51
|
Abstract
PURPOSE OF REVIEW The aim of this review is to describe the local immune circuitry in the peripheral nervous system and its dialogue with systemic immunity under pathological conditions. Specifically, interactions of the immune system with cellular and extracellular components within peripheral nerve and immune functions of tissue-resident endoneurial macrophages and Schwann cells will be discussed. RECENT FINDINGS New insights into the elements involved in the pathogenesis of immune-mediated disorders of the peripheral nervous system provide a better understanding of the complex interplay of these cellular and molecular components in the immunology of the peripheral nervous system. SUMMARY The application of innovative and cutting-edge technologies to the study of immunoinflammatory disorders of the peripheral nervous system provides a better understanding of underlying principles of the organization of the immune network present in the peripheral nerve and its dialogue with the systemic immune system. This may foster the development of specific and highly effective therapies for immune-mediated disorders of the peripheral nerve.
Collapse
Affiliation(s)
- Bernd C Kieseier
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | |
Collapse
|
52
|
Triolo D, Dina G, Lorenzetti I, Malaguti M, Morana P, Del Carro U, Comi G, Messing A, Quattrini A, Previtali SC. Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. J Cell Sci 2006; 119:3981-93. [PMID: 16988027 DOI: 10.1242/jcs.03168] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Axonal loss causes disabling and permanent deficits in many peripheral neuropathies, and may result from inefficient nerve regeneration due to a defective relationship between Schwann cells, axons and the extracellular matrix. These interactions are mediated by surface receptors and transduced by cytoskeletal molecules. We investigated whether peripheral nerve regeneration is perturbed in mice that lack glial fibrillary acidic protein (GFAP), a Schwann-cell-specific cytoskeleton constituent upregulated after damage. Peripheral nerves develop and function normally in GFAP-null mice. However, axonal regeneration after damage was delayed. Mutant Schwann cells maintained the ability to dedifferentiate but showed defective proliferation, a key event for successful nerve regeneration. We also showed that GFAP and the other Schwann-cell-intermediate filament vimentin physically interact in two distinct signaling pathways involved in proliferation and nerve regeneration. GFAP binds integrin alphavbeta8, which initiates mitotic signals soon after damage by interacting with fibrin. Consistently, ERK phosphorylation was reduced in crushed GFAP-null nerves. Vimentin instead binds integrin alpha5beta1, which regulates proliferation and differentiation later in regeneration, and may compensate for the absence of GFAP in mutant mice. GFAP might contribute to form macro-complexes to initiate mitogenic and differentiating signaling for efficient nerve regeneration.
Collapse
Affiliation(s)
- Daniela Triolo
- Neuropathology Unit, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Belvindrah R, Nalbant P, Ding S, Wu C, Bokoch GM, Müller U. Integrin-linked kinase regulates Bergmann glial differentiation during cerebellar development. Mol Cell Neurosci 2006; 33:109-25. [PMID: 16914328 DOI: 10.1016/j.mcn.2006.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 06/08/2006] [Accepted: 06/28/2006] [Indexed: 01/29/2023] Open
Abstract
We demonstrate here that integrin-linked kinase (ILK), a serine/threonine kinase that binds to the beta1 integrin cytoplasmic domain, regulates cerebellar development. Mice with a CNS-restricted knock-out of the Ilk gene show perturbations in the laminar structure of the cerebellar cortex that are associated with defects in Bergmann glial fibers and the formation of meningeal basement membranes. Similar defects have been observed in mice lacking beta1 integrins in the CNS. ILK and beta1 integrins are coexpressed in Bergmann glial cells, and studies with primary cells in culture demonstrate that ILK and CDC42 are required for beta1-integrin-dependent glial process outgrowth. Consistent with these findings, the amount of GTP-bound CDC42 is impaired in the cerebellum of Ilk-deficient mice. We conclude that beta1 integrin, ILK and CDC42 are components of the signaling machinery that regulates glial process outgrowth in the cerebellum. We also show that granule cell precursor proliferation is affected in ILK-deficient mice, but our findings provide strong evidence that proliferative defects are a secondary consequence of ILK function in glia.
Collapse
Affiliation(s)
- Richard Belvindrah
- The Scripps Research Institute, Department of Cell Biology, Institute for Childhood and Neglected Disease, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
54
|
Benninger Y, Colognato H, Thurnherr T, Franklin RJM, Leone DP, Atanasoski S, Nave KA, ffrench-Constant C, Suter U, Relvas JB. Beta1-integrin signaling mediates premyelinating oligodendrocyte survival but is not required for CNS myelination and remyelination. J Neurosci 2006; 26:7665-73. [PMID: 16855094 PMCID: PMC6674273 DOI: 10.1523/jneurosci.0444-06.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous reports, including transplantation experiments using dominant-negative inhibition of beta1-integrin signaling in oligodendrocyte progenitor cells, suggested that beta1-integrin signaling is required for myelination. Here, we test this hypothesis using conditional ablation of the beta1-integrin gene in oligodendroglial cells during the development of the CNS. This approach allowed us to study oligodendroglial beta1-integrin signaling in the physiological environment of the CNS, circumventing the potential drawbacks of a dominant-negative approach. We found that beta1-integrin signaling has a much more limited role than previously expected. Although it was involved in stage-specific oligodendrocyte cell survival, beta1-integrin signaling was not required for axon ensheathment and myelination per se. We also found that, in the spinal cord, remyelination occurred normally in the absence of beta1-integrin. We conclude that, although beta1-integrin may still contribute to other aspects of oligodendrocyte biology, it is not essential for myelination and remyelination in the CNS.
Collapse
|
55
|
Lavdas AA, Franceschini I, Dubois-Dalcq M, Matsas R. Schwann cells genetically engineered to express PSA show enhanced migratory potential without impairment of their myelinating ability in vitro. Glia 2006; 53:868-78. [PMID: 16598779 DOI: 10.1002/glia.20340] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schwann cells, the myelin-forming cells of the PNS, are attractive candidates for remyelination therapy as they can remyelinate CNS axons. Yet their integration in CNS tissue appears hampered, at least in part, by their limited motility in the CNS environment. As the polysialylated (PSA) form of NCAM regulates migration of neural precursors in the CNS and is not expressed by developing Schwann cells, we investigated whether conferring sustained expression of PSA to Schwann cells derived from postnatal rats enhances their motility. Cells were transduced with a retrovirus encoding polysialyl-transferase STX, an enzyme that synthesizes PSA on NCAM. Migration of wild type and transduced cells expressing STX or the marker gene alkaline phosphatase was examined using a gap bridging assay in dissociated cells and by grafting cells in slice cultures of postnatal brain. Migration of PSA expressing cells was significantly increased in both models, as compared to control cells, and this effect was abolished by endoneuraminidase-N stripping of PSA. PSA-positive Schwann cells retained the ability to differentiate in vitro and expressed the Krox20 and P zero myelination markers. When grafted in neonatal cerebellar slices, STX-transduced cells started to myelinate Purkinje cell axons like control cells and make myelin internodes after 2 to 3 weeks. PSA was redistributed on the cell membrane and downregulated during differentiation in pure Schwann cell cultures and slice co-cultures. Thus, migratory properties of PNS myelin-forming cells within the CNS can be enhanced without altering their differentiation program. This finding may be beneficial for the development of remyelination therapies.
Collapse
Affiliation(s)
- Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vas. Sofias, 11521 Athens, Greece
| | | | | | | |
Collapse
|
56
|
Bao L, Lindgren JU, van der Meide P, Zhu SW, Ljunggren H, Zhu J. The critical role of IL-12p40 in initiating, enhancing, and perpetuating pathogenic events in murine experimental autoimmune neuritis. Brain Pathol 2006; 12:420-9. [PMID: 12408228 PMCID: PMC8095878 DOI: 10.1111/j.1750-3639.2002.tb00459.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interleukin 12 (IL-12) is a proinflammatory cytokine with important immunoregulatory activities and is critical in determining the differentiation and generation of Th1 cells. For the present study, we investigated the role of endogenous IL-12 in the pathogenesis of experimental autoimmune neuritis (EAN), which is a CD4+ T-cell mediated autoimmune inflammatory disease of the peripheral nervous system. EAN is used as an animal model for Guillain-Barré syndrome of humans. Here, EAN was established in IL-12 p40 deficient mutant (IL-12-/-) C57BL/6 mice by immunization with P0 peptide 180-199, a purified component of peripheral nerve myelin, and Freund's complete adjuvant. In these IL-12-/- mice the onset of clinical disease was delayed, and the incidence and severity of EAN were significantly reduced compared to that in wild-type mice.The former group's clinical manifestations were associated with less P0-peptide 180-199 induced secretion of interferon-gamma (IFN-gamma) by splenocytes in vitro and low production of anti-P0-peptide 180-199 IgG2b antibodies in serum. Fewer IFN-gamma and TNF-alpha producing cells, but more cells secreting IL-4, were found in sciatic nerve sections from IL-12-/- mice, consistent with impaired Th1 functions and response. However, the IL-12 deficiency appeared not to affect P0 peptide 180-199-specific T-cell proliferation. These results indicate that IL-12 has a major role in the initiation, enhancement and perpetuation of pathogenic events in EAN by promoting a Th1 cell-mediated immune response and suppressing the Th2 response. This information augments consideration of IL-12 as a therapeutic target in Guillain-Barré syndrome and other T-cell-mediated autoimmune diseases.
Collapse
MESH Headings
- Animals
- Antibodies/blood
- Antibodies/immunology
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Cytokines/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Guillain-Barre Syndrome/immunology
- Guillain-Barre Syndrome/metabolism
- Guillain-Barre Syndrome/physiopathology
- Immunohistochemistry
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Interleukin-12/deficiency
- Interleukin-12/genetics
- Interleukin-12/immunology
- Interleukin-12 Subunit p40
- Mice
- Mice, Knockout
- Myelin P0 Protein/immunology
- Myelin P0 Protein/pharmacology
- Myelin Sheath/genetics
- Myelin Sheath/immunology
- Neuritis, Autoimmune, Experimental/immunology
- Neuritis, Autoimmune, Experimental/metabolism
- Neuritis, Autoimmune, Experimental/physiopathology
- Peripheral Nerves/immunology
- Peripheral Nerves/metabolism
- Peripheral Nerves/physiopathology
- Protein Subunits/deficiency
- Protein Subunits/genetics
- Protein Subunits/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Lei Bao
- Division of Geriatric Medicine, Department of NEUROTEC
- Department of Orthopedic Surgery
| | | | - Peter van der Meide
- Department of Cytokine Research, Central Laboratory Animal Institute (CLAI), University of Utrecht, The Netherlands
| | - Shun Wei Zhu
- Division of Geriatric Medicine, Department of NEUROTEC
| | - Hans‐Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | - Jie Zhu
- Division of Geriatric Medicine, Department of NEUROTEC
| |
Collapse
|
57
|
Utermark T, Kaempchen K, Hanemann CO. Pathological adhesion of primary human schwannoma cells is dependent on altered expression of integrins. Brain Pathol 2006; 13:352-63. [PMID: 12946024 PMCID: PMC8095832 DOI: 10.1111/j.1750-3639.2003.tb00034.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mutations in the tumor suppressor gene coding for merlin cause Neurofibromatosis type 2 (NF2), all spontaneous schwannomas, and a majority of meningiomas. Merlin links transmembrane proteins to the cytoskeleton. Accordingly, primary human schwannoma cells lacking merlin show an increased number of lamellipodia and filopodia as well as increased cell spreading. We show enhanced adhesion in primary human schwannoma cells and present evidence that this is dependent on the integrin chains alpha6beta1 and alpha6beta4. We further demonstrate that the integrin chains beta1 and beta4 are upregulated in schwannomas using different complementary methods, and report higher expression of these integrins per schwannoma cell by fluorescence assisted cell sorting (FACS). Finally we report clustering of the integrin chains alpha6, beta1, and beta4 on schwannoma cells. Our findings fit well into recent data on the role of merlin in signaling cascades connected to integrins and help explain pathological ensheathment of extracellular matrix or pseudomesaxon formation which is a hallmark of schwannoma histopathology.
Collapse
Affiliation(s)
- Tamara Utermark
- Department of Neurology, Zentrum für klinische Forschung, University of Ulm, Germany
| | | | | |
Collapse
|
58
|
Amici SA, Dunn WA, Murphy AJ, Adams NC, Gale NW, Valenzuela DM, Yancopoulos GD, Notterpek L. Peripheral myelin protein 22 is in complex with alpha6beta4 integrin, and its absence alters the Schwann cell basal lamina. J Neurosci 2006; 26:1179-89. [PMID: 16436605 PMCID: PMC6674566 DOI: 10.1523/jneurosci.2618-05.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral myelin protein 22 (PMP22) is a tetraspan membrane glycoprotein, the misexpression of which is associated with hereditary demyelinating neuropathies. Myelinating Schwann cells (SCs) produce the highest levels of PMP22, yet the function of the protein in peripheral nerve biology is unresolved. To investigate the potential roles of PMP22, we engineered a novel knock-out (-/-) mouse line by replacing the first two coding exons of pmp22 with the lacZ reporter. PMP22-deficient mice show strong beta-galactosidase reactivity in peripheral nerves, cartilage, intestines, and lungs, whereas phenotypically they display the characteristics of tomaculous neuropathy. In the absence of PMP22, myelination of peripheral nerves is delayed, and numerous axon-SC profiles show loose basal lamina, suggesting altered interactions of the glial cells with the extracellular matrix. The levels of beta4 integrin, a molecule involved in the linkage between SCs and the basal lamina, are severely reduced in nerves of PMP22-deficient mice. During early stages of myelination, PMP22 and beta4 integrin are coexpressed at the cell surface and can be coimmunoprecipitated together with laminin and alpha6 integrin. In agreement, in clone A colonic carcinoma cells, epitope-tagged PMP22 forms a complex with beta4 integrin. Together, these data indicate that PMP22 is a binding partner in the integrin/laminin complex and is involved in mediating the interaction of SCs with the extracellular environment.
Collapse
|
59
|
Wallquist W, Plantman S, Thams S, Thyboll J, Kortesmaa J, Lännergren J, Domogatskaya A, Ogren SO, Risling M, Hammarberg H, Tryggvason K, Cullheim S. Impeded interaction between Schwann cells and axons in the absence of laminin alpha4. J Neurosci 2006; 25:3692-700. [PMID: 15814800 PMCID: PMC6725372 DOI: 10.1523/jneurosci.5225-04.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Schwann cell basal lamina (BL) is required for normal myelination. Loss or mutations of BL constituents, such as laminin-2 (alpha2beta1gamma1), lead to severe neuropathic diseases affecting peripheral nerves. The function of the second known laminin present in Schwann cell BL, laminin-8 (alpha4beta1gamma1), is so far unknown. Here we show that absence of the laminin alpha4 chain, which distinguishes laminin-8 from laminin-2, leads to a disturbance in radial sorting, impaired myelination, and signs of ataxia and proprioceptive disturbances, whereas the axonal regenerative capacity is not influenced. In vitro studies show poor axon growth of spinal motoneurons on laminin-8, whereas it is extensive on laminin-2. Schwann cells, however, extend longer processes on laminin-8 than on laminin-2, and, in contrast to the interaction with laminin-2, solely use the integrin receptor alpha6beta1 in their interaction with laminin-8. Thus, laminin-2 and laminin-8 have different critical functions in peripheral nerves, mediated by different integrin receptors.
Collapse
Affiliation(s)
- Wilhelm Wallquist
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Koticha D, Babiarz J, Kane-Goldsmith N, Jacob J, Raju K, Grumet M. Cell adhesion and neurite outgrowth are promoted by neurofascin NF155 and inhibited by NF186. Mol Cell Neurosci 2005; 30:137-48. [PMID: 16061393 DOI: 10.1016/j.mcn.2005.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 06/10/2005] [Accepted: 06/28/2005] [Indexed: 01/06/2023] Open
Abstract
Neurofascin (NF) is a neural cell adhesion molecule in the L1-family containing six Ig domains and multiple fibronectin type III (FnIII) repeats in its extracellular region. NF has many splicing variants and two of these are exemplars that have different cellular patterns of expression during development. NF186, which is expressed on neurons, contains an unusual mucin-like region and NF155, which is expressed on glia, contains a unique FnIII repeat with an RGD motif. Analysis of Fc fusion proteins representing different extracellular regions of NF indicate that NF186 inhibits cell adhesion and neurite outgrowth, and the inhibition is associated with the region containing the mucin-like domain. NF155 promotes neural cell adhesion and neurite outgrowth, and the RGD motif in its third FnIII repeat is critical for cell spreading and neurite outgrowth. The results suggest that different splicing variants of NF expressed on neurons and glia play distinct roles during neural development.
Collapse
Affiliation(s)
- Darshan Koticha
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8082, USA
| | | | | | | | | | | |
Collapse
|
61
|
Rosner BI, Hang T, Tranquillo RT. Schwann cell behavior in three-dimensional collagen gels: Evidence for differential mechano-transduction and the influence of TGF-beta 1 in morphological polarization and differentiation. Exp Neurol 2005; 195:81-91. [PMID: 15890339 DOI: 10.1016/j.expneurol.2005.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 04/03/2005] [Accepted: 04/05/2005] [Indexed: 11/20/2022]
Abstract
Schwann cells (SCs) cultured on and within magnetically aligned collagen gels were examined for their abilities to spread and exhibit contact guidance, two functions that are relevant to their potential enhancement of neurite migration and regeneration in entubulation repair of transection-type nerve injuries. Cells seeded at or near the surfaces of gels abandoned their initially spherical shapes, adopting spread morphologies rapidly compared to cells within the gels. Those few cells within the gels that did spread exhibited marked contact guidance responses, aligning strongly with the aligned collagen fibrils. Spreading of cells in gels could not be induced by varied cell concentration, collagen density, mitogen presence, inclusion of soluble laminin, or use of fibrin gel in lieu of collagen. However, cells that settled at the interface between collagen gel layers during gellation of the top layer above a preformed bottom layer were highly spread. This suggests that a differential mechanical interaction across the cell at an interface, where at least one surface presents constituents of the basal lamina, permits the Schwann cell to rapidly revert to a spread, differentiated phenotype. Unlike other reagents, TGF-beta1 was able to induce significant SC spreading as early as 4 h post-seeding. Consistent with the differential-mechanical cue mechanism, TGF-beta1 appears to facilitate this response, at least in part, by upregulating beta1 integrin expression, thereby enabling the SC to more acutely detect these local cues in the mechanical environment.
Collapse
Affiliation(s)
- B I Rosner
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
62
|
Lin CY, Lynch G, Gall CM. AMPA receptor stimulation increases alpha5beta1 integrin surface expression, adhesive function and signaling. J Neurochem 2005; 94:531-46. [PMID: 16000124 PMCID: PMC2366053 DOI: 10.1111/j.1471-4159.2005.03203.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Integrin proteins are critical for stabilization of hippocampal long-term potentiation but the mechanisms by which integrin activities are involved in synaptic transmission are not known. The present study tested whether activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) class glutamate receptors increases surface expression of alpha5beta1 integrin implicated in synaptic potentiation. Surface protein biotinylation assays demonstrated that AMPA treatment of COS7 cells expressing GluR1 homomeric AMPA receptors increased membrane insertion and steady-state surface levels of alpha5 and beta1 subunits. Treated cells exhibited increased adhesion to fibronectin- and anti-alpha5-coated substrates and tyrosine kinase signaling elicited by fibronectin-substrate adhesion, as expected if new surface receptors are functional. Increased surface expression did not occur in calcium-free medium and was blocked by the protein kinase C inhibitor chelerythrine chloride and the exocytosis inhibitor brefeldin A. AMPA treatment similarly increased alpha5 and beta1 surface expression in dissociated neurons and cultured hippocampal slices. In both neuronal preparations AMPA-induced integrin trafficking was blocked by combined antagonism of NMDA receptor and L-type voltage-sensitive calcium channel activities but was not induced by NMDA treatment alone. These results provide the first evidence that glutamate receptor activation increases integrin surface expression and function, and suggest a novel mechanism by which synaptic activity can engage a volley of new integrin signaling in coordination with, and probably involved in, stabilization of synaptic potentiation.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4292, USA
| | | | | |
Collapse
|
63
|
Abstract
This review focuses on the influence of laminins, mediated through laminin receptors present on Schwann cells, on peripheral nerve development and pathology. Laminins influence multiple aspects of cell differentiation and tissue morphogenesis, including cell survival, proliferation, cytoskeletal rearrangements, and polarity. Peripheral nerves are no exception, as shown by the discovery that defective laminin signals contribute to the pathogenesis of diverse neuropathies such as merosin-deficient congenital muscular dystrophy and Charcot-Marie-Tooth 4F, neurofibromatosis, and leprosy. In the last 5 years, advanced molecular and cell biological techniques and conditional mutagenesis in mice began revealing the role of different laminins and receptors in developing nerves. In this way, we are starting to explain morphological and pathological observations beginning at the start of the last century. Here, we review these recent advances and show how the roles of laminins and their receptors are surprisingly varied in both time and place.
Collapse
Affiliation(s)
- Maria Laura Feltri
- San Raffaele Scientific Institute, DIBIT 4A2, Via Olgettina 58, 20132 Milan, Italy.
| | | |
Collapse
|
64
|
Baron W, Colognato H, ffrench-Constant C, Ffrench-Constant C. Integrin-growth factor interactions as regulators of oligodendroglial development and function. Glia 2005; 49:467-79. [PMID: 15578662 DOI: 10.1002/glia.20132] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Central nervous system (CNS) development requires mechanisms for the regulation of cell number. Although growth factors are essential determinants of the proliferation and apoptosis that determine final numbers, the long-range nature of signals from diffusible growth factors makes them insufficient for the provision of the precise and localized signals required. Integration of integrin and growth factor receptor signaling in controlling cell behavior has been an important theme of research over the past several years. The focus of this review is on the mechanisms by which integrin-growth factor interactions regulate the development of oligodendrocytes and provide a mechanism for controlling, both in space and in time, oligodendrocyte numbers in the developing CNS.
Collapse
Affiliation(s)
- Wia Baron
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
65
|
Meyer A, van Golen CM, Boyanapalli M, Kim B, Soules ME, Feldman EL. Integrin-linked kinase complexes with caveolin-1 in human neuroblastoma cells. Biochemistry 2005; 44:932-8. [PMID: 15654749 DOI: 10.1021/bi048619r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integrin-linked kinase (ILK) and caveolin-1 (cav-1) are implicated in the pathogenesis of cancer. Overexpression of ILK leads to altered expression of cell cycle regulators, a decreased level of cell adhesion to the extracellular matrix, a decreased level of apoptosis, in vitro phosphorylation of Akt, and tumor formation in nude mice. Conversely, cav-1 expression is frequently downregulated in many forms of cancer. We examined whether ILK and cav-1 interact in SHEP human neuroblastoma cells because ILK is present in caveolae-enriched membranes and contains a putative cav-binding domain. SHEP cells were stably transfected with vector, wild-type ILK (ILK-wt), kinase-deficient ILK (ILK-kd), or mutant cav-binding domain ILK (ILK-mutCavbd). Control SHEP cells and ILK transfectants express high levels of ILK and cav-1. Immunoprecipitation with anti-cav-1 co-immunoprecipitates a 59 kDa protein that is immunoreactive with the anti-ILK antibody, and this interaction is partially prevented in cells expressing ILK-mutCavbd. Cav-1 and ILK partially colocalize in SHEP cells, also supporting these data. Last, affinity chromatography with a biotinylated cav-scaffolding domain peptide precipitates ILK-wt but not ILK-mutCavbd. These data suggest that the cav-binding domain of ILK and the cav-scaffolding domain of cav-1 mediate complex formation in human neuroblastoma cells.
Collapse
Affiliation(s)
- Amy Meyer
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
66
|
Meyer A, van Golen CM, Kim B, van Golen KL, Feldman EL. Integrin expression regulates neuroblastoma attachment and migration. Neoplasia 2005; 6:332-42. [PMID: 15256055 PMCID: PMC1502107 DOI: 10.1593/neo.03445] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma (NBL) is the most common malignant disease of infancy, and children with bone metastasis have a mortality rate greater than 90%. Two major classes of proteins, integrins and growth factors, regulate the metastatic process. We have previously shown that tumorigenic NBL cells express higher levels of the type I insulin-like growth factor receptor (IGF-IR) and that beta1 integrin expression is inversely proportional to tumorigenic potential in NBL. In the current study, we analyze the effect of beta1 integrin and IGF-IR on NBL cell attachment and migration. Nontumorigenic S-cells express high levels of beta1 integrin, whereas tumorigenic N-cells express little beta1 integrin. Alterations in beta1 integrin are due to regulation at the protein level, as translation is decreased in N-type cells. Moreover, inhibition of protein synthesis shows that beta1 integrin is degraded more slowly in S-type cells (SHEP) than in N-type cells (SH-SY5Y and IMR32). Inhibition of alpha5beta1 integrin prevents SHEP (but not SH-SY5Y or IMR32) cell attachment to fibronectin and increases SHEP cell migration. Increases in IGF-IR decrease beta1 integrin expression, and enhance SHEP cell migration, potentially through increased expression of alphavbeta3. These data suggest that specific classes of integrins in concert with IGF-IR regulate NBL attachment and migration.
Collapse
Affiliation(s)
- Amy Meyer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth L. van Golen
- Department of Internal Medicine, Hematology and Oncology Division, University of Michigan, Ann Arbor, MI, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
67
|
Gutierrez H, Hale VA, Dolcet X, Davies A. NF-κB signalling regulates the growth of neural processes in the developing PNS and CNS. Development 2005; 132:1713-26. [PMID: 15743881 DOI: 10.1242/dev.01702] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proper growth and elaboration of neural processes is essential for the establishment of a functional nervous system during development and is an integral feature of neural plasticity throughout life. Nuclear factor-kappa B(NF-κB) is classically known for its ubiquitous roles in inflammation,immune and stress-related responses and regulation of cell survival in all tissues, including the nervous system. NF-κB participation in other cellular processes remains poorly understood. Here we report a mechanism for controlling the growth of neural processes in developing peripheral and central neurons involving the transcription factor NF-κB. Inhibiting NF-κB activation with super-repressor IκB-α, BAY 11 7082(IκB-α phosphorylation inhibitor) or N-acetyl-Leu-Leu-norleucinal(proteosomal degradation inhibitor), or inhibiting NF-κB transcriptional activity with κB decoy DNA substantially reduced the size and complexity of the neurite arbors of sensory neurons cultured with brain-derived neurotrophic factor while having no effect on their survival. NF-κB exerted this effect during a restricted period of development following the phase of naturally occurring neuronal death when the processes and connections of the remaining neurons are extensively modified and refined. Inhibiting NF-κB activation or NF-κB transcriptional activity in layer 2 pyramidal neurons in postnatal somatosensory cortical slices reduced dendritic arbor size and complexity. This function of NF-κB has important implications for neural development and may provide an explanation for reported involvement of NF-κB in learning and memory.
Collapse
Affiliation(s)
- Humberto Gutierrez
- School of Biosciences, Biomedical Building, Museum Avenue, PO Box 911, Cardiff, CF10 3US, Wales.
| | | | | | | |
Collapse
|
68
|
Affiliation(s)
- Hubertus Köller
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
69
|
Yang D, Bierman J, Tarumi YS, Zhong YP, Rangwala R, Proctor TM, Miyagoe-Suzuki Y, Takeda S, Miner JH, Sherman LS, Gold BG, Patton BL. Coordinate control of axon defasciculation and myelination by laminin-2 and -8. ACTA ACUST UNITED AC 2005; 168:655-66. [PMID: 15699217 PMCID: PMC2171752 DOI: 10.1083/jcb.200411158] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Schwann cells form basal laminae (BLs) containing laminin-2 (Ln-2; heterotrimer α2β1γ1) and Ln-8 (α4β1γ1). Loss of Ln-2 in humans and mice carrying α2-chain mutations prevents developing Schwann cells from fully defasciculating axons, resulting in partial amyelination. The principal pathogenic mechanism is thought to derive from structural defects in Schwann cell BLs, which Ln-2 scaffolds. However, we found loss of Ln-8 caused partial amyelination in mice without affecting BL structure or Ln-2 levels. Combined Ln-2/Ln-8 deficiency caused nearly complete amyelination, revealing Ln-2 and -8 together have a dominant role in defasciculation, and that Ln-8 promotes myelination without BLs. Transgenic Ln-10 (α5β1γ1) expression also promoted myelination without BL formation. Rather than BL structure, we found Ln-2 and -8 were specifically required for the increased perinatal Schwann cell proliferation that attends myelination. Purified Ln-2 and -8 directly enhanced in vitro Schwann cell proliferation in collaboration with autocrine factors, suggesting Lns control the onset of myelination by modulating responses to mitogens in vivo.
Collapse
Affiliation(s)
- Dongren Yang
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Fu WM, Chang TK, Sun WZ, Ling QD, Peng HC, Liou HC, Lu DY, Huang TF. Inhibition of neuropathic pain by a potent disintegrin--triflavin. Neurosci Lett 2005; 368:263-8. [PMID: 15364408 DOI: 10.1016/j.neulet.2004.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/26/2004] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
Injury to peripheral nerves may result in severe and intractable neuropathic pain. Many efforts have been focused on the elucidation of the mechanisms of neuropathic pain. It was found here that integrin plays an important role in the induction of neuropathic pain and treatment of disintegrin is able to attenuate neuropathic pain. The rats were induced hyperalgesia by tightly ligating the L5 spinal nerve and cut just distal to the ligature on one side. Mechanical and thermal stimuli were applied in the middle dermatome of the hind paw. Epidural administration of triflavin (TFV), an arginine-glycine-aspartic acid (RGD) containing disintegrin, inhibited hyperalgesia induced by either mechanical or thermal stimulation. Immunohistochemistry showed that the sprouting of sympathetic nerves into DRG by neuropathic surgery was markedly inhibited by TFV. Beta 1 integrin mRNA of L5 DRG increased immediately 1 day after tight ligation and cut of L5 spinal nerve. However, beta 1 integrin mRNA in uninjured L4 DRG increased later on Day 3 after surgery. On the other hand, alpha-CGRP precursor mRNA decreased in ipsilateral L5 DRG but increased in L4 DRG after neuropathic surgery. Immunohistochemistry shows that beta 3 integrins of L5 as well as L4 increased in response to neuropathic surgery and administration of triflavin antagonized the increasing action. These results suggest that there is interaction between injured and uninjured neurons and the induction of neuropathic pain is related to neuronal sprouting. Disintegrin is able to inhibit neuronal sprouting and the induction of hyperalgesia induced by peripheral nerve injury and may thus be a new category of drugs to be developed for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Wen-Mei Fu
- Department of Pharmacology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Tucker BA, Rahimtula M, Mearow KM. Integrin activation and neurotrophin signaling cooperate to enhance neurite outgrowth in sensory neurons. J Comp Neurol 2005; 486:267-80. [PMID: 15844170 DOI: 10.1002/cne.20518] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurite growth is influenced by many factors, including the availability of trophic support as well as the extracellular environment. In this study, we have investigated whether attachment to a permissive culture substrate such as laminin is sufficient to promote neurite outgrowth from dorsal root ganglion neurons in the absence of added nerve growth factor (NGF) and whether this attachment can enhance the response of these neurons to NGF. Adult dorsal root ganglia neurons plated on surfaces coated with a thin film of laminin exhibited increased neurite outgrowth. This effect was integrin-dependent as it was attenuated by treatment with RGD (arginine-glycine-aspartate) peptides and by a beta1-integrin blocking antibody. The addition of NGF resulted in a significant increase in the integrin-dependent outgrowth. We have correlated this increase in growth with increased expression of integrin subunits and activation of known downstream signaling intermediates such as focal adhesion kinase, Src, and Akt. We have also examined pathway cooperation through the use of an Src-specific inhibitor, PP2, and a beta1-integrin blocking antibody, beta1i, by observing downstream signaling intermediates in both integrin and growth factor signaling pathways. These results are among the first to detail the importance of interactions between neurotrophin- and integrin-activated signaling in adult primary neurons.
Collapse
Affiliation(s)
- Budd A Tucker
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | | | | |
Collapse
|
72
|
Pittier R, Sauthier F, Hubbell JA, Hall H. Neurite extension andin vitro myelination within three-dimensional modified fibrin matrices. ACTA ACUST UNITED AC 2005; 63:1-14. [PMID: 15616962 DOI: 10.1002/neu.20116] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The deposition of fibrin clots in vivo occurs after injury in the peripheral nervous system and their removal correlates with nerve regeneration. Fibrin clots provide a provisional matrix for invading cells, induce wound healing, and become proteolytically removed by regenerating tissue. Here, neurite extension and in vitro myelination were studied within three-dimensional fibrin matrices that were covalently modified with the sixth Ig-like domain of cell adhesion molecules L1 containing N-terminal transglutaminase substrate sequences (TG-L1Ig6) for covalent incorporation into fibrin matrices. TG-L1Ig6 is a specific receptor for alphavbeta3-integrin involved in neurite extension of PC12 cells and dorsal root ganglion neurons (DRGs). Neurite extension of PC12 cells depended on interactions between cell surface alphavbeta3 and RGD-sites provided by TG-L1Ig6. In addition, matrix properties such as fibrin crosslink density and matrix degradation by serine proteases were crucial. No involvement of matrix metalloproteinases was found. DRG neurite extension in native fibrin matrices was retarded as compared to neurite extension within L1Ig6-modified and laminin-1-containing matrices. Moreover, myelinated structures were almost exclusively found in TG-L1Ig6-modified and laminin-1-containing matrices. These results indicate that potential use of three-dimensional matrices in a biomaterials-based healing device to induce and/or help in vivo nerve regeneration requires specific structural and biological signals.
Collapse
Affiliation(s)
- Régis Pittier
- Institute for Biomedical Engineering and Department of Materials ETH and University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
73
|
Pietri T, Eder O, Breau MA, Topilko P, Blanche M, Brakebusch C, Fässler R, Thiery JP, Dufour S. Conditional β1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system. Development 2004; 131:3871-83. [PMID: 15253938 DOI: 10.1242/dev.01264] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integrins are transmembrane receptors that are known to interact with the extracellular matrix and to be required for migration, proliferation,differentiation and apoptosis. We have generated mice with a neural crest cell-specific deletion of the β1-integrin gene to analyse the role ofβ1-integrins in neural crest cell migration and differentiation. This targeted mutation caused death within a month of birth. The loss ofβ1-integrins from the embryo delayed the migration of Schwann cells along axons and induced multiple defects in spinal nerve arborisation and morphology. There was an almost complete absence of Schwann cells and sensory axon segregation and defective maturation in neuromuscular synaptogenesis. Thus, β1-integrins are important for the control of embryonic and postnatal peripheral nervous system development.
Collapse
Affiliation(s)
- Thomas Pietri
- UMR144, CNRS, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Sidera K, Samiotaki M, Yfanti E, Panayotou G, Patsavoudi E. Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem 2004; 279:45379-88. [PMID: 15302889 DOI: 10.1074/jbc.m405486200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Heat shock protein HSP90 plays important roles in cellular regulation, primarily as a chaperone for a number of key intracellular proteins. We report here that the two HSP90 isoforms, alpha and beta, also localize on the surface of cells in the nervous system and are involved in their migration. A 94-kDa surface antigen, the 4C5 antigen, which was previously shown to be involved in migration processes during development of the nervous system, is shown to be identical to HSP90alpha using mass spectrometry analysis. This identity is further confirmed by immunoprecipitation experiments and by induction of 4C5 antigen expression in heat shock-treated embryonic rat brain cultures. Moreover, immunocytochemistry on live cerebellar rat cells reveals cell surface localization of both HSP90alpha and -beta. Cell migration from cerebellar and sciatic nerve explants is inhibited by anti-HSP90alpha and anti-HSP90beta antibodies, similarly to the inhibition observed with monoclonal antibody 4C5. Moreover, immunostaining with rhodamine-phalloidin of migrating Schwann cells cultured in the presence of antibodies against both alpha and beta isoforms of HSP90 reveals that HSP90 activity is associated with actin cytoskeletal organization, necessary for lamellipodia formation.
Collapse
Affiliation(s)
- Katerina Sidera
- Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521, Greece
| | | | | | | | | |
Collapse
|
75
|
Buchstaller J, Sommer L, Bodmer M, Hoffmann R, Suter U, Mantei N. Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells. J Neurosci 2004; 24:2357-65. [PMID: 15014110 PMCID: PMC6729482 DOI: 10.1523/jneurosci.4083-03.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Schwann cells develop from multipotent neural crest stem cells and are important for neuronal survival, maintenance of axonal integrity, and myelination. We used transgenic mice expressing green fluorescent protein in a tissue-specific manner to isolate viable, pure populations of neural crest stem cells and developing Schwann cells, which are not readily accessible by microdissection. Starting with the minute amounts of RNA obtained, a two-round amplification procedure was used to achieve reproducible DNA array hybridizations. We validated our screening procedure by comparisons with the literature and by in situ hybridization. Stage-to-stage comparisons and hierarchical clustering for neural crest and five stages of Schwann cell development suggest a wealth of candidates for genes involved in stem cell regulation and in early Schwann cell development. The combination of methods applied in this study should be generally useful for isolating and profiling other stem cell and difficult to isolate cell populations.
Collapse
Affiliation(s)
- Johanna Buchstaller
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
76
|
Melendez-Vasquez CV, Einheber S, Salzer JL. Rho kinase regulates schwann cell myelination and formation of associated axonal domains. J Neurosci 2004; 24:3953-63. [PMID: 15102911 PMCID: PMC6729425 DOI: 10.1523/jneurosci.4920-03.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 02/14/2004] [Accepted: 03/09/2004] [Indexed: 11/21/2022] Open
Abstract
The myelin sheath forms by the spiral wrapping of a glial membrane around an axon. The mechanisms involved are poorly understood but are likely to involve coordinated changes in the glial cell cytoskeleton. Because of its key role as a regulator of the cytoskeleton, we investigated the role of Rho kinase (ROCK), a major downstream effector of Rho, in Schwann cell morphology, differentiation, and myelination. Pharmacologic inhibition of ROCK activity results in loss of microvilli and stress fibers in Schwann cell cultures and strikingly aberrant myelination in Schwann cell-neuron cocultures; there was no effect on Schwann cell proliferation or differentiation. Treated Schwann cells branch aberrantly and form multiple, small, independent myelin segments along the length of axons, each with associated nodes and paranodes. This organization partially resembles myelin formed by oligodendrocytes rather than the single long myelin sheath characteristic of Schwann cells. ROCK regulates myosin light chain phosphorylation, which is robustly, but transiently, activated at the onset of myelination. These results support a key role of Rho through its effector ROCK in coordinating the movement of the glial membrane around the axon at the onset of myelination via regulation of myosin phosphorylation and actomyosin assembly. They also indicate that the molecular machinery that promotes the wrapping of the glial membrane sheath around the axon is distributed along the entire length of the internode.
Collapse
Affiliation(s)
- Carmen V Melendez-Vasquez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA.
| | | | | |
Collapse
|
77
|
Mao C, Kisaalita WS. Characterization of 3-D collagen hydrogels for functional cell-based biosensing. Biosens Bioelectron 2004; 19:1075-88. [PMID: 15018963 DOI: 10.1016/j.bios.2003.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2002] [Revised: 08/13/2003] [Accepted: 10/09/2003] [Indexed: 11/15/2022]
Abstract
To address the growing demand for functional cell-based assay technologies with accelerated drug discovery applications, we have proposed the use of human neuroblastoma cells (IMR-32) immobilized in three-dimensional (3-D) collagen hydrogel matrices. The gel protects weakly adherent cells from fluid mechanical forces while providing a more physiologically relevant 3-D environment. Hydrogels made up of collagen, between 0.5 and 1.0mg/ml, exhibited mechanical stability adequate to withstand fluid mechanical forces (<0.11 mN) typical of automated commercial fluid transfer equipment. Collagen-entrapped cells visualized with the aid of confocal microscopy and a potentiometric-sensitive dye, TMRM, exhibited round morphology in comparison to flat morphology typical of cells in two-dimensional (2-D) monolayer cultures. Morphological differentiation characterized by neurite extension and cell aggregation was observed for both 2-D and 3-D cultures. Differentiated IMR-32 cells failed to develop a resting membrane potential typical of excitable cells. Free intracellular calcium was monitored with Calcium Green-1. Depolarization-induced Ca 2+influx was only observed with differentiated 3-D cells unlike 2-D cells, where calcium flux was observed in both differentiated and undifferentiated cells. Taken together, the results revealed that collagen hydrogels (0.5 mg/ml collagen) were suitable structural supports for weakly adherent cells. However, for voltage-dependent calcium channel function applications, further investigations are needed to explain the difference between 2-D monolayer and 3-D collagen-entrapped cells.
Collapse
Affiliation(s)
- Chen Mao
- Cellular Bioengineering Laboratory, Faculty of Engineering, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
78
|
Chen ZL, Strickland S. Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. ACTA ACUST UNITED AC 2004; 163:889-99. [PMID: 14638863 PMCID: PMC2173689 DOI: 10.1083/jcb.200307068] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Laminins are heterotrimeric extracellular matrix proteins that regulate cell viability and function. Laminin-2, composed of alpha2, beta1, and gamma1 chains, is a major matrix component of the peripheral nervous system (PNS). To investigate the role of laminin in the PNS, we used the Cre-loxP system to disrupt the laminin gamma1 gene in Schwann cells. These mice have dramatically reduced expression of laminin gamma1 in Schwann cells, which results in a similar reduction in laminin alpha2 and beta1 chains. These mice exhibit motor defects which lead to hind leg paralysis and tremor. During development, Schwann cells that lack laminin gamma1 were present in peripheral nerves, and proliferated and underwent apoptosis similar to control mice. However, they were unable to differentiate and synthesize myelin proteins, and therefore unable to sort and myelinate axons. In mutant mice, after sciatic nerve crush, the axons showed impaired regeneration. These experiments demonstrate that laminin is an essential component for axon myelination and regeneration in the PNS.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
79
|
Abstract
Integrins are a family of transmembrane receptors that mediate interactions of cells with extracellular matrix (ECM) constituents and cell surface counter receptors. Each integrin mediates interactions with specific sets of ligands and regulates distinct aspects of cellular function including attachment to and organization of ECM assemblies, cell migration, proliferation and survival, and mechanical force transmission. Integrins exert their versatile functions by establishing a transmembrane link between the cell exterior and the cytoskeleton, and by activating intracellular second messenger systems. In addition, cellular signals can modulate integrin activity and ligand interactions, enabling transduction of information from the inside of the cell to the outside. Many of the basic functions of integrins and their ECM ligands have been uncovered by studying them biochemically or with cells in culture. Integrin and ECM functions have also been determined genetically, defining their essential roles in the organism. The ongoing challenge is to integrate cell biological, biochemical, and genetical evidence into a coherent picture. I will discuss here genetic findings, focusing on the murine system, that have shed light on the developmental functions of integrins and their ECM ligands. Where suitable information is available, I will relate the genetical finding to results obtained with cell biological and biochemical approaches.
Collapse
Affiliation(s)
- U Müller
- Department of Cell Biology, Institute for Childhood and Neglected Disease, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA,
| |
Collapse
|
80
|
Woodhoo A, Dean CH, Droggiti A, Mirsky R, Jessen KR. The trunk neural crest and its early glial derivatives: a study of survival responses, developmental schedules and autocrine mechanisms. Mol Cell Neurosci 2004; 25:30-41. [PMID: 14962738 DOI: 10.1016/j.mcn.2003.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 08/19/2003] [Accepted: 09/03/2003] [Indexed: 11/27/2022] Open
Abstract
Regulation of survival during gliogenesis from the trunk neural crest is poorly understood. Using adapted survival assays, we directly compared crest cells and the crest-derived precursor populations that generate satellite cells and Schwann cells. A range of factors that supports Schwann cells and glial precursors does not rescue crest, with the major exception of neuregulin-1 that rescues crest cells provided they contact the extracellular matrix. Autocrine survival appears earlier in developing satellite cells than Schwann cells. Satellite cells also show early expression of S100beta, BFABP and fibronectin and early survival responses to IGF-1, NT-3 and PDGF-BB that in developing Schwann cells are not seen until the precursor/Schwann cell transition. These experiments define novel differences between crest cells and early glia and show that entry to the glial lineage is an important point for regulation of survival responses. They show that survival mechanisms among PNS glia differ early in development and that satellite cell development runs ahead of schedule compared to Schwann cells in several significant features.
Collapse
Affiliation(s)
- Ashwin Woodhoo
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
81
|
Gall CM, Lynch G. Integrins, synaptic plasticity and epileptogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:12-33. [PMID: 15250583 DOI: 10.1007/978-1-4757-6376-8_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A number of processes are thought to contribute to the development of epilepsy including enduring increases in excitatory synaptic transmission, changes in GABAergic inhibition, neuronal cell death and the development of aberrant innervation patterns in part arising from reactive axonal growth. Recent findings indicate that adhesion chemistries and, most particularly, activities of integrin class adhesion receptors play roles in each of these processes and thereby are likely to contribute significantly to the cell biology underlying epileptogenesis. As reviewed in this chapter, studies of long-term potentiation have shown that integrins are important for stabilizing activity-induced increases in synaptic strength and excitability. Other work has demonstrated that seizures, and in some instances subseizure neuronal activity, modulate the expression of integrins and their matrix ligands and the activities of proteases which regulate them both. These same adhesion proteins and proteases play critical roles in axonal growth and synaptogenesis including processes induced by seizure in adult brain. Together, these findings indicate that seizures activate integrin signaling and induce a turnover in adhesive contacts and that both processes contribute to lasting changes in circuit and synaptic function underlying epileptogenesis.
Collapse
Affiliation(s)
- Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, USA
| | | |
Collapse
|
82
|
Kieseier BC, Kiefer R, Gold R, Hemmer B, Willison HJ, Hartung HP. Advances in understanding and treatment of immune-mediated disorders of the peripheral nervous system. Muscle Nerve 2004; 30:131-56. [PMID: 15266629 DOI: 10.1002/mus.20076] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During recent years, novel insights in basic immunology and advances in biotechnology have contributed to an increased understanding of the pathogenetic mechanisms of immune-mediated disorders of the peripheral nervous system. This increased knowledge has an impact on the management of patients with this class of disorders. Current advances are outlined and their implication for therapeutic approaches addressed. As a prototypic immune-mediated neuropathy, special emphasis is placed on the pathogenesis and treatment of the Guillain-Barré syndrome and its variants. Moreover, neuropathies of the chronic inflammatory demyelinating, multifocal motor, and nonsystemic vasculitic types are discussed. This review summarizes recent progress with currently available therapies and--on the basis of present immunopathogenetic concepts--outlines future treatment strategies.
Collapse
Affiliation(s)
- Bernd C Kieseier
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Platt CI, Krekoski CA, Ward RV, Edwards DR, Gavrilovic J. Extracellular matrix and matrix metalloproteinases in sciatic nerve. J Neurosci Res 2003; 74:417-29. [PMID: 14598318 DOI: 10.1002/jnr.10783] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although matrix metalloproteinases (MMPs) are increasingly being implicated in several pathologies of the nervous system, it is not yet clear what role they play in normal neurobiological processes. We review the expression of extracellular matrix (ECM) components as well as MMPs and tissue inhibitors of metalloproteinases (TIMPs) in the peripheral nervous system. We explore the expression of certain MMPs and the four TIMPs at the mRNA level in the postnatal mouse sciatic nerve. In addition, we have used substrate gel and in situ zymography to determine levels of MMP-2 and -9 and TIMP activity in rat sciatic nerve after crush and during regeneration. A rapid and transient increase in MMP-9 localised at and immediately distal to the site of injury was observed, whereas an increase in MMP-2 activity was delayed, prolonged, and extended proximal and distal to the injury site. This activity coincides with periods of axonal elongation, suggesting that it could act to facilitate axonal extension along the nerve matrix. We also detected multiple species of gelatinolytic inhibitory activity, including TIMP-1 and -3 in control and injured nerve. These activities probably act to prevent uncontrolled gelatinolytic activity, maintaining nerve integrity at the level essential for axonal regrowth.
Collapse
Affiliation(s)
- C I Platt
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
84
|
Hall H, Bozic D, Michel K, Hubbell JA. N-terminal α-dystroglycan binds to different extracellular matrix molecules expressed in regenerating peripheral nerves in a protein-mediated manner and promotes neurite extension of PC12 cells. Mol Cell Neurosci 2003; 24:1062-73. [PMID: 14697669 DOI: 10.1016/j.mcn.2003.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
alpha-dystroglycan is a cell surface receptor that is expressed in many tissues including the nervous system. The study shows that a recombinant, non-glycosylated N-terminal fragment of alpha-dystroglycan comprising residues 30 to 315 [alphaDG (30-315)] bound to laminin-2/-4 and laminin-1, fibronectin and fibrinogen, all molecules highly upregulated in the regenerating peripheral nerve. The interaction was concentration dependent and saturable and could not be inhibited by heparin suggesting only minor involvement of sulfated carbohydrate moieties. In contrast to published data, addition of bivalent cations increased the binding affinity by only ten fold.alphaDG (30-315) promotes neurite extension of PC12 cells in a similar amount as described for laminin isoforms and could be inhibited in a concentration dependent manner by alphaDG (30-315) itself, soluble laminin-1, partially by heparin, EDTA, and an RGD-peptide. Furthermore, co-immunoprecipitations between alpha-dystroglycan and beta1-integrin from PC12 cell surfaces suggested complex interactions between neuronal dystroglycan, integrins, and the ECM that induce neurite extension in vitro.
Collapse
Affiliation(s)
- Heike Hall
- Institute for Biomedical Engineering and Department of Material Sciences, ETH and University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
85
|
Abstract
The entire length of myelinated axons is organized into a series of polarized domains that center around nodes of Ranvier. These domains, which are crucial for normal saltatory conduction, consist of distinct multiprotein complexes of cell adhesion molecules, ion channels, and scaffolding molecules; they also differ in their diameter, organelle content, and rates of axonal transport. Juxtacrine signals from myelinating glia direct their sequential assembly. The composition, mechanisms of assembly, and function of these molecular domains will be reviewed. I also discuss similarities of this domain organization to that of polarized epithelia and present emerging evidence that disorders of domain organization and function contribute to the axonopathies of myelin and other neurologic disorders.
Collapse
Affiliation(s)
- James L Salzer
- Department of Cell Biology and Neurology, Program in Molecular Neurobiology, Skirball Institute of Biomedical Research, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
86
|
Hiran TS, Mazurkiewicz JE, Kreienberg P, Rice FL, LaFlamme SE. Endothelial expression of the alpha6beta4 integrin is negatively regulated during angiogenesis. J Cell Sci 2003; 116:3771-81. [PMID: 12902402 DOI: 10.1242/jcs.00681] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Development and homeostasis of the vascular system requires integrin-facilitated cellular adhesion, migration, proliferation and survival. A specific role for the alpha6beta4 integrin in the vasculature, however, has not been identified. Using immunohistochemistry, we observed alpha6beta4 expression on the dermal microvasculature of human foreskin. Analysis of individual cells isolated from trypsin-disrupted foreskin tissue indicated that alpha6beta4 was expressed by a subset of epithelial and endothelial cells, and not by smooth muscle cells. Expression of alpha6beta4 was also analyzed during new vessel growth using explants of human saphenous vein cultured in fibrinogen gels. The results indicate that alpha6beta4 is not expressed by outgrowing endothelial cells, and is downregulated by the original alpha6beta4-positive endothelial cells of the explant. To determine whether alpha6beta4 is expressed during angiogenesis in vivo, the expression of the beta4 subunit was analyzed during the development of the mouse mystacial (whisker) pad. Immunohistochemical staining of the whisker pad indicates that beta4 is expressed by the adult vasculature. To identify when and where beta4 is turned on in the vasculature, we examined the whisker pads from the developing embryo (E19.5 pc), and from postnatal days zero (P0), three (P3) and seven (P7) pups. The expression of alpha6beta4 was found to be turned on spatially and temporally from caudal to rostral regions and from the deep to superficial vasculature, correlating with the maturation of the whisker pad and its corresponding vasculature. Together, these findings suggest a potential role for alpha6beta4 as a negative component of the angiogenic switch, whereas expression of alpha6beta4 on the adult vasculature may indicate regions requiring additional adhesive mechanisms.
Collapse
Affiliation(s)
- Tejindervir S Hiran
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
87
|
Fragoso G, Robertson J, Athlan E, Tam E, Almazan G, Mushynski WE. Inhibition of p38 mitogen-activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell myelination. Exp Neurol 2003; 183:34-46. [PMID: 12957486 DOI: 10.1016/s0014-4886(03)00101-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study we demonstrate that p38, a member of the mitogen-activated protein kinase (MAPK) family, is essential for ascorbate- and laminin-induced myelination in Schwann cell-dorsal root ganglion neuron cocultures. The inhibitory effect of the specific p38 blockers, PD 169316 and SB 203580, on ascorbate-induced myelination was exerted during the early stages (1-2 days) of ascorbate treatment. Inhibition of p38 was further shown to prevent the alignment of Schwann cells along axons in laminin-treated cocultures. The addition of laminin to Schwann cell-dorsal root ganglion neuron cocultures stimulated phosphorylation of p38, thereby demonstrating a link between laminin-induced myelination and p38 activation. Similarly, the small heat shock protein, Hsp27, which is phosphorylated by MAPKAPK2, a downstream substrate of p38, was phosphorylated in response to the addition of laminin to the cocultures. The p38 inhibitors did not affect the proliferation or survival of Schwann cells in the cocultures as assessed by BrdU incorporation and total cell counts. However, p38 inhibition interfered with an early stage in myelination, thereby preventing ascorbate-induced increases in the levels of mRNAs encoding MBP, MAG, and P(0) and reducing laminin deposition. These results indicate that activation of p38 by a signaling pathway(s) involving laminin and appropriate integrin receptor(s) is required for the alignment of Schwann cells with axons that precedes myelination.
Collapse
Affiliation(s)
- Gabriela Fragoso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
Schwann cells require laminin-2 throughout nerve development, because mutations in the alpha2 chain in dystrophic mice interfere with sorting of axons before birth and formation of myelin internodes after birth. Mature Schwann cells express several laminin receptors, but their expression and roles in development are poorly understood. Therefore, we correlated the onset of myelination in nerve and synchronized myelinating cultures to the appearance of integrins and dystroglycan in Schwann cells. Only alpha6beta1 integrin is expressed before birth, whereas dystroglycan and alpha6beta4 integrin appear perinatally, just before myelination. Although dystroglycan is immediately polarized to the outer surface of Schwann cells, alpha6beta4 appears polarized only after myelination. We showed previously that Schwann cells lacking beta1 integrin do not relate properly to axons before birth. Here we show that the absence of beta1 before birth is not compensated by other laminin receptors, whereas coexpression of both dystroglycan and beta4 integrin is likely required for beta1-null Schwann cells to myelinate after birth. Finally, both beta1-null and dystrophic nerves contain bundles of unsorted axons, but they are predominant in different regions: in spinal roots in dystrophic mice and in nerves in beta1-null mice. We show that differential compensation by laminin-1, but not laminin receptors may partially explain this. These data suggest that the action of laminin is mediated by beta1 integrins during axonal sorting and by dystroglycan, alpha6beta1, and alpha6beta4 integrins during myelination.
Collapse
|
89
|
Gall CM, Pinkstaff JK, Lauterborn JC, Xie Y, Lynch G. Integrins regulate neuronal neurotrophin gene expression through effects on voltage-sensitive calcium channels. Neuroscience 2003; 118:925-40. [PMID: 12732238 DOI: 10.1016/s0306-4522(02)00990-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Integrin adhesion receptors regulate gene expression during growth and differentiation in various cell types. Recent work, implicating integrins in functional synaptic plasticity, suggest they may have similar activities in adult brain. The present study tested if integrins binding the arginine-glycine-aspartate (RGD) matrix sequence regulate neurotrophin and neurotrophin receptor gene expression in cultured hippocampal slices. The soluble RGD-containing peptide glycine-arginine-glycine-aspartate-serine-proline (GRGDSP) increased neurotrophin mRNA levels in transcript- and subfield-specific fashions. Integrin ligand effects were greatest for brain-derived neurotrophic factor transcripts I and II and barely detectable for transcript III. In accordance with increased nerve growth factor mRNA levels, GRGDSP increased c-fos expression as well. In contrast, growth-associated protein-43, amyloid precursor protein and fibroblast growth factor-1 mRNAs were not elevated. Ligand effects on brain-derived neurotrophic factor transcript II and c-fos mRNA did not depend on the integrity of the actin cytoskeleton, neuronal activity, or various signaling pathways but were blocked by L-type voltage-sensitive calcium-channel blockers. These results indicate that in mature hippocampal neurons integrin engagement regulates expression of a subset of growth-related genes at least in part through effects on calcium influx. Accordingly, these synaptic adhesion receptors may play the same role in maintaining an adult, differentiated state in brain as they do in other tissues and changes in integrin activation and/or engagement may contribute to dynamic changes in neurotrophin expression and to neuronal calcium signaling.
Collapse
MESH Headings
- Anesthetics, Local/pharmacology
- Animals
- Animals, Newborn
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels/physiology
- Carbazoles/pharmacology
- Cytochalasin D/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Enzyme Inhibitors/pharmacology
- Exons/drug effects
- Exons/genetics
- Gene Expression Regulation
- Genes, fos/drug effects
- Glycoproteins/pharmacology
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- In Vitro Techniques
- Indole Alkaloids
- Integrins/physiology
- Neurotrophin 3/metabolism
- Nifedipine/pharmacology
- Nimodipine/pharmacology
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oligopeptides/classification
- Oligopeptides/pharmacology
- RNA Precursors/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Sesterterpenes
- Terpenes/pharmacology
- Tetrodotoxin/pharmacology
- Time Factors
- Transcription, Genetic/drug effects
- Trifluoperazine/analogs & derivatives
- Trifluoperazine/pharmacology
Collapse
Affiliation(s)
- C M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697-4292, USA.
| | | | | | | | | |
Collapse
|
90
|
Buhusi M, Midkiff BR, Gates AM, Richter M, Schachner M, Maness PF. Close homolog of L1 is an enhancer of integrin-mediated cell migration. J Biol Chem 2003; 278:25024-31. [PMID: 12721290 DOI: 10.1074/jbc.m303084200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Close homolog of L1 (CHL1) is a member of the L1 family of cell adhesion molecules expressed by subpopulations of neurons and glia in the central and peripheral nervous system. It promotes neurite outgrowth and neuronal survival in vitro. This study describes a novel function for CHL1 in potentiating integrin-dependent cell migration toward extracellular matrix proteins. Expression of CHL1 in HEK293 cells stimulated their haptotactic migration toward collagen I, fibronectin, laminin, and vitronectin substrates in Transwell assays. CHL1-potentiated cell migration to collagen I was dependent on alpha1beta1 and alpha2beta1 integrins, as shown with function blocking antibodies. Potentiated migration relied on the early integrin signaling intermediates c-Src, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Enhancement of migration was disrupted by mutation of a potential integrin interaction motif Asp-Gly-Glu-Ala (DGEA) in the sixth immunoglobulin domain of CHL1, suggesting that CHL1 functionally interacts with beta1 integrins through this domain. CHL1 was shown to associate with beta1 integrins on the cell surface by antibody-induced co-capping. Through a cytoplasmic domain sequence containing a conserved tyrosine residue (Phe-Ile-Gly-Ala-Tyr), CHL1 recruited the actin cytoskeletal adapter protein ankyrin to the plasma membrane, and this sequence was necessary for promoting integrin-dependent migration to extracellular matrix proteins. These results support a role for CHL1 in integrin-dependent cell migration that may be physiologically important in regulating cell migration in nerve regeneration and cortical development.
Collapse
Affiliation(s)
- Mona Buhusi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
91
|
Saito F, Moore SA, Barresi R, Henry MD, Messing A, Ross-Barta SE, Cohn RD, Williamson RA, Sluka KA, Sherman DL, Brophy PJ, Schmelzer JD, Low PA, Wrabetz L, Feltri ML, Campbell KP. Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 2003; 38:747-58. [PMID: 12797959 DOI: 10.1016/s0896-6273(03)00301-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dystroglycan is a central component of the dystrophin-glycoprotein complex implicated in the pathogenesis of several neuromuscular diseases. Although dystroglycan is expressed by Schwann cells, its normal peripheral nerve functions are unknown. Here we show that selective deletion of Schwann cell dystroglycan results in slowed nerve conduction and nodal changes including reduced sodium channel density and disorganized microvilli. Additional features of mutant mice include deficits in rotorod performance, aberrant pain responses, and abnormal myelin sheath folding. These data indicate that dystroglycan is crucial for both myelination and nodal architecture. Dystroglycan may be required for the normal maintenance of voltage-gated sodium channels at nodes of Ranvier, possibly by mediating trans interactions between Schwann cell microvilli and the nodal axolemma.
Collapse
Affiliation(s)
- Fumiaki Saito
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Previtali SC, Dina G, Nodari A, Fasolini M, Wrabetz L, Mayer U, Feltri ML, Quattrini A. Schwann cells synthesize alpha7beta1 integrin which is dispensable for peripheral nerve development and myelination. Mol Cell Neurosci 2003; 23:210-8. [PMID: 12812754 DOI: 10.1016/s1044-7431(03)00014-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Defects in laminins or laminin receptors are responsible for various neuromuscular disorders, including peripheral neuropathies. Interactions between Schwann cells and their basal lamina are fundamental to peripheral nerve development and successful myelination. Selected laminins are expressed in the endoneurium, and their receptors are developmentally regulated during peripheral nerve formation. Loss-of-function mutations have confirmed the importance and the role of some of these molecules. Here we show for the first time that another laminin receptor, alpha7beta1 integrin, previously described only in neurons, is also expressed in Schwann cells. The expression of alpha7 appears postnatally, such that alpha7beta1 is the last laminin receptor expressed by differentiating Schwann cells. Genetic inactivation of the alpha7 subunit in mice does not affect peripheral nerve formation or the expression of other laminin receptors. Of note, alpha7beta1 is not necessary for basal lamina formation and myelination. Nonetheless, these data taken together with the previous demonstration of impaired axonal regrowth in alpha7-null mice suggest a possible Schwann cell-autonomous role for alpha7 in nerve regeneration.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Basement Membrane/metabolism
- Basement Membrane/pathology
- Basement Membrane/ultrastructure
- Cells, Cultured
- Gene Expression Regulation, Developmental/genetics
- Immunohistochemistry
- Integrins/biosynthesis
- Integrins/deficiency
- Integrins/genetics
- Laminin/genetics
- Laminin/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Regeneration/genetics
- Peripheral Nerves/growth & development
- Peripheral Nerves/metabolism
- Peripheral Nerves/ultrastructure
- Peripheral Nervous System Diseases/genetics
- Peripheral Nervous System Diseases/metabolism
- Peripheral Nervous System Diseases/physiopathology
- Rats
- Rats, Sprague-Dawley
- Schwann Cells/metabolism
- Schwann Cells/ultrastructure
- Spinal Nerve Roots/growth & development
- Spinal Nerve Roots/metabolism
- Spinal Nerve Roots/ultrastructure
Collapse
Affiliation(s)
- S C Previtali
- Neuropathology Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Aime S, Dastrù W, Crich SG, Gianolio E, Mainero V. Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd(III) complexes. Biopolymers 2003; 66:419-28. [PMID: 12658728 DOI: 10.1002/bip.10357] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gd(III) complexes are under intense scrutiny as contrast agents for magnetic resonance imaging (MRI). They act by enhancing tissutal proton relaxation rates. Much has already been done in order to get an in-depth understanding of the relationships between structure, dynamics, and contrastographic ability of these paramagnetic complexes. Their potential in the assessment of flow, perfusion, and capillary permeability has already been established. The next challenges are in the field of molecular imaging applications, which would allow the attainment of early diagnosis based on the recognition of specific reporters of the onset of the pathological state. To this end, Gd(III) complexes have to be endowed with improved targeting capabilities by conjugating suitable recognition synthons on their surfaces. Small peptides are candidates of choice for the attainment of this goal. Moreover, the intrinsic low sensitivity of the NMR techniques implies the need to deliver large amounts of contrast agents to the target in order to get its visualization in the resulting images. Highly efficient delivery systems have been identified, which bring a great promise for the development of innovative diagnostic agents based on Gd(III) complexes.
Collapse
Affiliation(s)
- Silvio Aime
- Dipartimento di Chimica IFM, Università di Torino, via P Giuria 7, 10125 Torino, Italy.
| | | | | | | | | |
Collapse
|
94
|
Ekström PAR, Mayer U, Panjwani A, Pountney D, Pizzey J, Tonge DA. Involvement of alpha7beta1 integrin in the conditioning-lesion effect on sensory axon regeneration. Mol Cell Neurosci 2003; 22:383-95. [PMID: 12691739 DOI: 10.1016/s1044-7431(02)00034-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Conditioning lesions of peripheral nerves improve axonal regeneration after injury and involve changes in expression of proteins required for axonal growth. Integrin alpha7beta1 expression in motor and sensory neurons increases following nerve lesions and motor axon regeneration is impaired in alpha7 integrin KO mice (J. Neurosci. 20, 1822-1830). To investigate the role of alpha7beta1 integrin in sensory axon regeneration, dorsal root ganglia of adult mice were cultured in gels of laminin-rich extracellular matrix (Matrigel) or collagen. Normal dorsal root ganglia in Matrigel or collagen supplemented with laminin showed spontaneous axonal outgrowth, which was greatly increased in conditioned preparations, but only in the presence of laminin. Conditioned dorsal root ganglia from normal mice cultured with a blocking antibody to beta1 integrin and from alpha7 integrin KO mice showed reduced axonal growth in both Matrigel- and laminin-supplemented collagen gels. Enhanced axonal regeneration after conditioning lesions therefore involves increased responsiveness to laminin and integrin alpha7beta1 expression.
Collapse
|
95
|
Pêgo AP, Vleggeert-Lankamp CLAM, Deenen M, Lakke EAJF, Grijpma DW, Poot AA, Marani E, Feijen J. Adhesion and growth of human Schwann cells on trimethylene carbonate (co)polymers. ACTA ACUST UNITED AC 2003; 67:876-85. [PMID: 14613236 DOI: 10.1002/jbm.a.10074] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Seeding of artificial nerve grafts with Schwann cells is a promising strategy for bridging large nerve defects. The aim of the present study was to evaluate the adhesion and growth of human Schwann cells (HSCs) on 1,3-trimethylene carbonate (TMC) and epsilon-caprolactone copolymers, with the final goal of using these materials in the development of an artificial nerve graft. The adhesion, proliferation, and morphology of HSCs on copolymers containing 10 and 82 mol % of TMC and on the parent homopolymers were investigated. HSCs adhered faster and in greater numbers on the copolymer with 82 mol % of TMC and on the TMC homopolymer compared with the other (co)polymers. On all polymer films, cell adhesion was lower than on gelatin (positive control). Despite differences in cell adhesion, cells displayed exponential growth on all tested surfaces, with similar growth rates. Cell numbers doubled approximately every 3 days on all substrates. When the polymer films were coated with fibronectin, no significant differences in cell adhesion and proliferation were observed between coated polymer surfaces and gelatin. The results indicate that all tested materials support the adhesion and proliferation of HSCs and can in principle be used for the preparation of flexible and slowly degrading nerve guides.
Collapse
Affiliation(s)
- Ana Paula Pêgo
- Institute for Biomedical Technology (BMTI) and Department of Polymer Chemistry and Biomaterials, Faculty of Chemical Technology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Hartung HP, Willison HJ, Kieseier BC. Acute immunoinflammatory neuropathy: update on Guillain-Barré syndrome. Curr Opin Neurol 2002; 15:571-7. [PMID: 12352001 DOI: 10.1097/00019052-200210000-00008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Abstract
Feltri et al. (2001)(this issue) succeed in disrupting beta 1 integrin specifically in Schwann cells, and in so doing, demonstrate that it is required for normal myelination. Their results reveal that signaling by an extracellular matrix receptor plays a key role in the differentiation of myelinating Schwann cells.
Collapse
Affiliation(s)
- Steven S Scherer
- The University of Pennsylvania Medical Center, Philadelphia, PA 19104-6077, USA.
| |
Collapse
|
98
|
Feltri ML, Graus Porta D, Previtali SC, Nodari A, Migliavacca B, Cassetti A, Littlewood-Evans A, Reichardt LF, Messing A, Quattrini A, Mueller U, Wrabetz L. Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. J Cell Biol 2002; 156:199-209. [PMID: 11777940 PMCID: PMC2173589 DOI: 10.1083/jcb.200109021] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2001] [Revised: 11/16/2001] [Accepted: 11/20/2001] [Indexed: 11/22/2022] Open
Abstract
In dystrophic mice, a model of merosin-deficient congenital muscular dystrophy, laminin-2 mutations produce peripheral nerve dysmyelination and render Schwann cells unable to sort bundles of axons. The laminin receptor and the mechanism through which dysmyelination and impaired sorting occur are unknown. We describe mice in which Schwann cell-specific disruption of beta1 integrin, a component of laminin receptors, causes a severe neuropathy with impaired radial sorting of axons. beta 1-null Schwann cells populate nerves, proliferate, and survive normally, but do not extend or maintain normal processes around axons. Interestingly, some Schwann cells surpass this problem to form normal myelin, possibly due to the presence of other laminin receptors such as dystroglycan and alpha 6 beta 4 integrin. These data suggest that beta 1 integrin links laminin in the basal lamina to the cytoskeleton in order for Schwann cells to ensheath axons, and alteration of this linkage contributes to the peripheral neuropathy of congenital muscular dystrophy.
Collapse
Affiliation(s)
- M Laura Feltri
- Department of Biological and Technological Research, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|