51
|
Krengel M, Sullivan K, Heboyan V, Zundel CG, Wilson CC, Klimas N, Coughlin SS. Neurotoxicant exposures and rates of Chronic Multisymptom Illness and Kansas Gulf War Illness criteria in Gulf War deployed women veterans. Life Sci 2021; 280:119623. [PMID: 34004246 DOI: 10.1016/j.lfs.2021.119623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022]
Abstract
AIMS This study analyzed deployment-related exposures and risk of Persian Gulf War Illness (GWI) in women veterans from the Veterans Affairs (VA) Cooperative Studies Program 585 Gulf War Era Cohort and Biorepository (GWECB CSP#585). MAIN METHODS We examined the associations between GW deployment-related exposures and case definitions for GWI in deployed GW women. Multivariate regression analyses controlling for demographic outcomes were performed. KEY FINDINGS Surveys were obtained from 202 GW deployed women veterans. Self-reported exposure to smoke from oil well fires as well as chemical and biological warfare were the only exposures significantly associated with the Center for Disease Control and Prevention (CDC) GWI criteria. Seventy-nine women were excluded from the rest of the analyses as they met Kansas GW illness exclusion criteria. Eligible women who self-reported deployment-related exposure to smoke from oil wells, pyridostigmine bromide (PB) pills, pesticide cream, pesticide treated uniforms, and insect baits were significantly more likely to meet the Kansas GWI criteria (n = 123) than those unexposed and exposures were related to Kansas symptom subdomain endorsements. SIGNIFICANCE These results suggest that women GW veterans reporting deployment related exposures of pesticide, oil well fire and PB pills are significantly more likely to meet the Kansas GWI criteria in this national cohort of GW women suggesting its utility in future studies. In addition, based on these results it appears that women exposed to particular toxicants during the war may benefit from more targeted treatment strategies dependent upon the mechanism of exposure of their toxicant induced outcomes.
Collapse
Affiliation(s)
- Maxine Krengel
- Boston University School of Medicine, United States of America; VA Boston Healthcare System, Boston, MA, United States of America.
| | - Kimberly Sullivan
- Boston University School of Public Health, Boston, MA, United States of America
| | - Vahé Heboyan
- Health Economics and Modeling Division, Population Health Sciences Department, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Clara G Zundel
- Boston University School of Medicine, United States of America; VA Boston Healthcare System, Boston, MA, United States of America
| | - Col Candy Wilson
- Uniformed Services University Graduate School of Nursing, Bethesda, MD, United States of America
| | - Nancy Klimas
- Miami VA Healthcare System, Miami, FL, United States of America; Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Steven S Coughlin
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, United States of America; Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, GA, United States of America
| |
Collapse
|
52
|
Gore A, Neufeld-Cohen A, Egoz I, Baranes S, Gez R, Efrati R, David T, Dekel Jaoui H, Yampolsky M, Grauer E, Chapman S, Lazar S. Neuroprotection by delayed triple therapy following sarin nerve agent insult in the rat. Toxicol Appl Pharmacol 2021; 419:115519. [PMID: 33823148 DOI: 10.1016/j.taap.2021.115519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
The development of refractory status epilepticus (SE) induced by sarin intoxication presents a therapeutic challenge. In our current research we evaluate the efficacy of a delayed combined triple treatment in ending the abnormal epileptiform seizure activity (ESA) and the ensuing of long-term neuronal insult. SE was induced in male Sprague-Dawley rats by exposure to 1.2LD50 sarin insufficiently treated by atropine and TMB4 (TA) 1 min later. Triple treatment of ketamine, midazolam and valproic acid was administered 30 min or 1 h post exposure and was compared to a delayed single treatment with midazolam alone. Toxicity and electrocorticogram activity were monitored during the first week and behavioral evaluation performed 3 weeks post exposure followed by brain biochemical and immunohistopathological analyses. The addition of both single and triple treatments reduced mortality and enhanced weight recovery compared to the TA-only treated group. The triple treatment also significantly minimized the duration of the ESA, reduced the sarin-induced increase in the neuroinflammatory marker PGE2, the brain damage marker TSPO, decreased the gliosis, astrocytosis and neuronal damage compared to the TA+ midazolam or only TA treated groups. Finally, the triple treatment eliminated the sarin exposed increased open field activity, as well as impairing recognition memory as seen in the other experimental groups. The delayed triple treatment may serve as an efficient therapy, which prevents brain insult propagation following sarin-induced refractory SE, even if treatment is postponed for up to 1 h.
Collapse
Affiliation(s)
- Ariel Gore
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel.
| | - Adi Neufeld-Cohen
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Inbal Egoz
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Shlomi Baranes
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Rellie Gez
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Rahav Efrati
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Tse'ela David
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological, Chemical and Environmental Sciences, Ness- Ziona 74100, Israel
| | - Hani Dekel Jaoui
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological, Chemical and Environmental Sciences, Ness- Ziona 74100, Israel
| | - Michael Yampolsky
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological, Chemical and Environmental Sciences, Ness- Ziona 74100, Israel
| | - Ettie Grauer
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Shira Chapman
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel.
| |
Collapse
|
53
|
Andrew PM, Lein PJ. Neuroinflammation as a Therapeutic Target for Mitigating the Long-Term Consequences of Acute Organophosphate Intoxication. Front Pharmacol 2021; 12:674325. [PMID: 34054549 PMCID: PMC8153682 DOI: 10.3389/fphar.2021.674325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Acute intoxication with organophosphates (OPs) can cause a potentially fatal cholinergic crisis characterized by peripheral parasympathomimetic symptoms and seizures that rapidly progress to status epilepticus (SE). While current therapeutic countermeasures for acute OP intoxication significantly improve the chances of survival when administered promptly, they are insufficient for protecting individuals from chronic neurologic outcomes such as cognitive deficits, affective disorders, and acquired epilepsy. Neuroinflammation is posited to contribute to the pathogenesis of these long-term neurologic sequelae. In this review, we summarize what is currently known regarding the progression of neuroinflammatory responses after acute OP intoxication, drawing parallels to other models of SE. We also discuss studies in which neuroinflammation was targeted following OP-induced SE, and explain possible reasons why such therapeutic interventions have inconsistently and only partially improved long-term outcomes. Finally, we suggest future directions for the development of therapeutic strategies that target neuroinflammation to mitigate the neurologic sequelae of acute OP intoxication.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
54
|
Sibomana I, Rohan JG, Mattie DR. 21-Day dermal exposure to aircraft engine oils: effects on esterase activities in brain and liver tissues, blood, plasma, and clinical chemistry parameters for Sprague Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:357-388. [PMID: 33380269 DOI: 10.1080/15287394.2020.1867680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This dermal study tested the potential toxicity of grade 3 (G3) and 4 (G4) organophosphate-containing aircraft engine oils in both new (G3-N, G4-N) and used states (G3-U, G4-U) to alter esterase activities in blood, brain and liver tissues, clinical chemistry parameters, and electrophysiology of hippocampal neurons. A 300 µl volume of undiluted oil was applied in Hill Top Chamber Systems®, then attached to fur-free test sites on backs of male and female Sprague Dawley rats for 6 hr/day, 5 days/week for 21 days. Recovery rats received similar treatments and kept for 14 days post-exposure to screen for reversibility, persistence, or delayed occurrence of toxicity. In brain, both versions of G3 and G4 significantly decreased (32-41%) female acetylcholinesterase (AChE) activity while in males only G3-N and G4-N reduced (33%) AChE activity. Oils did not markedly affect AChE in liver, regardless of gender. In whole blood, G3-U decreased female AChE (29%) which persisted during recovery (32%). G4-N significantly lowered (29%) butyrylcholinesterase (BChE) in male plasma, but this effect was resolved during recovery. For clinical chemistry indices, only globulin levels in female plasma significantly increased following G3-N or G4-N exposure. Preliminary electrophysiology data suggested that effects of both versions of G3 and G4 on hippocampal function may be gender dependent. Aircraft maintenance workers may be at risk if precautions are not taken to minimize long-term aircraft oil exposure.
Collapse
Affiliation(s)
- Isaie Sibomana
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, OH, USA
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| | - Joyce G Rohan
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, OH, USA
| | - David R Mattie
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| |
Collapse
|
55
|
Yan Q, Paul KC, Walker DI, Furlong MA, Del Rosario I, Yu Y, Zhang K, Cockburn MG, Jones DP, Ritz BR. High-Resolution Metabolomic Assessment of Pesticide Exposure in Central Valley, California. Chem Res Toxicol 2021; 34:1337-1347. [PMID: 33913694 DOI: 10.1021/acs.chemrestox.0c00523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pesticides are widely used in the agricultural Central Valley region of California. Historically, this has included organophosphates (OPs), organochlorines (OCs), and pyrethroids (PYRs). This study aimed to identify perturbations of the serum metabolome in response to each class of pesticide and mutual associations between groups of metabolites and multiple pesticides. We conducted high-resolution metabolomic profiling of serum samples from 176 older adults living in the California Central Valley using liquid chromatography with high-resolution mass spectrometry. We estimated chronic pesticide exposure (from 1974 to year of blood draw) to OPs, OCs, and PYRs from ambient sources at homes and workplaces with a geographic information system (GIS)-based model. Based on partial least-squares regression and pathway enrichment analysis, we identified metabolites and metabolic pathways associated with one or multiple pesticide classes, including mitochondrial energy metabolism, fatty acid and lipid metabolism, and amino acid metabolism. Utilizing an integrative network approach, we found that the fatty acid β-oxidation pathway is a common pathway shared across all three pesticide classes. The disruptions of the serum metabolome suggested that chronic pesticide exposure might result in oxidative stress, inflammatory reactions, and mitochondrial dysfunction, all of which have been previously implicated in a wide variety of diseases. Overall, our findings provided a comprehensive view of the molecular mechanisms of chronic pesticide toxicity, and, for the first time, our approach informs exposome research by moving from macrolevel population exposures to microlevel biologic responses.
Collapse
Affiliation(s)
- Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10019, United States
| | - Melissa A Furlong
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona 85724, United States
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Yu Yu
- Department of Environmental Health Science, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Myles G Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States.,Department of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Beate R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States.,Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095, United States
| |
Collapse
|
56
|
Källstig E, McCabe BD, Schneider BL. The Links between ALS and NF-κB. Int J Mol Sci 2021; 22:3875. [PMID: 33918092 PMCID: PMC8070122 DOI: 10.3390/ijms22083875] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3-5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models. One such factor is the inflammatory inducer NF-κB. Besides its connection to inflammation, NF-κB activity can be linked to several genes associated to familial forms of ALS, and many of the environmental risk factors of the disease stimulate NF-κB activation. Collectively, this has led many to hypothesize that NF-κB proteins may play a role in ALS pathogenesis. In this review, we discuss the genetic and environmental connections between NF-κB and ALS, as well as how this pathway may affect different CNS cell types, and finally how this may lead to motor neuron degeneration.
Collapse
Affiliation(s)
| | | | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland; (E.K.); (B.D.M.)
| |
Collapse
|
57
|
Dail ME, Brino MLM, Chambers JE. Effects of novel brain-penetrating oxime acetylcholinesterase reactivators on sarin surrogate-induced changes in rat brain gene expression. J Biochem Mol Toxicol 2021; 35:1-10. [PMID: 33682265 DOI: 10.1002/jbt.22755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 11/11/2022]
Abstract
Past assassinations and terrorist attacks demonstrate the need for a more effective antidote against nerve agents and other organophosphates (OP) that cause brain damage through inhibition of acetylcholinesterase (AChE). Our lab has invented a platform of phenoxyalkyl pyridinium oximes (US patent 9,277,937) that demonstrate the ability to cross the blood-brain barrier in in vivo rat tests with a sarin surrogate nitrophenyl isopropyl methylphosphonate (NIMP) and provide evidence of brain penetration by reducing cessation time of seizure-like behaviors, accumulation of glial fibrillary acidic protein (GFAP), and hippocampal neuropathology, as opposed to the currently approved oxime, 2-pyridine aldoxime methyl chloride (2-PAM). Using two of the novel oximes (Oximes 1 and 20), this project examined whether gene expression changes might help explain this protection. Expression changes in the piriform cortex were examined using polymerase chain reaction arrays for inflammatory cytokines and receptors. The hippocampus was examined via quantitative polymerase chain reaction for the expression of immediate-early genes involved in brain repair (Bdnf), increasing neurotoxicity (Fos), and apoptosis control (Jdp2, Bcl2l1, Bcl2l11). In the piriform cortex, NIMP significantly stimulated expression for the macrophage inflammatory proteins CCL4, IL-1A, and IL-1B. Oxime 20 by itself elicited the most changes. When it was given therapeutically post-NIMP, the largest change occurred: a 310-fold repression of the inflammatory cytokine, CCL12. In the hippocampus, NIMP increased the expression of the neurotoxicity marker Fos and decreased the expression of neuroprotective Bdnf and antiapoptotic Bcl2l1. Compared with 2-PAM, Oxime 20 stimulated Bcl2l1 expression more and returned expression closer to the vehicle control values.
Collapse
Affiliation(s)
- Mary E Dail
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, United States, USA
| | - Meghan L M Brino
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, United States, USA
| | - Janice E Chambers
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, United States, USA
| |
Collapse
|
58
|
Toledo-Ibarra GA, Girón-Pérez MI, Covantes-Rosales CE, Ventura-Ramón GH, Pérez-Sánchez G, López-Torres A, Diaz-Resendiz KJG, Becerril-Villanueva E, Pavón L. Alterations in the non-neuronal cholinergic system induced by in-vitro exposure to diazoxon in spleen mononuclear cells of Nile tilapia (O. niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 108:134-141. [PMID: 33285167 DOI: 10.1016/j.fsi.2020.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Organophosphate pesticides as diazinon disrupt the neuroimmune communication, affecting the innate and adaptive immune response of the exposed organisms. Since the target molecule of diazinon is typically the acetylcholinesterase enzyme (AChE), the existence of a non-neuronal cholinergic system in leukocytes makes them susceptible to alterations by diazinon. Therefore, the aim of this work was to evaluate the activity of AChE, acetylcholine (ACh) concentration, and the expression of nicotinic ACh receptors (nAChR) and muscarinic ACh receptors (mAChR) in spleen mononuclear cells (SMNC) of Nile tilapia (O. niloticus) exposed in vitro to diazoxon, a diazinon metabolite. SMNC were exposed in-vitro to 1 nM, 1 μM, and 10 μM diazoxon for 24 h. The enzyme activity of AChE was then evaluated by spectrophotometry, followed by ACh quantification by ultra-performance liquid chromatography. Finally, mAChR and nAChR expression was evaluated by RT-qPCR. The results indicate that AChE levels are significantly inhibited at 1 and 10 μM diazoxon, while the relative expression of (M3, M4, and M5) mAChR and (β2) nAChR is reduced significantly as compared against SMNC not exposed to diazoxon. However, ACh levels show no significant difference with respect to the control group. The data indicate that diazoxon directly alters elements in the cholinergic system of SMNC by AChE inhibition or indirectly through the interaction with AChR, which is likely related to the immunotoxic properties of diazinon and its metabolites.
Collapse
Affiliation(s)
- G A Toledo-Ibarra
- Laborato Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Tepic, Nayarit, Mexico; Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Tlalpan, Ciudad de México, Mexico
| | - M I Girón-Pérez
- Laborato Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Tepic, Nayarit, Mexico; Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - C E Covantes-Rosales
- Laborato Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Tepic, Nayarit, Mexico; Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - G H Ventura-Ramón
- Laborato Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Tepic, Nayarit, Mexico; Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - G Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Tlalpan, Ciudad de México, Mexico
| | - A López-Torres
- Instituto de Química Aplicada, Universidad del Papaloapan, Tuxtepec, Oaxaca, Mexico
| | - K J G Diaz-Resendiz
- Laborato Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Tepic, Nayarit, Mexico; Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - E Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Tlalpan, Ciudad de México, Mexico
| | - L Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
59
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
60
|
Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, De Araujo Furtado M, Braga MF. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures. Neuropharmacology 2020; 181:108298. [DOI: 10.1016/j.neuropharm.2020.108298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
61
|
Hirata Y, Kuwabara K, Takashima M, Murai T. Hormetic Effects of Binaphthyl Phosphonothioates as Pro-oxidants and Antioxidants. Chem Res Toxicol 2020; 33:2892-2902. [PMID: 33118805 DOI: 10.1021/acs.chemrestox.0c00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Organophosphorous compounds with such a wide variety in structure, application, and biochemical activities include pesticides, herbicides, nerve agents, medicines, reagents in organic chemistry, and additives for polymers. Binaphthyl phosphono-, phosphorothioates, and their derivatives, are useful chiral catalysts for various asymmetric reactions and are expected to act as heavy metal scavengers. In this study, we aimed to evaluate the neurotoxicity and biochemical properties of a new series of binaphthyl phosphonothioates called KK compounds using the mouse hippocampal HT22 cells. Despite negligible structural difference, the compounds exhibited differential general cytotoxic activity which was independent of acetylcholine esterase inhibition; on the other hand, all compounds tested prevented endogenous oxidative stress by suppressing generation of reactive oxygen species. Among them, KK397, KK387, KK410, and KK421 showed hormesis, i.e., biphasic dose responses to endogenous oxidative stress, characterized by beneficial effect at low dose and toxic effect at high dose. At cytotoxic concentrations, these compounds were potent radical generators and activated intracellular signaling molecules such as the p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, growth arrest- and DNA damage-inducible gene 153, X-box binding protein 1, and heme oxygenase 1, which are preferentially activated by cell stress-inducing signals, including oxidative and endoplasmic reticulum stress. These findings indicated that novel binaphthyl phosphonothioates can exhibit multiple biochemical properties, functioning as antioxidants and/or pro-oxidants, depending on the concentration, and chemical modification of binaphthyl organophosphorus compounds endowed them with unique characteristics and multiple beneficial functions.
Collapse
Affiliation(s)
- Yoko Hirata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kazuma Kuwabara
- Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Madoka Takashima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.,NAGARAGAWA Research Center, API Co., Ltd., Gifu 502-0071, Japan
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.,Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
62
|
Klement W, Oliviero F, Gangarossa G, Zub E, De Bock F, Forner-Piquer I, Blaquiere M, Lasserre F, Pascussi JM, Maurice T, Audinat E, Ellero-Simatos S, Gamet-Payrastre L, Mselli-Lakhal L, Marchi N. Life-long Dietary Pesticide Cocktail Induces Astrogliosis Along with Behavioral Adaptations and Activates p450 Metabolic Pathways. Neuroscience 2020; 446:225-237. [PMID: 32736067 DOI: 10.1016/j.neuroscience.2020.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pellets containing a cocktail of pesticides at tolerable daily intake levels. We found that 12 months of dietary exposure to pesticides was associated with a moderate perenchymal or perivascular astrogliosis in specific hippocampal sub-regions. The expression of platelet-derived growth factor receptor beta was modified at the perivascular level. Examination of Iba1+ microglial cells did not reveal sizeable changes. Concomitantly to astrogliosis, spontaneous spatial memory and sociability were modified in males at 12 months of dietary exposure to pesticides. Telemetry electrocorticograhic explorations ruled out the presence of epileptiform activity or theta-gamma wave modifications in these conditions. Long-term pesticides impacted the periphery where the hepatic P450 metabolic cytochromes Cyp4a14 and Cyp4a10 were significantly upregulated in male and female mice during the 12 months of exposure. The expression of β-oxidation genes, such as Acox1, Cpt1a and Eci, was also significantly increased in male and female mice in response to pesticides. Collectively, our results indicate that a life-long exposure to a pesticide cocktail elicits sex-dependent, spatio-temporally restricted brain modifications and significant activation of P450 pathways in the periphery. These brain-peripheral adjustments are discussed as time or age-dependent vulnerability elements.
Collapse
Affiliation(s)
- Wendy Klement
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | | | - Emma Zub
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic De Bock
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Isabel Forner-Piquer
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic Lasserre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Jean-Marc Pascussi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Nicola Marchi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France.
| |
Collapse
|
63
|
Afzali S, Karami M, Kheyripour N, Ranjbar A. Investigating the Effect of Fresh Frozen Plasma and Albumin on DNA Damage and Oxidative Stress Biomarkers in Poisoning Cases by Organophosphates. Drug Res (Stuttg) 2020; 71:10-16. [PMID: 33022718 DOI: 10.1055/a-1261-9151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The efficacy of albumin and fresh frozen plasma (FFP) and their effects on biomarkers of oxidative stress has been evaluated. In a randomized clinical control trial, 33 poisoned patients by Organophosphate (OP) were enrolled in the research and divided into three groups. The first group underwent conventional treatments by atropine and pralidoxime (control group); the second and third groups, in addition to traditional treatments, received albumin and FFP. Cholinesterase (ChE) enzyme activity, total antioxidant capacity (TAC), serum thiol groups (TTG), malonyl aldehyde (MDA) and DNA damage were measured in all treatment and control groups. Patients were matched in terms of demographic characteristics at the beginning of the study. ChE activity was increased in all three groups during treatment, which was more noticeable in the FFP group and was statistically significant in both albumin and FFP group compared to the control group (p<0.05). TAC increased, and TTG decreased in FFP and albumin groups compared to the control group; no significant difference was observed. MDA decreased in albumin and FFP and was significantly different in the FFP group compared to the control group (p<0.05). The amount of DNA damage in FFP and albumin groups decreased, and there was a significant difference compared to the control group (p<0.05). According to the results of this study, due to the decrease of oxidative damage parameters and the increase of antioxidant parameters in albumin and specially FFP groups, FFP may be considered as an adjunctive treatment for OP poisoning.
Collapse
Affiliation(s)
- Saeed Afzali
- Department of Forensic Medicine and Toxicology, School of Medicine, Hamadan University of Medical Sciences, Hamadan
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health Hamadan University of Medical Sciences, Hamadan
| | - Nejat Kheyripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan.,Department of Pharmacology Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan
| |
Collapse
|
64
|
Cheng CH, Koo BB, Calderazzo S, Quinn E, Aenlle K, Steele L, Klimas N, Krengel M, Janulewicz P, Toomey R, Michalovicz LT, Kelly KA, Heeren T, Little D, O’Callaghan JP, Sullivan K. Alterations in high-order diffusion imaging in veterans with Gulf War Illness is associated with chemical weapons exposure and mild traumatic brain injury. Brain Behav Immun 2020; 89:281-290. [PMID: 32745586 PMCID: PMC7755296 DOI: 10.1016/j.bbi.2020.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023] Open
Abstract
The complex etiology behind Gulf War Illness (GWI) has been attributed to the combined exposure to neurotoxicant chemicals, brain injuries, and some combat experiences. Chronic GWI symptoms have been shown to be associated with intensified neuroinflammatory responses in animal and human studies. To investigate the neuroinflammatory responses and potential causes in Gulf War (GW) veterans, we focused on the effects of chemical/biological weapons (CBW) exposure and mild traumatic brain injury (mTBI) during the war. We applied a novel MRI diffusion processing method, Neurite density imaging (NDI), on high-order diffusion imaging to estimate microstructural alterations of brain imaging in Gulf War veterans with and without GWI, and collected plasma proinflammatory cytokine samples as well as self-reported health symptom scores. Our study identified microstructural changes specific to GWI in the frontal and limbic regions due to CBW and mTBI, and further showed distinctive microstructural patterns such that widespread changes were associated with CBW and more focal changes on diffusion imaging were observed in GW veterans with an mTBI during the war. In addition, microstructural alterations on brain imaging correlated with upregulated blood proinflammatory cytokine markers TNFRI and TNFRII and with worse outcomes on self-reported symptom measures for fatigue and sleep functioning. Taken together, these results suggest TNF signaling mediated inflammation affects frontal and limbic regions of the brain, which may contribute to the fatigue and sleep symptoms of the disease and suggest a strong neuroinflammatory component to GWI. These results also suggest exposures to chemical weapons and mTBI during the war are associated with different patterns of peripheral and central inflammation and highlight the brain regions vulnerable to further subtle microscale morphological changes and chronic signaling to nearby glia.
Collapse
Affiliation(s)
| | - Bang-Bon Koo
- School of Medicine, Boston University, Boston, MA, US
| | | | - Emily Quinn
- School of Public Health, Boston University, Boston MA USA
| | - Kristina Aenlle
- Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL, USA
| | - Lea Steele
- Baylor College of Medicine, Houston, TX, USA
| | - Nancy Klimas
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Maxine Krengel
- School of Public Health, Boston University, Boston MA USA
| | | | | | - Lindsay T. Michalovicz
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy Heeren
- School of Public Health, Boston University, Boston MA USA
| | | | - James P. O’Callaghan
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | |
Collapse
|
65
|
Jacobsen-Pereira CH, Cardoso CC, Gehlen TC, Regina Dos Santos C, Santos-Silva MC. Immune response of Brazilian farmers exposed to multiple pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110912. [PMID: 32800247 DOI: 10.1016/j.ecoenv.2020.110912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Occupational exposure to pesticides has been identified as a factor that predisposes to disorders of the immune system. Immunosuppression, autoimmunity, cancer of various organs and other diseases in people who apply these products have been reported by the studies. This study aimed to investigate the relationship between occupational exposure to pesticides and the immunological profile in 43 farmers exposed to mixtures of pesticides for at least 15 years. A control group composed of 30 individuals without a history of occupational exposure to pesticides was also evaluated. Peripheral blood samples were processed by flow cytometry and cells were labelled with an 8-color monoclonal antibody panel. Plasma cytokines were also measured. Significant increase in classical monocytes (p < 0.001) and dendritic cells (p < 0.001) in the exposed group was observed as well in total T cells (p = 0.04), central memory CD8 T cells (p = 0.02) and effector memory CD8 T cells (p = 0.01). On the other hand, the activation markers of T cells as the expression of CD57, HLA-DR, CD25 and CD28 were evaluated and no difference was found between groups. When the B cells were analyzed, a significant decrease in total B cells (p = 0.01), regulatory B cells (p < 0.001) and plasmablasts (p < 0.001) in the exposed group, compared to healthy controls, was observed. Pro-inflammatory IL-6 was significantly elevated (p = 0.04) in the plasma of farmers compared to that of controls. The constant antigenic stimulus that occurs during exposure to pesticides can favor the recruitment of dendritic cells and macrophages (APCs) presents in the skin and respiratory tract. In the secondary lymphoid organs, the CD4 T and B cells that process such antigens are possibly undergoing proliferative exhaustion, with the consequent depletion of all mature B subpopulations. The resulting drop in humoral immunity may be offset by an increase in the number of circulating CD8 T lymphocytes due to their cytotoxic action.
Collapse
Affiliation(s)
| | - Chandra Chiappin Cardoso
- Postgraduate Program in Pharmacy of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil; Division of Clinical Analysis, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Tais Cristina Gehlen
- Laboratory of Toxicology, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Claudia Regina Dos Santos
- Laboratory of Toxicology, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil; Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Maria Claudia Santos-Silva
- Division of Clinical Analysis, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil; Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil.
| |
Collapse
|
66
|
Yee MK, Zundel CG, Maule AL, Heeren T, Proctor SP, Sullivan KA, Krengel MH. Longitudinal Assessment of Health Symptoms in Relation to Neurotoxicant Exposures in 1991 Gulf War Veterans: The Ft. Devens Cohort. J Occup Environ Med 2020; 62:663-668. [PMID: 32890202 PMCID: PMC7478220 DOI: 10.1097/jom.0000000000001910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This analysis examined the relationship between Gulf War (GW) exposures and health symptoms reported in three time periods over 20 years in Ft. Devens Cohort veterans. METHODS Repeated logistic regression models examined the association of exposures and health symptoms over time. Models included baseline age, active duty status, post-traumatic stress disorder status, sex, and time since deployment as covariates. RESULTS Exposure to tent heaters was associated with increased odds of crying easily and muscle twitching. Exposure to pyridostigmine bromide (PB) pills was associated with increased odds of depression and fatigue. Exposure to the Khamisiyah sarin plume was associated with increased odds of trouble concentrating and crying easily. CONCLUSION This longitudinal analysis demonstrated an association between neurotoxicant exposures and increased odds of cognitive/mood, fatigue, and neurological symptoms. In addition, most symptoms increased over time since deployment regardless of exposure.
Collapse
Affiliation(s)
- Megan K Yee
- Research Service, VA Boston Healthcare System, Boston, Massachusetts (Yee, Zundel, Dr Proctor, Dr Krengel); Behavioral Neuroscience Program, Boston University School of Medicine, Boston, Massachusetts (Zundel); Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (Drs Maule, Sullivan); Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts (Drs Maule, Proctor); Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts (Dr Heeren); and Department of Neurology, Boston University School of Medicine, Boston, Massachusetts (Dr Krengel)
| | | | | | | | | | | | | |
Collapse
|
67
|
Hobson BA, Rowland DJ, Sisó S, Guignet MA, Harmany ZT, Bandara SB, Saito N, Harvey DJ, Bruun DA, Garbow JR, Chaudhari AJ, Lein PJ. TSPO PET Using [18F]PBR111 Reveals Persistent Neuroinflammation Following Acute Diisopropylfluorophosphate Intoxication in the Rat. Toxicol Sci 2020; 170:330-344. [PMID: 31087103 DOI: 10.1093/toxsci/kfz096] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acute intoxication with organophosphates (OPs) can trigger status epilepticus followed by persistent cognitive impairment and/or electroencephalographic abnormalities. Neuroinflammation is widely posited to influence these persistent neurological consequences. However, testing this hypothesis has been challenging, in part because traditional biometrics preclude longitudinal measures of neuroinflammation within the same animal. Therefore, we evaluated the performance of noninvasive positron emission tomography (PET), using the translocator protein (TSPO) radioligand [18F]PBR111 against classic histopathologic measures of neuroinflammation in a preclinical model of acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats administered pyridostigmine bromide (0.1 mg/kg, im) 30 min prior to administration of DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im) and 2-pralidoxime (25 mg/kg, im) exhibited moderate-to-severe seizure behavior. TSPO PET performed prior to DFP exposure and at 3, 7, 14, 21, and 28 days postexposure revealed distinct lesions, as defined by increased standardized uptake values (SUV). Increased SUV showed high spatial correspondence to immunohistochemical evidence of neuroinflammation, which was corroborated by cytokine gene and protein expression. Regional SUV metrics varied spatiotemporally with days postexposure and correlated with the degree of neuroinflammation detected immunohistochemically. Furthermore, SUV metrics were highly correlated with seizure severity, suggesting that early termination of OP-induced seizures may be critical for attenuating subsequent neuroinflammatory responses. Normalization of SUV values to a cerebellar reference region improved correlations to all outcome measures and seizure severity. Collectively, these results establish TSPO PET using [18F]PBR111 as a robust, noninvasive tool for longitudinal monitoring of neuroinflammation following acute OP intoxication.
Collapse
Affiliation(s)
- Brad A Hobson
- Department of Radiology, University of California Davis School of Medicine, Sacramento, California 95817
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California Davis College of Engineering, Davis, California 95616
| | - Sílvia Sisó
- Department of Pathology, Microbiology and Immunology
| | - Michelle A Guignet
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, California 95616
| | - Zachary T Harmany
- Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California Davis College of Engineering, Davis, California 95616
| | - Suren B Bandara
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, California 95616
| | - Naomi Saito
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, California 95616
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, California 95616
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, California 95616
| | - Joel R Garbow
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis School of Medicine, Sacramento, California 95817.,Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California Davis College of Engineering, Davis, California 95616
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, California 95616
| |
Collapse
|
68
|
In-vivo imaging of neuroinflammation in veterans with Gulf War illness. Brain Behav Immun 2020; 87:498-507. [PMID: 32027960 PMCID: PMC7864588 DOI: 10.1016/j.bbi.2020.01.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic disorder affecting approximately 30% of the veterans who served in the 1991 Gulf War. It is characterised by a constellation of symptoms including musculoskeletal pain, cognitive problems and fatigue. The cause of GWI is not definitively known but exposure to neurotoxicants, the prophylactic use of pyridostigmine bromide (PB) pills, and/or stressors during deployment have all been suspected to play some pathogenic role. Recent animal models of GWI have suggested that neuroinflammatory mechanisms may be implicated, including a dysregulated activation of microglia and astrocytes. However, neuroinflammation has not previously been directly observed in veterans with GWI. To measure GWI-related neuroinflammation in GW veterans, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the 18 kDa translocator protein (TSPO), a protein upregulated in activated microglia/macrophages and astrocytes. Veterans with GWI (n = 15) and healthy controls (HC, n = 33, including a subgroup of healthy GW veterans, HCVET, n = 8), were examined using integrated [11C]PBR28 PET/MRI. Standardized uptake values normalized by occipital cortex signal (SUVR) were compared across groups and against clinical variables and circulating inflammatory cytokines (TNF-α, IL-6 and IL-1β). SUVR were validated against volume of distribution ratio (n = 13). Whether compared to the whole HC group, or only the HCVET subgroup, veterans with GWI demonstrated widespread cortical elevations in [11C]PBR28 PET signal, in areas including precuneus, prefrontal, primary motor and somatosensory cortices. There were no significant group differences in the plasma levels of the inflammatory cytokines evaluated. There were also no significant correlations between [11C]PBR28 PET signal and clinical variables or circulating inflammatory cytokines. Our study provides the first direct evidence of brain upregulation of the neuroinflammatory marker TSPO in veterans with GWI and supports the exploration of neuroinflammation as a therapeutic target for this disorder.
Collapse
|
69
|
Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26036-26057. [PMID: 32399888 DOI: 10.1007/s11356-020-08937-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus insecticides toxicity is still considered a major global health problem. Malathion is one of the most commonly used organophosphates nowadays, as being considered to possess relatively low toxicity compared with other organophosphates. However, widespread use may lead to excessive exposure from multiple sources. Mechanisms of MAL toxicity include inhibition of acetylcholinesterase enzyme, change of oxidants/antioxidants balance, DNA damage, and facilitation of apoptotic cell damage. Exposure to malathion has been associated with different toxicities that nearly affect every single organ in our bodies, with CNS toxicity being the most well documented. Malathion toxic effects on liver, kidney, testis, ovaries, lung, pancreas, and blood were also reported. Moreover, malathion was considered as a genotoxic and carcinogenic chemical compound. Evidence exists for adverse effects associated with prenatal and postnatal exposure in both animals and humans. This review summarizes the toxic data available about malathion in mammals and discusses new potential therapeutic modalities, with the aim to highlight the importance of increasing awareness about its potential risk and reevaluation of the allowed daily exposure level.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| |
Collapse
|
70
|
González EA, Rindy AC, Guignet MA, Calsbeek JJ, Bruun DA, Dhir A, Andrew P, Saito N, Rowland DJ, Harvey DJ, Rogawski MA, Lein PJ. The chemical convulsant diisopropylfluorophosphate (DFP) causes persistent neuropathology in adult male rats independent of seizure activity. Arch Toxicol 2020; 94:2149-2162. [PMID: 32303805 PMCID: PMC7305973 DOI: 10.1007/s00204-020-02747-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022]
Abstract
Organophosphate (OP) threat agents can trigger seizures that progress to status epilepticus, resulting in persistent neuropathology and cognitive deficits in humans and preclinical models. However, it remains unclear whether patients who do not show overt seizure behavior develop neurological consequences. Therefore, this study compared two subpopulations of rats with a low versus high seizure response to diisopropylfluorophosphate (DFP) to evaluate whether acute OP intoxication causes persistent neuropathology in non-seizing individuals. Adult male Sprague Dawley rats administered DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im), and pralidoxime (25 mg/kg, im) were monitored for seizure activity for 4 h post-exposure. Animals were separated into groups with low versus high seizure response based on behavioral criteria and electroencephalogram (EEG) recordings. Cholinesterase activity was evaluated by Ellman assay, and neuropathology was evaluated at 1, 2, 4, and 60 days post-exposure by Fluoro-Jade C (FJC) staining and micro-CT imaging. DFP significantly inhibited cholinesterase activity in the cortex, hippocampus, and amygdala to the same extent in low and high responders. FJC staining revealed significant neurodegeneration in DFP low responders albeit this response was delayed, less persistent, and decreased in magnitude compared to DFP high responders. Micro-CT scans at 60 days revealed extensive mineralization that was not significantly different between low versus high DFP responders. These findings highlight the importance of considering non-seizing patients for medical care in the event of acute OP intoxication. They also suggest that OP intoxication may induce neurological damage via seizure-independent mechanisms, which if identified, might provide insight into novel therapeutic targets.
Collapse
Affiliation(s)
- Eduardo A González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Alexa C Rindy
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Michelle A Guignet
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Jonas J Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Ashish Dhir
- Department of Neurology, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA, 95817, USA
| | - Peter Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Naomi Saito
- Department of Public Health Sciences, University of California, Davis, School of Medicine, One Shields Avenue, Davis, CA, 95616, USA
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, One Shields Avenue, Davis, CA, 95616, USA
| | - Michael A Rogawski
- Department of Neurology, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
71
|
Ait-Bali Y, Ba-M'hamed S, Gambarotta G, Sassoè-Pognetto M, Giustetto M, Bennis M. Pre- and postnatal exposure to glyphosate-based herbicide causes behavioral and cognitive impairments in adult mice: evidence of cortical ad hippocampal dysfunction. Arch Toxicol 2020; 94:1703-1723. [PMID: 32067069 DOI: 10.1007/s00204-020-02677-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022]
Abstract
Glyphosate-based herbicides (GBH) are the most widely used pesticides worldwide. Despite considerable progress in describing the neurotoxic potential of GBH, the harmful effects on brain cytoarchitecture and behavior are still unclear. Here, we addressed the developmental impact of GBH by exposing female mice to 250 or 500 mg/kg doses of GBH during both pregnancy and lactation and then examined the downstream effects at the behavioral, neurochemical and molecular levels. We show that pre- and neonatal exposure to GBH impairs fertility and reproduction parameters as well as maternal behavior of exposed mothers. In offspring, GBH was responsible for a global delay in innate reflexes and a deficit in motor development. At the adult age, exposed animals showed a decrease of locomotor activity, sociability, learning and short- and long-term memory associated with alterations of cholinergic and dopaminergic systems. Furthermore, GBH-activated microglia and astrocytes, sign of neuroinflammation event in the medial prefrontal cortex and hippocampus. At the molecular level, a down-regulation of brain-derived neurotrophic factor (BDNF) expression and an up-regulation of tyrosine-related kinase receptor (TrkB), NR1 subunit of NMDA receptor as well as tumor necrosis factor α (TNFα) were found in the brain of GBH-exposed mice. The present work demonstrates that GBH induces numerous behavioral and cognitive abnormalities closely associated with significant histological, neurochemical and molecular impairments. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during developmental periods of central nervous system.
Collapse
Affiliation(s)
- Yassine Ait-Bali
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, BP. 2390, 40000, Marrakech, Morocco
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, BP. 2390, 40000, Marrakech, Morocco
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Marco Sassoè-Pognetto
- Department of Neuroscience, University of Turin, Turin, Italy
- National Institute of Neuroscience-Italy, Turin, Italy
| | - Maurizio Giustetto
- Department of Neuroscience, University of Turin, Turin, Italy
- National Institute of Neuroscience-Italy, Turin, Italy
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, BP. 2390, 40000, Marrakech, Morocco.
| |
Collapse
|
72
|
Bouknight KD, Jurkouich KM, Compton JR, Khavrutskii IV, Guelta MA, Harvey SP, Legler PM. Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. Biochem Pharmacol 2020; 177:113980. [PMID: 32305437 DOI: 10.1016/j.bcp.2020.113980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
Human Cathepsin A (CatA) is a lysosomal serine carboxypeptidase of the renin-angiotensin system (RAS) and is structurally similar to acetylcholinesterase (AChE). CatA can remove the C-terminal amino acids of endothelin I, angiotensin I, Substance P, oxytocin, and bradykinin, and can deamidate neurokinin A. Proteomic studies identified CatA and its homologue, SCPEP1, as potential targets of organophosphates (OP). CatA could be stably inhibited by low µM to high nM concentrations of racemic sarin (GB), soman (GD), cyclosarin (GF), VX, and VR within minutes to hours at pH 7. Cyclosarin was the most potent with a kinetically measured dissociation constant (KI) of 2 µM followed by VR (KI = 2.8 µM). Bimolecular rate constants for inhibition by cyclosarin and VR were 1.3 × 103 M-1sec-1 and 1.2 × 103 M-1sec-1, respectively, and were approximately 3-orders of magnitude lower than those of human AChE indicating slower reactivity. Notably, both AChE and CatA bound diisopropylfluorophosphate (DFP) comparably and had KIDFP = 13 µM and 11 µM, respectively. At low pH, greater than 85% of the enzyme spontaneously reactivated after OP inhibition, conditions under which OP-adducts of cholinesterases irreversibly age. At pH 6.5 CatA remained stably inhibited by GB and GF and <10% of the enzyme spontaneously reactivated after 200 h. A crystal structure of DFP-inhibited CatA was determined and contained an aged adduct. Similar to AChE, CatA appears to have a "backdoor" for product release. CatA has not been shown previously to age. These results may have implications for: OP-associated inflammation; cardiovascular effects; and the dysregulation of RAS enzymes by OP.
Collapse
Affiliation(s)
- Kayla D Bouknight
- Hampton University, 100 E Queen St, Hampton, VA 23668, United States
| | - Kayla M Jurkouich
- Case Western Reserve University, Dept. of Biomedical Engineering, Cleveland, 10900 Euclid Avenue, OH 44106, United States
| | - Jaimee R Compton
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States
| | - Ilja V Khavrutskii
- Uniformed Services University, Armed Forces Radiobiology Research Institute, 4301 Jones Bridge Rd., Bethesda, MD 20889-5648, United States
| | - Mark A Guelta
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Steven P Harvey
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Patricia M Legler
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States.
| |
Collapse
|
73
|
Brown KA, Filipov NM, Wagner JJ. Dorsoventral-Specific Effects of Nerve Agent Surrogate Diisopropylfluorophosphate on Synaptic Transmission in the Mouse Hippocampus. J Pharmacol Exp Ther 2020; 373:10-23. [PMID: 31907304 DOI: 10.1124/jpet.119.263053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 03/08/2025] Open
Abstract
Although there has been an increasing appreciation for functional differences between the dorsal (dH) and ventral (vH) hippocampal sectors, there is a lack of information characterizing the cholinergic and noncholinergic mechanisms of acetylcholinesterase inhibitors on synaptic transmission along the hippocampal dorsoventral axis. Diisopropylfluorophosphate (DFP) is an organophosphate (OP) that is commonly employed as a nerve agent surrogate in vitro as well as in rodent models of disease states, such as Gulf War Illness. The present study investigated the cholinergic and noncholinergic mechanisms responsible for the effects of acute DFP exposure on dH and vH synaptic transmission in a hippocampal slice preparation. A paired-pulse extracellular recording protocol was used to monitor the population spike (PS) amplitude as well as the PS paired-pulse ratio (PS-PPR) in the CA1 subfield of the dH and the vH. We observed that DFP-induced PS1 inhibition was produced by a cholinergic mechanism in the dH, whereas a noncholinergic mechanism was indispensable in mediating the inhibitory effect of DFP on the PS1 in the vH. PS-PPR in both dH and vH sectors was increased by acute DFP exposure, an effect that was blocked by an N-methyl-D-aspartate receptor antagonist but not by cholinergic antagonists. Clinical reports have indicated dorsoventral-specific hippocampal abnormalities in cases of OP intoxications. Therefore, the observed dorsoventral-specific noncholinergic mechanisms underlying the effects of DFP on hippocampal synaptic transmission may have important implications for the treatment of OP overexposures. SIGNIFICANCE STATEMENT: It is unknown if acetylcholinesterase inhibitors differentially impact dorsal and ventral hippocampal synaptic transmission. The data in the present study show that an organophosphate, diisopropylfluorophosphate, impacts glutamatergic transmission along the dorsoventral axis in a hippocampal slice preparation via distinct cholinergic and noncholinergic mechanisms. These findings may provide insight into investigations of therapeutic agents that target noncholinergic mechanisms in cases of organophosphate overexposures.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Physiology and Pharmacology and Interdisciplinary Toxicology Program, University of Georgia, Athens, GA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology and Interdisciplinary Toxicology Program, University of Georgia, Athens, GA
| | - John J Wagner
- Department of Physiology and Pharmacology and Interdisciplinary Toxicology Program, University of Georgia, Athens, GA
| |
Collapse
|
74
|
Red Beetroot Extract Abrogates Chlorpyrifos-Induced Cortical Damage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2963020. [PMID: 32215171 PMCID: PMC7085382 DOI: 10.1155/2020/2963020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 12/14/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
Organophosphorus insecticides including chlorpyrifos (CPF) are mainly used for agriculture, household, and military purposes; their application is associated with various adverse reactions in animals and humans. This study was conducted to evaluate the potential neuroprotective effect of red beetroot methanolic extract (RBR) against CPF-induced cortical damage. Twenty-eight adult male Wistar albino rats were divided into 4 groups (n = 7 in each group): the control group was administered physiological saline (0.9% NaCl), the CPF group was administered CPF (10 mg/kg), the RBR group was administered RBR (300 mg/kg), and the RBR+CPF group was treated with RBR (300 mg/kg) 1 hr before CPF (10 mg/kg) supplementation. All groups were treated for 28 days. Rats exposed to CPF exhibited a significant decrease in cortical acetylcholinesterase activity and brain-derived neurotrophic factor and a decrease in glial fibrillary acidic protein. CPF intoxication increased lipid peroxidation, inducible nitric oxide synthase expression, and nitric oxide production. This was accompanied by a decrease in glutathione content and in the activities of glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase in the cortical tissue. Additionally, CPF enhanced inflammatory response, indicated by increased levels and expression of interleukin-1β and tumor necrosis factor-α. CPF triggered neuronal apoptosis by upregulating Bax and caspase-3 and downregulating Bcl-2. However, RBR reversed the induced neuronal alterations following CPF intoxication. Our findings suggest that RBR can minimize and prevent CPF neurotoxicity through its antioxidant, anti-inflammatory, and antiapoptotic activities.
Collapse
|
75
|
Mousavi SR, Moshiri M, Darchini-Maragheh E, Ghasempouri SK, Dadpour B, Sardar Antighechi F, Balali-Mood M. Therapeutic effects of HESA-A (a herbal-marine compound) in acute organophosphorus pesticide poisoning. AVICENNA JOURNAL OF PHYTOMEDICINE 2020; 10:235-242. [PMID: 32523878 PMCID: PMC7256278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Organophosphorus compounds (OPs) are common causes of poisonings. Atropine and oximes are pharmacological antidotes of OPs. However, because of their adverse effects and insufficient performance, several other compounds have been evaluated as adjuvant therapy. HESA-A is a herbal-marine drug that contains material from Carum carvi (Persian cumin), Penaeus latisculatus (king prawn), and Apium graveolens (celery) with anti-inflammatory and antioxidants properties, which has shown useful effects as adjuvant therapy on some diseases. We have evaluated the effect of HESA-A on 69 moderate to severe acute OPs poisoned patients (44 HESA-A treated and 25 controls) as an adjuvant drug. MATERIALS AND METHODS Two randomized age and sex matched groups of OPs poisoned patients were treated in Medical Toxicology Center of Imam Reza hospital, Mashhad, by conventional therapy with or without HESA-A (50 mg/kg/day orally). The evaluation criteria were total administrated doses of atropine and pralidoxime, intensive care unit (ICU) admission rate, mechanical respiration need, number of hospitalization days and mortality. RESULTS There were no significant differences between the morbidity and mortality rate criteria of the two groups; moreover, we did not observe significant adverse effects for HESA-A. CONCLUSION HESA-A did not reduce morbidity and mortality of OPs poisoning and did not induce any major side effect in the patients.
Collapse
Affiliation(s)
- Seyed Reza Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Moshiri
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Emadodin Darchini-Maragheh
- Cutaneous Leishmaniasis Research Center, Emam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Khosro Ghasempouri
- Department of Forensic Medicine and Toxicology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Bita Dadpour
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Corresponding Author: Tel: +98-51-38002463, Fax: +98-51- 38002467, ,
| |
Collapse
|
76
|
Guignet M, Dhakal K, Flannery BM, Hobson BA, Zolkowska D, Dhir A, Bruun DA, Li S, Wahab A, Harvey DJ, Silverman JL, Rogawski MA, Lein PJ. Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiol Dis 2020; 133:104431. [PMID: 30905768 PMCID: PMC6754818 DOI: 10.1016/j.nbd.2019.03.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023] Open
Abstract
Current medical countermeasures for organophosphate (OP)-induced status epilepticus (SE) are not effective in preventing long-term morbidity and there is an urgent need for improved therapies. Rat models of acute intoxication with the OP, diisopropylfluorophosphate (DFP), are increasingly being used to evaluate therapeutic candidates for efficacy in mitigating the long-term neurologic effects associated with OP-induced SE. Many of these therapeutic candidates target neuroinflammation and oxidative stress because of their implication in the pathogenesis of persistent neurologic deficits associated with OP-induced SE. Critical to these efforts is the rigorous characterization of the rat DFP model with respect to outcomes associated with acute OP intoxication in humans, which include long-term electroencephalographic, neurobehavioral, and neuropathologic effects, and their temporal relationship to neuroinflammation and oxidative stress. To address these needs, we examined a range of outcomes at later times post-exposure than have previously been reported for this model. Adult male Sprague-Dawley rats were given pyridostigmine bromide (0.1 mg/kg, im) 30 min prior to administration of DFP (4 mg/kg, sc), which was immediately followed by atropine sulfate (2 mg/kg, im) and pralidoxime (25 mg/kg, im). This exposure paradigm triggered robust electroencephalographic and behavioral seizures that rapidly progressed to SE lasting several hours in 90% of exposed animals. Animals that survived DFP-induced SE (~70%) exhibited spontaneous recurrent seizures and hyperreactive responses to tactile stimuli over the first 2 months post-exposure. Performance in the elevated plus maze, open field, and Pavlovian fear conditioning tests indicated that acute DFP intoxication reduced anxiety-like behavior and impaired learning and memory at 1 and 2 months post-exposure in the absence of effects on general locomotor behavior. Immunohistochemical analyses revealed significantly increased expression of biomarkers of reactive astrogliosis, microglial activation and oxidative stress in multiple brain regions at 1 and 2 months post-DFP, although there was significant spatiotemporal heterogeneity across these endpoints. Collectively, these data largely support the relevance of the rat model of acute DFP intoxication as a model for acute OP intoxication in the human, and support the hypothesis that neuroinflammation and/or oxidative stress represent potential therapeutic targets for mitigating the long-term neurologic sequelae of acute OP intoxication.
Collapse
Affiliation(s)
- Michelle Guignet
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Kiran Dhakal
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Brenna M. Flannery
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Brad A. Hobson
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817 USA, , , ;
| | - Ashish Dhir
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817 USA, , , ;
| | - Donald A. Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Shuyang Li
- Department of Public Health Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA, ,
| | - Abdul Wahab
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817 USA, , , ;
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA, ,
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California-Davis, 2230 Stockton Boulevard, Sacramento, CA 95817 USA,
- MIND Institute, School of Medicine, University of California-Davis, 2825 50 Street, Sacramento, CA 95817 USA
| | - Michael A. Rogawski
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817 USA, , , ;
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
- MIND Institute, School of Medicine, University of California-Davis, 2825 50 Street, Sacramento, CA 95817 USA
| |
Collapse
|
77
|
Janulewicz PA, Seth RK, Carlson JM, Ajama J, Quinn E, Heeren T, Klimas N, Lasley SM, Horner RD, Sullivan K, Chatterjee S. The Gut-Microbiome in Gulf War Veterans: A Preliminary Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3751. [PMID: 31590322 PMCID: PMC6801913 DOI: 10.3390/ijerph16193751] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting the central nervous system (CNS), immune and gastrointestinal (GI) systems of Gulf War veterans (GWV). We assessed the relationships between GWI, GI symptoms, gut microbiome and inflammatory markers in GWV from the Boston Gulf War Illness Consortium (GWIC). Three groups of GWIC veterans were recruited in this pilot study; GWV without GWI and no gastrointestinal symptoms (controls), GWV with GWI and no gastrointestinal symptoms (GWI-GI), GWV with GWI who reported gastrointestinal symptoms (GW+GI). Here we report on a subset of the first thirteen stool samples analyzed. Results showed significantly different gut microbiome patterns among the three groups and within the GWI +/-GI groups. Specifically, GW controls had a greater abundance of firmicutes and the GWI+GI group had a greater abundance of the phyla bacteroidetes, actinobacteria, euryarchaeota, and proteobacteria as well as higher abundances of the families Bacteroidaceae, Erysipelotrichaceae, and Bifidobacteriaceae. The GWI+GI group also showed greater plasma levels of the inflammatory cytokine TNF-RI and they endorsed significantly more chemical weapons exposure during the war and reported significantly greater chronic pain, fatigue and sleep difficulties than the other groups. Studies with larger samples sizes are needed to confirm these initial findings.
Collapse
Affiliation(s)
- Patricia A Janulewicz
- Environmental Health Department, Boston University School of Public Health, Boston, MA 02118, USA.
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Jeffrey M Carlson
- Environmental Health Department, Boston University School of Public Health, Boston, MA 02118, USA
| | - Joy Ajama
- Environmental Health Department, Boston University School of Public Health, Boston, MA 02118, USA
| | - Emily Quinn
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA 02118, USA
| | - Timothy Heeren
- Biostatistics Department, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nancy Klimas
- Department of Clinical Immunology, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Steven M Lasley
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Ronnie D Horner
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Kimberly Sullivan
- Environmental Health Department, Boston University School of Public Health, Boston, MA 02118, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
78
|
Abstract
This article describes current pursuits for developing novel antidotes for organophosphate (OP) intoxication. Recent mechanistic studies of benzodiazepine-resistant seizures have key consequences for victims of OP pesticide and nerve agent attacks. We uncovered why current therapies are not able to stop the OP-induced seizures and brain cell death and what type of drug might be better. OP exposure down regulates critical inhibitory GABA-A receptors, kills neurons, and causes massive neuroinflammation that will cause more neuronal death, which causes the problem of too few benzodiazepine receptors. The loss of inhibitory interneurons creates a self-sustaining seizure circuit and refractory status epilepticus. Thus, there is an urgent need for mechanism-based, new antidotes for OP intoxication. We have discovered neurosteroids as next-generation anticonvulsants superior to midazolam for the treatment of OP poisoning. Neurosteroids that activate both extrasynaptic and synaptic GABA-A receptors have the potential to stop seizures more effectively and safely than benzodiazepines. In addition, neurosteroids confers robust neuroprotection by reducing neuronal injury and neuroinflammation. The synthetic neurosteroid ganaxolone is being considered for advanced development as a future anticonvulsant for nerve agents. Experimental studies shows striking efficacy of ganaxolone and its analogs in OP exposure models. They are also effective in attenuating long-term neuropsychiatric deficits caused by OP exposure. Overall, neurosteroids represent rational anticonvulsants for OP intoxication, even when given late after exposure.
Collapse
|
79
|
Characterizing the joint effects of pesticide exposure and criteria ambient air pollutants on pediatric asthma morbidity in an agricultural community. Environ Epidemiol 2019; 3:e046. [PMID: 31342006 PMCID: PMC6571181 DOI: 10.1097/ee9.0000000000000046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
Supplemental Digital Content is available in the text. Background: Environmental contributions to pediatric asthma morbidity have been studied extensively in urban settings; exposures characteristic of agricultural and rural communities have received less attention despite a comparable burden of morbidity. Methods: We obtained repeated urine samples (n = 139) from 16 school-age children with asthma in the Yakima Valley of Washington State between July and October 2012. Biomarkers of organophosphate (OP) pesticide exposure (dialkyl phosphates [DAPs]) and asthma exacerbation (leukotriene E4 [LTE4]) were analyzed in samples. Corresponding 24-hour average particulate matter <2.5 μg (PM2.5) and maximum 8-hour ozone concentration data for the study period were available from local monitoring stations. We evaluated the independent and multi-pollutant associations between LTE4 and exposure to ambient air pollutants and DAPs using generalized estimating equations. For multi-domain and multi-pollutant models, we created categorized pollution combination levels and estimated the relative health impact of exposure to pollutant mixtures. Results: In single-pollutant models, an interquartile range increase in exposures to DAPs was associated with increase in LTE4 levels (β: 4.1 [0.6–7.6] pg/mg). PM2.5 and ozone were also associated with increase in LTE4, though confidence intervals contained the null value. Increase in LTE4 levels was consistently associated with increase in median-dichotomized multi-pollutant combination exposures; the highest effect estimates were observed with joint highest (vs. the lowest) category of the three-pollutant exposure (PM2.5, ozone, and OP; β: 53.5, 95% confidence interval = 24.2, 82.8 pg/mg). Conclusion: Concurrent short-term exposure to criteria air pollutants and OPs in an agricultural community was associated with an increase in a marker of asthma morbidity.
Collapse
|
80
|
Alam RT, Imam TS, Abo-Elmaaty AMA, Arisha AH. Amelioration of fenitrothion induced oxidative DNA damage and inactivation of caspase-3 in the brain and spleen tissues of male rats by N-acetylcysteine. Life Sci 2019; 231:116534. [PMID: 31173782 DOI: 10.1016/j.lfs.2019.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 01/29/2023]
Abstract
N-acetylcysteine (NAC) has largely been used as an effective chemo- protective agent owing to their beneficial effect in restoring several physiological parameters and relieving oxidative stress. Interestingly, it has been suggested that NAC mechanisms of action extend beyond being a precursor to the antioxidant glutathione and that they may involve several neurotropic and inflammatory pathways. Exposure to fenitrothion, an organophosphorus insecticide, promotes oxidative stress and induces several deleterious changes in the immune response and various tissues including cerebrum and spleen. The main objective of our study was to investigate ameliorative efficacy of N-acetylcysteine for immunological and neurological alterations and oxidative DNA damage induced by fenitrothion toxicity in cerebrum and spleen tissues of male rats. Our results revealed that oral exposure to fenitrothion for 30 days caused a reduction in the erythrocyte count in addition to leukocytosis, lymphocytosis, and neutrophilia. Also, this route of administration increased the serum levels of LDH, TNF-α, and IL-2 with reduction in serum immunoglobulins (IgG & IgM) concentrations. Furthermore, a significant downregulation in the antioxidant markers (GSH & SOD) with an elevation of free radical (MDA) levels were noticed. Regarding the brain, fenitrothion administration inhibited AchE activity and increased brain GABA, serotonin and dopamine levels. Moreover, it induced an elevation in oxidative DNA damage indicated by 8-hydroxy 2-deoxyguanosine (8OH2dG) and mRNA expression of pro-apoptotic genes, including Bax, and p53, but Bcl-2 expression was reduced. N-acetylcysteine co-treatment restored the normal physiological tone in most of these parameters. Immunostaining for GFAP and Caspase-3 markers in the brain and spleen tissues were increased respectively. In conclusion, N-acetylcysteine supplementation has an ameliorative effect against immunotoxic, neurotoxic and oxidative DNA damage induced by fenitrothion exposure.
Collapse
Affiliation(s)
- Rasha T Alam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Sharkia, Egypt.
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Sharkia, Egypt
| | - Azza M A Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Sharkia, Egypt
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Sharkia, Egypt
| |
Collapse
|
81
|
Benka-Coker W, Loftus C, Karr C, Magzamen S. Association of Organophosphate Pesticide Exposure and a Marker of Asthma Morbidity in an Agricultural Community. J Agromedicine 2019; 25:106-114. [PMID: 31130077 DOI: 10.1080/1059924x.2019.1619644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Objectives: We explored the short-term impact of pesticide exposure on asthma exacerbation among children with asthma in an agricultural community.Methods: We obtained repeated urine samples from a subset of 16 school-age children with asthma (n = 139 samples) as part of the Aggravating Factors of Asthma in a Rural Environment (AFARE) study cohort. Biomarkers of organophosphate (OP) pesticide exposure (dialkylphosphates (DAPs)), and asthma exacerbation (leukotriene E4 (uLTE4)) were assessed in urine samples. We used generalized estimating equations to examine the association of summed measures of creatinine-adjusted DAPs (total dimethyl alkylphosphate (EDM), total diethyl alkylphosphate (EDE), and total dialkylphosphate pesticides (EDAP)) and uLTE4 concentration, adjusting for multiple confounders, yielding beta-coefficients with 95% CIs.Results: A total of 139 observations were obtained from the 16 children over the study period, the total number of samples per subject ranged from 1 to 12 (median: 10.5). The geometric mean (GM) of creatinine-adjusted EDE, EDM, and EDAP in this population were 81.0, 71.8 and 168.0 nmol/g, respectively. Increase in uLTE4 levels was consistently associated with increased exposures to DAPs (interquartile range in μg/g): βEDE: 8.7 (95%CI: 2.8, 14.6); βEDM: 1.1 (0.5, 1.7); βEDAP: 4.1 (0.7, 7.5).Conclusion: This study suggests that short-term OP exposure is associated with a higher risk of asthma morbidity, as indicated by increased uLTE4 levels in this cohort of children with asthma in an agricultural community. Additional studies are required to confirm these adverse effects, and explore the mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Wande Benka-Coker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christine Loftus
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Catherine Karr
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.,Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
82
|
Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 2019; 197:61-82. [PMID: 30677475 PMCID: PMC6520143 DOI: 10.1016/j.pharmthera.2019.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increased incidence of neurodegenerative diseases worldwide, Parkinson's disease (PD) represents the second-most common neurodegenerative disease. PD is a progressive multisystem neurodegenerative disorder characterized by a marked loss of nigrostriatal dopaminergic neurons and the formation of Lewy pathology in diverse brain regions. Although the mechanisms underlying dopaminergic neurodegeneration remain poorly characterized, data from animal models and postmortem studies have revealed that heightened inflammatory responses mediated via microglial and astroglial activation and the resultant release of proinflammatory factors may act as silent drivers of neurodegeneration. In recent years, numerous studies have demonstrated a positive association between the exposure to environmental neurotoxicants and the etiology of PD. Although it is unclear whether neuroinflammation drives pesticide-induced neurodegeneration, emerging evidence suggests that the failure to dampen neuroinflammatory mechanisms may account for the increased vulnerability to pesticide neurotoxicity. Furthermore, recent studies provide additional evidence that shifts the focus from a neuron-centric view to glial-associated neurodegeneration following pesticide exposure. In this review, we propose to summarize briefly the possible factors that regulate neuroinflammatory processes during environmental neurotoxicant exposure with a focus on the potential roles of mitochondria-driven redox mechanisms. In this context, a critical discussion of the data obtained from experimental research and possible epidemiological studies is included. Finally, we hope to provide insights on the pivotal role of exosome-mediated intercellular transmission of aggregated proteins in microglial activation response and the resultant dopaminergic neurodegeneration after exposure to pesticides. Collectively, an improved understanding of glia-mediated neuroinflammatory signaling might provide novel insights into the mechanisms that contribute to neurodegeneration induced by environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Adhithiya Charli
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anantharam Vellareddy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
83
|
Khan N, Kennedy A, Cotton J, Brumby S. A Pest to Mental Health? Exploring the Link between Exposure to Agrichemicals in Farmers and Mental Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1327. [PMID: 31013861 PMCID: PMC6517992 DOI: 10.3390/ijerph16081327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/08/2019] [Accepted: 04/09/2019] [Indexed: 01/20/2023]
Abstract
The current literature acknowledges that occupational exposures can adversely affect mental health. This review seeks to elucidate the current understanding of the effect of agrichemical exposure on mental health in the agricultural sector, including low-dose, chronic pesticide exposure. This scoping review adopted a snowballing and saturation approach. The review highlights inconsistencies in linking poor mental health and pesticide use. While some studies specifically showed that both high- and low-dose pesticide exposure were associated with poor mental health, consistent and rigorous research methods are lacking. The review also proposes terms to delineate exposure types described in the literature. The review outcomes direct efforts to protect the health, wellbeing and safety of farming communities across the globe.
Collapse
Affiliation(s)
- Nufail Khan
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300, Australia.
| | - Alison Kennedy
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300, Australia.
| | - Jacqueline Cotton
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300, Australia.
| | - Susan Brumby
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300, Australia.
| |
Collapse
|
84
|
Iyengar ARS, Pande AH. Is Human Paraoxonase 1 the Saviour Against the Persistent Threat of Organophosphorus Nerve Agents? Protein Pept Lett 2019; 26:471-478. [PMID: 30942142 DOI: 10.2174/0929866526666190403120259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/22/2023]
Abstract
Nerve agents have been used extensively in chemical warfare in the past. However, recent use of Novichok agents have reignited the debate on the threat posed by Organophosphorus Nerve Agents (OPNAs). The currently available therapy for OPNA toxicity is only symptomatic and is potentially ineffective in neutralizing OPNAs. Hence, there is a dire need to develop a prophylactic therapy for counteracting OPNA toxicity. In this regard, human paraoxonase 1 has emerged as the enzyme of choice. In this review, we have focussed upon the recent and past events of OPNA use, their mechanism of action and toxicity. Further, we have emphasized upon the potential of enzyme based therapy and the various advances in the development of paraoxonase 1 as a countermeasure for OPNA poisoning. Finally, we have elaborated the shortcomings of paraoxonase 1 and the work that needs to be undertaken in order to develop human paraoxonase 1 as a prophylactic against OPNA poisoning.
Collapse
Affiliation(s)
- A R Satvik Iyengar
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, 2308 NSW, Australia
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
85
|
Guignet M, Lein PJ. Neuroinflammation in organophosphate-induced neurotoxicity. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
86
|
Atropine counteracts the depressive-like behaviour elicited by acute exposure to commercial chlorpyrifos in rats. Neurotoxicol Teratol 2019; 71:6-15. [DOI: 10.1016/j.ntt.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
|
87
|
The Multiple Hit Hypothesis for Gulf War Illness: Self-Reported Chemical/Biological Weapons Exposure and Mild Traumatic Brain Injury. Brain Sci 2018; 8:brainsci8110198. [PMID: 30428552 PMCID: PMC6266762 DOI: 10.3390/brainsci8110198] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
The Gulf War Illness Consortium (GWIC) was designed to identify objective biomarkers of Gulf War Illness (GWI) in 1991 Gulf War veterans. The symptoms of GWI include fatigue, pain, cognitive problems, gastrointestinal, respiratory, and skin problems. Neurotoxicant exposures during deployment, such as pesticides, sarin, and pyridostigmine bromide pills have been identified as contributors to GWI. We have also found an association between mild traumatic brain injury (mTBI) and increased rates of GWI. However, the combined impact of these physical and chemical exposures has not yet been explored in GWI. The objective of this study was to examine both self-reported mTBI and exposure to chemical/biological weapons (CBW) as a multiple or two hit model for increased risk of GWI and other chronic health conditions. The study population included 125 Gulf War (GW) veterans from the Boston GWIC. Exposure to CBW was reported in 47.2% of the study population, and 35.2% reported sustaining a mTBI during the war. Results confirmed that those with both exposures (mTBI and CBW) had higher rates of comorbid chronic health conditions while rates of GWI were equivalent for mTBI and CBW or mTBI alone. The timing of exposure to mTBI was found to be strikingly different between those with GWI and those without it. Correspondingly, 42.3% of GWI cases reported experiencing a mTBI during military service while none of the controls did (p = 0.0002). Rates of mTBI before and after the war did not differ between the cases and controls. In addition, 54% of cases compared to 14.3% of controls (p = <0.001) reported being exposed to CBW during military service. The current study examined the relation of the separate and combined effects of exposure to mTBI and CBW in 1991 GW veterans. The findings from this study suggest that both exposure to mTBI and CBW are associated with the development of GWI and multiple chronic health conditions and that combined exposure appears to lead to higher risk of chronic health effects.
Collapse
|
88
|
Wu X, Kuruba R, Reddy DS. Midazolam-Resistant Seizures and Brain Injury after Acute Intoxication of Diisopropylfluorophosphate, an Organophosphate Pesticide and Surrogate for Nerve Agents. J Pharmacol Exp Ther 2018; 367:302-321. [PMID: 30115757 PMCID: PMC6193253 DOI: 10.1124/jpet.117.247106] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
Organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and the nerve agent sarin are lethal chemicals that induce seizures, status epilepticus (SE), and brain damage. Midazolam, a benzodiazepine modulator of synaptic GABA-A receptors, is currently considered as a new anticonvulsant for nerve agents. Here, we characterized the time course of protective efficacy of midazolam (0.2-5 mg/kg, i.m.) in rats exposed to DFP, a chemical threat agent and surrogate for nerve agents. Behavioral and electroencephalogram (EEG) seizures were monitored for 24 hours after DFP exposure. The extent of brain injury was determined 3 days after DFP exposure by unbiased stereologic analyses of valid markers of neurodegeneration and neuroinflammation. Seizures were elicited within ∼8 minutes after DFP exposure that progressively developed into persistent SE lasting for hours. DFP exposure resulted in massive neuronal injury or necrosis, neurodegeneration of principal cells and interneurons, and neuroinflammation as evident by extensive activation of microglia and astrocytes in the hippocampus, amygdala, and other brain regions. Midazolam controlled seizures, neurodegeneration, and neuroinflammation when given early (10 minutes) after DFP exposure, but it was less effective when given at 40 minutes or later. Delayed therapy (≥40 minutes), a simulation of the practical therapeutic window for first responders or hospital admission, was associated with reduced seizure protection and neuroprotection. These results strongly reaffirm that the DFP-induced seizures and brain damage are progressively resistant to delayed treatment with midazolam, confirming the benzodiazepine refractory SE after OP intoxication. Thus, novel anticonvulsants superior to midazolam or adjunct therapies that enhance its efficacy are needed for effective treatment of refractory SE.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, Texas
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, Texas
| |
Collapse
|
89
|
Reed BD, McKee KS, Plegue MA, Park SK, Haefner HK, Harlow SD. Environmental Exposure History and Vulvodynia Risk: A Population-Based Study. J Womens Health (Larchmt) 2018; 28:69-76. [PMID: 30307787 DOI: 10.1089/jwh.2018.7188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Risk factors for vulvodynia continue to be elusive. We evaluated the association between past environmental exposures and the presence of vulvodynia. MATERIALS AND METHODS The history of 28 lifetime environmental exposures was queried in the longitudinal population-based Woman-to-Woman Health Study on the 24-month follow-up survey. Relationships between these and vulvodynia case status were assessed using multinomial logistic regression. RESULTS Overall, 1585 women completed the 24-month survey, the required covariate responses, and questions required for case status assessment. Screening positive as a vulvodynia case was associated with history of exposures to home-sprayed chemicals (insecticides, fungicides, herbicides-odds ratio [OR] 2.47, 95% confidence interval [CI] 1.71-3.58, p < 0.0001), home rodent poison and mothballs (OR 1.62, 95% CI 1.25-2.09, p < 0.001), working with solvents and paints (OR 2.49, 95% CI 1.68-3.70, p < 0.0001), working as a housekeeper/maid (OR 2.07, 95% CI 1.42-3.00, p < 0.0001), working as a manicurist/hairdresser (OR 2.00, 95% CI 1.14-3.53, p < 0.05), and working at a dry cleaning facility (OR 2.13, 95% CI 1.08-4.19, p < 0.05). When classified into nine individual environmental exposure categories and all included in the same model, significant associations remained for four categories (home-sprayed chemicals, home rodent poison or mothballs, paints and solvents, and working as a housekeeper). CONCLUSIONS This preliminary evaluation suggests a positive association between vulvodynia and the reported history of exposures to a number of household and work-related environmental toxins. Further investigation of timing and dose of environmental exposures, relationship to clinical course, and treatment outcomes is warranted.
Collapse
Affiliation(s)
- Barbara D Reed
- 1 Department of Family Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kimberly S McKee
- 2 Department of Obstetrics, Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Melissa A Plegue
- 1 Department of Family Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sung Kyun Park
- 3 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Hope K Haefner
- 2 Department of Obstetrics, Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Sioban D Harlow
- 3 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
90
|
Shaffo FC, Grodzki AC, Fryer AD, Lein PJ. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L485-L501. [PMID: 29952220 PMCID: PMC6230874 DOI: 10.1152/ajplung.00211.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous epidemiologic studies have identified an association between occupational exposures to organophosphorus pesticides (OPs) and asthma or asthmatic symptoms in adults. Emerging epidemiologic data suggest that environmentally relevant levels of OPs may also be linked to respiratory dysfunction in the general population and that in utero and/or early life exposures to environmental OPs may increase risk for childhood asthma. In support of a causal link between OPs and asthma, experimental evidence demonstrates that occupationally and environmentally relevant OP exposures induce bronchospasm and airway hyperreactivity in preclinical models. Mechanistic studies have identified blockade of autoinhibitory M2 muscarinic receptors on parasympathetic nerves that innervate airway smooth muscle as one mechanism by which OPs induce airway hyperreactivity, but significant questions remain regarding the mechanism(s) by which OPs cause neuronal M2 receptor dysfunction and, more generally, how OPs cause persistent asthma, especially after developmental exposures. The goals of this review are to 1) summarize current understanding of OPs in asthma; 2) discuss mechanisms of OP neurotoxicity and immunotoxicity that warrant consideration in the context of OP-induced airway hyperreactivity and asthma, specifically, inflammatory responses, oxidative stress, neural plasticity, and neurogenic inflammation; and 3) identify critical data gaps that need to be addressed in order to better protect adults and children against the harmful respiratory effects of low-level OP exposures.
Collapse
Affiliation(s)
- Frances C Shaffo
- Department of Molecular Biosciences, University of California , Davis, California
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California , Davis, California
| | - Allison D Fryer
- Pulmonary Critical Care Medicine, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California , Davis, California
| |
Collapse
|
91
|
Hertz-Picciotto I, Sass JB, Engel S, Bennett DH, Bradman A, Eskenazi B, Lanphear B, Whyatt R. Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms. PLoS Med 2018; 15:e1002671. [PMID: 30356230 PMCID: PMC6200179 DOI: 10.1371/journal.pmed.1002671] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a Policy Forum, Irva Hertz-Picciotto and colleagues review the scientific evidence linking organophosphate pesticides to cognitive, behavioral, and neurological deficits in children and recommend actions to reduce exposures.
Collapse
Affiliation(s)
- Irva Hertz-Picciotto
- Environmental Health Sciences Center and Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Jennifer B. Sass
- Natural Resources Defense Council, Washington, DC, United States of America
- George Washington University, Washington, DC, United States of America
| | - Stephanie Engel
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Deborah H. Bennett
- Environmental Health Sciences Center and Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Asa Bradman
- School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Brenda Eskenazi
- School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Bruce Lanphear
- BC Children’s Hospital, Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Robin Whyatt
- Mailman School of Public Health and Children’s Center for Environmental Health at Columbia University, New York, New York, United States of America
| |
Collapse
|
92
|
Kuruba R, Wu X, Reddy DS. Benzodiazepine-refractory status epilepticus, neuroinflammation, and interneuron neurodegeneration after acute organophosphate intoxication. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2845-2858. [PMID: 29802961 PMCID: PMC6066461 DOI: 10.1016/j.bbadis.2018.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
Nerve agents and some pesticides such as diisopropylfluorophosphate (DFP) cause neurotoxic manifestations that include seizures and status epilepticus (SE), which are potentially lethal and carry long-term neurological morbidity. Current antidotes for organophosphate (OP) intoxication include atropine, 2-PAM and diazepam (a benzodiazepine for treating seizures and SE). There is some evidence for partial or complete loss of diazepam anticonvulsant efficacy when given 30 min or later after exposure to an OP; this condition is known as refractory SE. Effective therapies for OP-induced SE are lacking and it is unclear why current therapies do not work. In this study, we investigated the time-dependent efficacy of diazepam in the nerve agent surrogate DFP model of OP intoxication on seizure suppression and neuroprotection in rats, following an early and late therapy. Diazepam (5 mg/kg, IM) controlled seizures when given 10 min after DFP exposure ("early"), but it was completely ineffective at 60 or 120 min ("late") after DFP. DFP-induced neuronal injury, neuroinflammation, and neurodegeneration of principal cells and GABAergic interneurons were significantly reduced by early but not late therapy. These findings demonstrate that diazepam failed to control seizures, SE and neuronal injury when given 60 min or later after DFP exposure, confirming the benzodiazepine-refractory SE and brain damage after OP intoxication. In addition, this study indicates that degeneration of inhibitory interneurons and inflammatory glial activation are potential mechanisms underlying these morbid outcomes of OP intoxication. Therefore, novel anticonvulsant and neuroprotectant antidotes, superior to benzodiazepines, are desperately needed for controlling nerve agent-induced SE and brain injury.
Collapse
Affiliation(s)
- Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
93
|
Naughton SX, Terry AV. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408:101-112. [PMID: 30144465 DOI: 10.1016/j.tox.2018.08.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
Abstract
The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
94
|
The Antidiabetic Drug Liraglutide Minimizes the Non-Cholinergic Neurotoxicity of the Pesticide Mipafox in SH-SY5Y Cells. Neurotox Res 2018; 35:150-159. [PMID: 30088187 DOI: 10.1007/s12640-018-9941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
Organophosphorus (OPs) compounds have been widely used in agriculture, industry, and household, and the neurotoxicity induced by them is still a cause of concern. The main toxic mechanism of OPs is the inhibition of acetylcholinesterase (AChE); however, the delayed neuropathy induced by OPs (OPIDN) is mediated by other mechanisms such as the irreversible inhibition of 70% of NTE activity (neuropathy target esterase) that leads to axonal degeneration. Liraglutide is a long-lasting GLP-1 analog clinically used as antidiabetic. Its neurotrophic and neuroprotective effects have been demonstrated in vitro and in experimental models of neurodegenerative diseases. As in OPIDN, axonal degeneration also plays a role in neurodegenerative diseases. Therefore, this study investigated the protective potential of liraglutide against the neurotoxicity of OPs by using mipafox as a neuropathic agent (at a concentration able to inhibit and age 70% of NTE activity) and a neuronal model with SH-SY5Y neuroblastoma cells, which express both esterases. Liraglutide protected cells against the neurotoxicity of mipafox by increasing neuritogenesis, the uptake of glucose, the levels of cytoskeleton proteins, and synaptic-plasticity modulators, besides decreasing the pro-inflammatory cytokine interleukin 1β and caspase-3 activity. This is the first study to suggest that liraglutide might induce beneficial effects against the delayed, non-cholinergic neurotoxicity of OPs.
Collapse
|
95
|
Naughton SX, Hernandez CM, Beck WD, Poddar I, Yanasak N, Lin PC, Terry AV. Repeated exposures to diisopropylfluorophosphate result in structural disruptions of myelinated axons and persistent impairments of axonal transport in the brains of rats. Toxicology 2018; 406-407:92-103. [DOI: 10.1016/j.tox.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 06/08/2018] [Indexed: 01/17/2023]
|
96
|
Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 2018; 117:82-113. [PMID: 29859868 DOI: 10.1016/j.nbd.2018.05.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 μM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.
Collapse
|
97
|
Ramírez-Santana M, Farías-Gómez C, Zúñiga-Venegas L, Sandoval R, Roeleveld N, Van der Velden K, Scheepers PTJ, Pancetti F. Biomonitoring of blood cholinesterases and acylpeptide hydrolase activities in rural inhabitants exposed to pesticides in the Coquimbo Region of Chile. PLoS One 2018; 13:e0196084. [PMID: 29718943 PMCID: PMC5931667 DOI: 10.1371/journal.pone.0196084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
In Chile, agriculture is a relevant economic activity and is concomitant with the use of pesticides to improve the yields. Acute intoxications of agricultural workers occur with some frequency and they must be reported to the surveillance system of the Ministry of Health. However the impacts of chronic and environmental pesticide exposure have been less studied. Among pesticides frequently used in Chile for insects control are organophosphates (OP) and carbamates (CB). They are inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In this study we determined the pattern of both biomarkers activity in three populations with different type of chronic exposure to OP/CB: environmentally exposed (EE), occupationally exposed (OE) and a reference group (RG) without exposure. Besides this, we also measured the activity of acylpeptide hydrolase (APEH), an enzyme involved in relevant functions in the central synapses that is also expressed in erythrocytes and previously reported to be highly inhibited by some OP. A baseline measurement was done in both exposure groups and then a second measurement was done during the spraying season. The RG was measured only once at any time of the year. Our results indicate that people under chronic OP/CB exposure showed an adaptive response through an increase of basal BChE activity. During the spray season only BChE activity was decreased in the EE and OE groups (p<0.05 and p<0.01, respectively) and the higher magnitude of BChE inhibition was observed in the EE group. The analysis of the frequencies of inhibition above 30% (biological tolerance limit declared by Chilean legislation) indicated that BChE was most frequently inhibited in the EE group (53% of the individuals displayed inhibition) and AChE in the OE group (55% of the individuals displayed AChE inhibition). APEH activity showed the highest frequency of inhibition in the EE group independent of its magnitude (64%). Our results demonstrate that the rural population living nearby agricultural settings displays high levels of environmental exposure. APEH activity seems to be a sensitive biomarker for acute low-level exposure and its usefulness as a routine biomarker must to be explored in future studies. Systematic biomonitoring and health outcomes studies are necessary as well as obtaining the baseline for BChE and AChE activity levels with the aim to improve environmental and occupational health policies in Chile.
Collapse
Affiliation(s)
- Muriel Ramírez-Santana
- Department of Public Health, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
- Department of Primary and Community Care, Radboud university medical center, Nijmegen, The Netherlands
| | - Cristián Farías-Gómez
- Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Liliana Zúñiga-Venegas
- Laboratory of Biomedical Research, Faculty of Medicine, Universidad Católica del Maule, Talca, Chile
| | - Rodrigo Sandoval
- Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Nel Roeleveld
- Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Koos Van der Velden
- Department of Primary and Community Care, Radboud university medical center, Nijmegen, The Netherlands
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Floria Pancetti
- Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
- * E-mail:
| |
Collapse
|
98
|
Sagiv SK, Harris MH, Gunier RB, Kogut KR, Harley KG, Deardorff J, Bradman A, Holland N, Eskenazi B. Prenatal Organophosphate Pesticide Exposure and Traits Related to Autism Spectrum Disorders in a Population Living in Proximity to Agriculture. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047012. [PMID: 29701446 PMCID: PMC6071837 DOI: 10.1289/ehp2580] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Prenatal exposure to organophosphate (OP) pesticides has been linked with poorer neurodevelopment and behaviors related to autism spectrum disorders (ASD) in previous studies, including in the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a birth cohort living in the agricultural Salinas Valley in California. OBJECTIVES To investigate the association of prenatal exposure to OP pesticides with traits related to ASD, in childhood and adolescents in CHAMACOS. METHODS We assessed OP exposure during pregnancy with measurements of dialkyl phosphates (DAP) metabolites in urine, and residential proximity to OP use during pregnancy using California's Pesticide Use Reporting (PUR) data and estimated associations with ASD-related traits using linear regression models. We measured traits reported by parents and teachers as well as the child's performance on tests that evaluate the ability to use facial expressions to recognize the mental state of others at 7, 101/2, and 14 years of age. RESULTS Prenatal DAPs were associated with poorer parent and teacher reported social behavior [e.g., a 10-fold DAP increase was associated with a 2.7-point increase (95% confidence interval (CI): 0.9, 4.5) in parent-reported Social Responsiveness Scale, Version 2, T-scores at age 14]. We did not find clear evidence of associations between residential proximity to OP use during pregnancy and ASD-related traits. CONCLUSIONS These findings contribute mixed evidence linking OP pesticide exposures with traits related to developmental disorders like ASD. Subtle pesticide-related effects on ASD-related traits among a population with ubiquitous exposure could result in a rise in cases of clinically diagnosed disorders like ASD. https://doi.org/10.1289/EHP2580.
Collapse
Affiliation(s)
- Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Maria H Harris
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Robert B Gunier
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Katherine R Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
99
|
Cotton J, Edwards J, Rahman MA, Brumby S. Cholinesterase research outreach project (CROP): point of care cholinesterase measurement in an Australian agricultural community. Environ Health 2018; 17:31. [PMID: 29606131 PMCID: PMC5880094 DOI: 10.1186/s12940-018-0374-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Australian farmers are routinely exposed to a wide variety of agrichemicals, including herbicides and insecticides. Organophosphate (OP) insecticides are widely used for agricultural production, horticulture and animal husbandry practices. Symptoms of OP toxicity are the results of inhibition of the enzyme acetylcholinesterase (AChE) which is found in many types of conducting tissue in human bodies such as nerve and muscle, central and peripheral tissues, motor and sensory fibres. Cholinesterase can be measured in red blood cells/erythrocytes (AChE) and plasma (PChE). This study aims to explore integration of AChE monitoring into routine health checks for those at risk and also to examine any association between AChE activity and agrichemical use in a Victorian farming community in Australia. METHODS This was a prospective cohort study, where farmers and non-famers were compared on the levels of AChE at four time points of baseline, 3-4 weeks, 6-weeks and at 9-weeks. Study participants (N = 55) were residents from South West Victoria, aged between 18 and 75 years, spoke English, and had not had a previous known acute chemical accident. A total of 41 farming (had been farming for more than 5 years) and a convenience sample of 14 non-farming individuals met the inclusion criteria. Testing of AChE was repeated for all participants with a maximum of three times over 10 weeks. RESULTS The integration of AChE monitoring was very well accepted by all participants. There was no significant difference in average AChE activity between farming and non-farming participants (one-way ANOVA p > 0.05) in this study. There was no significant difference between personal use of agricultural chemicals on farm and the levels of AChE at baseline (measurement 1) or any of the follow up periods (p > 0.05). However, the mean activity of AChE was significantly lower within follow up periods [F (2.633, 139.539) = 14.967, p < 0.001]. There was a significant reduction of AChE between the follow up at 3-weeks and 6-weeks period (p = 0.015). CONCLUSIONS The routine monitoring of AChE may allow for early recognition of chronic low-level exposure to OPs when they are used by farmers, provided a reasonable estimate of baseline AChE is available. This work provides an evidence for recommending the integration of AChE monitoring into point of care (POC) procedures in rural health clinics and quantifying pesticide exposure and personal protection both on the farm and in the home. Farmer engagement is crucial to the successful integration of AChE monitoring into rural health clinics in Australia. TRIAL REGISTRATION ACTRN12613001256763 .
Collapse
Affiliation(s)
- Jacqueline Cotton
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216 Australia
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300 Australia
| | - John Edwards
- School of Environment, Flinders University, Bedford Park, SA 5042 Australia
| | - Muhammad Aziz Rahman
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216 Australia
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300 Australia
- Austin Clinical School of Nursing, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Susan Brumby
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216 Australia
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300 Australia
| |
Collapse
|
100
|
Hertz-Picciotto I, Schmidt RJ, Krakowiak P. Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Res 2018; 11:554-586. [PMID: 29573218 DOI: 10.1002/aur.1938] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/06/2022]
Abstract
The complexity of neurodevelopment, the rapidity of early neurogenesis, and over 100 years of research identifying environmental influences on neurodevelopment serve as backdrop to understanding factors that influence risk and severity of autism spectrum disorder (ASD). This Keynote Lecture, delivered at the May 2016 annual meeting of the International Society for Autism Research, describes concepts of causation, outlines the trajectory of research on nongenetic factors beginning in the 1960s, and briefly reviews the current state of this science. Causal concepts are introduced, including root causes; pitfalls in interpreting time trends as clues to etiologic factors; susceptible time windows for exposure; and implications of a multi-factorial model of ASD. An historical background presents early research into the origins of ASD. The epidemiologic literature from the last fifteen years is briefly but critically reviewed for potential roles of, for example, air pollution, pesticides, plastics, prenatal vitamins, lifestyle and family factors, and maternal obstetric and metabolic conditions during her pregnancy. Three examples from the case-control CHildhood Autism Risks from Genes and the Environment Study are probed to illustrate methodological approaches to central challenges in observational studies: capturing environmental exposure; causal inference when a randomized controlled clinical trial is either unethical or infeasible; and the integration of genetic, epigenetic, and environmental influences on development. We conclude with reflections on future directions, including exposomics, new technologies, the microbiome, gene-by-environment interaction in the era of -omics, and epigenetics as the interface of those two. As the environment is malleable, this research advances the goal of a productive and fulfilling life for all children, teen-agers and adults. Autism Res 2018, 11: 554-586. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY This Keynote Lecture, delivered at the 2016 meeting of the International Society for Autism Research, discusses evidence from human epidemiologic studies of prenatal factors contributing to autism, such as pesticides, maternal nutrition and her health. There is no single cause for autism. Examples highlight the features of a high-quality epidemiology study, and what comprises a compelling case for causation. Emergent research directions hold promise for identifying potential interventions to reduce disabilities, enhance giftedness, and improve lives of those with ASD.
Collapse
Affiliation(s)
- Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Rebecca J Schmidt
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Paula Krakowiak
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| |
Collapse
|