51
|
Yuan L, Li Y, Liu D, Zhang H, Yang J, Shen H, Xia L, Yao L, Lu J. Interleukin-35 protein inhibits osteoclastogenesis and attenuates collagen-induced arthritis in mice. J Cell Physiol 2024; 239:e31231. [PMID: 38451477 DOI: 10.1002/jcp.31231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease. Its pathological features include synovial inflammation, bone erosion, and joint structural damage. Our previous studies have shown that interleukin (IL)-35 is involved in the pathogenesis of bone loss in RA patients. In this study, we are further evaluating the efficacy of IL-35 on collagen-induced arthritis (CIA) in the mouse model. Male DBA/1J mice (n = 10) were initially immunized, 2 μg/mouse IL-35 was injected intraperitoneally every week for 3 weeks after the establishment of the CIA model. Clinical arthritis, histopathological analysis, and three-dimensional micro‑computed tomography (3D micro‑CT) were determined after the mice were anesthetized on the 42th day. In vitro, RANKL/M-CSF induced mouse preosteoclasts (RAW264.7 cells line) was subjected to antiarthritis mechanism study in the presence of IL-35. The results of clinical arthritis, histopathological analysis, and 3D micro‑CT, the expression of RANK/RANKL/OPG axis, inflammatory cytokines, and osteoclastogenesis-related makers demonstrated decreasing severity of synovitis and bone destruction in the ankle joints after IL-35 treatment. Furthermore, IL-35 attenuated inflammatory cytokine production and the expression of osteoclastogenesis-related makers in a mouse preosteoclasts cell line RAW264.7. The osteoclastogenesis-related makers were significantly reduced in IL-35 treated RAW264.7 cells line after blockage with the JAK/STAT1 signaling pathway. These results demonstrated that IL-35 protein could inhibits osteoclastogenesis and attenuates CIA in mice. We concluded that IL-35 can exhibit anti-osteoclastogenesis effects by reducing the expression of inflammatory cytokines and osteoclastogenesis-related makers, thus alleviating bone destruction in the ankle joint and could be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Health Management, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Liu
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, The Fifth People Hospital, Shenyang, China
| | - Jie Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Liping Xia
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lutian Yao
- Department of Orthopedic, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Lu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
52
|
Zur Y, Katchkovsky S, Itzhar A, Abramovitch-Dahan CV, Stepensky D, Papo N, Levaot N. Preventing osteoporotic bone loss in mice by promoting balanced bone remodeling through M-CSF RGD, a dual antagonist to c-FMS and αvβ3 receptors. Int J Biol Macromol 2024; 282:136821. [PMID: 39447795 DOI: 10.1016/j.ijbiomac.2024.136821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Osteoporosis is a common, age-related disease caused by imbalanced bone remodeling. Current treatments either shut down bone resorption or robustly stimulate bone formation. Here, we describe a novel compound that inhibits osteoclast activity without causing apparent disruptions to bone formation by targeting both c-FMS (i.e., osteoclast differentiation) and αvβ3 integrin (i.e., osteoclastic bone resorption) receptors. We show that human serum albumin (HSA)-conjugated M-CSFRGD protein (M-CSFRGD-HSA) effectively inhibits the activity of both receptors, with a three-fold higher serum half-life compared to the unconjugated M-CSFRGD. We then treated ovariectomized mice with different doses of M-CSFRGD-HSA, alendronate, or a monospecific control protein. The bispecific M-CSFRGD-HSA was superior to a monospecific control in alleviating bone loss and reducing osteoclast distribution and function. M-CSFRGD-HSA and alendronate effectively prevented ovariectomy-induced bone loss, but M-CSFRGD-HSA had a milder inhibitory effect on osteoclast distribution and activity. Moreover, alendronate halted bone formation, while M-CSFRGD-HSA-treated mice showed an increased level of serum amino-terminal propeptide of type I collagen, a bone formation marker. Our data indicate that the mild reduction in osteoclast activity facilitated by the bispecific M-CSFRGD-HSA allows the maintenance of certain levels of bone formation and may be superior to treatments that induce osteoclast depletion.
Collapse
Affiliation(s)
- Yuval Zur
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Amit Itzhar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Chen-Viki Abramovitch-Dahan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
53
|
El-Masri BM, Andreasen CM, Laursen KS, Kofod VB, Dahl XG, Nielsen MH, Thomsen JS, Brüel A, Sørensen MS, Hansen LJ, Kim AS, Taylor VE, Massarotti C, McDonald MM, You X, Charles JF, Delaisse JM, Andersen TL. Mapping RANKL- and OPG-expressing cells in bone tissue: the bone surface cells as activators of osteoclastogenesis and promoters of the denosumab rebound effect. Bone Res 2024; 12:62. [PMID: 39424806 PMCID: PMC11489716 DOI: 10.1038/s41413-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/21/2024] Open
Abstract
Denosumab is a monoclonal anti-RANKL antibody that inhibits bone resorption, increases bone mass, and reduces fracture risk. Denosumab discontinuation causes an extensive wave of rebound resorption, but the cellular mechanisms remain poorly characterized. We utilized in situ hybridization (ISH) as a direct approach to identify the cells that activate osteoclastogenesis through the RANKL/OPG pathway. ISH was performed across species, skeletal sites, and following recombinant OPG (OPG:Fc) and parathyroid hormone 1-34 (PTH) treatment of mice. OPG:Fc treatment in mice induced an increased expression of RANKL mRNA mainly in trabecular, but not endocortical bone surface cells. Additionally, a decreased expression of OPG mRNA was detected in bone surface cells and osteocytes of both compartments. A similar but more pronounced effect on RANKL and OPG expression was seen one hour after PTH treatment. These findings suggest that bone surface cells and osteocytes conjointly regulate the activation of osteoclastogenesis, and that OPG:Fc treatment induces a local accumulation of osteoclastogenic activation sites, ready to recruit and activate osteoclasts upon treatment discontinuation. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data from murine bone marrow stromal cells revealed that Tnfsf11+ cells expressed high levels of Mmp13, Limch1, and Wif1, confirming their osteoprogenitor status. ISH confirmed co-expression of Mmp13 and Tnfsf11 in bone surface cells of both vehicle- and OPG:Fc-treated mice. Under physiological conditions of human/mouse bone, RANKL is expressed mainly by osteoprogenitors proximate to the osteoclasts, while OPG is expressed mainly by osteocytes and bone-forming osteoblasts.
Collapse
Affiliation(s)
- Bilal M El-Masri
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Christina M Andreasen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Kaja S Laursen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Viktoria B Kofod
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Xenia G Dahl
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Malene H Nielsen
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mads S Sørensen
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lars J Hansen
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Albert S Kim
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Victoria E Taylor
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Caitlyn Massarotti
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Michelle M McDonald
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cancer Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Xiaomeng You
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean-Marie Delaisse
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Thomas L Andersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark.
- Department of Pathology, Odense University Hospital, Odense, Denmark.
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
54
|
Saurav S, Karfa S, Vu T, Liu Z, Datta A, Manne U, Samuel T, Datta PK. Overcoming Irinotecan Resistance by Targeting Its Downstream Signaling Pathways in Colon Cancer. Cancers (Basel) 2024; 16:3491. [PMID: 39456585 PMCID: PMC11505920 DOI: 10.3390/cancers16203491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Among the most popular chemotherapeutic agents, irinotecan, regarded as a prodrug belonging to the camptothecin family that inhibits topoisomerase I, is widely used to treat metastatic colorectal cancer (CRC). Although immunotherapy is promising for several cancer types, only microsatellite-instable (~7%) and not microsatellite-stable CRCs are responsive to it. Therefore, it is important to investigate the mechanism of irinotecan function to identify cellular proteins and/or pathways that could be targeted for combination therapy. Here, we have determined the effect of irinotecan treatment on the expression/activation of tumor suppressor genes (including p15Ink4b, p21Cip1, p27Kip1, and p53) and oncogenes (including OPN, IL8, PD-L1, NF-κB, ISG15, Cyclin D1, and c-Myc) using qRT-PCR, Western blotting, immunofluorescence (IF), and RNA sequencing of tumor specimens. We employed stable knockdown, neutralizing antibodies (Abs), and inhibitors of OPN, p53, and NF-κB to establish downstream signaling and sensitivity/resistance to the cytotoxic activities of irinotecan. Suppression of secretory OPN and NF-κB sensitized colon cancer cells to irinotecan. p53 inhibition or knockdown was not sufficient to block or potentiate SN38-regulated signaling, suggesting p53-independent effects. Irinotecan treatment inhibited tumor growth in syngeneic mice. Analyses of allograft tumors from irinotecan-treated mice validated the cell culture results. RNA-seq data suggested that irinotecan-mediated activation of NF-κB signaling modulated immune and inflammatory genes in mice, which may compromise drug efficacy and promote resistance. In sum, these results suggest that, for CRCs, targeting OPN, NF-κB, PD-L1, and/or ISG15 signaling may provide a potential strategy to overcome resistance to irinotecan-based chemotherapy.
Collapse
Affiliation(s)
- Shashank Saurav
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sourajeet Karfa
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Trung Vu
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | - Zhipeng Liu
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Arunima Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Temesgen Samuel
- Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Pran K. Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
55
|
Singh M, Singh P, Singh B, Sharma K, Kumar N, Singh D, Mastana S. Molecular Signaling Pathways and MicroRNAs in Bone Remodeling: A Narrative Review. Diseases 2024; 12:252. [PMID: 39452495 PMCID: PMC11507001 DOI: 10.3390/diseases12100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Bone remodeling is an intricate process executed throughout one's whole life via the cross-talk of several cellular events, progenitor cells and signaling pathways. It is an imperative mechanism for regaining bone loss, recovering damaged tissue and repairing fractures. To achieve this, molecular signaling pathways play a central role in regulating pathological and causal mechanisms in different diseases. Similarly, microRNAs (miRNAs) have shown promising results in disease management by mediating mRNA targeted gene expression and post-transcriptional gene function. However, the role and relevance of these miRNAs in signaling processes, which regulate the delicate balance between bone formation and bone resorption, are unclear. This review aims to summarize current knowledge of bone remodeling from two perspectives: firstly, we outline the modus operandi of five major molecular signaling pathways, i.e.,the receptor activator of nuclear factor kappa-B (RANK)-osteoprotegrin (OPG) and RANK ligand (RANK-OPG-RANKL), macrophage colony-stimulating factor (M-CSF), Wnt/β-catenin, Jagged/Notch and bone morphogenetic protein (BMP) pathways in regards to bone cell formation and function; and secondly, the miRNAs that participate in these pathways are introduced. Probing the miRNA-mediated regulation of these pathways may help in preparing the foundation for developing targeted strategies in bone remodeling, repair and regeneration.
Collapse
Affiliation(s)
- Monica Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Baani Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Kirti Sharma
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Nitin Kumar
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Deepinder Singh
- VardhmanMahavir Health Care, Urban Estate Ph-II, Patiala 147002, India;
| | - Sarabjit Mastana
- Human Genomics Laboratory, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| |
Collapse
|
56
|
Nelson TA, Tommasini S, Fretz JA. Deletion of the transcription factor EBF1 in perivascular stroma disrupts skeletal homeostasis and precipitates premature aging of the marrow microenvironment. Bone 2024; 187:117198. [PMID: 39002837 PMCID: PMC11410106 DOI: 10.1016/j.bone.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Early B cell factor 1 (EBF1) is a transcription factor expressed by multiple lineages of stromal cells within the bone marrow. While cultures of Ebf1-deficient cells have been demonstrated to have impaired differentiation into either the osteoblast or adipogenic lineage in vitro by several groups, in vivo there has been a nominal consequence of the loss of EBF1 on skeletal development. In this study we used Prx-cre driven deletion of Ebf1 to eliminate EBF1 from the entire mesenchymal lineage of the skeleton and resolve this discrepancy. We report here that EBF1 is expressed primarily in the Mesenchymal Stem and Progenitor Cell (MSPC)-Adipo, MSPC-Osteo, and the Early Mesenchymal Progenitors, and that loss of EBF1 has a plethora of consequences to maintenance of the skeleton throughout adulthood. Stroma from the Prx-cre;Ebf1fl/fl bones had impaired osteogenic differentiation, an age-dependent loss of CFU-F, and elevated senescence accompanying Ebf1-deletion. New bone formation was reduced after 3 months, and resulted in a quiescent bone environment with fewer osteoblasts and an accompanied reduction in osteoclast-mediated remodeling. Consequently, bones were less ductile at a younger age, and deletion of EBF1 dramatically impaired fracture repair. Disruption of EBF1 in perivascular populations also rearranged the vascular network within these bones and disrupted cytokine signaling from key hematopoietic niches resulting in anemia, reductions in B cells, and myeloid skewing of marrow hematopoietic lineages. Mechanistically we observed disrupted BMP signaling within Ebf1-deficient progenitors with reduced SMAD1-phosphorylation, and elevated secretion of the soluble BMP-inhibitor Gremlin from the MSPC-Adipo cells. Ebf1-deficient progenitors also exhibited posttranslational suppression of glucocorticoid receptor expression. Together, these results suggest that EBF1 signaling is required for mesenchymal progenitor mobilization to maintain the adult skeleton, and that the primary action of EBF1 in the early mesenchymal lineage is to promote proliferation, and differentiation of these perivascular cells to sustain a healthy tissue.
Collapse
Affiliation(s)
- Tracy A Nelson
- Yale School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, United States of America
| | - Stephen Tommasini
- Yale School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, United States of America
| | - Jackie A Fretz
- Yale School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, United States of America.
| |
Collapse
|
57
|
Campbell MJ, Bustamante-Gomez C, Fu Q, Beenken KE, Reyes-Pardo H, Smeltzer MS, O'Brien CA. RANKL-mediated osteoclast formation is required for bone loss in a murine model of Staphylococcus aureus osteomyelitis. Bone 2024; 187:117181. [PMID: 38960295 PMCID: PMC11325436 DOI: 10.1016/j.bone.2024.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Staphylococcus aureus osteomyelitis leads to extensive bone destruction. Osteoclasts are bone resorbing cells that are often increased in bone infected with S. aureus. The cytokine RANKL is essential for osteoclast formation under physiological conditions but in vitro evidence suggests that inflammatory cytokines may by-pass the requirement for RANKL. The goal of this study was to determine whether RANKL-dependent osteoclast formation is essential for the bone loss that occurs in a murine model of S. aureus osteomyelitis. To this end, humanized-RANKL mice were infected by direct inoculation of S. aureus into a unicortical defect in the femur. Mice were treated with vehicle or denosumab, a human monoclonal antibody that inhibits RANKL, both before and during a 14-day infection period. The severe cortical bone destruction caused by infection was completely prevented by denosumab administration even though the bacterial burden in the femur was not affected. Osteoclasts were abundant near the inoculation site in vehicle-treated mice but absent in denosumab-treated mice. In situ hybridization demonstrated that S. aureus infection potently stimulated RANKL expression in bone marrow stromal cells. The extensive reactive bone formation that occurs in this osteomyelitis model was also reduced by denosumab administration. Lastly, there was a notable lack of osteoblasts near the infection site suggesting that the normal coupling of bone formation to bone resorption was disrupted by S. aureus infection. These results demonstrate that RANKL-mediated osteoclast formation is required for the bone loss that occurs in S. aureus infection and suggest that disruption of the coupling of bone formation to bone resorption may also contribute to bone loss in this condition.
Collapse
Affiliation(s)
- Mara J Campbell
- Department of Microbiology and Immunology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Cecile Bustamante-Gomez
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Qiang Fu
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Karen E Beenken
- Department of Microbiology and Immunology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Humberto Reyes-Pardo
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America.
| | - Charles A O'Brien
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States of America.
| |
Collapse
|
58
|
Jia H, Li H, Rong Y, Jiang K, Liang X, Li G. Knowledge Mapping of Macrophages in Osteoporosis: A Bibliometric Analysis (1999-2023). Orthop Surg 2024; 16:2326-2343. [PMID: 38982570 PMCID: PMC11456733 DOI: 10.1111/os.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Osteoporosis is a common metabolic disorder that significantly impacts quality of life in the elderly population. Macrophages play a crucial role in the development of osteoporosis by regulating bone metabolism through cytokine secretion. However, there is a lack of scholarly literature in the field of bibliometrics on this topic. OBJECTIVE This study provides a detailed analysis of the research focus and knowledge structure of macrophage studies in osteoporosis using bibliometrics. METHODS The scientific literature on macrophage research in the context of osteoporosis, retrieved from the Web of Science Core Collection (WoSCC) database spanning from January 1999 to December 2023, has been incorporated for bibliometric examination. The data is methodically analyzed and visually represented using analytical and visualization tools including VOSviewer, CiteSpace, Scimago Graphica, the Bibliometrix R package, and Pajek. RESULTS AND CONCLUSIONS In the last quarter-century, there has been a consistent rise in the quantity of scholarly publications focusing on the relationship between macrophages and osteoporosis, resulting in a total of 1499 research documents. These studies have originated from 45 different countries, with China, South Korea, and the United States being the most prominent contributors, and the United States having the highest frequency of citations. Noteworthy research institutions involved in this field include Shanghai Jiao Tong University, Wonkwang University, Huazhong University of Science and Technology, and Seoul National University. The Journal of Bone and Mineral Research is widely regarded as the premier and most frequently referenced publication in the field. These publications involve the collaboration of 8744 authors, with Lee Myeung Su contributing the most articles, and Takayanagi being the most co-cited author. Key emerging research focal points are encapsulated in keywords such as "mTOR," "BMSCs," "bone regeneration," and "exosome." The relationships between exosome from macrophage sources and those from BMSCs, along with the regulatory role of the mTOR signaling pathway on macrophages, represent crucial directions for future development in this field. This study represents the inaugural comprehensive bibliometric analysis detailing trends and advancements in macrophage research within the osteoporosis domain. It delineates recent frontiers and hotspots, providing valuable insights for researchers in this particular area of study.
Collapse
Affiliation(s)
- Hai‐Feng Jia
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Han‐Zheng Li
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yi‐Fa Rong
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Kai Jiang
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Xue‐Zhen Liang
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Gang Li
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
59
|
Yahyavi SK, Jorsal MJ, Holt R, Nøhr B, Blomberg Jensen M. Novel approach for oligospermia (NAPO) - Protocol for a randomized controlled trial. Contemp Clin Trials Commun 2024; 41:101352. [PMID: 39280787 PMCID: PMC11395747 DOI: 10.1016/j.conctc.2024.101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Background Infertility affects millions of couples globally, with up to 40-50 % of cases linked to impaired semen quality. Insemination or in vitro fertilization are used frequently, regardless of the cause of infertility due to the lack of specific medical interventions for male infertility. Denosumab, an antibody blocking RANKL signaling, may enhance semen quality in infertile men. This randomized controlled trial evaluates if denosumab improves spermatogenesis in men with severely impaired semen quality identified by serum AMH levels as a predictive marker. Methods NAPO is a single-center, sponsor-investigator-initiated, placebo-controlled, double-blinded randomized trial. Subjects will be randomized in a 2:1 fashion to receive either denosumab 60 mg subcutaneously or a placebo. The study will be carried out at the Division of Translational Endocrinology, Copenhagen University Hospital, Herlev, Denmark. The primary outcome of the study is defined as the difference in sperm concentration (millions/mL) at one spermatogenesis (80 days) after inclusion. Discussion An important step in addressing infertility is establishing a viable treatment option for male infertility. With this study, we describe the protocol for a planned RCT aimed at evaluating whether treatment with denosumab can improve sperm concentration in men with severely impaired semen quality. The results of this study will provide evidence crucial for future treatment in a patient group where treatment options are minimal at best. Trial registration Clinical Trials: NCT06300229. Registered on March 12, 2024. Clinical Trials Information System (CTIS): 2023-508325-27-00. Approved on December 19, 2023.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Joon Jorsal
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Rune Holt
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Bugge Nøhr
- Department of Obstetrics and Gynecology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
60
|
Xu H, Ban W, Tian J, Xu J, Tan Z, Li S, Chen K, Ou M, Li K. The New Roles of traf6 Gene Involved in the Development of Zebrafish Liver and Gonads. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:917-930. [PMID: 38861111 DOI: 10.1007/s10126-024-10329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Traf6, an adaptor protein, exhibits non-conventional E3 ubiquitin ligase activity and was well studied as an important factor in immune systems and cancerogenesis. In mice, the traf6-null caused a perinatal death, so that the underlying pathophysiology of traf6-defeciency is still largely unclear in animals. Here, in the present study, a traf6 knockout zebrafish line (traf6-/-) was generated and could survive until adulthood, providing a unique opportunity to demonstrate the functions of traf6 gene in animals' organogenesis beyond the mouse model. The body of traf6-/- fish was found to be significantly shorter than that of the wildtype (WT). Likewise, a comparative transcriptome analysis showed that 866 transcripts were significantly altered in the traf6-/- liver, mainly involved in the immune system, metabolic pathways, and progesterone-mediated oocyte maturation. Especially, the mRNA expression of the pancreas duodenum homeobox protein 1 (pdx1), glucose-6-phosphatase (g6pcb), and the vitellogenesis genes (vtgs) were significantly decreased in the traf6-/- liver. Subsequently, the glucose was found to be accumulated in the traf6-/- liver tissues, and the meiotic germ cell was barely detected in traf6-/- testis or ovary. The findings of this study firstly implied the pivotal functions of traf6 gene in the liver and gonads' development in fish species.
Collapse
Affiliation(s)
- Hongyan Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China.
| | - Wenzhuo Ban
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Jiaming Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Jianfei Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Zhimin Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Sendong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Kaili Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Mi Ou
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kaibin Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
61
|
Badulescu OV, Scripcariu DV, Badescu MC, Ciocoiu M, Vladeanu MC, Plesoianu CE, Bojan A, Iliescu-Halitchi D, Tudor R, Huzum B, Frasinariu OE, Bararu-Bojan I. Biomarkers Involved in the Pathogenesis of Hemophilic Arthropathy. Int J Mol Sci 2024; 25:9897. [PMID: 39337384 PMCID: PMC11432147 DOI: 10.3390/ijms25189897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Hemophilia, which is a rare disease, results from congenital deficiencies of coagulation factors VIII and IX, respectively, leading to spontaneous bleeding into joints, resulting in hemophilic arthropathy (HA). HA involves complex processes, including synovial proliferation, angiogenesis, and tissue remodeling. Despite ongoing research, factors contributing to HA progression, especially in adults with severe HA experiencing joint pain, remain unclear. Blood markers, particularly collagen-related ones, have been explored to assess joint health in hemophilia. For example, markers like CTX-I and CTX-II reflect bone and cartilage turnover, respectively. Studies indicate elevated levels of certain markers post-bleeding episodes, suggesting joint health changes. However, longitudinal studies on collagen turnover and basement membrane or endothelial cell markers in relation to joint outcomes, particularly during painful episodes, are scarce. Given the role of the CX3CL1/CX3XR1 axis in arthritis, other studies investigate its involvement in HA. The importance of different inflammatory and bone damage biomarkers should be assessed, alongside articular cartilage and synovial membrane morphology, aiming to enhance understanding of hemophilic arthropathy progression.
Collapse
Affiliation(s)
- Oana Viola Badulescu
- Department of Pathophysiology, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Dragos-Viorel Scripcariu
- Department of Surgical Sciences, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Minerva Codruta Badescu
- Department of Internal Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Maria Cristina Vladeanu
- Department of Pathophysiology, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Carmen Elena Plesoianu
- Department of Internal Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Andrei Bojan
- Department of Surgical Sciences, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Dan Iliescu-Halitchi
- Department of Internal Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Razvan Tudor
- Department of Surgical Sciences, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Bogdan Huzum
- Department of Surgical Sciences, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Otilia Elena Frasinariu
- Department of Pediatry, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| | - Iris Bararu-Bojan
- Department of Pathophysiology, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania
| |
Collapse
|
62
|
Triguero-Martínez A, Pardines M, Montes N, Ortiz AM, de la Iglesia-Cedeira A, Valero-Martínez C, Martín J, González-Álvaro I, Castañeda S, Lamana A. Genetic Variants in RANK and OPG Could Influence Disease Severity and Bone Remodeling in Patients with Early Arthritis. Life (Basel) 2024; 14:1109. [PMID: 39337893 PMCID: PMC11433004 DOI: 10.3390/life14091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to identify single-nucleotide polymorphisms (SNPs) in bone remodeling-related genes associated with disease severity and bone mineral density (BMD) in early arthritis (EA) patients. For this purpose, the genotyping of 552 SNPs located in gene regions of semaphorins 4b, 4d, 4f, DKK1, 2 and 3, sclerostin, OPG, RANK and RANKL was performed using Immunochip from Illumina Inc. in 268 patients from the Princesa Early Arthritis Register Longitudinal (PEARL) study. Measurements of BMD and disease activity were chosen as outcome variables to select SNPs of interest. The relationships of SNPs with the BMD of the forearm, lumbar spine and hip (Hologic-4500 QDR) were analyzed by linear regression adjusted for age, sex, body mass index and presence of anti-citrullinated peptide antibodies (ACPAs). The association of each SNP with activity variables was analyzed by linear regression, logistic regression or ordered logistic regression according to the variable, and multivariate models were adjusted for potentially confounding variables, such as age, sex and presence of ACPAs. These analyses showed that four SNPs located in the genes coding for RANK (TNFRSF11A) and OPG (TNFRSF11B) were significantly associated with clinical variables of severity. SNP rs1805034 located in exon 6 of TNFRSF11A, which causes a non-synonymous (A/V) mutation, showed significant association with BMD and therefore may be considered as a possible biomarker of severity in RA patients. SNPs in the OPG gene showed an association with serum OPG levels and predicted disease activity after two years of follow-up.
Collapse
Affiliation(s)
- Ana Triguero-Martínez
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Marisa Pardines
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Nuria Montes
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Ana María Ortiz
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | | | - Cristina Valero-Martínez
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, 18016 Granada, Spain
| | - Isidoro González-Álvaro
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Santos Castañeda
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Amalia Lamana
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
63
|
Kitazawa R, Haraguchi R, Murata Y, Takaoka Y, Kitazawa S. CpG Methylation of Receptor Activator NF-κB (RANK) Gene Promoter Region Delineates Senescence-Related Decrease of RANK Gene Expression. Acta Histochem Cytochem 2024; 57:137-147. [PMID: 39228907 PMCID: PMC11367149 DOI: 10.1267/ahc.24-00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
While the rapid decrease in estrogen is well known as the main cause of postmenopausal osteoporosis in women, the precise pathogenesis of senile osteoporosis in the elderly regardless of gender is largely unknown. The age-related epigenetic regulation of receptor activator NF-κB (RANK) gene expression was investigated with the use of a high-passaged mouse osteoclast progenitor cell line, RAW264.7, as an in vitro model of aging. In the RAW264.7 cells after repeated passages, receptor RANK expression was downregulated, resulting in decreased soluble RANK ligand (sRANKL)-induced osteoclastogenesis, expression of tartrate-resistant acid phosphatase-5b (TRAcP) and cathepsin K (CTSK). Methylation-specific PCR and bisulfite mapping revealed hypermethylation of CpG-loci located in the RANK gene promoter in multiple-passaged cells. ICON probe-mediated in situ assessment of methylated-cytosine at the CpG loci revealed an increase in the percentage of methylated RAW264.7 cells in the RANK gene in a passage-dependent manner. Conversely, upon treatment with demethylating agent 5-aza-2-deoxycytidine (5-aza-dC), high-passaged RAW264.7 cells displayed restored expression of the RANK gene, osteoclastogenesis, TRAcP and CTSK. Ex vivo cultures of splenic macrophages from young (10.5 W) and aged (12 M) mice also showed that CpG methylation was predominant in the aged animals, resulting in reduced RANK expression and osteoclastogenesis. Reduced RANK expression by age-related accumulation of DNA methylation, albeit in a limited population of osteoclast precursor cells, might be, at least in part, indicative of low-turnover bone characteristic of senile osteoporosis.
Collapse
Affiliation(s)
- Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Diagnostic Pathology, Ehime University Hospital, Toon, Ehime, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yuki Murata
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yuki Takaoka
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
64
|
Liao M, Zhu X, Lu Y, Yi X, Hu Y, Zhao Y, Ye Z, Guo X, Liang M, Jin X, Zhang H, Wang X, Zhao Z, Chen Y, Yan H. Multi-omics profiling of retinal pigment epithelium reveals enhancer-driven activation of RANK-NFATc1 signaling in traumatic proliferative vitreoretinopathy. Nat Commun 2024; 15:7324. [PMID: 39183203 PMCID: PMC11345415 DOI: 10.1038/s41467-024-51624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
During the progression of proliferative vitreoretinopathy (PVR) following ocular trauma, previously quiescent retinal pigment epithelial (RPE) cells transition into a state of rapid proliferation, migration, and secretion. The elusive molecular mechanisms behind these changes have hindered the development of effective pharmacological treatments, presenting a pressing clinical challenge. In this study, by monitoring the dynamic changes in chromatin accessibility and various histone modifications, we chart the comprehensive epigenetic landscape of RPE cells in male mice subjected to traumatic PVR. Coupled with transcriptomic analysis, we reveal a robust correlation between enhancer activation and the upregulation of the PVR-associated gene programs. Furthermore, by constructing transcription factor regulatory networks, we identify the aberrant activation of enhancer-driven RANK-NFATc1 pathway as PVR advanced. Importantly, we demonstrate that intraocular interventions, including nanomedicines inhibiting enhancer activity, gene therapies targeting NFATc1 and antibody therapeutics against RANK pathway, effectively mitigate PVR progression. Together, our findings elucidate the epigenetic basis underlying the activation of PVR-associated genes during RPE cell fate transitions and offer promising therapeutic avenues targeting epigenetic modulation and the RANK-NFATc1 axis for PVR management.
Collapse
Affiliation(s)
- Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Zhu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Youhui Hu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Zhisheng Ye
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Minghui Liang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziming Zhao
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
65
|
Monti F, Perazza F, Leoni L, Stefanini B, Ferri S, Tovoli F, Zavatta G, Piscaglia F, Petroni ML, Ravaioli F. RANK-RANKL-OPG Axis in MASLD: Current Evidence Linking Bone and Liver Diseases and Future Perspectives. Int J Mol Sci 2024; 25:9193. [PMID: 39273141 PMCID: PMC11395242 DOI: 10.3390/ijms25179193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD)-and its worse form, metabolic-associated steatohepatitis (MASH), characterised by inflammation and liver damage-corresponds to the liver's involvement in metabolic syndrome, which constitutes an economic burden for healthcare systems. However, the biomolecular pathways that contribute to steatotic liver disease are not completely clear. Abnormalities of bone metabolism are frequent in people affected by metabolic liver disease, with reduced bone density and an increased risk of fracture. Receptor activator of NF-κB (RANK), receptor activator of NF-κB ligand (RANKL), and osteoprotegerin(OPG) are critical regulators of bone metabolism, performing pleiotropic effects, and may have potential involvement in metabolic disorders like MASLD, resulting in a topic of great interest and intrigue. This narrative review aims to investigate this potential role and its implications in MASLD development and progression and in hepatocellular carcinoma, which represents its worst complication.
Collapse
Affiliation(s)
- Federico Monti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
| | - Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
| | - Laura Leoni
- Department of Dietetics and Clinical Nutrition, Maggiore-Bellaria Hospital, Azienda Unità Sanitaria Locale (AUSL), 40138 Bologna, Italy;
| | - Bernardo Stefanini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Silvia Ferri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Guido Zavatta
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Unit of Clinical Nutrition and Metabolism, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
66
|
Hernández-Sandoval EM, Sánchez-Gutiérrez R, Torres-Monjarás AP, Alvarado-Hernández DL, Méndez-González V, Hernández-Castro B, Bernal-Silva S, Comas-García A, Martínez-Rider R, González-Amaro R, Vitales-Noyola M. α-IRAK-4 Suppresses the Activation of RANK/RANKL Pathway on Macrophages Exposed to Endodontic Microorganisms. Int J Mol Sci 2024; 25:8434. [PMID: 39126003 PMCID: PMC11313395 DOI: 10.3390/ijms25158434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Periapical lesions are common pathologies affecting the alveolar bone, often initiated by intraradicular lesions resulting from microbial exposure to dental pulp. These microorganisms trigger inflammatory and immune responses. When endodontic treatment fails to eliminate the infection, periapical lesions persist, leading to bone loss. The RANK/RANKL/OPG pathway plays a crucial role in both the formation and the destruction of the bone. In this study, the objective was to inhibit the RANK/RANKL pathway in vitro within exposed Thp-1 macrophages to endodontic microorganisms, specifically Enterococcus faecalis, which was isolated from root canals of 20 patients with endodontic secondary/persistent infection, symptomatic and asymptomatic, and utilizing an α-IRAK-4 inhibitor, we introduced endodontic microorganisms and/or lipoteichoic acid from Streptococcus spp. to cellular cultures in a culture plate, containing thp-1 cells and/or PBMC from patients with apical periodontitis. Subsequently, we assessed the percentages of RANK+, RANKL+, and OPG+ cells through flow cytometry and measured the levels of several inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) in the cellular culture supernatant through a CBA kit and performed analysis by flow cytometry. A significant difference was observed in the percentages of RANK+RANKL+, OPG+ RANKL+ cells in thp-1 cells and PBMCs from patients with apical periodontitis. The findings revealed significant differences in the percentages of the evaluated cells, highlighting the novel role of the IRAK-4 inhibitor in addressing this oral pathology, apical periodontitis, where bone destruction is observed.
Collapse
Affiliation(s)
- Elsa Montserrat Hernández-Sandoval
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| | - Raquel Sánchez-Gutiérrez
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
- Department of Molecular and Translational Medicine, School of Medicine, Texas Tech University Health Sciences, El Paso, TX 79905, USA
| | - Ana Patricia Torres-Monjarás
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| | - Diana Lorena Alvarado-Hernández
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
| | - Verónica Méndez-González
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| | - Berenice Hernández-Castro
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
| | - Sofía Bernal-Silva
- Department of Microbiology, Faculty of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (S.B.-S.); (A.C.-G.)
| | - Andreu Comas-García
- Department of Microbiology, Faculty of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (S.B.-S.); (A.C.-G.)
- School of Medicine, Cuauhtemoc University, Manuel Nava 3291, San Luis Potosi 78290, SLP, Mexico
| | - Ricardo Martínez-Rider
- Oral and Maxillofacial Surgery Specialty, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico;
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
| | - Marlen Vitales-Noyola
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| |
Collapse
|
67
|
Rong Y, Liang X, Jiang K, Jia H, Li H, Lu B, Li G. Global Trends in Research of Programmed Cell Death in Osteoporosis: A Bibliometric and Visualized Analysis (2000-2023). Orthop Surg 2024; 16:1783-1800. [PMID: 38923347 PMCID: PMC11293941 DOI: 10.1111/os.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis (OP) is a systemic metabolic bone disease that is characterized by decreased bone mineral density and microstructural damage to bone tissue. Recent studies have demonstrated significant advances in the research of programmed cell death (PCD) in OP. However, there is no bibliometric analysis in this research field. This study searched the Web of Science Core Collection (WoSCC) database for literature related to OP and PCD from 2000 to 2023. This study used VOSviewers 1.6.20, the "bibliometrix" R package, and CiteSpace (6.2.R3) for bibliometric and visualization analysis. A total of 2905 articles from 80 countries were included, with China and the United States leading the way. The number of publications related to PCD in OP is increasing year by year. The main research institutions are Shanghai Jiao Tong University, Chinese Medical University, Southern Medical University, Zhejiang University, and Soochow University. Bone is the most popular journal in the field of PCD in OP, and the Journal of Bone and Mineral Research is the most co-cited journal. These publications come from 14,801 authors, with Liu Zong-Ping, Yang Lei, Manolagas Stavros C, Zhang Wei, and Zhao Hong-Yan having published the most papers. Ronald S. Weinstein was co-cited most often. Oxidative stress and autophagy are the current research hot spots for PCD in OP. This bibliometric study provides the first comprehensive summary of trends and developments in PCD research in OP. This information identifies the most recent research frontiers and hot directions, which will provide a definitive reference for scholars studying PCD in OP.
Collapse
Affiliation(s)
- Yi‐fa Rong
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Xue‐Zhen Liang
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Kai Jiang
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Hai‐Feng Jia
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Han‐Zheng Li
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Bo‐Wen Lu
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Gang Li
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
68
|
Konno T, Murachi H, Otsuka K, Kimura Y, Sampei C, Arasaki Y, Kohara Y, Hayata T. Ctdnep1 phosphatase is required for negative regulation of RANKL-induced osteoclast differentiation in RAW264.7 cells. Biochem Biophys Res Commun 2024; 719:150063. [PMID: 38749090 DOI: 10.1016/j.bbrc.2024.150063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Osteoclasts are multinucleated cells with bone resorption activity. Excessive osteoclast activity has been implicated in osteoporosis, rheumatoid arthritis, and bone destruction due to bone metastases from cancer, making osteoclasts essential target cells in bone and joint diseases. C-terminal domain nuclear envelope phosphatase 1 (Ctdnep1, formerly Dullard) is a negative regulator of transforming growth factor (TGF)-β superfamily signaling and regulates endochondral ossification in mesenchymal cells during skeletal development. In this study, we investigated the role of Ctdnep1 in the Receptor activator of nuclear factor-kappa B ligand (RANKL)-induced RAW264.7 osteoclast differentiation. Expression of Ctdnep1 did not change during osteoclast differentiation; Ctdnep1 protein localized to the cytoplasm before and after osteoclast differentiation. Small interfering RNA-mediated knockdown of Ctdnep1 increased tartrate-resistant acid phosphatase-positive multinucleated osteoclasts and the expression of osteoclast marker genes, including Acp5, Ctsk, and Nfatc1. Interestingly, the knockdown of Ctdnep1 increased the protein level of Nfatc1 in cells unstimulated with RANKL. Knockdown of Ctdnep1 also enhanced calcium-resorbing activity. Mechanistically, the knockdown of Ctdnep1 increased the phosphorylation of RANKL signaling components. These results suggest that Ctdnep1 negatively regulates osteoclast differentiation by suppressing the RANKL signaling pathway.
Collapse
Affiliation(s)
- Takuto Konno
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Hitomi Murachi
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Kanon Otsuka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yuta Kimura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yasuhiro Arasaki
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yukihiro Kohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan.
| |
Collapse
|
69
|
Cavalcanti de Araújo PH, Cezine MER, Vulczak A, Vieira LC, Matsuo FS, Remoto JM, Santos ADR, Miyabara EH, Alberici LC, Osako MK. RANKL signaling drives skeletal muscle into the oxidative profile. J Bone Miner Res 2024; 39:753-764. [PMID: 38619281 DOI: 10.1093/jbmr/zjae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The bone-muscle unit refers to the reciprocal regulation between bone and muscle by mechanical interaction and tissue communication via soluble factors. The RANKL stimulation induces mitochondrial biogenesis and increases the oxidative capacity in osteoclasts and adipocytes. RANKL may bind to the membrane bound RANK or to osteoprotegerin (OPG), a decoy receptor that inhibits RANK-RANKL activation. RANK is highly expressed in skeletal muscle, but the contribution of RANKL to healthy skeletal muscle fiber remains elusive. Here we show that RANKL stimulation in C2C12-derived myotubes induced activation of mitochondrial biogenesis pathways as detected by RNA-seq and western blot. RANKL expanded the mitochondrial reticulum, as shown by mitochondrial DNA quantification and MitoTracker staining, and boosted the spare respiratory capacity. Using MEK and MAPK inhibitors, we found that RANKL signals via ERK and p38 to induce mitochondrial biogenesis. The soleus from OPG-/- and OPG+/- mice showed higher respiratory rates compared to C57BL6/J WT mice, which correlates with high serum RANKL levels. RANKL infusion using a mini-osmotic pump in WT mice increased the number of mitochondria, boosted the respiratory rate, increased succinate dehydrogenase activity in skeletal muscle, and improved the fatigue resistance of gastrocnemius. Therefore, our findings reveal a new role of RANKL as an osteokine-like protein that impacts muscle fiber metabolism.
Collapse
Affiliation(s)
- Paulo Henrique Cavalcanti de Araújo
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Maria Eduarda Ramos Cezine
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Anderson Vulczak
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo 14040-903, Brazil
| | - Luiz Carlos Vieira
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Flávia Sayuri Matsuo
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Júlia Maranghetti Remoto
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Audrei Dos Reis Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Elen Haruka Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo 14040-903, Brazil
| | - Mariana Kiomy Osako
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
70
|
Nair AS, Woodford J, Loughland J, Andrew D, Piera K, Amante F, William T, Grigg MJ, McCarthy JS, Anstey NM, Boyle MJ, Barber BE. Osteoprotegerin (OPG) and its ligands RANKL and TRAIL in falciparum, vivax and knowlesi malaria: correlations with disease severity, and B cell production of OPG. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310838. [PMID: 39108527 PMCID: PMC11302609 DOI: 10.1101/2024.07.22.24310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Osteoprotegerin (OPG) is a soluble decoy receptor for receptor activator of NF-ƙB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL), and is increasingly recognised as a marker of poor prognosis in a number of diseases. Here we demonstrate that in Malaysian adults with falciparum and vivax malaria, OPG is increased, and its ligands TRAIL and RANKL decreased, in proportion to disease severity. In volunteers experimentally infected with P. falciparum and P. vivax, RANKL was suppressed, while TRAIL was unexpectedly increased, suggesting binding of OPG to RANKL prior to TRAIL. We also demonstrate that P. falciparum stimulates B cells to produce OPG in vitro, and that B cell OPG production is increased ex vivo in patients with falciparum, vivax and knowlesi malaria. Our findings provide further evidence of the importance of the OPG/RANKL/TRAIL pathway in pathogenesis of diseases involving systemic inflammation, and may have implications for adjunctive therapies. Further evaluation of the role of B cell production of OPG in host responses to malaria and other inflammatory diseases is warranted.
Collapse
Affiliation(s)
| | - John Woodford
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Jessica Loughland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Burnet Institute, Melbourne, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kim Piera
- Menzies School of Health Research, Darwin, Australia
| | - Fiona Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Michelle J Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Burnet Institute, Melbourne, Australia
| | - Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Menzies School of Health Research, Darwin, Australia
| |
Collapse
|
71
|
Xuan Z, Chen X, Zhou W, Shen Y, Sun Z, Zhang H, Yao Z. Exploring causal correlations between circulating cytokines and atopic dermatitis: a bidirectional two-sample Mendelian randomization study. Front Immunol 2024; 15:1367958. [PMID: 39055710 PMCID: PMC11269137 DOI: 10.3389/fimmu.2024.1367958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives Numerous observational studies have reported associations between circulating cytokines and atopic dermatitis (AD); however, the causal relationships between them remain unclear. To explore the causal correlations and direction of causal effects between AD and levels of 91 circulating cytokines. Methods Two-sample Mendelian randomization (MR) analyses were conducted to examine the causal relationships between 91 circulating cytokines and AD using summary statistics from genome-wide association studies (GWAS). Reverse MR analyses were performed to investigate reverse causation. Pleiotropy and heterogeneity tests were conducted to assess the robustness of the findings. Additional transcriptome database and clinical peripheral blood mononuclear cells (PBMCs) samples were utilized to validate the results of MR analyses. Results Levels of interleukin (IL)-13, IL-18 Receptor 1, Tumor necrosis factor ligand superfamily member 14 (TNFSF14), TNF-related activation-induced cytokine (TRANCE), C-X-C motif chemokine (CXCL)11, IL-33, TNF-beta and CD5 were suggestively associated with the risk of AD (odds ratio, OR: 1.202, 95% CI: 1.018-1.422, p = 0.030; OR: 1.029, 95% CI: 1.029-1.157, p = 0.004; OR: 1.159, 95% CI: 1.018-1.320, p = 0.026; OR: 1.111, 95% CI: 1.016-1.214, p = 0.020; OR: 0.878, 95% CI: 0.783-0.984, p = 0.025; OR: 0.809, 95% CI: 0.661-0.991, p = 0.041; OR: 0.945, 95% CI: 0.896-0.997, p = 0.038; OR: 0.764, 95% CI: 0.652-0.895, p = 8.26e-04). In addition, levels of cytokines including Axin-1, CXCL5, CXCL10, Oncostatin-M (OSM), Sulfotransferase 1A1 (SULT1A1) and TNFSF14 were suggested to be consequences of AD (Beta: -0.080, p = 0.016; Beta: -0.062, p = 0.036; Beta: -0.066, p = 0.049; Beta: -0.073, p = 0.013; Beta: -0.089, p = 0.008; Beta: -0.079, p = 0.031). IL-13, IL-18R1, TNFSF14, and TRANCE were upregulated in both lesional skin biopsies and PBMCs from AD patients. Conclusion The study indicates that several cytokines, including IL-13, IL-18R1, TNFSF14, TRANCE, CXCL11, IL-33, TNF-beta, and CD5, are upstream of AD development, whereas a few circulating cytokines are potentially downstream in the development of AD.
Collapse
Affiliation(s)
- Zhenquan Xuan
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuanyi Chen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weinan Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihang Shen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Sun
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
72
|
Peng Y, Zhao H, Hu S, Ma Y, Han T, Meng C, Tong X, Zou H, Liu Z, Song R. Exploring the impact of osteoprotegerin on osteoclast and precursor fusion: Mechanisms and modulation by ATP. Differentiation 2024; 138:100789. [PMID: 38896972 DOI: 10.1016/j.diff.2024.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.
Collapse
Affiliation(s)
- Yunwen Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Sinan Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chuang Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
73
|
Okamoto K. Crosstalk between bone and the immune system. J Bone Miner Metab 2024; 42:470-480. [PMID: 39060500 DOI: 10.1007/s00774-024-01539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Bone functions not only as a critical element of the musculoskeletal system but also serves as the primary lymphoid organ harboring hematopoietic stem cells (HSCs) and immune progenitor cells. The interdisciplinary field of osteoimmunology has illuminated the dynamic interactions between the skeletal and immune systems, vital for the maintenance of skeletal tissue homeostasis and the pathogenesis of immune and skeletal diseases. Aberrant immune activation stimulates bone cells such as osteoclasts and osteoblasts, disturbing the bone remodeling and leading to skeletal disorders as seen in autoimmune diseases like rheumatoid arthritis. On the other hand, intricate multicellular network within the bone marrow creates a specialized microenvironment essential for the maintenance and differentiation of HSCs and the progeny. Dysregulation of immune-bone crosstalk in the bone marrow environment can trigger tumorigenesis and exacerbated inflammation. A comprehensive deciphering of the complex "immune-bone crosstalk" leads to a deeper understanding of the pathogenesis of immune diseases as well as skeletal diseases, and might provide insight into potential therapeutic approaches.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
74
|
Wang Z, Luo W, Zhang G, Li H, Zhou F, Wang D, Feng X, Xiong Y, Wu Y. FoxO1 knockdown inhibits RANKL-induced osteoclastogenesis by blocking NLRP3 inflammasome activation. Oral Dis 2024; 30:3272-3285. [PMID: 37927112 DOI: 10.1111/odi.14800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES This study aimed to elucidate the connection between osteoclastic forkhead transcription factor O1 (FoxO1) and periodontitis and explore the underlying mechanism by which FoxO1 knockdown regulates osteoclast formation. MATERIALS AND METHODS A conventional ligature-induced periodontitis model was constructed to reveal the alterations in the proportion of osteoclastic FoxO1 in periodontitis via immunofluorescence staining. Additionally, RNA sequencing (RNA-seq) was performed to explore the underlying mechanisms of FoxO1 knockdown-mediated osteoclastogenesis, followed by western blotting, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS FoxO1+ osteoclasts were enriched in the alveolar bone in experimental periodontitis. Moreover, FoxO1 knockdown led to impaired osteoclastogenesis with low expression of osteoclast differentiation-related genes, accompanied by an insufficient osteoclast maturation phenotype. Mechanistically, RNA-seq revealed that the nuclear factor kappa B (NF-κB) and nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling pathways were inhibited in FoxO1-knockdown osteoclasts. Consistent with this, MCC950, an effective inhibitor of the NLRP3 inflammasome, substantially attenuated osteoclast formation. CONCLUSIONS FoxO1 knockdown contributed to the inhibition of osteoclastogenesis by effectively suppressing NF-κB signaling and NLRP3 inflammasome activation. This prospective study reveals the role of FoxO1 in mediating osteoclastogenesis and provides a viable therapeutic target for periodontitis treatment.
Collapse
Affiliation(s)
- Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuan Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
75
|
Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, Duan X, Zhao X, Zhou W, Jiang Q, Xiao G, Zou W, Chen D, Zou Z, Bai X. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab 2024; 36:1144-1163.e7. [PMID: 38574738 DOI: 10.1016/j.cmet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.
Collapse
Affiliation(s)
- Wenquan Liang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiantian Wei
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meijun Chen
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liping Tong
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wu Zhou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingwei Duan
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
76
|
Rattajak P, Aroonkesorn A, Smythe C, Wititsuwannakul R, Pitakpornpreecha T. Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway. Molecules 2024; 29:2113. [PMID: 38731604 PMCID: PMC11085266 DOI: 10.3390/molecules29092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Edible grey oyster mushroom, Pleurotus sajor-caju, β (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom β-glucan using Hevea β-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.
Collapse
Affiliation(s)
- Purithat Rattajak
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
| | - Aratee Aroonkesorn
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Rapepun Wititsuwannakul
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Thanawat Pitakpornpreecha
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| |
Collapse
|
77
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
78
|
Yahyavi SK, Holt R, Knudsen NK, Andreassen CH, Sejling C, Meddis A, Kjaer SK, Schwarz P, Jensen JEB, Torp-Pedersen C, Juul A, Selmer C, Blomberg Jensen M. Cancer risk in patients treated with denosumab compared with alendronate: A population-based cohort study. Bone 2024; 182:117053. [PMID: 38395247 DOI: 10.1016/j.bone.2024.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Antiresorptive treatment is currently used in millions of patients with osteoporosis and cancer worldwide. Early studies of denosumab suggested a small signal in ovarian cancer incidence and emerging data suggest that denosumab stimulates germ cell proliferation in the gonads. This study aims to determine the association between the use of denosumab and the risk of reproductive cancers compared with the use of alendronate. RESEARCH DESIGN AND METHODS Using a cohort study design, we used the Danish nationwide registries to identify a population of subjects ≥50 years of age during 2010-2017 who started denosumab after being on alendronate treatment for at least six months. The cohort was matched 1:2 with patients who had been treated with alendronate alone for at least six months. The risk of reproductive cancers and the risk difference between groups were estimated using the Longitudinal Targeted Maximum Likelihood Estimation (L-TMLE) method. RESULTS We identified 6054 Danish individuals who underwent treatment with denosumab. These individuals were matched with 12,108 receiving alendronate. The absolute risk of reproductive cancer was 1.05 % (95 % CI 0.75-1.34) after three years for denosumab users and was not different 0.03 % (-0.34-0.39) than for alendronate users. In supplemental analyses, there was no increased risk of non-reproductive cancers associated with the use of denosumab (risk difference of 0.54 % (-0.41-1.19). Analysis comparing denosumab users with the general population gave similar results. CONCLUSION There was no difference in the risk of cancer following treatment with denosumab compared to treatment with alendronate assessed after a short follow-up of 3 years.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Rune Holt
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Nadia Krarup Knudsen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Christine Hjorth Andreassen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Christoffer Sejling
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra Meddis
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Susanne K Kjaer
- Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Cancer Institute, Unit of Virus, Lifestyle and Genes, Copenhagen, Denmark
| | - Peter Schwarz
- Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Erik Beck Jensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Department of Cardiology, Nordsjaellands Hospital, Denmark; Department of Public Health, University of Copenhagen, Denmark
| | - Anders Juul
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Christian Selmer
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark.
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
79
|
Muratovic D, Atkins GJ, Findlay DM. Is RANKL a potential molecular target in osteoarthritis? Osteoarthritis Cartilage 2024; 32:493-500. [PMID: 38160744 DOI: 10.1016/j.joca.2023.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease of joints, in which the bone under the articular cartilage undergoes increased remodelling activity. The question is whether a better understanding of the causes and mechanisms of bone remodelling can predict disease-modifying treatments. DESIGN This review summarises the current understanding of the aetiology of OA, with an emphasis on events in the subchondral bone (SCB), and the cells and cytokines involved, to seek an answer to this question. RESULTS SCB remodelling across OA changes the microstructure of the SCB, which alters the load-bearing properties of the joint and seems to have an important role in the initiation and progression of OA. Bone remodelling is tightly controlled by numerous cytokines, of which Receptor Activator of NFκB ligand (RANKL) and osteoprotegerin are central factors in almost all known bone conditions. In terms of finding therapeutic options for OA, an important question is whether controlling the rate of SCB remodelling would be beneficial. The role of RANKL in the pathogenesis and progression of OA and the effect of its neutralisation remain to be clarified. CONCLUSIONS This review further makes the case for SCB remodelling as important in OA and for additional study of RANKL in OA, both its pathophysiological role and its potential as an OA disease target.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
80
|
Yoshida S, Ikedo A, Yanagihara Y, Sakaue T, Saeki N, Imai Y. Bub1 suppresses inflammatory arthritis-associated bone loss in mice through inhibition of TNFα-mediated osteoclastogenesis. J Bone Miner Res 2024; 39:341-356. [PMID: 38477771 PMCID: PMC11240161 DOI: 10.1093/jbmr/zjae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 03/14/2024]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovitis, bone and cartilage destruction, and increased fracture risk with bone loss. Although disease-modifying antirheumatic drugs have dramatically improved clinical outcomes, these therapies are not universally effective in all patients because of the heterogeneity of RA pathogenesis. Therefore, it is necessary to elucidate the molecular mechanisms underlying RA pathogenesis, including associated bone loss, in order to identify novel therapeutic targets. In this study, we found that Budding uninhibited by benzimidazoles 1 (BUB1) was highly expressed in RA patients' synovium and murine ankle tissue with arthritis. As CD45+CD11b+ myeloid cells are a Bub1 highly expressing population among synovial cells in mice, myeloid cell-specific Bub1 conditional knockout (Bub1ΔLysM) mice were generated. Bub1ΔLysM mice exhibited reduced femoral bone mineral density when compared with control (Ctrl) mice under K/BxN serum-transfer arthritis, with no significant differences in joint inflammation or bone erosion based on a semi-quantitative erosion score and histological analysis. Bone histomorphometry revealed that femoral bone mass of Bub1ΔLysM under arthritis was reduced by increased osteoclastic bone resorption. RNA-seq and subsequent Gene Set Enrichment Analysis demonstrated a significantly enriched nuclear factor-kappa B pathway among upregulated genes in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated bone marrow-derived macrophages (BMMs) obtained from Bub1ΔLysM mice. Indeed, osteoclastogenesis using BMMs derived from Bub1ΔLysM was enhanced by RANKL and tumor necrosis factor-α or RANKL and IL-1β treatment compared with Ctrl. Finally, osteoclastogenesis was increased by Bub1 inhibitor BAY1816032 treatment in BMMs derived from wildtype mice. These data suggest that Bub1 expressed in macrophages plays a protective role against inflammatory arthritis-associated bone loss through inhibition of inflammation-mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Aoi Ikedo
- Division of Integrative Pathophysiology, Proteo-Science Center (PROS), Ehime University, Toon, Ehime, 791-0295, Japan
| | - Yuta Yanagihara
- Division of Integrative Pathophysiology, Proteo-Science Center (PROS), Ehime University, Toon, Ehime, 791-0295, Japan
| | - Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Toon, Ehime, 791-0295, Japan
| | - Noritaka Saeki
- Division of Integrative Pathophysiology, Proteo-Science Center (PROS), Ehime University, Toon, Ehime, 791-0295, Japan
- Division of Medical Research Support, Advanced Research Support Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Yuuki Imai
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
- Division of Integrative Pathophysiology, Proteo-Science Center (PROS), Ehime University, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
81
|
Kim JE, Park SG, Ka DB, Kim EK, Cho SM, Kim HR, Lee MN, Choi KC, Yoon WK, Nam KH. Phf7 has impacts on the body growth and bone remodeling by regulating testicular hormones in male mice. Biochem Biophys Res Commun 2024; 704:149596. [PMID: 38430697 DOI: 10.1016/j.bbrc.2024.149596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
PHD finger protein 7 (Phf7) is a member of the PHF family proteins, which plays important roles in spermiogenesis. Phf7 is expressed in the adult testes and its deficiency causes male infertility. In this study, we tried to find the causal relationship between Phf7 deficiency and reduced growth retardation which were found in null knock-out (Phf7-/-) mice. Phf7-/- mice were born normally in the Mendelian ratio. However, the Phf7-/- males showed decreased body weight gain, bone mineral density, and bone mineral content compared to those in wild-type (WT) mice. Histological analysis for tibia revealed increased number of osteoclast cells in Phf7-/- mice compared with that in WT mice. When we analyzed the expressions for marker genes for the initial stage of osteoclastogenesis, such as receptor activator of nuclear factor kappa B (Rank) in tibia, there was no difference in the mRNA levels between Phf7-/- and WT mice. However, the expression of tartrate-resistant acid phosphatase (Trap), a mature stage marker gene, was significantly higher in Phf7-/- mice than in WT mice. In addition, the levels of testosterone and dihydrotestosterone (DHT), more potent and active form of testosterone, were significantly reduced in the testes of Phf7-/- mice compared to those in WT mice. Furthermore, testicular mRNA levels for steroidogenesis marker genes, namely Star, Cyp11a1, Cyp17a1 and 17β-hsd, were significantly lower in Phf7-/- mice than in WT mice. In conclusion, these results suggest that Phf7 deficiency reduces the production of male sex hormones and thereby impairs associated bone remodeling.
Collapse
Affiliation(s)
- Ji Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seul Gi Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Dan Bi Ka
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Eun-Kyoung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hae-Rim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Mi Ni Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Kyung-Chul Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Won Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
82
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
83
|
Li Z, Lu W, Yin F, Zeng P, Li H, Huang A. Overexpression of TNFSF11 reduces GPX4 levels and increases sensitivity to ferroptosis inducers in lung adenocarcinoma. J Transl Med 2024; 22:340. [PMID: 38594779 PMCID: PMC11005202 DOI: 10.1186/s12967-024-05112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), the most common and lethal subtype of lung cancer, continues to be a major health concern worldwide. Despite advances in targeted and immune therapies, only a minority of patients derive substantial benefits. As a result, the urgent need for novel therapeutic strategies to improve lung cancer treatment outcomes remains undiminished. METHODS In our study, we employed the TIMER database to scrutinize TNFSF11 expression across various cancer types. We further examined the differential expression of TNFSF11 in normal and tumor tissues utilizing the TCGA-LUAD dataset and tissue microarray, and probed the associations between TNFSF11 expression and clinicopathological parameters within the TCGA-LUAD dataset. We used the GSE31210 dataset for external validation. To identify genes strongly linked to TNFSF11, we engaged LinkedOmics and conducted a KEGG pathway enrichment analysis using the WEB-based Gene SeT AnaLysis Toolkit. Moreover, we investigated the function of TNFSF11 through gene knockdown or overexpression approaches and explore its function in tumor cells. The therapeutic impact of ferroptosis inducers in tumors overexpressing TNFSF11 were also investigated through in vivo and in vitro experiments. Through these extensive analyses, we shed light on the potential role of TNFSF11 in lung adenocarcinoma, underscoring potential therapeutic targets for this malignancy. RESULTS This research uncovers the overexpression of TNFSF11 in LUAD patients and its inverse correlation with peroxisome-related enzymes. By utilizing gene knockdown or overexpression assays, we found that TNFSF11 was negatively associated with GPX4. Furthermore, cells with TNFSF11 overexpression were relatively more sensitive to the ferroptosis inducers. CONCLUSIONS Our research has provided valuable insights into the role of TNFSF11, revealing its negative regulation of GPX4, which could be influential in crafting therapeutic strategies. These findings set the stage for further exploration into the mechanisms underpinning the relationship between TNFSF11 and GPX4, potentially opening up new avenues for precision medicine in the treatment of LUAD.
Collapse
Affiliation(s)
- Zizhen Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Feng Yin
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Peiting Zeng
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Heping Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Amin Huang
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
84
|
Wang Y, Zuo Z, Shi J, Fang Y, Yin Z, Wang Z, Yang Z, Jia B, Sun Y. Modulatory role of neuropeptide FF system in macrophages. Peptides 2024; 174:171164. [PMID: 38272240 DOI: 10.1016/j.peptides.2024.171164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Neuropeptide FF (NPFF) is an octapeptide that regulates various cellular processes, especially pain perception. Recently, there has been a growing interest in understanding the modulation of NPFF in neuroendocrine inflammation. This review aims to provide a thorough overview of the regulation of NPFF in macrophage-mediated biological processes. We delve into the impact of NPFF on macrophage polarization, self-renewal modulation, and the promotion of mitophagy, facilitating the transition from thermogenic fat to fat-storing adipose tissue. Additionally, we explore the NPFF-dependent regulation of the inflammatory response mediated by macrophages, its impact on the differentiation of macrophages, and its capacity to induce alterations in the transcriptome of macrophages. We also address the potential of NPFF as a therapeutic molecule in the field of neuroendocrine inflammation. Overall, our work offers an understanding of the influence of NPFF on macrophage, facilitating the exploration of its pharmacological significance in future studies.
Collapse
Affiliation(s)
- Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Jiajia Shi
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yanwei Fang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhongqian Yin
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
85
|
Menger MM, Emmerich M, Scheuer C, Hans S, Braun BJ, Herath SC, Rollmann MF, Menger MD, Laschke MW, Histing T. Sildenafil delays bone remodeling of fractured femora in aged mice by reducing the number and activity of osteoclasts within the callus tissue. Biomed Pharmacother 2024; 173:116291. [PMID: 38442669 DOI: 10.1016/j.biopha.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
The elderly exhibit a reduced healing capacity after fracture, which is often associated with delayed or failed bone healing. This is due to a plethora of factors, such as an impaired bone vascular system and delayed angiogenesis. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil exerts pro-angiogenic and pro-osteogenic effects. Hence, we herein investigated in aged mice whether sildenafil can improve fracture healing. For this purpose, 40 aged CD-1 mice (16-18 months) were daily treated with 5 mg/kg body weight sildenafil (n = 20) or vehicle (control, n = 20) by oral gavage. The callus tissue of their femora was analyzed at 2 and 5 weeks after fracture by X-ray, biomechanics, micro-computed tomography (µCT), histology, immunohistochemistry as well as Western blotting. These analyses revealed a significantly increased bone volume and higher ratio of callus to femoral bone diameter in sildenafil-treated mice at 5 weeks after fracture when compared to controls. This was associated with a reduced number and activity of osteoclasts at 2 weeks after fracture, most likely caused by an increased expression of osteoprotegerin (OPG). Taken together, these findings indicate that sildenafil does not improve fracture healing in the elderly but delays the process of bone remodeling most likely by reducing the number and activity of osteoclasts within the callus tissue.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany; Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany.
| | - Maximilian Emmerich
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| | - Mika F Rollmann
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
86
|
Arasaki Y, Hayata T. The RNA-binding protein Cpeb4 regulates splicing of the Id2 gene in osteoclast differentiation. J Cell Physiol 2024; 239:e31197. [PMID: 38284484 DOI: 10.1002/jcp.31197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Cytoplasmic polyadenylation element-binding protein 4 (Cpeb4) is an RNA-binding protein that regulates posttranscriptional regulation, such as regulation of messenger RNA stability and translation. In the previous study, we reported that Cpeb4 localizes to nuclear bodies upon induction of osteoclast differentiation by RANKL. However, the mechanisms of the localization of Cpeb4 and osteoclastogenesis by Cpeb4 remain unknown. Here, we show that Cpeb4 localizes to the nuclear bodies by its RNA-binding ability and partially regulates normal splicing during osteoclast differentiation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis with Phos-tag® revealed that the phosphorylation levels of Cpeb4 were already high in the RAW264.7 cells and were not altered by RANKL treatment. Immunofluorescence showed that exogenous Cpeb4 in HEK293T cells without RANKL stimulation localized to the same foci as shown in RANKL-stimulated RAW264.7 cells. Furthermore, when nuclear export was inhibited by leptomycin B treatment, Cpeb4 accumulated throughout the nucleus. Importantly, RNA recognition motif (RRM) 7 of Cpeb4 was essential for the localization. In contrast, the intrinsically disordered region, RRM1, and zinc finger domain CEBP_ZZ were not necessary for the localization. The mechanistic study showed that Cpeb4 co-localized and interacted with the splicing factors serine/arginine-rich splicing factor 5 (SRSF5) and SRSF6, suggesting that Cpeb4 may be involved in the splicing reaction. RNA-sequencing analysis revealed that the expression of genes related to cell proliferation processes, such as mitotic cell cycle and regulation of cell cycle processes, was elevated in osteoclasts depleted of Cpeb4. Interestingly, the splicing pattern of the inhibitor of DNA binding 2 (Id2) gene, which suppresses osteoclast differentiation, was altered by the depletion of Cpeb4. These results provide new insight into the role of Cpeb4 as a player of normal splicing of Id2 in osteoclast differentiation.
Collapse
Affiliation(s)
- Yasuhiro Arasaki
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Science, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Science, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
87
|
Giannakopoulos A, Efthymiadou A, Kritikou D, Chrysis D. Osteoprotegerin in infection-induced acute inflammatory states in children. Heliyon 2024; 10:e27565. [PMID: 38509997 PMCID: PMC10951505 DOI: 10.1016/j.heliyon.2024.e27565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Background and aims Osteoprotegerin (OPG) is a tumor necrosis factor receptor superfamily member which increases in chronic inflammation and is associated with altered bone turnover and cardiovascular complications. In this study, we investigated whether OPG increases during acute inflammatory states induced by infections in children and correlated its levels with other biomarkers. Materials and methods This is a prospective study that included 59 patients with documented bacterial infections, 20 with viral infections and 20 healthy controls. OPG, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and white blood cells (WBC) were measured. Results OPG serum levels were significantly increased during inflammation induced by a bacterial infection, compared to viral infection and controls (4.17 pmol/l (2.40-12.12) vs 3.2 (1.66-5.33) and 3 pmol/l (2.13-4.76), respectively, p < 0.001). In addition, OPG correlated well with CRP (rho = 0.428, p = 0.0011), ESR (rho = 0.3, p = 0.026), and WBC (rho = 0.266, p = 0.05) only in the group with bacterial infection. The sensitivity of CRP in detecting a bacterial infection was superior to OPG (67.3% vs 38.3%). Conclusion This study provides proof of concept that OPG increases differentially in bacterial infections, although with a lower sensitivity than CRP. Further studies are needed to define the role of OPG during the inflammatory states of infection in pediatric infections.
Collapse
Affiliation(s)
- Aristeidis Giannakopoulos
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| | - Alexandra Efthymiadou
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| | - Dimitra Kritikou
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| | - Dionisios Chrysis
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| |
Collapse
|
88
|
Karadayi A, Sarsmaz H, Çigel A, Engiz B, Ünal N, Ürkmez S, Gürgen S. Does Microwave Exposure at Different Doses in the Pre/Postnatal Period Affect Growing Rat Bone Development? Physiol Res 2024; 73:157-172. [PMID: 38466013 PMCID: PMC11019611 DOI: 10.33549/physiolres.935148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/15/2024] [Indexed: 04/26/2024] Open
Abstract
Effects of pre/postnatal 2.45 GHz continuous wave (CW), Wireless-Fidelity (Wi-Fi) Microwave (MW) irradiation on bone have yet to be well defined. The present study used biochemical and histological methods to investigate effects on bone formation and resorption in the serum and the tibia bone tissues of growing rats exposed to MW irradiation during the pre/postnatal period. Six groups were created: one control group and five experimental groups subjected to low-level different electromagnetic fields (EMF) of growing male rats born from pregnant rats. During the experiment, the bodies of all five groups were exposed to 2.45 GHz CW-MW for one hour/day. EMF exposure started after fertilization in the experimental group. When the growing male rats were 45 days old in the postnatal period, the control and five experimental groups' growing male and maternal rats were sacrificed, and their tibia tissues were removed. Maternal rats were not included in the study. No differences were observed between the control and five experimental groups in Receptor Activator Nuclear factor-kB (RANK) biochemical results. In contrast, there was a statistically significant increase in soluble Receptor Activator of Nuclear factor-kB Ligand (sRANKL) and Osteoprotegerin (OPG) for 10 V/m and 15 V/m EMF values. Histologically, changes in the same groups supported biochemical results. These results indicate that pre/postnatal exposure to 2.45 GHz EMF at 10 and 15 V/m potentially affects bone development.
Collapse
Affiliation(s)
- A Karadayi
- Department of Biophysics, Medicine Faculty, Ondokuz Mayis University, Samsun, Republic of Türkiye.
| | | | | | | | | | | | | |
Collapse
|
89
|
Peng X, Wang T, Wang Q, Zhao Y, Xu H, Yang H, Gu Y, Tao Y, Yan B, Xu Y, Geng D. Pan-histone deacetylase inhibitor vorinostat suppresses osteoclastic bone resorption through modulation of RANKL-evoked signaling and ameliorates ovariectomy-induced bone loss. Cell Commun Signal 2024; 22:160. [PMID: 38439009 PMCID: PMC10913587 DOI: 10.1186/s12964-024-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Estrogen deficiency-mediated hyperactive osteoclast represents the leading role during the onset of postmenopausal osteoporosis. The activation of a series of signaling cascades triggered by RANKL-RANK interaction is crucial mechanism underlying osteoclastogenesis. Vorinostat (SAHA) is a broad-spectrum pan-histone deacetylase inhibitor (HDACi) and its effect on osteoporosis remains elusive. METHODS The effects of SAHA on osteoclast maturation and bone resorptive activity were evaluated using in vitro osteoclastogenesis assay. To investigate the effect of SAHA on the osteoclast gene networks during osteoclast differentiation, we performed high-throughput transcriptome sequencing. Molecular docking and the assessment of RANKL-induced signaling cascades were conducted to confirm the underlying regulatory mechanism of SAHA on the action of RANKL-activated osteoclasts. Finally, we took advantage of a mouse model of estrogen-deficient osteoporosis to explore the clinical potential of SAHA. RESULTS We showed here that SAHA suppressed RANKL-induced osteoclast differentiation concentration-dependently and disrupted osteoclastic bone resorption in vitro. Mechanistically, SAHA specifically bound to the predicted binding site of RANKL and blunt the interaction between RANKL and RANK. Then, by interfering with downstream NF-κB and MAPK signaling pathway activation, SAHA negatively regulated the activity of NFATc1, thus resulting in a significant reduction of osteoclast-specific gene transcripts and functional osteoclast-related protein expression. Moreover, we found a significant anti-osteoporotic role of SAHA in ovariectomized mice, which was probably realized through the inhibition of osteoclast formation and hyperactivation. CONCLUSION These data reveal a high affinity between SAHA and RANKL, which results in blockade of RANKL-RANK interaction and thereby interferes with RANKL-induced signaling cascades and osteoclastic bone resorption, supporting a novel strategy for SAHA application as a promising therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Tianhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214000, Jiangsu, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ye Gu
- Department of Orthopedics, Changshu First People's Hospital Affiliated to Soochow University, Changshu, 215500, Jiangsu, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Bangsheng Yan
- Department of Orthopedics, Huishan Second People's Hospital, Wuxi, 214174, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
90
|
Jiang Z, Qi G, He X, Yu Y, Cao Y, Zhang C, Zou W, Yuan H. Ferroptosis in Osteocytes as a Target for Protection Against Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307388. [PMID: 38233202 PMCID: PMC10966575 DOI: 10.1002/advs.202307388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Ferroptosis is a necrotic form of iron-dependent regulatory cell death. Estrogen withdrawal can interfere with iron metabolism, which is responsible for the pathogenesis of postmenopausal osteoporosis (PMOP). Here, it is demonstrated that estrogen withdrawal induces iron accumulation in the skeleton and the ferroptosis of osteocytes, leading to reduced bone mineral density. Furthermore, the facilitatory effect of ferroptosis of osteocytes is verified in the occurrence and development of postmenopausal osteoporosis is associated with over activated osteoclastogenesis using a direct osteocyte/osteoclast coculture system and glutathione peroxidase 4 (GPX4) knockout ovariectomized mice. In addition, the nuclear factor erythroid derived 2-related factor-2 (Nrf2) signaling pathway is confirmed to be a crucial factor in the ferroptosis of osteocytic cells. Nrf2 regulates the expression of nuclear factor kappa-B ligand (RANKL) by regulating the DNA methylation level of the RANKL promoter mediated by DNA methyltransferase 3a (Dnmt3a), which is as an important mechanism in osteocytic ferroptosis-mediated osteoclastogenesis. Taken together, this data suggests that osteocytic ferroptosis is involved in PMOP and can be targeted to tune bone homeostasis.
Collapse
Affiliation(s)
- Zengxin Jiang
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Guobin Qi
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Xuecheng He
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yifan Yu
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yuting Cao
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Changqing Zhang
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Weiguo Zou
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Hengfeng Yuan
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
91
|
Chakraborty A, Porwal K, Raman S, Chandra Yadav S, Vishnubhatla S, Kochhar KP, Jain S. Superparamagnetic Iron Oxide Nanoparticle Implantation and Magnetic Field Exposure Modulate Bone Microarchitecture Following Spinal Cord Injury in Adult Male Rats. Ann Neurosci 2024:09727531231223569. [PMID: 39544667 PMCID: PMC11559731 DOI: 10.1177/09727531231223569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Background: Osteoporosis is one of the detrimental effects of spinal cord injury (SCI), leading to bone loss. It has already been established that superparamagnetic nanoparticles when exposed to an external magnetic field (MF) show strong magnetisation and promote locomotor recovery. Purpose: The aim of the present study is to explore the role of magnetised nanoparticles in ameliorating SCI-induced osteoporosis. Methods: The rats were divided into Sham, SCI, SCI+MF, SCI+V, SCI+NP and SCI+NP+MF groups. A complete transection was performed at the T13 level, followed by iron oxide nanoparticle implantation along with MF exposure for 7 or 14 days. Results: A significant increase in locomotor score was evident at day 5 in all groups except in the SCI+V group, and at day 7, all groups showed a significant increase in Basso, Beattie and Bresnahan score as compared to the pre-surgery score at week 1 of the study period. A significant decrease in bone volume/total volume ratio and trabecular thickness and increase in trabecular separation were observed in all groups as compared to Sham. A significant increase in trabecular thickness in the SCI+NP+MF group as compared to the SCI+MF group was observed after one week. After two weeks, the SCI+MF group showed a significant increase in locomotor scores at days 5 and 13 as compared to the SCI, SCI+V and SCI+NP groups. Bone loss was significantly observed in all groups except SCI+MF, as compared to Sham. Cortical bone showed no significant change at both time points. On histopathological examination of the spinal cord, we observed significant improvement in lesion volume in SCI+MF and SCI+NP+MF groups after one week, whereas only the SCI+NP+MF group showed a significant decrease after two weeks. Conclusion: Electromagnetic field stimulation partially restored bone architecture after superparamagnetic nanoparticle implantation, which may be due to reduced lesion volume and improved locomotor behaviour.
Collapse
Affiliation(s)
- Arpita Chakraborty
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Neurology, Institute of Neurosciences, Kolkata, West Bengal, India
| | - Konica Porwal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, India
| | - Srishty Raman
- Electron Microscopy Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Subhash Chandra Yadav
- Electron Microscopy Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | | - Kanwal Preet Kochhar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
92
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
93
|
Her Y, Yun J, Son HY, Heo W, Kim JI, Moon HG. Potential Perturbations of Critical Cancer-regulatory Genes in Triple-Negative Breast Cancer Cells Within the Humanized Microenvironment of Patient-derived Xenograft Models. J Breast Cancer 2024; 27:37-53. [PMID: 38233337 PMCID: PMC10912577 DOI: 10.4048/jbc.2023.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE In this study, we aimed to establish humanized patient-derived xenograft (PDX) models for triple-negative breast cancer (TNBC) using cord blood (CB) hematopoietic stem cells (HSCs). Additionally, we attempted to characterize the immune microenvironment of the humanized PDX model to understand the potential implications of altered tumor-immune interactions in the humanized PDX model on the behavior of TNBC cells. METHODS To establish a humanized mouse model, high-purity CD34+ HSCs from CB were transplanted into immunodeficient NOD scid γ mice. Peripheral and intratumoral immune cell compositions of humanized and non-humanized mice were compared. Additionally, RNA sequencing of the tumor tissues was performed to characterize the gene expression features associated with humanization. RESULTS After transplanting the CD34+ HSCs, CD45+ human immune cells appeared within five weeks. A humanized mouse model showed viable human immune cells in the peripheral blood, lymphoid organs, and in the tumor microenvironment. Humanized TNBC PDX models showed varying rates of tumor growth compared to that of non-humanized mice. RNA sequencing of the tumor tissue showed significant alterations in tumor tissues from the humanized models. tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) is a shared downregulated gene in tumor tissues from humanized models. Silencing of TNFRSF11B in TNBC cell lines significantly reduced cell proliferation, migration, and invasion in vitro. Additionally, TNFRSF11B silenced cells showed decreased tumorigenicity and metastatic capacity in vivo. CONCLUSION Humanized PDX models successfully recreated tumor-immune interactions in TNBC. TNFRSF11B, a commonly downregulated gene in humanized PDX models, may play a key role in tumor growth and metastasis. Differential tumor growth rates and gene expression patterns highlighted the complexities of the immune response in the tumor microenvironment of humanized PDX models.
Collapse
Affiliation(s)
- Yujeong Her
- Interdisciplinary Graduate Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jihui Yun
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Youn Son
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Woohang Heo
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeong-Gon Moon
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
94
|
Ramchand SK, Tsai JN, Lee H, Sassana-Khadka G, Jordan M, Ryan S, Leder BZ. The comparison of alendronate and raloxifene after denosumab (CARD) study: A comparative efficacy trial. Osteoporos Int 2024; 35:255-263. [PMID: 37798320 DOI: 10.1007/s00198-023-06932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Denosumab discontinuation results in accelerated bone remodeling, decreased bone mineral density (BMD), and an increased risk of multiple vertebral fractures. Bisphosphonates are at least partially effective at inhibiting these consequences but there have been no randomized clinical trials assessing the efficacy of alternative antiresorptives. PURPOSE The aim of this study was to evaluate the comparative efficacy of alendronate and the SERM, raloxifene, in preventing the post-denosumab high-turnover bone loss. METHODS We conducted an open-label randomized controlled trial in which 51 postmenopausal women at increased risk of fracture were randomized with equal probability to receive 12-months of denosumab 60-mg 6-monthly followed by 12-months of either alendronate 70-mg weekly or raloxifene 60-mg daily. Serum bone remodeling markers were measured at 0,6,12,15,18, and 24 and areal BMD of the distal radius, spine, and hip were measured at 0,12,18 and 24 months. RESULTS After denosumab discontinuation, serum markers of bone remodeling remained suppressed when followed by alendronate, but gradually increased to baseline when followed by raloxifene. In the denosumab-to-alendronate group, denosumab-induced BMD gains were maintained at all sites whereas in the denosumab-to-raloxifene group, BMD decreased at the spine by 2.0% (95% CI -3.2 to -0.8, P = 0.003) and at the total hip by 1.2% (-2.1 to -0.4%, P = 0.008), but remained stable at the femoral neck and distal radius and above the original baseline at all sites. The decreases in spine and total hip BMD in the denosumab-to-raloxifene group (but not the femoral neck or distal radius) were significant when compared to the denosumab-to-alendronate group. CONCLUSIONS These results suggest that after one year of denosumab, one year of alendronate is better able to maintain the inhibition of bone remodeling and BMD gains than raloxifene.
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | - Joy N Tsai
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Grace Sassana-Khadka
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Mackenzie Jordan
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Savannah Ryan
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Benjamin Z Leder
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
95
|
Zhou W, Zhang W, Yan S, Zhang K, Wu H, Chen H, Shi M, Zhou T. Novel Therapeutic Targets on the Horizon: An Analysis of Clinical Trials on Therapies for Bone Metastasis in Prostate Cancer. Cancers (Basel) 2024; 16:627. [PMID: 38339378 PMCID: PMC10854912 DOI: 10.3390/cancers16030627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
In the absence of early detection and initial treatment, prostate cancer often progresses to an advanced stage, frequently spreading to the bones and significantly impacting patients' well-being and healthcare resources. Therefore, managing patients with prostate cancer that has spread to the bones often involves using bone-targeted medications like bisphosphonates and denosumab to enhance bone structure and minimize skeletal complications. Additionally, researchers are studying the tumor microenvironment and biomarkers to understand the mechanisms and potential treatment targets for bone metastases in prostate cancer. A literature search was conducted to identify clinical studies from 2013 to 2023 that focused on pain, performance status, or quality of life as primary outcomes. The analysis included details such as patient recruitment, prior palliative therapies, baseline characteristics, follow-up, and outcome reporting. The goal was to highlight the advancements and trends in bone metastasis research in prostate cancer over the past decade, with the aim of developing strategies to prevent and treat bone metastases and improve the quality of life and survival rates for prostate cancer patients.
Collapse
Affiliation(s)
- Wenhao Zhou
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (S.Y.); (K.Z.); (H.W.)
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China;
| | - Shi Yan
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (S.Y.); (K.Z.); (H.W.)
| | - Kaixuan Zhang
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (S.Y.); (K.Z.); (H.W.)
| | - Han Wu
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (S.Y.); (K.Z.); (H.W.)
| | - Hongyu Chen
- School of Medicine, Tongji University, Shanghai 200092, China;
| | - Minfeng Shi
- Reproduction Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tie Zhou
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (S.Y.); (K.Z.); (H.W.)
| |
Collapse
|
96
|
Takada A, Asano T, Nakahama KI, Ono T, Nakata T, Ishii T. Development of an optogenetics tool, Opto-RANK, for control of osteoclast differentiation using blue light. Sci Rep 2024; 14:1749. [PMID: 38242937 PMCID: PMC10799070 DOI: 10.1038/s41598-024-52056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Optogenetics enables precise regulation of intracellular signaling in target cells. However, the application of optogenetics to induce the differentiation of precursor cells and generate mature cells with specific functions has not yet been fully explored. Here, we focused on osteoclasts, which play an important role in bone remodeling, to develop a novel optogenetics tool, Opto-RANK, which can manipulate intracellular signals involved in osteoclast differentiation and maturation using blue light. We engineered Opto-RANK variants, Opto-RANKc and Opto-RANKm, and generated stable cell lines through retroviral transduction. Differentiation was induced by blue light, and various assays were conducted for functional analysis. Osteoclast precursor cells expressing Opto-RANK differentiated into multinucleated giant cells on light exposure and displayed upregulation of genes normally induced in differentiated osteoclasts. Furthermore, the differentiated cells exhibited bone-resorbing activities, with the possibility of spatial control of the resorption by targeted light illumination. These results suggested that Opto-RANK cells differentiated by light possess the features of osteoclasts, both morphological and functional. Thus, Opto-RANK should be useful for detailed spatiotemporal analysis of intracellular signaling during osteoclast differentiation and the development of new therapies for various bone diseases.
Collapse
Affiliation(s)
- Aiko Takada
- Department of Orthodontic Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Toshifumi Asano
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- The Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Tomohiro Ishii
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Present Address: Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
97
|
Lee YJ, Ahn JC, Oh CH. Oxyresveratrol attenuates bone resorption by inhibiting the mitogen-activated protein kinase pathway in ovariectomized rats. Nutr Metab (Lond) 2024; 21:7. [PMID: 38243227 PMCID: PMC10799353 DOI: 10.1186/s12986-024-00781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Bone is continuously produced by osteoblasts and resorbed by osteoclasts to maintain homeostasis. Impaired bone resorption by osteoclasts causes bone diseases such as osteoporosis and arthritis. Most pharmacological treatment of osteoporosis focuses on inhibiting osteoclast differentiation, often to restore osteoclast/osteoclast balance. However, recent osteoporosis treatments have various side effects. According to a recent study, resveratrol, known as a stilbenoid family, is known to increase bone density, and the osteoclast inhibitory effect was confirmed using oxyresveratrol, a stilbenoid family. Here, we investigated the effect of oxyresveratrol on osteoclast differentiation and an ovariectomized mouse model. METHODS Mouse leukemia monocyte/macrophage cell line RAW 264.7 was treated with oxyresveratrol, and cell cytotoxicity was confirmed by measuring MTT assay. Tartrate-resistant acid phosphatase (TRAP), an enzyme marker for osteoclasts, was confirmed by staining. In addition, osteoclast differentiation markers and MAPK-related markers were confirmed at the mRNA level and protein expression. The effect of oxyresveratrol was confirmed using ovariectomized mice. Deoxypyridinoline (DPD) was measured using mouse urine and TRAP activity was observed using serum. Bone mineral density was also measured using Micro-CT. RESULTS The polyphenol oxyresveratrol inhibited receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation of RAW 264.7 cells. Furthermore, oxyresveratrol inhibited TRAP activity and actin-ring formation. Moreover, oxyresveratrol suppressed the phosphorylation of the RANKL-induced mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK and significantly reduced the expression of bone differentiation markers (NFATc1, cathepsin K, and TRAP). CONCLUSION Oxyresveratrol inhibits osteoclast differentiation via MAPK and increases bone density in ovariectomized rats, suggesting it has therapeutic potential for bone diseases such as osteoporosis. We confirmed the osteoporosis prevention effect of OR in Raw 264.7 cells, and future studies should confirm the effect of OR using rat bone marrow-derived cells.
Collapse
Affiliation(s)
- Yea-Jin Lee
- Department of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea
- Medical Laser Research Center, Graduate School of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea
- Department of Photobiology, College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea
| | - Jin-Chul Ahn
- Department of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
- Medical Laser Research Center, Graduate School of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
- Department of Photobiology, College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
| | - Chung-Hun Oh
- Medical Laser Research Center, Graduate School of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
- Department of Oral Physiology, College of Dentistry, Dankook University, Cheonan-si, 31116, Republic of Korea.
| |
Collapse
|
98
|
Zhao S, Qiao Z, Pfeifer R, Pape HC, Mao K, Tang H, Meng B, Chen S, Liu H. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res 2024; 29:38. [PMID: 38195489 PMCID: PMC10775505 DOI: 10.1186/s40001-023-01604-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
The senescence-associated secretory phenotype (SASP) is a generic term for the secretion of cytokines, such as pro-inflammatory factors and proteases. It is a crucial feature of senescent cells. SASP factors induce tissue remodeling and immune cell recruitment. Previous studies have focused on the beneficial role of SASP during embryonic development, wound healing, tissue healing in general, immunoregulation properties, and cancer. However, some recent studies have identified several negative effects of SASP on fracture healing. Senolytics is a drug that selectively eliminates senescent cells. Senolytics can inhibit the function of senescent cells and SASP, which has been found to have positive effects on a variety of aging-related diseases. At the same time, recent data suggest that removing senescent cells may promote fracture healing. Here, we reviewed the latest research progress about SASP and illustrated the inflammatory response and the influence of SASP on fracture healing. This review aims to understand the role of SASP in fracture healing, aiming to provide an important clinical prevention and treatment strategy for fracture. Clinical trials of some senolytics agents are underway and are expected to clarify the effectiveness of their targeted therapy in the clinic in the future. Meanwhile, the adverse effects of this treatment method still need further study.
Collapse
Affiliation(s)
- Shangkun Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Qiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Roman Pfeifer
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Keya Mao
- Chinese PLA General Hospital Beijing, Beijing, 100853, China
| | - Hai Tang
- Beijing Friendship Hospital, Beijing, 100050, China
| | - Bin Meng
- First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Songfeng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
99
|
Abe Y, Kofman ER, Ouyang Z, Cruz-Becerra G, Spann NJ, Seidman JS, Troutman TD, Stender JD, Taylor H, Fan W, Link VM, Shen Z, Sakai J, Downes M, Evans RM, Kadonaga JT, Rosenfeld MG, Glass CK. A TLR4/TRAF6-dependent signaling pathway mediates NCoR coactivator complex formation for inflammatory gene activation. Proc Natl Acad Sci U S A 2024; 121:e2316104121. [PMID: 38165941 PMCID: PMC10786282 DOI: 10.1073/pnas.2316104121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
The nuclear receptor corepressor (NCoR) forms a complex with histone deacetylase 3 (HDAC3) that mediates repressive functions of unliganded nuclear receptors and other transcriptional repressors by deacetylation of histone substrates. Recent studies provide evidence that NCoR/HDAC3 complexes can also exert coactivator functions in brown adipocytes by deacetylating and activating PPARγ coactivator 1α (PGC1α) and that signaling via receptor activator of nuclear factor kappa-B (RANK) promotes the formation of a stable NCoR/HDAC3/PGC1β complex that coactivates nuclear factor kappa-B (NFκB)- and activator protein 1 (AP-1)-dependent genes required for osteoclast differentiation. Here, we demonstrate that activation of Toll-like receptor (TLR) 4, but not TLR3, the interleukin 4 (IL4) receptor nor the Type I interferon receptor, also promotes assembly of an NCoR/HDAC3/PGC1β coactivator complex. Receptor-specific utilization of TNF receptor-associated factor 6 (TRAF6) and downstream activation of extracellular signal-regulated kinase 1 (ERK1) and TANK-binding kinase 1 (TBK1) accounts for the common ability of RANK and TLR4 to drive assembly of an NCoR/HDAC3/PGC1β complex in macrophages. ERK1, the p65 component of NFκB, and the p300 histone acetyltransferase (HAT) are also components of the induced complex and are associated with local histone acetylation and transcriptional activation of TLR4-dependent enhancers and promoters. These observations identify a TLR4/TRAF6-dependent signaling pathway that converts NCoR from a corepressor of nuclear receptors to a coactivator of NFκB and AP-1 that may be relevant to functions of NCoR in other developmental and homeostatic processes.
Collapse
Affiliation(s)
- Yohei Abe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Eric R. Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA92093
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Grisel Cruz-Becerra
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Nathanael J. Spann
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Ty D. Troutman
- Department of Medicine, University of California San Diego, La Jolla, CA92093
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH45229
| | - Joshua D. Stender
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Havilah Taylor
- Department and School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Verena M. Link
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Munich82152, Germany
| | - Zeyang Shen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA92093
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai980-8575, Japan
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - James T. Kadonaga
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Michael G. Rosenfeld
- Department and School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
100
|
Lan H, Wu B, Jin K, Chen Y. Beyond boundaries: unraveling innovative approaches to combat bone-metastatic cancers. Front Endocrinol (Lausanne) 2024; 14:1260491. [PMID: 38260135 PMCID: PMC10800370 DOI: 10.3389/fendo.2023.1260491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Evidence demonstrated that bones, liver, and lungs are the most common metastasis sites in some human malignancies, especially in prostate and breast cancers. Bone is the third most frequent target for spreading tumor cells among these organs and tissues. Patients with bone-metastatic cancers face a grim prognosis characterized by short median survival time. Current treatments have proven insufficient, as they can only inhibit metastasis or tumor progression within the bone tissues rather than providing a curative solution. Gaining a more profound comprehension of the interplay between tumor cells and the bone microenvironment (BME) is of utmost importance in tackling this issue. This knowledge will pave the way for developing innovative diagnostic and therapeutic approaches. This review summarizes the mechanisms underlying bone metastasis and discusses the clinical aspects of this pathologic condition. Additionally, it highlights emerging therapeutic interventions aimed at enhancing the quality of life for patients affected by bone-metastatic cancers. By synthesizing current research, this review seeks to shed light on the complexities of bone metastasis and offer insights for future advancements in patient care.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Bo Wu
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yefeng Chen
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|