clinical development of bNAbs progresses, it will be critical to determine the relevance of each of these in vitro neutralization assays to in vivo antibody performance. IMPORTANCE Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic.
Collapse
|
71
|
Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, Cesar Lorenzi JC, Halper-Stromberg A, Toth I, Piechocka-Trocha A, Gristick HB, van Gils MJ, Sanders RW, Wang LX, Seaman MS, Burton DR, Gazumyan A, Walker BD, West AP, Bjorkman PJ, Nussenzweig MC. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med 2018; 9:9/373/eaal2144. [PMID: 28100831 DOI: 10.1126/scitranslmed.aal2144] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
Some HIV-1-infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual's serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2-infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.
Collapse
Affiliation(s)
- Natalia T Freund
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Stuart A Sievers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui Cai
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | | | | | - Ildiko Toth
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
72
|
Abstract
Antibodies have been used for over a century prophylactically and, less often, therapeutically against viruses. 'Super-antibodies' — a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies — offer new opportunities for prophylaxis and therapy of viral infections. Super-antibodies are typically generated infrequently and/or in a limited number of individuals during natural infections. Isolation of these antibodies has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Super-antibodies may offer the possibility of treating multiple viruses of a given family with a single reagent. They are also valuable templates for rational vaccine design. The great potency of super-antibodies has many advantages for practical development as therapeutic reagents. These advantages can be enhanced by a variety of antibody engineering technologies.
So-called super-antibodies are highly potent, broadly reactive antiviral antibodies that offer promise for the treatment of various chronic and emerging viruses. This Review describes how recent technological advances led to their isolation from rare, infected individuals and their development for the prevention and treatment of various viral infections. Antibodies have been used for more than 100 years in the therapy of infectious diseases, but a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies (sometimes referred to as 'super-antibodies') offers new opportunities for intervention. The isolation of these antibodies, most of which are rarely induced in human infections, has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Engineering the antibodies to improve half-life and effector functions has further augmented their in vivo activity in some cases. Super-antibodies offer promise for the prophylaxis and therapy of infections with a range of viruses, including those that are highly antigenically variable and those that are newly emerging or that have pandemic potential. The next few years will be decisive in the realization of the promise of super-antibodies.
Collapse
|
73
|
Alam SM, Aussedat B, Vohra Y, Meyerhoff RR, Cale EM, Walkowicz WE, Radakovich NA, Anasti K, Armand L, Parks R, Sutherland L, Scearce R, Joyce MG, Pancera M, Druz A, Georgiev IS, Von Holle T, Eaton A, Fox C, Reed SG, Louder M, Bailer RT, Morris L, Abdool-Karim SS, Cohen M, Liao HX, Montefiori DC, Park PK, Fernández-Tejada A, Wiehe K, Santra S, Kepler TB, Saunders KO, Sodroski J, Kwong PD, Mascola JR, Bonsignori M, Moody MA, Danishefsky S, Haynes BF. Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Sci Transl Med 2017; 9:9/381/eaai7521. [PMID: 28298421 DOI: 10.1126/scitranslmed.aai7521] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 08/18/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022]
Abstract
A goal for an HIV-1 vaccine is to overcome virus variability by inducing broadly neutralizing antibodies (bnAbs). One key target of bnAbs is the glycan-polypeptide at the base of the envelope (Env) third variable loop (V3). We have designed and synthesized a homogeneous minimal immunogen with high-mannose glycans reflective of a native Env V3-glycan bnAb epitope (Man9-V3). V3-glycan bnAbs bound to Man9-V3 glycopeptide and native-like gp140 trimers with similar affinities. Fluorophore-labeled Man9-V3 glycopeptides bound to bnAb memory B cells and were able to be used to isolate a V3-glycan bnAb from an HIV-1-infected individual. In rhesus macaques, immunization with Man9-V3 induced V3-glycan-targeted antibodies. Thus, the Man9-V3 glycopeptide closely mimics an HIV-1 V3-glycan bnAb epitope and can be used to isolate V3-glycan bnAbs.
Collapse
Affiliation(s)
- S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Baptiste Aussedat
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yusuf Vohra
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - R Ryan Meyerhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William E Walkowicz
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nathan A Radakovich
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lawrence Armand
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christopher Fox
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Mark Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa.,Center for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Salim S Abdool-Karim
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa.,Center for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Myron Cohen
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter K Park
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joseph Sodroski
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Danishefsky
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
74
|
Pinder CL, Kratochvil S, Cizmeci D, Muir L, Guo Y, Shattock RJ, McKay PF. Isolation and Characterization of Antigen-Specific Plasmablasts Using a Novel Flow Cytometry-Based Ig Capture Assay. THE JOURNAL OF IMMUNOLOGY 2017; 199:4180-4188. [PMID: 29118244 DOI: 10.4049/jimmunol.1701253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022]
Abstract
We report the development of a novel flow cytometry-based Ig capture assay (ICA) for the identification and sorting of individual Ab-secreting cells based on their Ag reactivity. The ICA represents a fast and versatile tool for single-cell sorting of peripheral plasmablasts, streamlining subsequent Ab analysis, and cloning. We demonstrate the utility of the assay by isolating Ag-reactive plasmablasts from cryopreserved PBMC obtained from volunteers vaccinated with a recombinant HIV envelope protein. To show the specificity of the ICA, we produced Ag-specific Abs from these cells and subsequently verified their Ag reactivity via ELISA. Furthermore, we used the ICA to track Ag-specific plasmablast responses in HIV-vaccine recipients over a period of 42 d and performed a head-to-head comparison with a conventional B cell ELISpot. Results were highly comparable, highlighting that this assay is a viable alternative for monitoring Ag-specific plasmablast responses at early time points after infection or vaccination. The ICA provides important added benefits in that phenotypic information can be obtained from the identified Ag-specific cells that can then be captured for downstream applications such as B cell sequencing and/or Ab cloning. We envisage the ICA as being a useful tool in Ab repertoire analysis for future clinical trials.
Collapse
Affiliation(s)
- Christopher L Pinder
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Sven Kratochvil
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Deniz Cizmeci
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Luke Muir
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Yanping Guo
- Flow Cytometry Core Facility, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Robin J Shattock
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| | - Paul F McKay
- Division of Medicine, Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom; and
| |
Collapse
|
75
|
Thorlund K, Horwitz MS, Fife BT, Lester R, Cameron DW. Landscape review of current HIV 'kick and kill' cure research - some kicking, not enough killing. BMC Infect Dis 2017; 17:595. [PMID: 28851294 PMCID: PMC5576299 DOI: 10.1186/s12879-017-2683-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current antiretroviral therapy (ART) used to treat human immunodeficiency virus (HIV) patients is life-long because it only suppresses de novo infections. Recent efforts to eliminate HIV have tested the ability of a number of agents to reactivate ('Kick') the well-known latent reservoir. This approach is rooted in the assumption that once these cells are reactivated the host's immune system itself will eliminate ('Kill') the virus. While many agents have been shown to reactivate large quantities of the latent reservoir, the impact on the size of the latent reservoir has been negligible. This suggests that the immune system is not sufficient to eliminate reactivated reservoirs. Thus, there is a need for more emphasis on 'kill' strategies in HIV cure research, and how these might work in combination with current or future kick strategies. METHODS We conducted a landscape review of HIV 'cure' clinical trials using 'kick and kill' approaches. We identified and reviewed current available clinical trial results in human participants as well as ongoing and planned clinical trials. We dichotomized trials by whether they did not include or include a 'kill' agent. We extracted potential reasons why the 'kill' is missing from current 'kick and kill' strategies. We subsequently summarized and reviewed current 'kill' strategies have entered the phase of clinical trial testing in human participants and highlighted those with the greatest promise. RESULTS The identified 'kick' trials only showed promise on surrogate measures activating latent T-cells, but did not show any positive effects on clinical 'cure' measures. Of the 'kill' agents currently being tested in clinical trials, early results have shown small but meaningful proportions of participants remaining off ART for several months with broadly neutralizing antibodies, as well as agents for regulating immune cell responses. A similar result was also recently observed in a trial combining a conventional 'kick' with a vaccine immune booster ('kill'). CONCLUSION While an understanding of the efficacy of each individual component is crucial, no single 'kick' or 'kill' agent is likely to be a fully effective cure. Rather, the solution is likely found in a combination of multiple 'kick and kill' interventions.
Collapse
Affiliation(s)
- Kristian Thorlund
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Marc S. Horwitz
- Faculty of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Richard Lester
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - D. William Cameron
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
- Division of Infectious Diseases, Department of Medicine, University of Ottawa at The Ottawa Hospital / Research Institute, 501 Smyth Road, Ottawa, K1H 6V2 Ontario Canada
| |
Collapse
|
76
|
Nan Y, Wu C, Gu G, Sun W, Zhang YJ, Zhou EM. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front Microbiol 2017; 8:1635. [PMID: 28894443 PMCID: PMC5581347 DOI: 10.3389/fmicb.2017.01635] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most economically significant pathogens worldwide, has caused numerous outbreaks during the past 30 years. PRRSV infection causes reproductive failure in sows and respiratory disease in growing and finishing pigs, leading to huge economic losses for the swine industry. This impact has become even more significant with the recent emergence of highly pathogenic PRRSV strains from China, further exacerbating global food security. Since new PRRSV variants are constantly emerging from outbreaks, current strategies for controlling PRRSV have been largely inadequate, even though our understanding of PRRSV virology, evolution and host immune response has been rapidly expanding. Meanwhile, practical experience has revealed numerous safety and efficacy concerns for currently licensed vaccines, such as shedding of modified live virus (MLV), reversion to virulence, recombination between field strains and MLV and failure to elicit protective immunity against heterogeneous virus. Therefore, an effective vaccine against PRRSV infection is urgently needed. Here, we systematically review recent advances in PRRSV vaccine development. Antigenic variations resulting from PRRSV evolution, identification of neutralizing epitopes for heterogeneous isolates, broad neutralizing antibodies against PRRSV, chimeric virus generated by reverse genetics, and novel PRRSV strains with interferon-inducing phenotype will be discussed in detail. Moreover, techniques that could potentially transform current MLV vaccines into a superior vaccine will receive special emphasis, as will new insights for future PRRSV vaccine development. Ultimately, improved PRRSV vaccines may overcome the disadvantages of current vaccines and minimize the PRRS impact to the swine industry.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Guoqian Gu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Weiyao Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College ParkMD, United States
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
77
|
Abstract
Structure determination of the HIV-1 envelope glycoprotein (Env) presented a number of challenges, but several high-resolution structures have now become available. In 2013, cryo-EM and x-ray structures of soluble, cleaved SOSIP Env trimers from the clade A BG505 strain provided the first glimpses into the Env trimer fold as well as more the variable regions. A recent cryo-EM structure of a native full-length trimer without any stabilizing mutations had the same core structure, but revealed new insights and features. A more comprehensive and higher resolution understanding of the glycan shield has also emerged, enabling a more complete representation of the Env glycoprotein structure. Complexes of Env trimers with broadly neutralizing antibodies have surprisingly illustrated that most of the Env surface can be targeted in natural infection and that the neutralizing epitopes are almost all composed of both peptide and glycan components. These structures have also provided further evidence of the inherent plasticity of Env and how antibodies can exploit this flexibility by perturbing or even stabilizing the trimer to facilitate neutralization. These breakthroughs have stimulated further design and stabilization of Env trimers as well as other platforms to generate trimers that now span multiple subtypes. These Env trimers when used as immunogens, have led to the first vaccine-induced neutralizing antibodies for structural and functional analyses.
Collapse
Affiliation(s)
- Andrew B Ward
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
78
|
Karlsson Hedestam GB, Guenaga J, Corcoran M, Wyatt RT. Evolution of B cell analysis and Env trimer redesign. Immunol Rev 2017; 275:183-202. [PMID: 28133805 DOI: 10.1111/imr.12515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HIV-1 and its surface envelope glycoproteins (Env), gp120 and gp41, have evolved immune evasion strategies that render the elicitation of effective antibody responses to the functional Env entry unit extremely difficult. HIV-1 establishes chronic infection and stimulates vigorous immune responses in the human host; forcing selection of viral variants that escape cellular and antibody (Ab)-mediated immune pressure, yet possess contemporary fitness. Successful survival of fit variants through the gauntlet of the human immune system make this virus and these glycoproteins a formidable challenge to target by vaccination, requiring a systematic approach to Env mimetic immunogen design and evaluation of elicited responses. Here, we review key aspects of HIV-1 Env immunogenicity and immunogen re-design, based on experimental data generated by us and others over the past decade or more. We further provide rationale and details regarding the use of newly evolving tools to analyze B cell responses, including approaches to use next generation sequencing for antibody lineage tracing and B cell fate mapping. Together, these developments offer opportunities to address long-standing questions about the establishment of effective B cell immunity elicited by vaccination, not just against HIV-1.
Collapse
Affiliation(s)
| | - Javier Guenaga
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center at TSRI, La Jolla, CA, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Richard T Wyatt
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center at TSRI, La Jolla, CA, USA.,The Scripps CHAVI-ID, La Jolla, CA, USA
| |
Collapse
|
79
|
Abstract
In 2009, Dimitrov's group reported that the inferred germline (iGL) forms of several HIV-1 broadly neutralizing antibodies (bNAbs) did not display measurable binding to a recombinant gp140 Env protein (derived from the dual-tropic 89.6 virus), which was efficiently recognized by the mature (somatically mutated) antibodies. At that time, a small number of bNAbs were available, but in the following years, the implementation of high-throughput B-cell isolation and sequencing assays and of screening methodologies facilitated the isolation of greater numbers of bNAbs from infected subjects. Using these newest bNAbs, and a wide range of diverse recombinant Envs, we and others confirmed the observations made by Dimitrov's group. The results from these studies created a paradigm shift in our collective thinking as to why recombinant Envs are ineffective in eliciting bNAbs and has led to the "germline-targeting" immunization approach. Here we discuss this approach in detail: what has been done so far, the advantages and limitations of the current germline-targeting immunogens and of the animal models used to test them, and we conclude with a few thoughts about future directions in this area of research.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
80
|
Schroeder KMS, Agazio A, Strauch PJ, Jones ST, Thompson SB, Harper MS, Pelanda R, Santiago ML, Torres RM. Breaching peripheral tolerance promotes the production of HIV-1-neutralizing antibodies. J Exp Med 2017; 214:2283-2302. [PMID: 28698284 PMCID: PMC5551567 DOI: 10.1084/jem.20161190] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/07/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Schroeder et al. demonstrate that when peripheral tolerance is relaxed, tier 2 HIV-1–neutralizing antibodies can be elicited and identify new autoreactive antibody specificities against histone H2A capable of neutralizing tier 2 HIV-1. A subset of characterized HIV-1 broadly neutralizing antibodies (bnAbs) are polyreactive with additional specificities for self-antigens and it has been proposed immunological tolerance may present a barrier to their participation in protective humoral immunity. We address this hypothesis by immunizing autoimmune-prone mice with HIV-1 Envelope (Env) and characterizing the primary antibody response for HIV-1 neutralization. We find autoimmune mice generate neutralizing antibody responses to tier 2 HIV-1 strains with alum treatment alone in the absence of Env. Importantly, experimentally breaching immunological tolerance in wild-type mice also leads to the production of tier 2 HIV-1–neutralizing antibodies, which increase in breadth and potency following Env immunization. In both genetically prone and experimentally induced mouse models of autoimmunity, increased serum levels of IgM anti-histone H2A autoantibodies significantly correlated with tier 2 HIV-1 neutralization, and anti-H2A antibody clones were found to neutralize HIV-1. These data demonstrate that breaching peripheral tolerance permits a cross-reactive HIV-1 autoantibody response able to neutralize HIV-1.
Collapse
Affiliation(s)
- Kristin M S Schroeder
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Amanda Agazio
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Pamela J Strauch
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Sean T Jones
- Division of Infectious Diseases, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Michael S Harper
- Division of Infectious Diseases, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Mario L Santiago
- Division of Infectious Diseases, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
81
|
Robbiani DF, Bozzacco L, Keeffe JR, Khouri R, Olsen PC, Gazumyan A, Schaefer-Babajew D, Avila-Rios S, Nogueira L, Patel R, Azzopardi SA, Uhl LFK, Saeed M, Sevilla-Reyes EE, Agudelo M, Yao KH, Golijanin J, Gristick HB, Lee YE, Hurley A, Caskey M, Pai J, Oliveira T, Wunder EA, Sacramento G, Nery N, Orge C, Costa F, Reis MG, Thomas NM, Eisenreich T, Weinberger DM, de Almeida ARP, West AP, Rice CM, Bjorkman PJ, Reyes-Teran G, Ko AI, MacDonald MR, Nussenzweig MC. Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell 2017; 169:597-609.e11. [PMID: 28475892 PMCID: PMC5492969 DOI: 10.1016/j.cell.2017.04.024] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 01/20/2023]
Abstract
Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure. Antibody cloning shows that donors with high ZIKV neutralizing antibody titers have expanded clones of memory B cells that express the same immunoglobulin VH3-23/VK1-5 genes. These recurring antibodies cross-react with DENV1, but not other flaviviruses, neutralize both DENV1 and ZIKV, and protect mice against ZIKV challenge. Structural analyses reveal the mechanism of recognition of the ZEDIII lateral ridge by VH3-23/VK1-5 antibodies. Serologic testing shows that antibodies to this region correlate with serum neutralizing activity to ZIKV. Thus, high neutralizing responses to ZIKV are associated with pre-existing reactivity to DENV1 in humans.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ricardo Khouri
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil
| | - Priscilla C Olsen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Roshni Patel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stephanie A Azzopardi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Lion F K Uhl
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arlene Hurley
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Joy Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Elsio A Wunder
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Gielson Sacramento
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil
| | - Nivison Nery
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil
| | - Cibele Orge
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil
| | - Federico Costa
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA; Faculdade de Medicina da Bahia and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia CEP 40296-710, Brazil
| | - Mitermayer G Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA; Faculdade de Medicina da Bahia and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia CEP 40296-710, Brazil
| | - Neena M Thomas
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Eisenreich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Antonio R P de Almeida
- Faculdade de Medicina da Bahia and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia CEP 40296-710, Brazil
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Albert I Ko
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
82
|
Pancera M, Changela A, Kwong PD. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Curr Opin HIV AIDS 2017; 12:229-240. [PMID: 28422787 PMCID: PMC5557343 DOI: 10.1097/coh.0000000000000360] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW An HIV-1 vaccine that elicits broadly neutralizing antibodies (bNAbs) remains to be developed. Here, we review how knowledge of bNAbs and HIV-1 entry mechanism is guiding the structure-based design of vaccine immunogens and immunization regimens. RECENT FINDINGS Isolation of bNAbs from HIV-1-infected donors has led to an unprecedented understanding of the sites of vulnerability that these antibodies target on the HIV-1 envelope (Env) as well as of the immunological pathways that these antibody lineages follow to develop broad and potent neutralization. Sites of vulnerability, however, reside in the context of diverse Env conformations required for HIV-1 entry, including a prefusion-closed state, a single-CD4-bound intermediate, a three-CD4-bound intermediate, a prehairpin intermediate and postfusion states, and it is not always clear which structural state optimally presents a particular site of vulnerability in the vaccine context. Furthermore, detailed knowledge of immunological pathways has led to debate among vaccine developers as to how much of the natural antibody-developmental pathway immunogens should mimic, ranging from only the recognized epitope to multiple antigens from the antibody-virus coevolution process. SUMMARY A plethora of information on bNAbs is guiding HIV-1-vaccine development. We highlight consideration of the appropriate structural context from the HIV-1-entry mechanism and extraordinary progress with replicating template B-cell ontogenies.
Collapse
Affiliation(s)
- Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
83
|
Rahe MC, Murtaugh MP. Effector mechanisms of humoral immunity to porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2017; 186:15-18. [PMID: 28413045 DOI: 10.1016/j.vetimm.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to afflict swine nearly 30 years after it was first discovered as the causative agent of "mystery swine disease". Immunological tools of vaccination and exposure to virulent viruses have not succeeded in achieving control and prevention of PRRSV. Humoral immunity, mediated by antibodies, is a hallmark of anti-viral immunity, but little is known about the effector mechanisms of humoral immunity against PRRSV. It is essential to understand the immunological significance of antibody functions, including recently described broadly neutralizing antibodies and potential non-neutralizing activities, in the immune response to PRRSV. Here, we review recent research from PRRSV and other host-pathogen interactions to inform novel routes of exploration into PRRSV humoral immunity which may be important for identifying the immunological correlates of protection against PRRSV infection.
Collapse
Affiliation(s)
- Michael C Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN, 55108 USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN, 55108 USA
| |
Collapse
|
84
|
Smith MJ, Packard TA, O'Neill SK, Hinman RM, Rihanek M, Gottlieb PA, Cambier JC. Detection and Enrichment of Rare Antigen-specific B Cells for Analysis of Phenotype and Function. J Vis Exp 2017. [PMID: 28287549 DOI: 10.3791/55382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
B cells reactive with a specific antigen usually occur at a frequency of <0.05% of lymphocytes. For decades researchers have sought methods to isolate and enrich these rare cells for studies of their phenotype and biology. Approaches are inevitably based on the principle that B cells recognize native antigen by virtue of cell surface receptors that are representative in specificity of antibodies that will eventually be secreted by their differentiated daughters. Perhaps the most obvious approach to the problem involves use of fluorochrome-conjugated antigens in conjunction with fluorescence-activated cell sorting (FACS). However, the utility of these methods is limited by cell frequency and the achievable rate of analysis and isolation by electronic sorting. A novel method to enrich rare antigen-specific B cells using magnetic nanoparticles that results in high yield enrichment of antigen-reactive B cells from large starting cell populations is described. This method enables improved monitoring of the phenotype and biology of antigen reactive cells before and following in vivo antigen encounter, such as after immunization or during development of autoimmunity.
Collapse
Affiliation(s)
- Mia J Smith
- Department of Immunology and Microbiology, University of Colorado School of Medicine; Department of Microbiology, Immunology, and Pathology, Colorado State University
| | - Thomas A Packard
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Shannon K O'Neill
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Rochelle M Hinman
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine; Department of Biomedical Research, National Jewish Health;
| |
Collapse
|
85
|
Jaworski JP, Vendrell A, Chiavenna SM. Neutralizing Monoclonal Antibodies to Fight HIV-1: On the Threshold of Success. Front Immunol 2017; 7:661. [PMID: 28123384 PMCID: PMC5225137 DOI: 10.3389/fimmu.2016.00661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Anti-human immunodeficiency virus type-1 (anti-HIV-1) neutralizing monoclonal antibodies are broadening the spectrum of pre- and post-exposure treatment against HIV-1. A better understanding of how these antibodies develop and interact with particular regions of the viral envelope protein is guiding a more rational structure-based immunogen design. The aim of this article is to review the most recent advances in the field, from the development of these particular antibodies during natural HIV-1 infection, to their role preventing infection, boosting endogenous immune responses and clearing both free viral particles and persistently infected cells.
Collapse
Affiliation(s)
- Juan Pablo Jaworski
- National Scientific and Technical Research Council, Buenos Aires, Argentina; Institute of Virology, National Institute of Agricultural Technology, Castelar, Buenos Aires, Argentina
| | - Alejandrina Vendrell
- Pharmacological and Botanical Study Center, School of Medicine, University of Buenos Aires , Buenos Aires , Argentina
| | | |
Collapse
|
86
|
Wibmer CK, Gorman J, Ozorowski G, Bhiman JN, Sheward DJ, Elliott DH, Rouelle J, Smira A, Joyce MG, Ndabambi N, Druz A, Asokan M, Burton DR, Connors M, Abdool Karim SS, Mascola JR, Robinson JE, Ward AB, Williamson C, Kwong PD, Morris L, Moore PL. Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathog 2017; 13:e1006074. [PMID: 28076415 PMCID: PMC5226681 DOI: 10.1371/journal.ppat.1006074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel J. Sheward
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Debra H. Elliott
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Julie Rouelle
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Ashley Smira
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - M. Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nonkululeko Ndabambi
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mangai Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, CHAVI-ID and IAVI Neutralizing Antibody Centre, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James E. Robinson
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
87
|
Abstract
The induction of neutralizing antibodies directed against the human immunodeficiency virus (HIV) has received considerable attention in recent years, in part driven by renewed interest and opportunities for antibody-based strategies for prevention such as passive transfer of antibodies and the development of preventive vaccines, as well as immune-based therapeutic interventions. Advances in the ability to screen, isolate, and characterize HIV-specific antibodies have led to the identification of a new generation of potent broadly neutralizing antibodies (bNAbs). The majority of these antibodies have been isolated from B cells of chronically HIV-infected individuals with detectable viremia. In this review, we provide insight into the phenotypic and functional attributes of human B cells, with a focus on HIV-specific memory B cells and plasmablasts/cells that are responsible for sustaining humoral immune responses against HIV. We discuss the abnormalities in B cells that occur in HIV infection both in the peripheral blood and lymphoid tissues, especially in the setting of persisting viremia. Finally, we consider the opportunities and drawbacks of intensively interrogating antibodies isolated from HIV-infected individuals to guide strategies aimed at developing effective antibody-based vaccine and therapeutic interventions for HIV.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
88
|
|
89
|
Escolano A, Dosenovic P, Nussenzweig MC. Progress toward active or passive HIV-1 vaccination. J Exp Med 2016; 214:3-16. [PMID: 28003309 PMCID: PMC5206506 DOI: 10.1084/jem.20161765] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
AIDS is a preventable disease. Nevertheless, according to UNAIDS, 2.1 million individuals were infected with HIV-1 in 2015 worldwide. An effective vaccine is highly desirable. Most vaccines in clinical use today prevent infection because they elicit antibodies that block pathogen entry. Consistent with this general rule, studies in experimental animals have shown that broadly neutralizing antibodies to HIV-1 can prevent infection, suggesting that a vaccine that elicits such antibodies would be protective. However, despite significant efforts over the last 30 years, attempts to elicit broadly HIV-1 neutralizing antibodies by vaccination failed until recent experiments in genetically engineered mice were finally successful. Here, we review the key breakthroughs and remaining obstacles to the development of active and passive HIV-1 vaccines.
Collapse
Affiliation(s)
- Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Pia Dosenovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
90
|
Heydarchi B, Center RJ, Bebbington J, Cuthbertson J, Gonelli C, Khoury G, Mackenzie C, Lichtfuss M, Rawlin G, Muller B, Purcell D. Trimeric gp120-specific bovine monoclonal antibodies require cysteine and aromatic residues in CDRH3 for high affinity binding to HIV Env. MAbs 2016; 9:550-566. [PMID: 27996375 PMCID: PMC5384801 DOI: 10.1080/19420862.2016.1270491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
We isolated HIV-1 Envelope (Env)-specific memory B cells from a cow that had developed high titer polyclonal immunoglobulin G (IgG) with broad neutralizing activity after a long duration vaccination with HIV-1AD8 Env gp140 trimers. We cloned the bovine IgG matched heavy (H) and light (L) chain variable (V) genes from these memory B cells and constructed IgG monoclonal antibodies (mAbs) with either a human constant (C)-region/bovine V-region chimeric or fully bovine C and V regions. Among 42 selected Ig+ memory B cells, two mAbs (6A and 8C) showed high affinity binding to gp140 Env. Characterization of both the fully bovine and human chimeric isoforms of these two mAbs revealed them as highly type-specific and capable of binding only to soluble AD8 uncleaved gp140 trimers and covalently stabilized AD8 SOSIP gp140 cleaved trimers, but not monomeric gp120. Genomic sequence analysis of the V genes showed the third heavy complementarity-determining region (CDRH3) of 6A mAb was 21 amino acids in length while 8C CDRH3 was 14 amino acids long. The entire V heavy (VH) region was 27% and 25% diverged for 6A and 8C, respectively, from the best matched germline V genes available, and the CDRH3 regions of 6A and 8C were 47.62% and 78.57% somatically mutated, respectively, suggesting a high level of somatic hypermutation compared with CDRH3 of other species. Alanine mutagenesis of the VH genes of 6A and 8C, showed that CDRH3 cysteine and tryptophan amino acids were crucial for antigen binding. Therefore, these bovine vaccine-induced anti-HIV antibodies shared some of the notable structural features of elite human broadly neutralizing antibodies, such as CDRH3 size and somatic mutation during affinity-maturation. However, while the 6A and 8C mAbs inhibited soluble CD4 binding to gp140 Env, they did not recapitulate the neutralizing activity of the polyclonal antibodies against HIV infection.
Collapse
Affiliation(s)
- Behnaz Heydarchi
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Rob J Center
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Jonathan Bebbington
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Jack Cuthbertson
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Christopher Gonelli
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Georges Khoury
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Charlene Mackenzie
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Marit Lichtfuss
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Grant Rawlin
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Brian Muller
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Damian Purcell
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| |
Collapse
|
91
|
Increased frequencies of CD8 +CD57 + T cells are associated with antibody neutralization breadth against HIV in viraemic controllers. J Int AIDS Soc 2016; 19:21136. [PMID: 27938646 PMCID: PMC5149708 DOI: 10.7448/ias.19.1.21136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 10/02/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Introduction An effective prophylactic vaccine against HIV will need to elicit antibody responses capable of recognizing and neutralizing rapidly evolving antigenic regions. The immunologic milieu associated with development of neutralizing antibody breadth remains to be fully defined. In this study, we sought to identify immunological signatures associated with neutralization breadth in HIV controllers. We applied an immune monitoring approach to analyze markers of T cell and myeloid cell activation by flow cytometry, comparing broad neutralizers with low- and non-neutralizers using multivariate and univariate analyses. Methods Antibody neutralization breadth was determined, and cryopreserved peripheral blood mononuclear cells were stained for T cell and myeloid cell activation markers. Subjects were grouped according to neutralization breadth, and T cell and myeloid cell activation was analyzed by partial least squares discriminant analysis to determine immune signatures associated with high neutralization breadth. Results We show that neutralization breadth in HIV viraemic controllers (VC) was strongly associated with increased frequencies of CD8+CD57+ T cells and that this association was independent of viral load, CD4 count and time since HIV diagnosis. Conclusions Our data show elevated frequencies of CD8+CD57+ T cells in VC who develop neutralization breadth against HIV. This immune signature could serve as a potential biomarker of neutralization breadth and should be further investigated in other HIV-positive cohorts and in HIV vaccine trials.
Collapse
|
92
|
Caskey M, Klein F, Nussenzweig MC. Broadly Neutralizing Antibodies for HIV-1 Prevention or Immunotherapy. N Engl J Med 2016; 375:2019-2021. [PMID: 27959740 DOI: 10.1056/nejmp1613362] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Marina Caskey
- From the Laboratory of Molecular Immunology (M.C., M.C.N.) and the Howard Hughes Medical Institute (M.C.N.), Rockefeller University, New York; and the Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, and the German Center for Infection Research, partner site Bonn-Cologne - all in Cologne, Germany (F.K.)
| | - Florian Klein
- From the Laboratory of Molecular Immunology (M.C., M.C.N.) and the Howard Hughes Medical Institute (M.C.N.), Rockefeller University, New York; and the Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, and the German Center for Infection Research, partner site Bonn-Cologne - all in Cologne, Germany (F.K.)
| | - Michel C Nussenzweig
- From the Laboratory of Molecular Immunology (M.C., M.C.N.) and the Howard Hughes Medical Institute (M.C.N.), Rockefeller University, New York; and the Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, and the German Center for Infection Research, partner site Bonn-Cologne - all in Cologne, Germany (F.K.)
| |
Collapse
|
93
|
Zhang Z, Li S, Gu Y, Xia N. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies. Int J Mol Sci 2016; 17:ijms17111901. [PMID: 27869733 PMCID: PMC5133900 DOI: 10.3390/ijms17111901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection causes acquired immune deficiency syndrome (AIDS), a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART) but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs) with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.
Collapse
Affiliation(s)
- Zhiqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
94
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
95
|
von Boehmer L, Liu C, Ackerman S, Gitlin AD, Wang Q, Gazumyan A, Nussenzweig MC. Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat Protoc 2016; 11:1908-1923. [PMID: 27658009 DOI: 10.1038/nprot.2016.102] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methods to identify genes encoding immunoglobulin heavy and light chains from single B lymphocytes vary in efficiency, error rate and practicability. Here we describe a protocol to sequence and clone the variable antibody region of single antigen-specific mouse memory B cells for antibody production. After purification, antigen-specific mouse memory B cells are first single-cell-sorted by fluorescence-activated cell sorting (FACS), and V(D)J transcripts are amplified by RT-PCR. Fragments are then combined with linearized expression vectors, assembled in vitro as part of a sequence- and ligation-independent cloning (SLIC) reaction and then transformed into Escherichia coli. Purified vectors can then be used to produce monoclonal antibodies in HEK293E suspension cells. This protocol improves the amplification efficiency of antibody variable genes and accelerates the cloning workflow. Antibody sequences will be available in 3-4 d, and microgram to milligram amounts of antibodies are produced within 14 d. The new protocol should be useful for addressing fundamental questions about antigen-specific memory B cell responses, as well as for characterizing antigen-specific antibodies.
Collapse
Affiliation(s)
- Lotta von Boehmer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Cassie Liu
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Sarah Ackerman
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
96
|
Sun M, Li Y, Yuan Z, Lu W, Kang G, Fan W, Li Q. VRC01 antibody protects against vaginal and rectal transmission of human immunodeficiency virus 1 in hu-BLT mice. Arch Virol 2016; 161:2449-55. [PMID: 27343044 PMCID: PMC4988922 DOI: 10.1007/s00705-016-2942-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) represent a new generation of antiviral agents for the prevention and treatment of human immunodeficiency virus 1 (HIV-1) infection. A better understanding of the in vivo efficacy of HIV-1 bNAbs, such as VRC01, in preventing mucosal transmission of HIV-1 has important implications for HIV-1 vaccine design. In this study, we evaluated the efficacy of passively transferred VRC01 antibody in preventing HIV-1 vaginal and rectal transmission in humanized bone marrow/liver/thymus mice (hu-BLT mice). Mice were subcutaneously injected with VRC01 IgG, and 24 hours later, they were challenged intravaginally or intrarectally with HIV-1Ada. All hu-BLT mice receiving VRC01 IgG antibody were aviremic at 2 weeks after intravaginal (n = 3) or intrarectal (n = 6) challenge as measured by quantitative real-time RT-PCR. In contrast, mice receiving control IgG all became infected. By 5 and 6 weeks post-challenge, some of VRC01 aviremic mice in both the intravaginal and intrarectal challenge groups became viremic. Our results suggest that VRC01 antibody can be protective against HIV-1 vaginal and rectal transmission; however, a single administration of VRC01 cannot completely prevent mucosal infection.
Collapse
Affiliation(s)
- Ming Sun
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Yue Li
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhe Yuan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Wuxun Lu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Guobin Kang
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Wenjin Fan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
97
|
Monreal-Escalante E, Navarro-Tovar G, León-Gallo A, Juárez-Montiel M, Becerra-Flora A, Jiménez-Bremont JF, Rosales-Mendoza S. The corn smut-made cholera oral vaccine is thermostable and induces long-lasting immunity in mouse. J Biotechnol 2016; 234:1-6. [DOI: 10.1016/j.jbiotec.2016.04.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023]
|
98
|
Krauss IJ. Antibody recognition of HIV and dengue glycoproteins. Glycobiology 2016; 26:813-9. [PMID: 26941393 PMCID: PMC5018046 DOI: 10.1093/glycob/cww031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/12/2016] [Accepted: 02/29/2016] [Indexed: 01/13/2023] Open
Abstract
The last 6 years have witnessed an explosion of discoveries at the interface of glycobiology and immunology. Binding of clustered oligosaccharides has turned out to be a very frequent mode by which human antibodies have developed broadly neutralizing activity against HIV. This mini-review will cover many recent developments in the HIV antibody field, as well as emerging data about Dengue broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
99
|
Luo Y, Jacobs EY, Greco TM, Mohammed KD, Tong T, Keegan S, Binley JM, Cristea IM, Fenyö D, Rout MP, Chait BT, Muesing MA. HIV-host interactome revealed directly from infected cells. Nat Microbiol 2016; 1:16068. [PMID: 27375898 PMCID: PMC4928716 DOI: 10.1038/nmicrobiol.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/16/2016] [Indexed: 01/27/2023]
Abstract
Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen-host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Erica Y. Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Todd M. Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - Kevin D. Mohammed
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Tommy Tong
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Sarah Keegan
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - James M. Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - David Fenyö
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Mark A. Muesing
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| |
Collapse
|
100
|
Yamamoto T, Lynch RM, Gautam R, Matus-Nicodemos R, Schmidt SD, Boswell KL, Darko S, Wong P, Sheng Z, Petrovas C, McDermott AB, Seder RA, Keele BF, Shapiro L, Douek DC, Nishimura Y, Mascola JR, Martin MA, Koup RA. Quality and quantity of TFH cells are critical for broad antibody development in SHIVAD8 infection. Sci Transl Med 2016. [PMID: 26223303 DOI: 10.1126/scitranslmed.aab3964] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) protect against HIV-1 infection, yet how they are generated during chronic infection remains unclear. It is known that T follicular helper (TFH) cells are needed to promote affinity maturation of B cells during an immune response; however, the role of TFH during HIV-1 infection is undefined within lymph node germinal centers (GCs). We use nonhuman primates to investigate the relationship in the early stage of chronic SHIVAD8 (simian-human immunodeficiency virus AD8) infection between envelope (Env)-specific TFH cells, Env-specific B cells, virus, and the generation of bNAbs during later infection. We found that both the frequency and quality of Env-specific TFH cells were associated with an expansion of Env-specific immunoglobulin G-positive GC B cells and broader neutralization across HIV clades. We also found a correlation between breadth of neutralization and the degree of somatic hypermutation in Env-specific memory B cells. Finally, we observed high viral loads and greater diversity of Env sequences in rhesus macaques that developed cross-reactive neutralization as compared to those that did not. These studies highlight the importance of boosting high-quality TFH populations as part of a robust vaccine regimen aimed at eliciting bNabs.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rebecca M Lynch
- Humoral Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Rodrigo Matus-Nicodemos
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Humoral Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Patrick Wong
- Humoral Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Robert A Seder
- Cellular Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - John R Mascola
- Humoral Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|