51
|
Guo X, Zhou Y, Fu X, Lin Q, Liu L, Liang H, Niu Y, Li N. Transcriptomic profiles reveal that inactivated iridovirus and rhabdovirus bivalent vaccine elicits robust adaptive immune responses against lethal challenge in marbled sleepy goby. FISH & SHELLFISH IMMUNOLOGY 2020; 98:429-437. [PMID: 31988017 DOI: 10.1016/j.fsi.2020.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Oxyeleotris marmoratus iridovirus (OMIV) and Oxyeleotris marmoratus rhabdovirus (OMRV) are the two major causative agents of disease leading to massive mortality and severe economic losses in marbled sleepy goby (Oxyeleotris marmoratus) industry. It's urgent to develop an effective vaccine against these fatal diseases. In this study, we developed bivalent inactivated vaccine against OMIV and OMRV and evaluated its protective effect in Oxyeleotris marmoratus. The intraperitoneally vaccinated fish were protected against challenge with OMIV and OMRV with both relative percent survival (RPS) of 100%. In addition, deep RNA sequencing was used to analyze the transcriptomic profiles of the spleen tissues at progressive time points post-vaccination with bivalent inactivated vaccine and challenge with OMIV and OMRV infection. Results showed that adaptive immune response was induced in Oxyeleotris marmoratus injected with bivalent inactivated vaccine. Furthermore, robust adaptive immune responses were also detected in vaccinated fish at 7 d and 2 d post-challenge with OMIV and OMRV. Taken together, these results indicated that bivalent inactivated vaccine activated adaptive immune responses in Oxyeleotris marmoratus, and provided protection against OMIV and OMRV lethal challenge.
Collapse
Affiliation(s)
- Xixi Guo
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang Zhou
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Yinjie Niu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| |
Collapse
|
52
|
Stern PL. Key steps in vaccine development. Ann Allergy Asthma Immunol 2020; 125:17-27. [PMID: 32044451 DOI: 10.1016/j.anai.2020.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The goal of a vaccine is to prime the immune response so the immune memory can facilitate a rapid response to adequately control the pathogen on natural infection and prevent disease manifestation. This article reviews the main elements that provide for the development of safe and effective vaccines. DATA SOURCES Literature covering target pathogen epidemiology, the key aspects of the functioning immune response underwriting target antigen selection, optimal vaccine formulation, preclinical and clinical trial studies necessary to deliver safe and efficacious immunization. STUDY SELECTIONS Whole live, inactivated, attenuated, or partial fractionated organism-based vaccines are discussed in respect of the balance of reactogenicity and immunogenicity. The use of adjuvants to compensate for reduced immunogenicity is described. The requirements from preclinical studies, including establishing a proof of principle in animal models, the design of clinical trials with healthy volunteers that lead to licensure and beyond are reviewed. RESULTS The 3 vaccine development phases, preclinical, clinical, and post-licensure, integrate the requirements to ensure safety, immunogenicity, and efficacy in the final licensed product. Continuing monitoring of efficacy and safety in the immunized populations is essential to sustain confidence in vaccination programs. CONCLUSION In an era of increasing vaccine hesitancy, the need for a better and widespread understanding of how immunization acts to counteract the continuing and changing risks from the pathogenic world is required. This demands a societal responsibility for obligate education on the benefits of vaccination, which as a medical intervention has saved more lives than any other procedure.
Collapse
Affiliation(s)
- Peter L Stern
- Manchester Cancer Research Centre, University of Manchester, UK.
| |
Collapse
|
53
|
Wang W, Wang L, Liu Z, Song X, Yi Q, Yang C, Song L. The involvement of TLR signaling and anti-bacterial effectors in enhanced immune protection of oysters after Vibrio splendidus pre-exposure. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103498. [PMID: 31525382 DOI: 10.1016/j.dci.2019.103498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The phenomena of enhanced protection of innate immunity responding to a pre-exposed pathogen have been reported in invertebrates. The underpinning molecular basis and mechanism for the enhanced immune protection are still missing. In order to explore the possible molecular basis for enhanced immune protection in molluscs, the transcriptomic analysis of oysters Crassostrea gigas hemocytes after twice stimulation of Vibrio splendidus were conducted, and a total of 403 M clean reads and 34254 differentially expressed genes (DEGs) were collected. There were 2964 common DEGs up-regulated in hemocytes after both the first and second immune stimulation, which were mostly enriched in metabolic processes and immune related pathways, such as endocytosis, MAPK signaling pathway and TLR signal pathway. Moreover, 187 and 55 DEGs were higher expressed at resting (0 h after stimulation) and activating state (12 h after stimulation) of the second immune response than that of the first response, respectively, mainly including immune recognition receptor scavenger receptor 2, signal molecule MAPK2, immune regulator IL17-d, apoptosis inhibitor IAP and effector cathepsin. More importantly, 13 DEGs were long-lastingly higher expressed at both the resting and activating state within the second immune response than that of the first, including TLR signal molecule MyD88, anti-virulent tissue inhibitor of metalloproteinase, anti-bacterial proline-rich transmembrane protein, which might play indispensable roles in enhanced immune protection against V. splendidus re-infection. The expression patterns of TLR signals (CgTLR6 and CgMyD88) and effector molecules (CgTIMP and CgPRTP) were further validated by RT-PCR, which were consistent to transcriptomic results. All the results provided an overall molecular basis of enhanced immune protection for hemocytes defensing against the second stimulation of V. splendidus in oyster, which would be valuable for understanding the protection mechanisms of pre-exposure in invertebrates.
Collapse
Affiliation(s)
- Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
54
|
Hervé C, Laupèze B, Del Giudice G, Didierlaurent AM, Tavares Da Silva F. The how's and what's of vaccine reactogenicity. NPJ Vaccines 2019; 4:39. [PMID: 31583123 PMCID: PMC6760227 DOI: 10.1038/s41541-019-0132-6] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Reactogenicity represents the physical manifestation of the inflammatory response to vaccination, and can include injection-site pain, redness, swelling or induration at the injection site, as well as systemic symptoms, such as fever, myalgia, or headache. The experience of symptoms following vaccination can lead to needle fear, long-term negative attitudes and non-compliant behaviours, which undermine the public health impact of vaccination. This review presents current knowledge on the potential causes of reactogenicity, and how host characteristics, vaccine administration and composition factors can influence the development and perception of reactogenicity. The intent is to provide an overview of reactogenicity after vaccination to help the vaccine community, including healthcare professionals, in maintaining confidence in vaccines by promoting vaccination, setting expectations for vaccinees about what might occur after vaccination and reducing anxiety by managing the vaccination setting.
Collapse
|
55
|
Schmidt ST, Olsen CL, Franzyk H, Wørzner K, Korsholm KS, Rades T, Andersen P, Foged C, Christensen D. Comparison of two different PEGylation strategies for the liposomal adjuvant CAF09: Towards induction of CTL responses upon subcutaneous vaccine administration. Eur J Pharm Biopharm 2019; 140:29-39. [PMID: 31055066 DOI: 10.1016/j.ejpb.2019.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/28/2023]
Abstract
Using subunit vaccines, e.g., based on peptide or protein antigens, to teach the immune system to kill abnormal host cells via induction of cytotoxic T lymphocytes (CTL) is a promising strategy against intracellular infections and cancer. However, customized adjuvants are required to potentiate antigen-specific cellular immunity. One strong CTL-inducing adjuvant is the liposomal cationic adjuvant formulation (CAF)09, which is composed of dimethyldioctadecylammonium (DDA) bromide, monomycoloyl glycerol (MMG) analogue 1 and polyinosinic:polycytidylic acid [poly(I:C)]. However, this strong CTL induction requires intraperitoneal administration because the vaccine forms a depot at the site of injection (SOI) after subcutaneous (s.c.) or intramuscular (i.m.) injection, and depot formation impedes the crucial vaccine targeting to the cross-presenting dendritic cells (DCs) residing in the lymph nodes (LNs). The purpose of the present study was to investigate the effect of polyethylene glycol (PEG) grafting of CAF09 on the ability of the vaccine to induce antigen-specific CTL responses after s.c. administration. We hypothesized that steric stabilization and charge shielding of CAF09 by PEGylation may reduce depot formation at the SOI and enhance passive drainage to the LNs, eventually improving CTL induction. Hence, the vaccine (antigen/CAF09) was post-grafted with a novel type of anionic PEGylated peptides based on GDGDY repeats, which were end-conjugated with one or two PEG1000 moieties, resulting in mono- and bis-PEG-peptides of different lengths (10, 15 and 20 amino acid residues). For comparison, CAF09 was also grafted by inclusion of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(PEG)-2000 (DSPE-PEG2000) in the bilayer structure during preparation. Grafting of CAF09 with either type of PEG resulted in charge shielding, evident from a reduced surface charge. Upon s.c. immunization of mice with the model antigen ovalbumin (OVA) adjuvanted with PEGylated CAF09, stronger CTL responses were induced as compared to immunization of mice with unadjuvanted OVA. Biodistribution studies confirmed that grafting of CAF09 with DSPE-PEG2000 improved the passive drainage of the vaccine to LNs, because a higher dose fraction was recovered in DCs present in the draining LNs, as compared to the dose fraction detected for non-PEGylated CAF09. In conclusion, PEGylation of CAF09 may be a useful strategy for the design of an adjuvant, which induces CTL responses after s.c. and i.m. administration. In the present studies, CAF09 grafted with 10 mol% DSPE-PEG2000 is the most promising of the tested adjuvants, but additional studies are required to further elucidate the potential of the strategy.
Collapse
Affiliation(s)
- Signe Tandrup Schmidt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Camilla Line Olsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Katharina Wørzner
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
56
|
Lei L, Tran K, Wang Y, Steinhardt JJ, Xiao Y, Chiang CI, Wyatt RT, Li Y. Antigen-Specific Single B Cell Sorting and Monoclonal Antibody Cloning in Guinea Pigs. Front Microbiol 2019; 10:672. [PMID: 31065249 PMCID: PMC6489837 DOI: 10.3389/fmicb.2019.00672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Here, we have established an antigen-specific single B cell sorting and monoclonal antibody (mAb) cloning platform for analyzing immunization- or viral infection-elicited antibody response at the clonal level in guinea pigs. We stained the peripheral blood mononuclear cells (PBMCs) from a guinea pig immunized with HIV-1 envelope glycoprotein trimer mimic (BG505 SOSIP), using anti-guinea pig IgG and IgM fluorochrome conjugates, along with fluorochrome-conjugated BG505 SOSIP trimer as antigen (Ag) probe to sort for Ag-specific IgGhi IgMlo B cells at single cell density. We then designed a set of guinea pig immunoglobulin (Ig) gene-specific primers to amplify cDNAs encoding B cell receptor variable regions [V(D)J segments] from the sorted Ag-specific B cells. B cell V(D)J sequences were verified by sequencing and annotated by IgBLAST, followed by cloning into Ig heavy- and light-chain expression vectors containing human IgG1 constant regions and co-transfection into 293F cells to reconstitute full-length antibodies in a guinea pig-human chimeric IgG1 format. Of 88 antigen-specific B cells isolated, we recovered 24 (27%) cells with native-paired heavy and light chains. Furthermore, 85% of the expressed recombinant mAbs bind positively to the antigen probe by enzyme-linked immunosorbent and/or BioLayer Interferometry assays, while five mAbs from four clonal lineages neutralize the HIV-1 tier 1 virus ZM109. In summary, by coupling Ag-specific single B cell sorting with gene-specific single cell RT-PCR, our method exhibits high efficiency and accuracy, which will facilitate future efforts in isolating mAbs and analyzing B cell responses to infections or immunizations in the guinea pig model.
Collapse
Affiliation(s)
- Lin Lei
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Karen Tran
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Yimeng Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - James J Steinhardt
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Richard T Wyatt
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
57
|
Eduardo CRC, Alejandra TIG, Guadalupe DRKJ, Herminia VRG, Lenin P, Enrique BV, Evandro BM, Oscar B, Iván GPM. Modulation of the extraneuronal cholinergic system on main innate response leukocytes. J Neuroimmunol 2019; 327:22-35. [PMID: 30683425 DOI: 10.1016/j.jneuroim.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
The expression of elements of the cholinergic system has been demonstrated in non-neuronal cells, such as immune cells, where acetylcholine modulates innate and adaptive responses. However, the study of the non-neuronal cholinergic system has focused on lymphocyte cholinergic mechanisms, with less attention to its role of innate cells. Considering this background, the aims of this review are 1) to review information regarding the cholinergic components of innate immune system cells; 2) to discuss the effect of cholinergic stimuli on cell functions; 3) and to describe the importance of cholinergic stimuli on host immunocompetence, in order to set the base for the design of intervention strategies in the biomedical field.
Collapse
Affiliation(s)
- Covantes-Rosales Carlos Eduardo
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Toledo-Ibarra Gladys Alejandra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Díaz-Resendiz Karina Janice Guadalupe
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Ventura-Ramón Guadalupe Herminia
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Pavón Lenin
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Becerril-Villanueva Enrique
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Bauer Moisés Evandro
- Pontifícia Universidade Católica do Rio Grande do Sul, Instituto de Pesquisas Biomédicas, Laboratório de Imunologia do Envelhecimento, 90610-000 Porto Alegre, RS, Brazil
| | - Bottaso Oscar
- Universidad Nacional de Rosario-Consejo Nacional de Investigaciones Científicas y Técnicas (UNR-CONICET), Instituto de Inmunología Clínica y Experimental de Rosario, Rosario, Argentina
| | - Girón-Pérez Manuel Iván
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
58
|
Regulating Immunity via ADP-Ribosylation: Therapeutic Implications and Beyond. Trends Immunol 2019; 40:159-173. [PMID: 30658897 DOI: 10.1016/j.it.2018.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Innate immune cells express pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs). Upon binding, PAMPs/DAMPs can initiate an immune response by activating lymphocytes, amplifying and modulating signaling cascades, and inducing appropriate effector responses. Protein ADP-ribosylation can regulate cell death, the release of DAMPs, as well as inflammatory cytokine expression. Inhibitors of ADP-ribosylation (i.e. PARP inhibitors) have been developed as therapeutic agents (in cancer), and are also able to dampen inflammation. We summarize here our most recent understanding of how ADP-ribosylation can regulate the different phases of an immune response. Moreover, we examine the potential clinical translation of pharmacological ADP-ribosylation inhibitors as putative treatment strategies for various inflammation-associated diseases (e.g. sepsis, chronic inflammatory diseases, and reperfusion injury).
Collapse
|
59
|
Arsenović-Ranin N. New vaccines on the horizon. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
60
|
Coolen AL, Lacroix C, Mercier-Gouy P, Delaune E, Monge C, Exposito JY, Verrier B. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials 2018; 195:23-37. [PMID: 30610991 DOI: 10.1016/j.biomaterials.2018.12.019] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Messenger RNA-based vaccines have the potential to trigger robust cytotoxic immune responses, which are essential for fighting cancer and infectious diseases like HIV. Dendritic Cells (DCs) are choice targets for mRNA-based vaccine strategies, as they link innate and adaptive immune responses and are major regulators of cytotoxic and humoral adaptive responses. However, efficient delivery of antigen-coding mRNAs into DC cytosol has been highly challenging. In this study, we developed an alternative to lipid-based mRNA delivery systems, using poly(lactic acid) nanoparticles (PLA-NPs) and cationic cell-penetrating peptides as mRNA condensing agent. The formulations are assembled in two steps: (1) formation of a polyplex between mRNAs and amphipathic cationic peptides (RALA, LAH4 or LAH4-L1), and (2) adsorption of polyplexes onto PLA-NPs. LAH4-L1/mRNA polyplexes and PLA-NP/LAH4-L1/mRNA nanocomplexes are taken up by DCs via phagocytosis and clathrin-dependent endocytosis, and induce strong protein expression in DCs in vitro. They modulate DC innate immune response by activating both endosome and cytosolic Pattern Recognition Receptors (PRRs), and induce markers of adaptive responses in primary human DCs in vitro, with prevalent Th1 signature. Thus, LAH4-L1/mRNA and PLA-NP/LAH4-L1/mRNA represent a promising platform for ex vivo treatment and mRNA vaccine development.
Collapse
Affiliation(s)
- Anne-Line Coolen
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Céline Lacroix
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Perrine Mercier-Gouy
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Emilie Delaune
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Claire Monge
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Jean-Yves Exposito
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France.
| |
Collapse
|
61
|
Canouï E, Launay O. [History and principles of vaccination]. Rev Mal Respir 2018; 36:74-81. [PMID: 30579659 DOI: 10.1016/j.rmr.2018.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Vaccination constitutes a major advance in the prevention of infectious diseases. The principle of vaccination is to induce protection against a pathogen by mimicking its natural interaction with the human immune system. The vaccine reduces the risk of complications and mortality following subsequent exposure to an infectious agent. STATE OF THE ART In this review we recall the history of vaccination as well as the basic immunological principles underlying the composition of vaccines and the response to vaccination. In this way, vaccines induce the immune system to produce an immunological memory based on T and B lymphocytes in order to produce a rapid and effective response to exposure to the targeted pathogen. OUTLOOK The improvement of existing vaccines and the discovery of new vaccines requires an understanding of the immunological principles of vaccination. Great challenges remain, particularly in terms of target pathogens for future vaccine candidates and also the acceptance of vaccination. CONCLUSION Understanding the principles of vaccination allows development of vaccines and the control of infectious diseases.
Collapse
Affiliation(s)
- E Canouï
- CIC Cochin Pasteur, université Paris Descartes, Sorbonne Paris Cité, hôpital Cochin, AP-HP, 75014 Paris, France.
| | - O Launay
- CIC Cochin Pasteur, université Paris Descartes, Sorbonne Paris Cité, hôpital Cochin, AP-HP, 75014 Paris, France; Inserm, CIC 1417, F-CRIN, I-REIVAC, 75014 Paris, France
| |
Collapse
|
62
|
Saha A, Mukherjee S, Bhattacharjee A, Sarkar D, Chakraborty A, Banerjee A, Chandra AK. Excess iodine-induced lymphocytic impairment in adult rats. Toxicol Mech Methods 2018; 29:110-118. [DOI: 10.1080/15376516.2018.1528647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Adipa Saha
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India
| | | | | | - Deotima Sarkar
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India
| | - Arijit Chakraborty
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India
| | - Arnab Banerjee
- Department of Physiology, Serampore College, Hooghly, India
| | - Amar K. Chandra
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
63
|
Madera RF, Wang L, Gong W, Burakova Y, Buist S, Nietfeld J, Henningson J, Cino-Ozuna AG, Tu C, Shi J. Toward the development of a one-dose classical swine fever subunit vaccine: antigen titration, immunity onset, and duration of immunity. J Vet Sci 2018; 19:393-405. [PMID: 29510474 PMCID: PMC5974521 DOI: 10.4142/jvs.2018.19.3.393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022] Open
Abstract
Highly contagious classical swine fever (CSF) remains a major trade and health problem in the pig industry, resulting in large economic losses worldwide. In CSF-endemic countries, attenuated CSF virus (CSFV) vaccines have been routinely used to control the disease. However, eradication of CSFV in a geographical area would require permanent reduction to zero presence of the virus. It is therefore of paramount importance to develop a safe, potent, and non-infectious CSF vaccine. We have previously reported on a cost-effective CSF E2 subunit vaccine, KNB-E2, which can protect against CSF symptoms in a single dose containing 75 µg of recombinant CSFV glycoprotein E2. In this study, we report on a series of animal studies undertaken to elucidate further the efficacy of KNB-E2. We found that pigs vaccinated with a single KNB-E2 dose containing 25 µg of recombinant CSFV glycoprotein E2 were protected from clinical symptoms of CSF. In addition, KNB-E2-mediated reduction of CSF symptoms was observed at two weeks post-vaccination and the vaccinated pigs continued to exhibit reduced CSF clinical signs when virus challenged at two months and four months post-vaccination. These results suggest that KNB-E2 effectively reduces CSF clinical signs, indicating the potential of this vaccine for safely minimizing CSF-related losses.
Collapse
Affiliation(s)
- Rachel F Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130062, China
| | - Yulia Burakova
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sterling Buist
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jerome Nietfeld
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Ada G Cino-Ozuna
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130062, China
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
64
|
Naghizadeh M, Wattrang E, Kjærup RB, Bakke M, Shih S, Dalgaard TS. In vitro phagocytosis of opsonized latex beads by HD11 cells as a method to assess the general opsonization potential of chicken serum. Avian Pathol 2018; 47:479-488. [PMID: 29920114 DOI: 10.1080/03079457.2018.1490006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Opsonins, an important arm of the innate immune system, are various soluble proteins, which play a critical role in destruction of invading pathogens directly or via engulfment of pathogens through the intermediate of phagocytosis. The diversity of opsonin profiles is under genetic influence and may be associated with variation in disease resistance. The aim of this study was to set up an assay to determine serum opsonophagocytic potential (OPp) for chicken sera by flow cytometry and to evaluate the assay using samples from different chicken lines. Two chicken lines selected for high and low concentrations of mannose-binding lectin, a known opsonin, in serum were used to establish the method. Furthermore, the presumed "robust" Hellevad chickens and two other commercial chicken lines (Hisex and Bovans) were tested to evaluate OPp as a parameter reflecting general immune competence. The results showed that Hellevad and Bovans chickens had higher OPp than Hisex chickens. There were no correlations between concentrations of total IgY or mannose-binding lectin and OPp. However, a strong positive correlation was observed between vaccine-induced infectious bronchitis virus titres and OPp. Moreover, inverse relationships were observed between concentrations of total serum IgM as well as natural antibody levels, and OPp. In conclusion, in vitro opsonophagocytosis assessment and determination of OPp may be of relevance when addressing general innate immunocompetence. RESEARCH HIGHLIGHTS A flow cytometry method was developed to assess poultry serum opsonophagocytosis potential. This method is based on serum-opsonin-coated polystyrene beads and HD11 cell phagocytosis. Serum samples from different commercial chicken lines were compared. Opsonophagocytic potential may be included in assay panels for general immune competence of poultry.
Collapse
Affiliation(s)
- Mohammed Naghizadeh
- a Department of Poultry Science , Tarbiat Modares University , Tehran , Iran.,b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Eva Wattrang
- c Department of Microbiology , National Veterinary Institute , Uppsala , Sweden
| | - Rikke B Kjærup
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Maja Bakke
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Sandra Shih
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Tina S Dalgaard
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| |
Collapse
|
65
|
Yang Y, Chen Q, Wu JP, Kirk TB, Xu J, Liu Z, Xue W. Reduction-Responsive Codelivery System Based on a Metal-Organic Framework for Eliciting Potent Cellular Immune Response. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12463-12473. [PMID: 29595246 DOI: 10.1021/acsami.8b01680] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Utilizing nanoparticles to deliver subunit vaccines can be viewed as a promising strategy for enhancing the immune response, especially with regard to cellular immunity to fight against infectious viruses and malignant cancer. Nevertheless, its applications are still far from practicality because of some limitations such as high cost, non-biocompatibility, non-biodegradability, and the inefficient stimulation of cytotoxic T lymphocyte (CTL) response. In this study, we use metal-organic framework (MOF) MIL-101-Fe-NH2 nanoparticles as carriers to fabricate an innovative reduction-responsive antigen delivery system for cotransporting the antigen model ovalbumin (OVA) and an immune adjuvant, unmethylated cytosine-phosphate-guanine (CpG) oligonucleotide. In vitro cellular tests show that the MOF nanoparticles can not only greatly improve the uptake of OVA by the antigen-presenting cells but also smartly deliver both OVA and CpG into the same cell. By feat of the reductively controllable release of OVA and the promoting function of CpG, the delivery system can elicit strong cellular immunity and CTL response in mice. Moreover, the increased frequencies of effector memory T cells inspired by the delivery system indicate that it can induce a potent immune memory response. These results demonstrate that MOF nanoparticles are excellent vehicles for codelivering antigen and immune adjuvant and may find wider applications in biomedical fields.
Collapse
Affiliation(s)
| | | | - Jian-Ping Wu
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering , Curtin University , Perth 6845 , Australia
| | - Thomas Brett Kirk
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering , Curtin University , Perth 6845 , Australia
| | - Jiake Xu
- The School of Pathology and Laboratory Medicine , University of Western Australia , Perth 6009 , Australia
| | | | - Wei Xue
- The First Affiliated Hospital of Jinan University , Guangzhou 510632 , Guangdong , China
| |
Collapse
|
66
|
Stacey HD, Barjesteh N, Mapletoft JP, Miller MS. "Gnothi Seauton": Leveraging the Host Response to Improve Influenza Virus Vaccine Efficacy. Vaccines (Basel) 2018; 6:vaccines6020023. [PMID: 29649134 PMCID: PMC6027147 DOI: 10.3390/vaccines6020023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Vaccination against the seasonal influenza virus is the best way to prevent infection. Nevertheless, vaccine efficacy remains far from optimal especially in high-risk populations such as the elderly. Recent technological advancements have facilitated rapid and precise identification of the B and T cell epitopes that are targets for protective responses. While these discoveries have undoubtedly brought the field closer to "universal" influenza virus vaccines, choosing the correct antigen is only one piece of the equation. Achieving efficacy and durability requires a detailed understanding of the diverse host factors and pathways that are required for attaining optimal responses. Sequencing technologies, systems biology, and immunological studies have recently advanced our understanding of the diverse aspects of the host response required for vaccine efficacy. In this paper, we review the critical role of the host response in determining efficacious responses and discuss the gaps in knowledge that will need to be addressed if the field is to be successful in developing new and more effective influenza virus vaccines.
Collapse
Affiliation(s)
- Hannah D Stacey
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Neda Barjesteh
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Jonathan P Mapletoft
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Matthew S Miller
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
67
|
Nakayama T, Kashiwagi Y, Kawashima H. Long-term regulation of local cytokine production following immunization in mice. Microbiol Immunol 2018; 62:124-131. [DOI: 10.1111/1348-0421.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Tetsuo Nakayama
- Laboratory of Viral Infection; Kitasato Institute for Life Sciences, Shirokane 5-9-1; Minato-ku Tokyo 108-8641 Japan
| | - Yasuyo Kashiwagi
- Department of Pediatrics; Tokyo Medical University; Nishishinjuku 6-7-1, Shinjuku-ku Tokyo 160-0023 Japan
| | - Hisashi Kawashima
- Department of Pediatrics; Tokyo Medical University; Nishishinjuku 6-7-1, Shinjuku-ku Tokyo 160-0023 Japan
| |
Collapse
|
68
|
Dalgaard TS, Briens M, Engberg RM, Lauridsen C. The influence of selenium and selenoproteins on immune responses of poultry and pigs. Anim Feed Sci Technol 2018; 238:73-83. [PMID: 32336871 PMCID: PMC7173062 DOI: 10.1016/j.anifeedsci.2018.01.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
Selenium is an essential nutrient for poultry and pigs, and is important for a number of physiological processes including regulation and function of the immune system. Through its incorporation into selenoproteins, Se is involved in the regulation of oxidative stress, redox mechanisms, and other crucial cellular processes involved in innate and adaptive immune response. This review provides current knowledge on the mechanisms by which selenium can modulate the resilience to infectious diseases, and how this micronutrient can influence the capacity of the bird or the pig to maintain its productivity during an infectious challenge. In relation to the most frequent and economically important infectious diseases in poultry and pig production, the present paper considers the influence of different selenium sources (organic vs. inorganic Se) as well as dietary concentrations on the immune responses of poultry and pigs with major emphasis on the potential beneficial impact on animal resilience to common infectious diseases.
Collapse
Affiliation(s)
- Tina S Dalgaard
- Dept. of Animal Science, Aarhus University, Blichers allé 20, 8830 Tjele, Denmark
| | - Mickaël Briens
- Adisseo France, CERN, 6 Route Noire, 03600 Commentry, France
| | - Ricarda M Engberg
- Dept. of Animal Science, Aarhus University, Blichers allé 20, 8830 Tjele, Denmark
| | - Charlotte Lauridsen
- Dept. of Animal Science, Aarhus University, Blichers allé 20, 8830 Tjele, Denmark
| |
Collapse
|
69
|
Mohamed SH, Arafa AS, Mady WH, Fahmy HA, Omer LM, Morsi RE. Preparation and immunological evaluation of inactivated avian influenza virus vaccine encapsulated in chitosan nanoparticles. Biologicals 2018; 51:46-53. [DOI: 10.1016/j.biologicals.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022] Open
|
70
|
Schmidt ST, Neustrup MA, Harloff-Helleberg S, Korsholm KS, Rades T, Andersen P, Christensen D, Foged C. Systematic Investigation of the Role of Surfactant Composition and Choice of oil: Design of a Nanoemulsion-Based Adjuvant Inducing Concomitant Humoral and CD4 + T-Cell Responses. Pharm Res 2017; 34:1716-1727. [PMID: 28516400 DOI: 10.1007/s11095-017-2180-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Induction of cell-mediated immune (CMI) responses is crucial for vaccine-mediated protection against difficult vaccine targets, e.g., Chlamydia trachomatis (Ct). Adjuvants are included in subunit vaccines to potentiate immune responses, but many marketed adjuvants stimulate predominantly humoral immune responses. Therefore, there is an unmet medical need for new adjuvants, which potentiate humoral and CMI responses. The purpose was to design an oil-in-water nanoemulsion adjuvant containing a synthetic CMI-inducing mycobacterial monomycoloyl glycerol (MMG) analogue to concomitantly induce humoral and CMI responses. METHODS The influence of emulsion composition was analyzed using a systematic approach. Three factors were varied: i) saturation of the oil phase, ii) type and saturation of the applied surfactant mixture, and iii) surfactant mixture net charge. RESULTS The emulsions were colloidally stable with a droplet diameter of 150-250 nm, and the zeta-potential correlated closely with the net charge of the surfactant mixture. Only cationic emulsions containing the unsaturated surfactant mixture induced concomitant humoral and CMI responses upon immunization of mice with a Ct antigen, and the responses were enhanced when squalene was applied as the oil phase. In contrast, emulsions with neutral and net negative zeta-potentials did not induce CMI responses. The saturation degree of the oil phase did not influence the adjuvanticity. CONCLUSION Cationic, MMG analogue-containing nanoemulsions are potential adjuvants for vaccines against pathogens for which both humoral and CMI responses are needed.
Collapse
Affiliation(s)
- Signe Tandrup Schmidt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Malene Aaby Neustrup
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Stine Harloff-Helleberg
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
71
|
Kuleš J, Horvatić A, Guillemin N, Galan A, Mrljak V, Bhide M. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. MOLECULAR BIOSYSTEMS 2017; 12:2680-94. [PMID: 27384976 DOI: 10.1039/c6mb00268d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens.
Collapse
Affiliation(s)
- Josipa Kuleš
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Anita Horvatić
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
72
|
Vasou A, Sultanoglu N, Goodbourn S, Randall RE, Kostrikis LG. Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses. Viruses 2017; 9:v9070186. [PMID: 28703784 PMCID: PMC5537678 DOI: 10.3390/v9070186] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation.
Collapse
Affiliation(s)
- Andri Vasou
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglatzia, Nicosia 2109, Cyprus.
| | - Nazife Sultanoglu
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglatzia, Nicosia 2109, Cyprus.
| | - Stephen Goodbourn
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK.
| | - Richard E Randall
- School of Biology, University of St Andrews, The North Haugh, St Andrews KY16 9ST, UK.
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglatzia, Nicosia 2109, Cyprus.
| |
Collapse
|
73
|
Olson ZF, Sandbulte MR, Souza CK, Perez DR, Vincent AL, Loving CL. Factors affecting induction of peripheral IFN-γ recall response to influenza A virus vaccination in pigs. Vet Immunol Immunopathol 2017; 185:57-65. [DOI: 10.1016/j.vetimm.2017.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 01/12/2023]
|
74
|
Abhyankar MM, Noor Z, Tomai MA, Elvecrog J, Fox CB, Petri WA. Nanoformulation of synergistic TLR ligands to enhance vaccination against Entamoeba histolytica. Vaccine 2017; 35:916-922. [PMID: 28089548 PMCID: PMC5301946 DOI: 10.1016/j.vaccine.2016.12.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/23/2016] [Accepted: 12/26/2016] [Indexed: 02/07/2023]
Abstract
Diarrheal infectious diseases represent a major cause of global morbidity and mortality. There is an urgent need for vaccines against diarrheal pathogens, especially parasites. Modern subunit vaccines rely on combining a highly purified antigen with an adjuvant to increase their efficacy. In the present study, we evaluated the ability of a nanoliposome adjuvant system to trigger a strong mucosal immune response to the Entamoeba histolytica Gal/GalNAc lectin LecA antigen. CBA/J mice were immunized with alum, emulsion or liposome based formulations containing synthetic TLR agonists. A liposome formulation containing TLR4 and TLR7/8 agonists was selected based on its ability to generate intestinal IgA, plasma IgG2a/IgG1, IFN-γ and IL-17A. Immunization with a mucosal prime followed by a parenteral boost generated a high mucosal IgA response that inhibited adherence of parasites to mammalian cells. Inclusion of the immune potentiator all-trans retinoic acid in the regimen further improved the mucosal IgA response. Immunization protected from infection with up to 55% efficacy. Our results show that a nanoliposome delivery system containing TLR agonists is a promising prospect for the development of vaccines against enteric pathogens, especially when a multifaceted immune response is desired.
Collapse
Affiliation(s)
- Mayuresh M Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States.
| | - Zannatun Noor
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Mark A Tomai
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St Paul, MN 55144, USA
| | - James Elvecrog
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St Paul, MN 55144, USA
| | - Christopher B Fox
- IDRI, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
75
|
Mottaz H, Schönenberger R, Fischer S, Eggen RIL, Schirmer K, Groh KJ. Dose-dependent effects of morphine on lipopolysaccharide (LPS)-induced inflammation, and involvement of multixenobiotic resistance (MXR) transporters in LPS efflux in teleost fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:105-115. [PMID: 28010888 DOI: 10.1016/j.envpol.2016.11.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/12/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Opioid drugs, such as morphine (MO), detected in aquatic environments worldwide, may harm fish due to their semi-persistence and ability to potently interact with molecular targets conserved across vertebrates. Here, we established a waterborne bacterial lipopolysaccharide (LPS) challenge assay with zebrafish embryos as a model to investigate chemically-induced disruption of the innate immune system, and used it to study the effects of MO exposure. Exposure to 1 mg/L MO resulted in pronounced immunosuppression, reflected in downregulation of several inflammation-related genes, including myd88, trif, traf6, p38, nfκb2, il-1β, il-8 and ccl34a. Fish exposed to 1 mg/L MO accumulated 11.7 ng/g (wet weight) of MO, a concentration comparable to that reported in blood of chronic drug abusers subject to higher infection rates. Surprisingly, exposure to lower MO concentrations (100 ng/L-100 μg/L) led to exacerbation of LPS-induced inflammation. Two ATP-binding cassette (ABC) transporters known to be involved in the xenobiotic efflux - abcb4 and abcc2, also known as multixenobiotic resistance (MXR) transporters - were downregulated at 100 ng/L MO. We hypothesized that ABC/MXR transporters could modulate the severity of inflammation by being involved in efflux of LPS, thus regulating its accumulation in the organism. Indeed, we could demonstrate that blocking of ABC/MXR transporters by an inhibitor, cyclosporine A, results in stronger inflammation, coinciding with higher LPS accumulation, as visualized with fluorescently labeled LPS. Our work demonstrates that MO can disrupt fish innate immune responses at environmentally relevant concentrations. We also provide evidence for a role of ABC/MXR transporters in LPS efflux in fish. These finding may be applicable across other taxa, as ABC transporters are evolutionary conserved. Since diverse environmentally present chemicals are known to interfere with ABC/MXR transporters' expression or activity, our discovery raises concerns about potential adverse effects of such compounds on the immune system responses in aquatic organisms.
Collapse
Affiliation(s)
- Hélène Mottaz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Rene Schönenberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Stephan Fischer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
76
|
Cunningham AL, Garçon N, Leo O, Friedland LR, Strugnell R, Laupèze B, Doherty M, Stern P. Vaccine development: From concept to early clinical testing. Vaccine 2016; 34:6655-6664. [DOI: 10.1016/j.vaccine.2016.10.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
|
77
|
Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol 2016; 120:1-14. [PMID: 27157411 PMCID: PMC5079805 DOI: 10.1016/j.bcp.2016.05.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Allergy and Immunology/history
- Allergy and Immunology/trends
- Animals
- Antigens/adverse effects
- Antigens/chemistry
- Antigens/immunology
- Antigens/therapeutic use
- Biopharmaceutics/history
- Biopharmaceutics/methods
- Biopharmaceutics/trends
- Chemistry, Pharmaceutical/history
- Chemistry, Pharmaceutical/trends
- Communicable Disease Control/history
- Communicable Disease Control/trends
- Communicable Diseases/immunology
- Communicable Diseases/veterinary
- Drug Delivery Systems/adverse effects
- Drug Delivery Systems/trends
- Drug Delivery Systems/veterinary
- Drug Design
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Nanoparticles/adverse effects
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Protein Engineering/trends
- Protein Engineering/veterinary
- Protein Folding
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Vaccines/adverse effects
- Vaccines/chemistry
- Vaccines/immunology
- Vaccines/therapeutic use
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Veterinary Drugs/adverse effects
- Veterinary Drugs/chemistry
- Veterinary Drugs/immunology
- Veterinary Drugs/therapeutic use
Collapse
Affiliation(s)
- Christopher P Karch
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States
| | - Peter Burkhard
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States; Department of Molecular and Cell Biology, 93 North Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
78
|
Gilert A, Baruch L, Bronshtein T, Machluf M. PLGA-Listeriolysin O microspheres: Opening the gate for cytosolic delivery of cancer antigens. Biomed Microdevices 2016; 18:23. [PMID: 26888439 DOI: 10.1007/s10544-016-0050-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Strategies for cancer protein vaccination largely aim to activate the cellular arm of the immune system against cancer cells. This approach, however, is limited since protein vaccines mostly activate the system's humoral arm instead. One way to overcome this problem is to enhance the cross-presentation of such proteins by antigen-presenting cells, which may consequently lead to intense cellular response. Here we examined the ability of listeriolysin O (LLO) incorporated into poly-lactic-co-glycolic acid (PLGA) microspheres to modify the cytosolic delivery of low molecular weight peptides and enhance their cross-presentation. PLGA microspheres were produced in a size suitable for uptake by phagocytic cells. The peptide encapsulation and release kinetics were improved by adding NaCl to the preparation. PLGA microspheres loaded with the antigenic peptide and incorporated with LLO were readily up-taken by phagocytic cells, which exhibited an increase in the expression of peptide-MHC-CI complexes on the cell surface. Furthermore, this system enhanced the activation of a specific T hybridoma cell line, thus simulating cytotoxic T cells. These results establish, for the first time, a proof of concept for the use of PLGA microspheres incorporated with a pore-forming agent and the antigen peptide of choice as a unique cancer protein vaccination delivery platform.
Collapse
Affiliation(s)
- Ariel Gilert
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Limor Baruch
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Tomer Bronshtein
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Marcelle Machluf
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
79
|
Grün NG, Strohmeier K, Moreno-Viedma V, Le Bras M, Landlinger C, Zeyda K, Wanko B, Leitner L, Staffler G, Zeyda M, Stulnig TM. Peptide-based vaccination against OPN integrin binding sites does not improve cardio-metabolic disease in mice. Immunol Lett 2016; 179:85-94. [PMID: 27639826 DOI: 10.1016/j.imlet.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/04/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022]
Abstract
Obesity causes insulin resistance via a chronic low-grade inflammation. This inflammation is characterized by elevated pro-inflammatory markers and macrophage accumulation in the adipose tissue (AT). AT inflammation is a key factor causing insulin resistance and thus type 2 diabetes, both linked to atherosclerotic cardiovascular disease. Osteopontin (OPN), a well-known inflammatory cytokine, is involved in obesity-linked complications including AT inflammation, insulin resistance, atherosclerosis and CVD. During inflammation, OPN is proteolytically cleaved by matrix metalloproteinases or thrombin leading to increased OPN activity. Therefore, OPN provides a new interesting target for immunological prevention and treatment of obesity-associated diseases. The aim of our study was to evaluate peptide-based vaccines against integrin binding sites of OPN and to examine whether these active immunotherapies are functional in reducing metabolic tissue inflammation, insulin resistance, and atherosclerosis in a cardio-metabolic (Ldlr-/- mice) and a diet-induced obesity model (WT mice). However, atherosclerosis, insulin resistance and AT inflammation were not diminished after treatment with OPN-derived peptides in murine models. Lack of efficacy was based on a failure to induce antibodies capable to bind epitopes in the context of functional OPN protein. In conclusion, our data point to unexpected challenges in the immunotherapeutic targeting of adhesive motives, such as RGD containing sequences, on endogenous proteins.
Collapse
Affiliation(s)
- Nicole G Grün
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karin Strohmeier
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Veronica Moreno-Viedma
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | - Karina Zeyda
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; FH Campus Wien, University of Applied Sciences, Department Health, Section Biomedical Science, Vienna, Austria
| | - Bettina Wanko
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Leitner
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Maximilian Zeyda
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
80
|
Bernardi DS, Bitencourt C, da Silveira DSC, da Cruz ELCM, Pereira-da-Silva MA, Faccioli LH, Lopez RFV. Effective transcutaneous immunization using a combination of iontophoresis and nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2439-2448. [PMID: 27431054 DOI: 10.1016/j.nano.2016.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/04/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
Needle-free immunization strategies have been sought for years. Transcutaneous immunization using electroporation has been studied, but the high electrical voltage that must be applied may be painful and cause irreversible cell damage. The application of a weak electric field, such as in iontophoresis, has never been attempted. The aim of this work was to verify the potential of employing iontophoresis for transcutaneous immunization using ovalbumin (OVA) as a model antigen. To target the antigen presenting cells that are located in the viable epidermis, a vaccine formulation composed of OVA-loaded liposomes and silver nanoparticles (NPAg) was developed. In vitro cathodal iontophoresis of the OVA-liposomes associated with NPAg increased OVA penetration into the viable epidermis by 92-fold in comparison to passive delivery. In vivo, transcutaneous immunization with a suitable combination of liposome and iontophoresis induced the production of antibodies, differentiation of immune-competent cells and appeared to present an alternative strategy for needle-free vaccination.
Collapse
Affiliation(s)
- Daniela S Bernardi
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Claudia Bitencourt
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Denise S C da Silveira
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Estael L C M da Cruz
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Marcelo A Pereira-da-Silva
- Physics Institute of Sao Carlos-USP, Sao Carlos, SP, Brazil; Paulista Central University Center-UNICEP, Sao Carlos, SP, Brazil
| | - Lúcia Helena Faccioli
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Renata F V Lopez
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
81
|
Hartwell BL, Martinez-Becerra FJ, Chen J, Shinogle H, Sarnowski M, Moore DS, Berkland C. Antigen-Specific Binding of Multivalent Soluble Antigen Arrays Induces Receptor Clustering and Impedes B Cell Receptor Mediated Signaling. Biomacromolecules 2016; 17:710-22. [PMID: 26771518 DOI: 10.1021/acs.biomac.5b01097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A pressing need exists for autoimmune disease therapies that act in an antigen-specific manner while avoiding global immunosuppression. Multivalent soluble antigen arrays (SAgAPLP:LABL), designed to induce tolerance to a specific multiple sclerosis autoantigen, consist of a flexible hyaluronic acid (HA) polymer backbone cografted with multiple copies of autoantigen peptide (PLP) and cell adhesion inhibitor peptide (LABL). Previous in vivo studies revealed copresentation of both signals on HA was necessary for therapeutic efficacy. To elucidate therapeutic cellular mechanisms, in vitro studies were performed in a model B cell system to evaluate binding and specificity. Compared to HA and HA arrays containing only grafted PLP or LABL, SAgAPLP:LABL displaying both PLP and LABL exhibited greatly enhanced B cell binding. Furthermore, the binding avidity of SAgAPLP:LABL was primarily driven by the PLP antigen, determined via flow cytometry competitive dissociation studies. Fluorescence microscopy showed SAgAPLP:LABL induced mature receptor clustering that was faster than other HA arrays with only one type of grafted peptide. SAgAPLP:LABL molecules also reduced and inhibited IgM-stimulated signaling as discerned by a calcium flux assay. The molecular mechanisms of enhanced antigen-specific binding, mature receptor clustering, and dampened signaling observed in B cells may contribute to SAgAPLP:LABL therapeutic efficacy.
Collapse
Affiliation(s)
- Brittany L Hartwell
- Bioengineering Graduate Program, University of Kansas , 1520 West 15th Street, Lawrence, Kansas 66045, United States
| | - Francisco J Martinez-Becerra
- Immunology Core Laboratory of the Kansas Vaccine Institute, University of Kansas 2030 Becker Drive, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, University of Kansas 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Jun Chen
- Department of Pharmaceutical Chemistry, University of Kansas 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Heather Shinogle
- Microscopy and Analytical Imaging Laboratory, University of Kansas 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Michelle Sarnowski
- Department of Chemical and Petroleum Engineering, University of Kansas 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - David S Moore
- Microscopy and Analytical Imaging Laboratory, University of Kansas 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Cory Berkland
- Bioengineering Graduate Program, University of Kansas , 1520 West 15th Street, Lawrence, Kansas 66045, United States.,Department of Pharmaceutical Chemistry, University of Kansas 2095 Constant Avenue, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, University of Kansas 1530 West 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
82
|
Abstract
While many of the currently available vaccines have been developed empirically, with limited understanding on how they activate the immune system and elicit protective immunity, the recent progress in basic sciences like immunology, microbiology, genetics, and molecular biology has fostered our understanding on the interaction of microorganisms with the human immune system. In consequence, modern vaccine development strongly builds on the precise knowledge of the biology of microbial pathogens, their interaction with the human immune system, as well as their capacity to counteract and evade innate and adaptive immune mechanisms. Strategies engaged by pathogens strongly determine how a vaccine should be formulated to evoke potent and efficient protective immune responses. The improved knowledge of immune response mechanisms has facilitated the development of new vaccines with the capacity to defend against challenging pathogens and can help to protect individuals particular at risk like immunocompromised and elderly populations. Modern vaccine development technologies include the production of highly purified antigens that provide a lower reactogenicity and higher safety profile than the traditional empirically developed vaccines. Attempts to improve vaccine antigen purity, however, may result in impaired vaccine immunogenicity. Some of such disadvantages related to highly purified and/or genetically engineered vaccines yet can be overcome by innovative technologies, such as live vector vaccines, and DNA or RNA vaccines. Moreover, recent years have witnessed the development of novel adjuvant formulations that specifically focus on the augmentation and/or control of the interplay between innate and adaptive immune systems as well as the function of antigen-presenting cells. Finally, vaccine design has become more tailored, and in turn has opened up the potential of extending its application to hitherto not accessible complex microbial pathogens plus providing new immunotherapies to tackle diseases such as cancer, Alzheimer's disease, and autoimmune disease. This chapter gives an overview of the key considerations and processes involved in vaccine development. It also describes the basic principles of normal immune respoinses and its their function in defense of infectious agents by vaccination.
Collapse
Affiliation(s)
- Fred Zepp
- Department of Pediatrics, University Medicine Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
83
|
Desforges JPW, Sonne C, Levin M, Siebert U, De Guise S, Dietz R. Immunotoxic effects of environmental pollutants in marine mammals. ENVIRONMENT INTERNATIONAL 2016; 86:126-139. [PMID: 26590481 DOI: 10.1016/j.envint.2015.10.007] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Due to their marine ecology and life-history, marine mammals accumulate some of the highest levels of environmental contaminants of all wildlife. Given the increasing prevalence and severity of diseases in marine wildlife, it is imperative to understand how pollutants affect the immune system and consequently disease susceptibility. Advancements and adaptations of analytical techniques have facilitated marine mammal immunotoxicology research. Field studies, captive-feeding experiments and in vitro laboratory studies with marine mammals have associated exposure to environmental pollutants, most notable polychlorinated biphenyls (PCBs), organochlorine pesticides and heavy metals, to alterations of both the innate and adaptive arms of immune systems, which include aspects of cellular and humoral immunity. For marine mammals, reported immunotoxicology endpoints fell into several major categories: immune tissue histopathology, haematology/circulating immune cell populations, functional immune assays (lymphocyte proliferation, phagocytosis, respiratory burst, and natural killer cell activity), immunoglobulin production, and cytokine gene expression. Lymphocyte proliferation is by far the most commonly used immune assay, with studies using different organic pollutants and metals predominantly reporting immunosuppressive effects despite the many differences in study design and animal life history. Using combined field and laboratory data, we determined effect threshold levels for suppression of lymphocyte proliferation to be between b0.001-10 ppm for PCBs, 0.002-1.3 ppm for Hg, 0.009-0.06 for MeHg, and 0.1-2.4 for cadmium in polar bears and several pinniped and cetacean species. Similarly, thresholds for suppression of phagocytosis were 0.6-1.4 and 0.08-1.9 ppm for PCBs and mercury, respectively. Although data are lacking for many important immune endpoints and mechanisms of specific immune alterations are not well understood, this review revealed a systemic suppression of immune function in marine mammals exposed to environmental contaminants. Exposure to immunotoxic contaminants may have significant population level consequences as a contributing factor to increasing anthropogenic stress in wildlife and infectious disease outbreaks.
Collapse
Affiliation(s)
- Jean-Pierre W Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
84
|
Cabrera G, Salazar V, Montesino R, Támbara Y, Struwe WB, Leon E, Harvey DJ, Lesur A, Rincón M, Domon B, Méndez M, Portela M, González-Hernández A, Triguero A, Durán R, Lundberg U, Vonasek E, González LJ. Structural characterization and biological implications of sulfated N-glycans in a serine protease from the neotropical moth Hylesia metabus (Cramer [1775]) (Lepidoptera: Saturniidae). Glycobiology 2015; 26:230-50. [PMID: 26537504 DOI: 10.1093/glycob/cwv096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
Contact with the urticating setae from the abdomen of adult females of the neo-tropical moth Hylesia metabus gives rise to an urticating dermatitis, characterized by intense pruritus, generalized malaise and occasionally ocular lesions (lepidopterism). The setae contain a pro-inflammatory glycosylated protease homologous to other S1A serine proteases of insects. Deglycosylation with PNGase F in the presence of a buffer prepared with 40% H2 (18)O allowed the assignment of an N-glycosylation site. Five main paucimannosidic N-glycans were identified, three of which were exclusively α(1-6)-fucosylated at the proximal GlcNAc. A considerable portion of these N-glycans are anionic species sulfated on either the 4- or the 6-position of the α(1-6)-mannose residue of the core. The application of chemically and enzymatically modified variants of the toxin in an animal model in guinea pigs showed that the pro-inflammatory and immunological reactions, e.g. disseminated fibrin deposition and activation of neutrophils, are due to the presence of sulfate-linked groups and not on disulfide bonds, as demonstrated by the reduction and S-alkylation of the toxin. On the other hand, the hemorrhagic vascular lesions observed are attributed to the proteolytic activity of the toxin. Thus, N-glycan sulfation may constitute a defense mechanism against predators.
Collapse
Affiliation(s)
- Gleysin Cabrera
- Department of Carbohydrates, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | | | - Raquel Montesino
- School of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, PO Box 160C, Concepción, Chile
| | - Yanet Támbara
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Weston B Struwe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Evelyn Leon
- Proteomics Unit, Center of Structural Biology
| | - David J Harvey
- Glycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, UK
| | - Antoine Lesur
- Luxembourg Clinical Proteomics Center, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | | | - Bruno Domon
- Luxembourg Clinical Proteomics Center, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | | | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - Annia González-Hernández
- Department of Carbohydrates, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Ada Triguero
- Department of Carbohydrates, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and IIBCE, Mataojo 2020, Montevideo, Uruguay
| | - Ulf Lundberg
- Unit for Invertebrate Toxins, Venezuelan Institute for Scientific Research (IVIC), PO Box 20632, Caracas 1020A, Venezuela
| | - Eva Vonasek
- Proteomics Unit, Center of Structural Biology
| | | |
Collapse
|
85
|
Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines (Basel) 2015; 3:320-43. [PMID: 26343190 PMCID: PMC4494348 DOI: 10.3390/vaccines3020320] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022] Open
Abstract
The concept of stimulating the body’s immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines.
Collapse
|
86
|
Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines (Basel) 2015; 3:320-343. [PMID: 26343190 DOI: 10.3390/fvaccines3020320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 05/19/2023] Open
Abstract
The concept of stimulating the body's immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines.
Collapse
Affiliation(s)
| | - Scott Preiss
- GSK Vaccines, Avenue Fleming, 1300 Wavre, Belgium.
| | | | | |
Collapse
|
87
|
Lee J, Martinez N, West K, Kornfeld H. Differential adjuvant activities of TLR7 and TLR9 agonists inversely correlate with nitric oxide and PGE2 production. PLoS One 2015; 10:e0123165. [PMID: 25875128 PMCID: PMC4395302 DOI: 10.1371/journal.pone.0123165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/18/2015] [Indexed: 01/17/2023] Open
Abstract
Activation of different pattern recognition receptors causes distinct profiles of innate immune responses, which in turn dictate the adaptive immune response. We found that mice had higher CD4+ T cell expansion to an immunogen, ovalbumin, when coadministered with CpG than with CL097 in vivo. To account for this differential adjuvanticity, we assessed the activities of CpG and CL097 on antigen-specific CD4+ T cell expansion in vitro using an OT-II CD4+ T cell/bone marrow-derived dendritic cell (DC) co-culture system. Unexpectedly, ovalbumin-stimulated expansion of OT-II CD4+ T cells in vitro was potently suppressed by both TLR agonists, with CL097 being stronger than CpG. The suppression was synergistically reversed by co-inhibition of cyclooxygenases 1 and 2, and inducible nitric oxide (NO) synthase. In addition, stimulation of OT-II CD4+ T cell/DC cultures with CL097 induced higher levels of CD4+ T cell death than stimulation with CpG, and this CD4+ T cell turnover was reversed by NO and PGE2 inhibition. Consistently, the co-cultures stimulated with CL097 produced higher levels of prostaglandin E2 (PGE2) and NO than stimulation with CpG. CL097 induced higher PGE2 production in DC cultures and higher IFN-γ in the OT-II CD4+ T cell/DC cultures, accounting for the high levels of PGE2 and NO. This study demonstrates that the adjuvant activities of immunostimulatory molecules may be determined by differential induction of negative regulators, including NO and PGE2 suppressing clonal expansion and promoting cell death of CD4+ T cells.
Collapse
Affiliation(s)
- Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kim West
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
88
|
Andries O, Kitada T, Bodner K, Sanders NN, Weiss R. Synthetic biology devices and circuits for RNA-based ‘smart vaccines’: a propositional review. Expert Rev Vaccines 2015; 14:313-31. [DOI: 10.1586/14760584.2015.997714] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
89
|
|
90
|
Mengome LE, Voxeur A, Akue JP, Lerouge P. In vitro proliferation and production of cytokine and IgG by human PBMCs stimulated with polysaccharide extract from plants endemic to Gabon. Molecules 2014; 19:18543-57. [PMID: 25401398 PMCID: PMC6272015 DOI: 10.3390/molecules191118543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/01/2022] Open
Abstract
Polysaccharides were extracted from seven plants endemic to Gabon to study their potential immunological activities. Peripheral blood mononuclear cell (PBMC) (5 × 105 cells/mL) proliferation, cytokine and immunoglobulin G (IgG) assays were performed after stimulation with different concentrations of polysaccharide fractions compared with lipopolysaccharides (LPS) and concanavalin A (ConA) from healthy volunteers. The culture supernatants were used for cytokine and IgG detection by enzyme-linked immunosorbent assay (ELISA). The results show that pectin and hemicellulose extracts from Uvaria klainei, Petersianthus macrocarpus, Trichoscypha addonii, Aphanocalyx microphyllus, Librevillea klaineana, Neochevalierodendron stephanii and Scorodophloeus zenkeri induced production levels that were variable from one individual to another for IL-12 (3–40 pg/mL), IL-10 (6–443 pg/mL), IL-6 (7–370 pg/mL), GM-CSF (3–170 pg/mL) and IFN-γ (5–80 pg/mL). Only hemicelluloses from Aphanocalyx microphyllus produce a small amount of IgG (OD = 0.034), while the proliferation of cells stimulated with these polysaccharides increased up to 318% above the proliferation of unstimulated cells. However, this proliferation of PBMCs was abolished when the pectin of some of these plants was treated with endopolygalacturonase (p < 0.05), but the trend of cytokine synthesis remained the same, both before and after enzymatic treatment or saponification. This study suggests that these polysaccharides stimulate cells in a structure-dependent manner. The rhamnogalacturonan-I (RGI) fragment alone was not able to induce the proliferation of PBMC.
Collapse
Affiliation(s)
- Line Edwige Mengome
- Institutde Pharmacopée et de MédecineTraditionnelles (IPHAMETRA), BP 1935 Libreville, Gabon.
| | - Aline Voxeur
- Laboratoire Glyco-MEV, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France.
| | - Jean Paul Akue
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769 Franceville, Gabon.
| | - Patrice Lerouge
- Laboratoire Glyco-MEV, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France.
| |
Collapse
|
91
|
Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:159-82. [PMID: 25364509 DOI: 10.1177/2051013614541440] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome-DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic cancer vaccines are also summarized.
Collapse
Affiliation(s)
- Reto A Schwendener
- Institute of Molecular Cancer Research, Laboratory of Liposome Research, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
92
|
Doolan DL, Apte SH, Proietti C. Genome-based vaccine design: the promise for malaria and other infectious diseases. Int J Parasitol 2014; 44:901-13. [PMID: 25196370 DOI: 10.1016/j.ijpara.2014.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/08/2023]
Abstract
Vaccines are one of the most effective interventions to improve public health, however, the generation of highly effective vaccines for many diseases has remained difficult. Three chronic diseases that characterise these difficulties include malaria, tuberculosis and HIV, and they alone account for half of the global infectious disease burden. The whole organism vaccine approach pioneered by Jenner in 1796 and refined by Pasteur in 1857 with the "isolate, inactivate and inject" paradigm has proved highly successful for many viral and bacterial pathogens causing acute disease but has failed with respect to malaria, tuberculosis and HIV as well as many other diseases. A significant advance of the past decade has been the elucidation of the genomes, proteomes and transcriptomes of many pathogens. This information provides the foundation for new 21st Century approaches to identify target antigens for the development of vaccines, drugs and diagnostic tests. Innovative genome-based vaccine strategies have shown potential for a number of challenging pathogens, including malaria. We advocate that genome-based rational vaccine design will overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued vaccine developers for many years.
Collapse
Affiliation(s)
- Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.
| | - Simon H Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Carla Proietti
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| |
Collapse
|
93
|
Gowane GR, Sharma AK, Sankar M, Narayanan K, Bisht P, Subramaniam S, Pattnaik B. The expression of IL6 and 21 in crossbred calves upregulated by inactivated trivalent FMD vaccine. Anim Biotechnol 2014; 25:108-18. [PMID: 24555796 DOI: 10.1080/10495398.2013.834826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Foot and mouth disease (FMD) is an economically important disease and a whole-virus inactivated trivalent virus vaccine is the mainstay for controlling the disease in India. The protective humoral immune response to FMD vaccination is a complex, but, tightly regulated process mediated by the interplay of interleukins (IL). Based on the specific role of IL6 and 21 in adaptive immune response, we hypothesized that inactivated trivalent FMD vaccine would stimulate IL6 and 21 expression in the circulating lymphocytes. The expressions of IL6 and 21 were assayed on 0, 28, 60, 90, and 120 d post-vaccination (DPV) by quantitative PCR (qPCR) with simultaneous assessment of FMDV antibody titer by liquid phase blocking ELISA. The results revealed that the peak expression of IL6 and 21 was on DPV 28 which correlated well with the FMDV antibody titer and plummeted to the prevaccination titer level by 60 DPV. As IL21 is the final effector of antibody production as compared to IL6, we investigated the expression of IL21 in calves that had protective titer (>1.8) with the unprotected group (<1.8). Expression of IL21 on 28 DPV was numerically higher in the protected than that of the unprotected group of calves.
Collapse
Affiliation(s)
- G R Gowane
- a Central Sheep & Wool Research Institute , Avikanagar , Rajasthan , India
| | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
In this chapter we provide an overview of the immune system and its vital role maintaining human health. Immune responses require the coordinated action of leukocytes that travel the body to eliminate threats posed by trauma, infection, toxins, and cancer. Leukocytes communicate via direct contact and via production and receipt of soluble proteins and intercellular messenger proteins called cytokines. Complete clearance of unwanted entities may involve both innate and adaptive leukocyte responses, which influence each other. Some innate mechanisms require no induction and are completely non-specific, whereas others are inducible and involve broad receptor-mediated recognition of a limited number of pathogen-associated or damage-associated molecular patterns (PAMPs/DAMPs). Adaptive responses involve the selective activation of lymphocytes via engagement of their antigen receptors by a specific foreign antigen. The three major subsets of lymphocytes are T helper cells (Th), cytotoxic T cells (Tc) and B cells, which use distinct mechanisms to recognize antigen and carry out different effector functions. Immune system malfunction can contribute to many clinical illnesses including autoimmune disorders, allergies, immunodeficiencies, chronic inflammation and cancer.
Collapse
|
95
|
Hao N, Whitelaw ML. The emerging roles of AhR in physiology and immunity. Biochem Pharmacol 2013; 86:561-70. [PMID: 23856287 DOI: 10.1016/j.bcp.2013.07.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is traditionally defined as a transcriptional regulator involved in adaptive xenobiotic response, however, emerging evidence supports physiological functions of AhR in normal cell development and immune response. The role of AhR in immunomodulation is multi-dimensional. On the one hand, activation of AhR by TCDD and other ligands leads to profound immunosuppression, potentially via skewed Th1/Th2 cell balance toward Th1 dominance, and boosted Treg cell differentiation. On the other hand, activation of AhR can also induce Th17 cell polarization and increase the severity of autoimmune disease. In addition to T lymphocytes, the AhR also appears to play a vital role in B cell maturation, and regulates the activity of macrophages, dendritic cells and neutrophils following lipopolysaccharide challenge or influenza virus infection. In these scenarios, activation of AhR is associated with decreased host response and reduced survival. Furthermore, gene knock out studies suggest that AhR is indispensable for the postnatal maintenance of intestinal intraepithelial lymphocytes and skin-resident dendritic epidermal gamma delta T cells, providing a potential link between AhR and gut immunity and wound healing. It is well accepted that the magnitude and the type of immune response is dependent on the local cytokine milieu and the AhR appears to be one of the key factors involved in the fine turning of this cytokine balance.
Collapse
Affiliation(s)
- Nan Hao
- School of Molecular and Biomedical Science (Biochemistry), The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
96
|
Jung BG, Lee JA, Lee BJ. Antiviral effect of dietary germanium biotite supplementation in pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Vet Sci 2013; 14:135-41. [PMID: 23814470 PMCID: PMC3694184 DOI: 10.4142/jvs.2013.14.2.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/17/2012] [Accepted: 10/23/2012] [Indexed: 11/20/2022] Open
Abstract
Germanium biotite (GB) is an aluminosilicate mineral containing 36 ppm germanium. The present study was conducted to better understand the effects of GB on immune responses in a mouse model, and to demonstrate the clearance effects of this mineral against Porcine reproductive and respiratory syndrome virus (PRRSV) in experimentally infected pigs as an initial step towards the development of a feed supplement that would promote immune activity and help prevent diseases. In the mouse model, dietary supplementation with GB enhanced concanavalin A (ConA)-induced lymphocyte proliferation and increased the percentage of CD3+CD8+ T lymphocytes. In pigs experimentally infected with PRRSV, viral titers in lungs and lymphoid tissues from the GB-fed group were significantly decreased compared to those of the control group 12 days post-infection. Corresponding histopathological analyses demonstrated that GB-fed pigs displayed less severe pathological changes associated with PRRSV infection compared to the control group, indicating that GB promotes PRRSV clearance. These antiviral effects in pigs may be related to the ability of GB to increase CD3+CD8+ T lymphocyte production observed in the mice. Hence, this mineral may be an effective feed supplement for increasing immune activity and preventing disease.
Collapse
Affiliation(s)
- Bock-Gie Jung
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | | | | |
Collapse
|
97
|
Abstract
An efficient immune response requires coordination between innate and adaptive immunity, which act through cells different in origin and function. Here we report the identification of thymus-derived αβ TCR+ cells that express CD11c and MHC class II, and require FLT3L for development (TDC). TDC express genes heretofore found uniquely in T cells or DC, as well as a distinctive signature of cytotoxicity-related genes. Unlike other innate T cell subsets, TDC have a polyclonal TCR repertoire andrespond to cognate antigens. However, they differ from conventional T cells in that they do not require help from antigen-presenting cells, respond to TLR-mediated stimulation by producing IL-12 and process and present antigen. The physiologic relevance of TDC, found in mice and humans, is still under investigation, but the fact that they combine key features of T and DC cells suggests that they provide a bridge between the innate and adaptive immune systems.
Collapse
|
98
|
Fan Y, Ma L, Zhang W, Cui X, Zhen Y, Suolangzhaxi, Song X. Liposome can improve the adjuvanticity of astragalus polysaccharide on the immune response against ovalbumin. Int J Biol Macromol 2013; 60:206-12. [PMID: 23748008 DOI: 10.1016/j.ijbiomac.2013.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/14/2013] [Accepted: 05/29/2013] [Indexed: 11/17/2022]
Abstract
In vitro, the effects of astragalus polysaccharide liposome (APSL) on splenocyte proliferation of mice were determined. The results showed that APSL could significantly promote splenocyte proliferation synergistically with PHA and LPS and the efficacy were superior to those of astragalus polysaccharide (APS) and blank liposome (BL). In immune response experiment, the adjuvant effect of APSL at three doses, APS, BL and aluminum hydroxide (alum) were compared on mice immunized subcutaneously with ovalbumin (OVA). The results showed that APSL could significantly promote splenocyte proliferation, enhance specific IgG, IgG1 and IgG2a antibody responses, promote IFN-γ and IL-6 secretion, and the efficacy were significantly better than alum at most time points. These results indicated that APSL could significantly improve the adjuvanticity and drug action of APS, and its high and medium doses possessed the best efficacy. Therefore, the liposome would be expected to exploit into a new-type preparation of APS.
Collapse
Affiliation(s)
- Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | | | | | |
Collapse
|
99
|
Fenoglio D, Traverso P, Parodi A, Tomasello L, Negrini S, Kalli F, Battaglia F, Ferrera F, Sciallero S, Murdaca G, Setti M, Sobrero A, Boccardo F, Cittadini G, Puppo F, Criscuolo D, Carmignani G, Indiveri F, Filaci G. A multi-peptide, dual-adjuvant telomerase vaccine (GX301) is highly immunogenic in patients with prostate and renal cancer. Cancer Immunol Immunother 2013; 62:1041-1052. [PMID: 23591981 PMCID: PMC11029691 DOI: 10.1007/s00262-013-1415-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/07/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anti-tumor vaccination is a new frontier in cancer treatment applicable to immunogenic neoplasms such as prostate and renal cancers. GX301 is a vaccine constituted by four telomerase peptides and two adjuvants, Montanide ISA-51 and Imiquimod. OBJECTIVE The aim of this study was to analyze safety and tolerability of GX301 in an open-label, phase I/II trial. Immunological and clinical responses were also evaluated as secondary endpoints. EXPERIMENTAL DESIGN GX301 was administered by intradermally injecting 500 μg of each peptide (dissolved in Montanide ISA-51) in the skin of the abdomen. Imiquimod was applied as a cream at the injection sites. The protocol included 8 administrations at days 1, 3, 5, 7, 14, 21, 35, 63. Eligible patients were affected with stage IV prostate or renal cancer resistant to conventional treatments. Patients were clinically and immunologically monitored up to 6 months from the first immunization. RESULTS No grade 3-4 adverse events were observed. Evidence of vaccine-specific immunological responses was detected in 100 % of patients. Disease stabilization occurred in 4 patients. Prolonged progression-free survival and overall survival were observed in patients showing a full pattern of vaccine-specific immunological responses. CONCLUSION GX301 demonstrated to be safe and highly immunogenic. Further studies are needed to determine its clinical efficacy.
Collapse
Affiliation(s)
- Daniela Fenoglio
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Paolo Traverso
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Surgical Sciences, University of Genoa, Genoa, Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Laura Tomasello
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Simone Negrini
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Francesca Kalli
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Florinda Battaglia
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Francesca Ferrera
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | - Stefania Sciallero
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Maurizio Setti
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Alberto Sobrero
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Francesco Boccardo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Giuseppe Cittadini
- Istituto Nazionale per la Ricerca sul Cancro, IRCCS Azienda Ospedaliero Universitaria San Martino—IST, Genoa, Italy
| | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Domenico Criscuolo
- Genovax srl, Colleretto Giacosa, Italy
- Present Address: Mediolanum Farmaceutici Spa, Milan, Italy
| | | | - Francesco Indiveri
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
100
|
Kalli F, Machiorlatti R, Battaglia F, Parodi A, Conteduca G, Ferrera F, Proietti M, Tardito S, Sanguineti M, Millo E, Fenoglio D, De Palma R, Inghirami G, Filaci G. Comparative analysis of cancer vaccine settings for the selection of an effective protocol in mice. J Transl Med 2013; 11:120. [PMID: 23663506 PMCID: PMC3659084 DOI: 10.1186/1479-5876-11-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/08/2013] [Indexed: 12/31/2022] Open
Abstract
Background Cancer vaccines are considered a promising therapeutic approach. However, their clinical results are not yet satisfactory. This may be due to the the difficulty of selection of an efficient tumor associated antigen (TAA) and immunization protocol. Indeed, the weak antigenicity of many TAA impairs the design of robust procedures, therefore a systematic analysis to identify the most efficient TAA is mandatory. Here, we performed a study to compare different gp100 vaccination strategies to identify the best strategy to provide a 100% protection against experimental melanoma in a reproducible manner. Methods C57BL/6J mice were challenged subcutaneously with B16F10 melanoma cells, after vaccination with: a) mouse or human gp10025-33 peptide plus CpG adjuvant; b) mouse or human gp100 gene; c) mouse or human gp10025-33 peptide-pulsed dendritic cells (DC). Alternatively, a neutralizing anti-IL-10 monoclonal antibody (mAb) was subcutaneously administered at the site of tumor challenge to counteract regulatory cells. Finally, combinatorial treatment was performed associating human gp10025-33 peptide-pulsed DC vaccination with administration of the anti-IL-10 mAb. Results Vaccination with human gp10025-33 peptide-pulsed DC was the most effective immunization protocol, although not achieving a full protection. Administration of the anti-IL-10 mAb showed also a remarkable protective effect, replicated in mice challenged with a different tumor, Anaplastic Large Cell Lymphoma. When immunization with gp10025-33 peptide-pulsed DC was associated with IL-10 counteraction, a 100% protective effect was consistently achieved. The analysis on the T-cell tumor infiltrates showed an increase of CD4+granzyme+ T-cells and a decreased number of CD4+CD25+Foxp3+ Treg elements from mice treated with either gp10025-33 peptide-pulsed DC vaccination or anti-IL-10 mAb administration. These data suggest that processes of intratumoral re-balance between effector and regulatory T cell subpopulations may play a critical protective role in immunotherapy protocols. Conclusions Here we demonstrate that, in the setting of a cancer vaccine strategy, a comparative analysis of different personalized approaches may favour the unveiling of the most effective protocol. Moreover, our findings suggest that counteraction of IL-10 activity may be critical to revert the intratumoral environment promoting Treg polarization, thus increasing the effects of a vaccination against selected TAA.
Collapse
Affiliation(s)
- Francesca Kalli
- Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV n. 7, 16132, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|