51
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
52
|
Noronha NDC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K, Malmegrim KCR. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 2019; 10:131. [PMID: 31046833 PMCID: PMC6498654 DOI: 10.1186/s13287-019-1224-y] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have been widely explored for cell-based therapy of immune-mediated, inflammatory, and degenerative diseases, due to their immunosuppressive, immunomodulatory, and regenerative potentials. Preclinical studies and clinical trials have demonstrated promising therapeutic results although these have been somewhat limited. Aspects such as low in vivo MSC survival in inhospitable disease microenvironments, requirements for ex vivo cell overexpansion prior to infusions, intrinsic differences between MSC and different sources and donors, variability of culturing protocols, and potency assays to evaluate MSC products have been described as limitations in the field. In recent years, priming approaches to empower MSC have been investigated, thereby generating cellular products with improved potential for different clinical applications. Herein, we review the current priming approaches that aim to increase MSC therapeutic efficacy. Priming with cytokines and growth factors, hypoxia, pharmacological drugs, biomaterials, and different culture conditions, as well as other diverse molecules, are revised from current and future perspectives.
Collapse
Affiliation(s)
- Nádia de Cássia Noronha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda Mizukami
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Juçara Gastaldi Cominal
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Lucas M Rocha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP, 14010-903, Brazil.
| |
Collapse
|
53
|
Liu X, Zheng L, Zhou Y, Chen Y, Chen P, Xiao W. BMSC Transplantation Aggravates Inflammation, Oxidative Stress, and Fibrosis and Impairs Skeletal Muscle Regeneration. Front Physiol 2019; 10:87. [PMID: 30814953 PMCID: PMC6382023 DOI: 10.3389/fphys.2019.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contusion is one of the most common muscle injuries in sports medicine and traumatology. Bone marrow mesenchymal stem cell (BMSC) transplantation has been proposed as a promising strategy to promote skeletal muscle regeneration. However, the roles and underlying mechanisms of BMSCs in the regulation of skeletal muscle regeneration are still not completely clear. Here, we investigated the role of BMSC transplantation after muscle contusion. BMSCs were immediately transplanted into gastrocnemius muscles (GMs) following direct contusion. Comprehensive morphological and genetic analyses were performed after BMSC transplantation. BMSC transplantation exacerbated muscle fibrosis and inflammation, as evidenced by increased leukocyte and macrophage infiltration, increased inflammatory cytokines and chemokines, and increased matrix metalloproteinases. BMSC transplantation also increased muscle oxidative stress. Overall, BMSC transplantation aggravated inflammation, oxidative stress and fibrosis and impaired skeletal muscle regeneration. These results, shed new light on the role of BMSCs in regenerative medicine and indicate that caution is needed in the application of BMSCs for muscle injury.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yongzhan Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yingjie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
54
|
Niu H, Li X, Li H, Fan Z, Ma J, Guan J. Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta Biomater 2019; 83:96-108. [PMID: 30541703 PMCID: PMC6296825 DOI: 10.1016/j.actbio.2018.10.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Stem cell therapy is a promising approach to regenerate ischemic cardiovascular tissues yet experiences low efficacy. One of the major causes is inferior cell retention in tissues. Injectable cell carriers that can quickly solidify upon injection into tissues so as to immediately increase viscosity have potential to largely improve cell retention. A family of injectable, fast gelling, and thermosensitive hydrogels were developed for delivering stem cells into heart and skeletal muscle tissues. The hydrogels were also photoluminescent with low photobleaching, allowing for non-invasively tracking hydrogel biodistribution and retention by fluorescent imaging. The hydrogels were polymerized by N-isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), 1-vinyl-2-pyrrolidinone (VP), and acrylate-oligolactide (AOLA), followed by conjugation with hypericin (HYP). The hydrogel solutions had thermal transition temperatures around room temperature, and were readily injectable at 4 °C. The solutions were able to quickly solidify within 7 s at 37 °C. The formed gels were highly flexible possessing similar moduli as the heart and skeletal muscle tissues. In vitro, hydrogel fluorescence intensity decreased proportionally to weight loss. After being injected into thigh muscles, the hydrogel can be detected by an in vivo imaging system for 4 weeks. The hydrogels showed excellent biocompatibility in vitro and in vivo, and can stimulate mesenchymal stem cell (MSC) proliferation and paracrine effects. The fast gelling hydrogel remarkably increased MSC retention in thigh muscles compared to slow gelling collagen, and non-gelling PBS. These hydrogels have potential to efficiently deliver stem cells into tissues. Hydrogel degradation can be non-invasively and real-time tracked. STATEMENT OF SIGNIFICANCE: Low cell retention in tissues represents one of the major causes for limited therapeutic efficacy in stem cell therapy. A family of injectable, fast gelling, and thermosensitive hydrogels that can quickly solidify upon injection into tissues were developed to improve cell retention. The hydrogels were also photoluminescent, allowing for non-invasively and real-time tracking hydrogel biodistribution and retention by fluorescent imaging.
Collapse
Affiliation(s)
- Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Haichang Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
55
|
Johnson T, Zhao L, Manuel G, Taylor H, Liu D. Approaches to therapeutic angiogenesis for ischemic heart disease. J Mol Med (Berl) 2018; 97:141-151. [PMID: 30554258 DOI: 10.1007/s00109-018-1729-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Ischemic heart disease (IHD) is caused by the narrowing of arteries that work to provide blood, nutrients, and oxygen to the myocardial tissue. The worldwide epidemic of IHD urgently requires innovative treatments despite the significant advances in medical, interventional, and surgical therapies for this disease. Angiogenesis is a physiological and pathophysiological process that initiates vascular growth from pre-existing blood vessels in response to a lack of oxygen. This process occurs naturally over time and has encouraged researchers and clinicians to investigate the outcomes of accelerating or enhancing this angiogenic response as an alternative IHD therapy. Therapeutic angiogenesis has been shown to revascularize ischemic heart tissue, reduce the progression of tissue infarction, and evade the need for invasive surgical procedures or tissue/organ transplants. Several approaches, including the use of proteins, genes, stem/progenitor cells, and various combinations, have been employed to promote angiogenesis. While clinical trials for these approaches are ongoing, microvesicles and exosomes have recently been investigated as a cell-free approach to stimulate angiogenesis and may circumvent limitations of using viable cells. This review summarizes the approaches to accomplish therapeutic angiogenesis for IHD by highlighting the advances and challenges that addresses the applicability of a potential pro-angiogenic medicine.
Collapse
Affiliation(s)
- Takerra Johnson
- Morehouse School of Medicine, Cardiovascular Research Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Lina Zhao
- Morehouse School of Medicine, Cardiovascular Research Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Gygeria Manuel
- Department of Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, GA, 30314, USA
| | - Herman Taylor
- Morehouse School of Medicine, Cardiovascular Research Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Dong Liu
- Morehouse School of Medicine, Cardiovascular Research Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| |
Collapse
|
56
|
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol 2018; 9:2837. [PMID: 30564236 PMCID: PMC6288292 DOI: 10.3389/fimmu.2018.02837] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome.
Collapse
Affiliation(s)
- Joana R Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graciosa Q Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Raquel M Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
57
|
Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomed Pharmacother 2018; 109:2022-2034. [PMID: 30551458 DOI: 10.1016/j.biopha.2018.11.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Ischemic diseases refer to a wide range of diseases caused by reduced blood flow and a subsequently deficient oxygen and nutrient supply. The pathogenesis of ischemia is multifaceted and primarily involves inflammation, oxidative stress and an apoptotic response. Over the last decade, mesenchymal stem cells (MSCs) have been widely studied as potential cell therapy agents for ischemic diseases due to their multiple favourable functions. However, the low homing and survival rates of transplanted cells have been concerns limiting for their clinical application. Recently, increasing studies have attempted to enhance the efficacy of MSCs by various strategies including genetic modification, pretreatment, combined application and biomaterial application. The purpose of this review is to summarize these creative strategies and the progress in basic and preclinical studies.
Collapse
|
58
|
Zhou L, Niu X, Liang J, Li J, Li J, Cheng Y, Meng Y, Wang Q, Yang X, Wang G, Shi Y, Dang E, Zhang K. Efficient differentiation of vascular endothelial cells from dermal-derived mesenchymal stem cells induced by endothelial cell lines conditioned medium. Acta Histochem 2018; 120:734-740. [PMID: 30143315 DOI: 10.1016/j.acthis.2018.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To directionally-differentiate dermis-derived mesenchymal stem cells (DMSCs) into vascular endothelial cells (VECs) in vitro, providing an experimental basis for studies on the pathogenesis and treatment of vascular diseases. METHODS After separation by adherent culture, VEC line supernatant, vascular endothelial growth factor (VEGF), bone morphogenetic protein-4 and hypoxia were used for the differentiation of VECs from DMSCs. The cell type was authenticated by flow cytometry, matrigel angiogenesis assay in vitro, and immunofluorescent staining during differentiation. The VEGF concentration was investigated by enzyme-linked immunosorbent assay. RESULTS After 28 days of differentiation, the cell surface marker CD31 was significantly positive (80%-90%) by flow cytometry in the VEC line-conditioned culture, which was significantly higher than in the other groups. Differentiated DMSCs had the ability to ingest Dil-ac-LDL and vascularize in the conditioned culture, but not in the other groups. In the VEC line supernatant, the concentration of VEGF was very low. The VEGF concentration changed along with the differentiation into VECs in the medium of the conditioned culture group. CONCLUSION VEC line supernatant can induce the differentiation of DMSCs into VECs, possibly through the pathway except VEGF.
Collapse
Affiliation(s)
- Ling Zhou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1)
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1)
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1)
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1)
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1)
| | - Yueai Cheng
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1)
| | - Yanfeng Meng
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1)
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1)
| | - Xiaoli Yang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1)
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 15 Changle Road West, Xi'an, 710032, Shanxi Province, China
| | - Yu Shi
- Department of Haematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Hospital, Berlin, Germany
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 15 Changle Road West, Xi'an, 710032, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China(1).
| |
Collapse
|
59
|
Elkhenany H, AlOkda A, El-Badawy A, El-Badri N. Tissue regeneration: Impact of sleep on stem cell regenerative capacity. Life Sci 2018; 214:51-61. [PMID: 30393021 DOI: 10.1016/j.lfs.2018.10.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
Abstract
The circadian rhythm orchestrates many cellular functions, such as cell division, cell migration, metabolism and numerous intracellular biological processes. The physiological changes during sleep are believed to promote a suitable microenvironment for stem cells to proliferate, migrate and differentiate. These effects are mediated either directly by circadian clock genes or indirectly via hormones and cytokines. Hormones, such as melatonin and cortisol, are secreted in response to neural optic signals and act in harmony to regulate many biological functions during sleep. Herein, we correlate the effects of the main circadian genes on the expression of certain stem cell genes responsible for the regeneration of different tissues, including bone, cartilage, skin, and intestine. We also review the effects of different hormones and cytokines on stem cell activation or suppression and their relationship to the day/night cycle. The correlation of circadian rhythm with tissue regeneration could have implications in understanding the biology of sleep and tissue regeneration and in enhancing the efficacy and timing of surgical procedures.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt; Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, 22785, Egypt
| | - Abdelrahman AlOkda
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt
| | - Ahmed El-Badawy
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt
| | - Nagwa El-Badri
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt.
| |
Collapse
|
60
|
Bērziņš U, Matise-VanHoutana I, Pētersone I, Dūrītis I, Ņikuļšins S, Bogdanova-Jātniece A, Kālis M, Svirskis Š, Skrastiņa D, Ezerta A, Kozlovska T. Characterisation and In Vivo Safety of Canine Adipose-Derived Stem Cells. PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. SECTION B. NATURAL, EXACT, AND APPLIED SCIENCES. 2018; 72:160-171. [DOI: 10.2478/prolas-2018-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
The study characterises canine adipose-derived stem cells (cASCs) in comparison to human ASCs (hASCs) and tests their safety in a canine model after intravenous administration. cASCs from two dogs were cultured under hypoxic conditions in a medium supplemented with autologous serum. They were plastic adherent, spindle-shaped cells that expressed CD73, CD90, and CD44 but lacked CD45, CD14, HLA-DR, and CD34. cASCs differentiated toward adipogenic, osteogenic, and chondrogenic lineages, although adipogenic differentiation capacity was low. Blast transformation reaction demonstrated that these cells significantly suppress T-cell proliferation, and this ability is dose-dependent. Intravenous administration of a cell freezing medium, therapeutic dose of cASCs (2 × 106 live cells/kg), and five times higher dose of cASCs showed no significant side effects in two dogs. Microscopic tissue lesions were limited to only mild, non-specific changes. There were no signs of malignancy. The results of the study indicate that cASCs are similar to hASCs and are safe for therapeutic applications in a canine model. The proposed methodology for ASC preparation on a non-routine basis, which includes individually optimised cell culture conditions and offers risk-adapted treatment, could be used for future personalised off-the-shelf therapies, for example, in myocardial infarction or stroke.
Collapse
Affiliation(s)
- Uldis Bērziņš
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
- Stem Cells Technologies Ltd. , Rīga , Latvia
| | - Ilze Matise-VanHoutana
- Faculty of Veterinary Medicine , Latvia University of Agriculture , 2 Lielā Str., Jelgava , LV-3001 , Latvia
| | - Ilze Pētersone
- Faculty of Veterinary Medicine , Latvia University of Agriculture , 2 Lielā Str., Jelgava , LV-3001 , Latvia
| | - Ilmārs Dūrītis
- Faculty of Veterinary Medicine , Latvia University of Agriculture , 2 Lielā Str., Jelgava , LV-3001 , Latvia
| | - Sergejs Ņikuļšins
- Children’s Clinical University Hospital , 45 Vienības gatve, Rīga , LV-1004 , Latvia
| | | | - Mārtiņš Kālis
- Augusts Kirhenšteins Institute of Microbiology and Virology , Rīga Stradiņš University , 5 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Šimons Svirskis
- Augusts Kirhenšteins Institute of Microbiology and Virology , Rīga Stradiņš University , 5 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Dace Skrastiņa
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Agnese Ezerta
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Tatjana Kozlovska
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
| |
Collapse
|
61
|
Kang I, Lee BC, Choi SW, Lee JY, Kim JJ, Kim BE, Kim DH, Lee SE, Shin N, Seo Y, Kim HS, Kim DI, Kang KS. Donor-dependent variation of human umbilical cord blood mesenchymal stem cells in response to hypoxic preconditioning and amelioration of limb ischemia. Exp Mol Med 2018; 50:1-15. [PMID: 29674661 PMCID: PMC5938050 DOI: 10.1038/s12276-017-0014-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023] Open
Abstract
With the rapidly growing demand for mesenchymal stem cell (MSC) therapy, numerous strategies using MSCs for different diseases have been studied and reported. Because of their immunosuppressive properties, MSCs are commonly used as an allogeneic treatment. However, for the many donors who could potentially be used, it is important to understand the capacity for therapeutic usage with donor-to-donor heterogeneity. In this study, we aimed to investigate MSCs as a promising therapeutic strategy for critical limb ischemia. We evaluated MSCs from two donors (#55 and #64) and analyzed the capacity for angiogenesis through in vivo and in vitro assays to compare the therapeutic effect between different donors. We emphasized the importance of intra-population heterogeneity of MSCs on therapeutic usage by evaluating the effects of hypoxia on activating cellular angiogenesis in MSCs. The precondition of hypoxia in MSCs is known to enhance therapeutic efficacy. Our study suggests that sensitivity to hypoxic conditions is different between cells originating from different donors, and this difference affects the contribution to angiogenesis. The bioinformatics analysis of different donors under hypoxic culture conditions identified intrinsic variability in gene expression patterns and suggests alternative potential genetic factors ANGPTL4, ADM, SLC2A3, and CDON as guaranteed general indicators for further stem cell therapy.
Collapse
Affiliation(s)
- Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bo-Eun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da-Hyun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Eun Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nari Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Pusan National University School of Medicine, Busan, 49241, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Pusan National University School of Medicine, Busan, 49241, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
62
|
Orekhov PY, Konoplyannikov MA, Baklaushev VP, Kalsin VAA, Averyanov AV, Konopliannikov AG, Habazov RI, Troitskiy AV. Bone marrow stem cells for the critical limb ischemia treatment: biological aspects and clinical application. GENES & CELLS 2018; 13:20-34. [DOI: 10.23868/201805002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
Cell therapy is one of the most promising directions in the treatment of critical limb ischemia (CLI). In spite of certain advances achieved in this field in the last decades, which are related to application of bone marrow stem cells (BMSC), a large number of problems still remain unsolved. In this review, we discuss the BMSC biology, mechanisms of their therapeutic effect in the CLI treatment and results of the most notable BMSC-based clinical studies in detail.
Collapse
|
63
|
Creane M, McElroy M, Duffy A, Dawood CS, O'Brien T. A 3-month Safety Assessment of Human Bone Marrow Derived Mesenchymal Stromal Cells Administered Once by the Intramuscular Route to Immunodeficient Mice. Toxicol Pathol 2018; 46:290-301. [PMID: 29504494 DOI: 10.1177/0192623318760516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Critical limb ischemia (CLI) represents the severest manifestation of peripheral arterial disease and is a major unmet medical need. This disease occurs when the arterial blood supply within the limb fails to meet the metabolic demands of the resting muscle or tissue, resulting in chronic ischemic rest pain and/or tissue necrosis. Human mesenchymal stromal cells, termed hMSCs, represent an exciting therapeutic modality for the treatment of this disease due to their immunomodulatory and tissue reparative functions. The aim of the study was to assess the preclinical toxicity profile of human bone marrow-derived MSCs in support of their use as a treatment for CLI. A 3-month toxicity study was carried out under good laboratory practices in immunodeficient mice who received, intramuscularly, a single dose of 3 × 105 (approximately 15 × 106 cells/kg) hMSCs manufactured under good manufacturing practices. No significant changes in body weight, food consumption, clinical signs, or histopathological changes were observed in the hMSC-treated mice in comparison to the controls. These results highlight that the administration of hMSCs during the 3-month study period was well tolerated and not associated with any test item-related tumors. This data set supported the initiation of a phase 1b first in human study in "no option" for revascularization patients with CLI.
Collapse
Affiliation(s)
- Michael Creane
- 1 Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Mary McElroy
- 2 Charles River Laboratories, Preclinical Services, Tranent (PCS-EDI), Edinburgh, UK
| | - Aoife Duffy
- 3 Centre for Cell Manufacturing in Ireland, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Chaansha Shaik Dawood
- 3 Centre for Cell Manufacturing in Ireland, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Timothy O'Brien
- 1 Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland.,3 Centre for Cell Manufacturing in Ireland, National University of Ireland Galway, Galway City, County Galway, Ireland
| |
Collapse
|
64
|
Lu W, Li X. Vascular stem/progenitor cells: functions and signaling pathways. Cell Mol Life Sci 2018; 75:859-869. [PMID: 28956069 PMCID: PMC11105279 DOI: 10.1007/s00018-017-2662-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
Vascular stem/progenitor cells (VSCs) are an important source of all types of vascular cells needed to build, maintain, repair, and remodel blood vessels. VSCs, therefore, play critical roles in the development, normal physiology, and pathophysiology of numerous diseases. There are four major types of VSCs, including endothelial progenitor cells (EPCs), smooth muscle progenitor cells (SMPCs), pericytes, and mesenchymal stem cells (MSCs). VSCs can be found in bone marrow, circulating blood, vessel walls, and other extravascular tissues. During the past two decades, considerable progress has been achieved in the understanding of the derivation, surface markers, and differentiation of VSCs. Yet, the mechanisms regulating their functions and maintenance under normal and pathological conditions, such as in eye diseases, remain to be further elucidated. Owing to the essential roles of blood vessels in human tissues and organs, understanding the functional properties and the underlying molecular basis of VSCs is of critical importance for both basic and translational research.
Collapse
Affiliation(s)
- Weisi Lu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Xuri Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
65
|
BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1. Aging (Albany NY) 2017; 8:1670-89. [PMID: 27454161 PMCID: PMC5032689 DOI: 10.18632/aging.101000] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/08/2016] [Indexed: 01/03/2023]
Abstract
For the application of mesenchymal stem cells (MSCs) as clinical therapeutics, the regulation of cellular aging is important to protect hMSCs from an age-associated decline in their function. In this study, we evaluated the effects of hypoxia on cellular senescence and the immunomodulatory abilities of hUCB-MSCs. Hypoxic-cultured hUCB-MSCs showed enhanced proliferation and had increased immunosuppressive effects on mitogen-induced mononuclear cell proliferation. We found that BMI1, a member of the polycomb repressive complex protein group, showed increased expression in hypoxic-cultured hUCB-MSCs, and the further knock-down of BMI1 in hypoxic cells induced decreased proliferative and immunomodulatory abilities in hUCB-MSCs, along with COX-2/PGE2 down-regulation. Furthermore, the expression of phosphorylated p38 MAP kinase increased in response to the over-expression of BMI1 in normoxic conditions, suggesting that BMI1 regulates the immunomodulatory properties of hUCB-MSCs via p38 MAP kinase-mediated COX-2 expression. More importantly, we identified BMI1 as a direct repressor of MAP kinase phosphatase-1 (MKP-1)/DUSP1, which suppresses p38 MAP kinase activity. In conclusion, our results demonstrate that BMI1 plays a key role in the regulation of the immunomodulatory properties of hUCB-MSCs, and we suggest that these findings might provide a strategy to enhance the functionality of hUCB-MSCs for use in therapeutic applications.
Collapse
|
66
|
Gabrielyan A, Neumann E, Gelinsky M, Rösen-Wolff A. Metabolically conditioned media derived from bone marrow stromal cells or human skin fibroblasts act as effective chemoattractants for mesenchymal stem cells. Stem Cell Res Ther 2017; 8:212. [PMID: 28969687 PMCID: PMC5623977 DOI: 10.1186/s13287-017-0664-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/10/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background The main goal of bone tissue engineering has been the generation of healthy bone in order to replace affected tissue. Therefore, optimized biomaterials are needed which allow the survival and growth of mesenchymal stem cells. Until now the key challenge in the clinical application of cell-based tissue engineering bone implants was poor diffusion of oxygen into the tissue, making functional blood vessel networks a necessity. With their ability to evolve into different cell types, to expand extensively in vitro, and to release paracrine soluble factors, bone marrow stromal cells (BMSC) are highly attractive for tissue engineering. During the last years hypoxia became a proven method to control proliferation, differentiation, and pluripotency of BMSC. Here we applied different methods to characterize metabolically conditioned media (MCM) in comparison to hypoxia conditioned media (HCM) and evaluated their ability to attract BMSC in 2-D migration assays. Methods BMSC and fibroblasts of human origin were isolated and cultivated to obtain HCM and MCM. Both media were characterized by angiogenesis arrays, cytokine arrays, and ELISA for selected factors. 2-D migration tests were performed with Corning Transwell®-96 permeable support chambers with porous polyester membranes with a pore size of 8.0 μm. Results Characterization of HCM and MCM revealed that the concentration of angiogenic factors was higher in MCM than in HCM. However, the chemoattractive capacity of MCM for BMSC was equivalent to that of HCM. HCM and MCM produced by human skin fibroblasts attracted human BMSC as efficiently as HCM and MCM produced by human BMSC. Conclusions HCM and MCM have a high chemoattractive capacity for BMSC. Both conditioned media harbor high concentrations of angiogenic factors which are important for angiogenesis and cell migration. Both chemoattracting conditioned media can also be derived from skin fibroblasts which can easily be obtained from patients in individualized therapy approaches.
Collapse
Affiliation(s)
- Anastasia Gabrielyan
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Elena Neumann
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Gießen and Kerckhoff-Klinik Bad Nauheim, Benekestraße 2-8, 61231, Bad Nauheim, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
67
|
Wang L, Qing L, Liu H, Liu N, Qiao J, Cui C, He T, Zhao R, Liu F, Yan F, Wang C, Liang K, Guo X, Shen YH, Hou X, Chen L. Mesenchymal stromal cells ameliorate oxidative stress-induced islet endothelium apoptosis and functional impairment via Wnt4-β-catenin signaling. Stem Cell Res Ther 2017; 8:188. [PMID: 28807051 PMCID: PMC5557510 DOI: 10.1186/s13287-017-0640-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022] Open
Abstract
Background Islet dysfunction and destruction are the common cause for both type 1 and type 2 diabetes mellitus (T2DM). The islets of Langerhans are highly vascularized miniorgans, and preserving the structural integrity and full function of the microvascular endothelium is vital for protecting the islets from the infiltration of immune cells and secondary inflammatory attack. Mesenchymal stromal cell (MSC)-based therapies have been proven to promote angiogenesis of the islets; however, the underlying mechanism for the protective role of MSCs in the islet endothelium is still vague. Methods In this study, we used MS-1, a murine islet microvascular endothelium cell line, and an MSC-MS1 transwell culturing system to investigate the protective mechanism of rat bone marrow-derived MSCs under oxidative stress in vitro. Cell apoptosis was detected by TUNEL staining, annexin V/PI flow cytometry analysis, and cleaved caspase 3 western blotting analysis. Endothelial cell activation was determined by expression of intercellular cell adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), as well as eNOS phosphorylation/activation. The changes of VCAM-1, eNOS, and the β-catenin expression were also tested in the isolated islets of T2DM rats infused with MSCs. Results We observed that treating MS-1 cells with H2O2 triggered significant apoptosis, induction of VCAM expression, and reduction of eNOS phosphorylation. Importantly, coculturing MS-1 cells with MSCs prevented oxidative stress-induced apoptosis, eNOS inhibition, and VCAM elevation in MS-1 cells. Similar changes in VCAM-1 and eNOS phosphorylation could also be observed in the islets isolated from T2DM rats infused with MSCs. Moreover, MSCs cocultured with MS-1 in vitro or their administration in vivo could both result in an increase of β-catenin, which suggested activation of the β-catenin-dependent Wnt signaling pathway. In MS-1 cells, activation of the β-catenin-dependent Wnt signaling pathway partially mediated the protective effects of MSCs against H2O2-induced apoptosis and eNOS inhibition. Furthermore, MSCs produced a significant amount of Wnt4 and Wnt5a. Although both Wnt4 and Wnt5a participated in the interaction between MSCs and MS-1 cells, Wnt4 exhibited a protective role while Wnt5a seemed to show a destructive role in MS-1 cells. Conclusions Our observations provide evidence that the orchestration of the MSC-secreted Wnts could promote the survival and improve the endothelial function of the injured islet endothelium via activating the β-catenin-dependent Wnt signaling in target endothelial cells. This finding might inspire further in-vivo studies.
Collapse
Affiliation(s)
- Lingshu Wang
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Li Qing
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - He Liu
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Na Liu
- College of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Jingting Qiao
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tianyi He
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ruxing Zhao
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fuqiang Liu
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fei Yan
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chuan Wang
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Kai Liang
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xinghong Guo
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.,Texas Heart Institute, Houston, TX, USA
| | - Xinguo Hou
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Li Chen
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
68
|
Choi JR, Yong KW, Wan Safwani WKZ. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci 2017; 74:2587-2600. [PMID: 28224204 PMCID: PMC11107561 DOI: 10.1007/s00018-017-2484-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
69
|
Mathew SA, Chandravanshi B, Bhonde R. Hypoxia primed placental mesenchymal stem cells for wound healing. Life Sci 2017. [PMID: 28625360 DOI: 10.1016/j.lfs.2017.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS To investigate how Placental Mesenchymal Stem Cells (P-MSCs) would adapt themselves and survive under hypoxic conditions which are prevalent in most injury sites. MAIN METHODS P-MSCs were isolated from term placenta and characterised under normoxia and hypoxia (2-2.5% O2). Cells were examined for morphology and surface marker variations by flow cytometry analysis. Glucose stimulated insulin secretion was assayed by Insulin ELISA Kit. Gene expression levels were estimated using Real Time PCR for hypoxia inducible factor1 alpha, Insulin (INS), Glucose transporters (GLUT-1, GLUT-2 and GLUT-3), Adhesion Proteins- Integrins, Fibronectin1 (FN1), E-Cadherin (CDH1), and N-Cadherin (CDH2) and angiogenesis marker VEGFA. Immunofluorescence assay was done to confirm the presence of C-Peptide, GLUT 2, E-Cadherin and ITGB3. Adhesion was confirmed assessed on fibronectin binding. KEY FINDINGS We show that insulin secretion is not hampered under hypoxia. We found an upregulation of glucose transporters under hypoxia indicating enhanced glucose uptake needed to cater to metabolic demands of proliferating cells. Up regulation of adhesion molecules was seen under hypoxia indicative of a favoured environment for retention of cells at the injury site. We also found increased level of angiogenesis of P-MSCs under hypoxia. SIGNIFICANCE Our present study thus demonstrates for the first time that P-MSCs modulate themselves under hypoxic conditions by secreting insulin, up regulating glucose transporters and adhesion molecules and eventually exhibiting an increased angiogenic potential. We thus infer that priming P-MSCs under hypoxia, could make them more suitable for wound healing applications.
Collapse
Affiliation(s)
- Suja Ann Mathew
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road, Allalasandra, Near Royal Orchid, Yelahanka, Bangalore 560 065, India
| | - Bhawna Chandravanshi
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road, Allalasandra, Near Royal Orchid, Yelahanka, Bangalore 560 065, India
| | - Ramesh Bhonde
- Dr D Y Patil University, Sant Tukaram Nagar, Maharashtra, Pune 411018, India.
| |
Collapse
|
70
|
Ivanovic Z. Stem cell evolutionary paradigm and cell engineering. Transfus Clin Biol 2017; 24:251-255. [PMID: 28596084 DOI: 10.1016/j.tracli.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 12/23/2022]
Abstract
Studying hematopoietic and mesenchymal stem cells for almost three decades revealed some similarities between the stem cell entity and the single-celled eukaryotes exhibiting the anaerobic/facultative aerobic metabolic features. A careful analysis of nowadays knowledge concerning the early eukaryotic evolution allowed us to reveal some analogies between stem cells in the metazoan tissues and the single-celled eukaryotes which existed during the first phase of eukaryotes evolution in mid-Proterozoic era. In fact, it is possible to trace the principle of the self-renewal back to the first eukaryotic common ancestor, the first undifferentiated nucleated cell possessing the primitive, mostly anaerobically-respiring mitochondria and a capacity to reproduction by a simple cell division "à l'identique". Similarly, the diversification of these single-cell eukaryotes and acquiring of complex life cycle allowed/conditioned by the increase of O2 in atmosphere (and consequently in the water environment) represents a prototype for the phenomenon of commitment/differentiation. This point of view allowed to predict the ex-vivo behavior of stem cells with respect to the O2 availability and metabolic profile which enabled to conceive the successful protocols of stem cell expansion and ex vivo conditioning based on "respecting" this relationship between the anaerobiosis and stemness. In this review, the basic elements of this paradigm and a possible application in cell engineering were discussed.
Collapse
Affiliation(s)
- Z Ivanovic
- CS21010, Établissement français du sang Aquitaine-Limousin, place Amélie-Raba-Léon, 33075 Bordeaux cedex, France; U1035 INSEM, université de Bordeaux, 33076 Bordeaux cedex, France.
| |
Collapse
|
71
|
Hong Y, Zhang B, Yu L, Duan SS. Cell membrane integrity and revascularization: The possible functional mechanism of ischemic preconditioning for skeletal muscle protection against ischemic-reperfusion injury. Acta Histochem 2017; 119:309-314. [PMID: 28291543 DOI: 10.1016/j.acthis.2017.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this paper was to evaluate whether ischemic preconditioning (IPC) could make protective effects against skeletal muscle injuries induced by ischemic-reperfusion (I/R). METHODS Eighteen rats were randomly divided into three groups of 6 subjects each: control group, I/R group, and IPC group. Thigh root ischemia of rats in the I/R group was induced by 3h ischemia and 24h reperfusion. IPC was applied by 3 periods of 15min ischemia/15min reperfusion prior to ischemia. Morphological changes in skeletal muscle cells induced by I/R and IPC were observed by hematoxylin and eosin (HE) staining and electron microscopy. In addition, angiogenesis was evaluated by immunolabeling of CD31. RESULTS IPC could prevented morphological alternations induced by ischemia, including myofilament, cell membrane, cell matrix, nucleus, mitochondria, and sarcoplasmic reticulum damage in skeletal muscle cells. The CD31 immunolabeling showed that neovascularization was observed in the IPC group but not in the I/R group. IPC could protect skeletal muscle cells from necrosis, apoptosis, and morphological damages induced by I/R injury. CONCLUSION Revascularization may play a key role in the mechanism underlying the protective effects of IPC in vivo.
Collapse
|
72
|
Markovič R, Peltan J, Gosak M, Horvat D, Žalik B, Seguy B, Chauvel R, Malandain G, Couffinhal T, Duplàa C, Marhl M, Roux E. Planar cell polarity genes frizzled4 and frizzled6 exert patterning influence on arterial vessel morphogenesis. PLoS One 2017; 12:e0171033. [PMID: 28253274 PMCID: PMC5333836 DOI: 10.1371/journal.pone.0171033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/14/2017] [Indexed: 11/19/2022] Open
Abstract
Quantitative analysis of the vascular network anatomy is critical for the understanding of the vasculature structure and function. In this study, we have combined microcomputed tomography (microCT) and computational analysis to provide quantitative three-dimensional geometrical and topological characterization of the normal kidney vasculature, and to investigate how 2 core genes of the Wnt/planar cell polarity, Frizzled4 and Frizzled6, affect vascular network morphogenesis. Experiments were performed on frizzled4 (Fzd4-/-) and frizzled6 (Fzd6-/-) deleted mice and littermate controls (WT) perfused with a contrast medium after euthanasia and exsanguination. The kidneys were scanned with a high-resolution (16 μm) microCT imaging system, followed by 3D reconstruction of the arterial vasculature. Computational treatment includes decomposition of 3D networks based on Diameter-Defined Strahler Order (DDSO). We have calculated quantitative (i) Global scale parameters, such as the volume of the vasculature and its fractal dimension (ii) Structural parameters depending on the DDSO hierarchical levels such as hierarchical ordering, diameter, length and branching angles of the vessel segments, and (iii) Functional parameters such as estimated resistance to blood flow alongside the vascular tree and average density of terminal arterioles. In normal kidneys, fractal dimension was 2.07±0.11 (n = 7), and was significantly lower in Fzd4-/- (1.71±0.04; n = 4), and Fzd6-/- (1.54±0.09; n = 3) kidneys. The DDSO number was 5 in WT and Fzd4-/-, and only 4 in Fzd6-/-. Scaling characteristics such as diameter and length of vessel segments were altered in mutants, whereas bifurcation angles were not different from WT. Fzd4 and Fzd6 deletion increased vessel resistance, calculated using the Hagen-Poiseuille equation, for each DDSO, and decreased the density and the homogeneity of the distal vessel segments. Our results show that our methodology is suitable for 3D quantitative characterization of vascular networks, and that Fzd4 and Fzd6 genes have a deep patterning effect on arterial vessel morphogenesis that may determine its functional efficiency.
Collapse
Affiliation(s)
- Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Julien Peltan
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Université de Bordeaux, Biology of Cardiovascular Diseases U1034, Pessac, France
- Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marko Gosak
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Denis Horvat
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Borut Žalik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Benjamin Seguy
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Remi Chauvel
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Université de Bordeaux, Biology of Cardiovascular Diseases U1034, Pessac, France
- Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | | | - Thierry Couffinhal
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Université de Bordeaux, Biology of Cardiovascular Diseases U1034, Pessac, France
- Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Cécile Duplàa
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
| | - Marko Marhl
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Etienne Roux
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Université de Bordeaux, Biology of Cardiovascular Diseases U1034, Pessac, France
- * E-mail:
| |
Collapse
|
73
|
Improving the therapeutic efficacy of mesenchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound. Sci Rep 2017; 7:41550. [PMID: 28169278 PMCID: PMC5294408 DOI: 10.1038/srep41550] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC) are promising therapeutics for critical limb ischemia (CLI). Mechanotransduction from pulsed focused ultrasound (pFUS) upregulates local chemoattractants to enhance homing of intravenously (IV)-infused MSC and improve outcomes. This study investigated whether pFUS exposures to skeletal muscle would improve local homing of iv-infused MSCs and their therapeutic efficacy compared to iv-infused MSCs alone. CLI was induced by external iliac arterial cauterization in 10–12-month-old mice. pFUS/MSC treatments were delayed 14 days, when surgical inflammation subsided. Mice were treated with iv-saline, pFUS alone, IV-MSC, or pFUS and IV-MSC. Proteomic analyses revealed pFUS upregulated local chemoattractants and increased MSC tropism to CLI muscle. By 7 weeks post-treatment, pFUS + MSC significantly increased perfusion and CD31 expression, while reducing fibrosis compared to saline. pFUS or MSC alone reduced fibrosis, but did not increase perfusion or CD31. Furthermore, MSCs homing to pFUS-treated CLI muscle expressed more vascular endothelial growth factor (VEGF) and interleukin-10 (IL-10) than MSCs homing to non-pFUS-treated muscle. pFUS + MSC improved perfusion and vascular density in this clinically-relevant CLI model. The molecular effects of pFUS increased both MSC homing and MSC production of VEGF and IL-10, suggesting microenvironmental changes from pFUS also increased potency of MSCs in situ to further enhance their efficacy.
Collapse
|
74
|
Effect of Hypoxia on the Differentiation and the Self-Renewal of Metanephrogenic Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:7168687. [PMID: 28194187 PMCID: PMC5282446 DOI: 10.1155/2017/7168687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/24/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is an important and influential factor in development. The embryonic kidney is exposed to a hypoxic environment throughout its development. The Wnt/β-catenin pathway plays vital roles in the differentiation and self-renewal of metanephrogenic mesenchymal stem cells (MMSCs) from which the kidney is derived. Thus, we hypothesized that hypoxia can regulate the differentiation and pluripotency of MMSCs through the Wnt/β-catenin pathway. To test this hypothesis, MMSCs from rats at embryonic day 18.5 were cultured in normoxic (21% O2) and hypoxic (1% O2) conditions. The effects of hypoxia on differentiation, stemness, proliferation, and apoptosis of cultured MMSCs and on the activity of the Wnt/β-catenin pathway were tested. Our results revealed that the hypoxic condition increased the number of epithelial cells (E-cadherin+ or CK18+) as well the expression of markers of renal tubule epithelia cells (CDH6, Aqp1, and OPN), decreased the number and proliferation of stem cells (SIX-2+ or CITED1+), and induced apoptosis. Additionally, hypoxia reduced the expression of Wnt4 as well as its downstream molecules β-catenin, LEF-1, and Axin2. Activation of the Wnt/β-catenin pathway by LiCl or BIO modified the effects of hypoxia on the differentiation and self-renewal of MMSCs. Thus, we concluded that hypoxia induces the differentiation and inhibits the self-renewal of MMSCs by inhibiting the Wnt/β-catenin pathway. The observations further our understanding of the effects of hypoxia on kidney.
Collapse
|
75
|
Therapeutic Effects of Ischemic-Preconditioned Exosomes in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:271-281. [PMID: 28936746 DOI: 10.1007/978-981-10-4397-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite years of researches, cardiovascular disease (CVD) remains the most common cause of death around the world. Lots of studies showed that by pretreating with short nonfatal ischemia in in situ organ or distant organ, one could develop tolerance to the following fatal ischemia. The process is called ischemic preconditioning (IPC). IPC prepare the heart for damage by producing inflammatory signals, miRNA, neuro system stimulation and exosomes. Among them, exosomes have been gaining increasing interest since it is characterized by its capability to carry information and its specific ligand-receptor system. Here we will discuss IPC induced exosomes and its protective effects during ischemic heart disease.
Collapse
|
76
|
Kim DS, Ko YJ, Lee MW, Park HJ, Park YJ, Kim DI, Sung KW, Koo HH, Yoo KH. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells. Cell Stress Chaperones 2016; 21:1089-1099. [PMID: 27565660 PMCID: PMC5083677 DOI: 10.1007/s12192-016-0733-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.
Collapse
Affiliation(s)
- Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Young Jong Ko
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea.
| | - Hyun Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Yoo Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Dong-Ik Kim
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea.
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
77
|
Kowalski K, Kołodziejczyk A, Sikorska M, Płaczkiewicz J, Cichosz P, Kowalewska M, Stremińska W, Jańczyk-Ilach K, Koblowska M, Fogtman A, Iwanicka-Nowicka R, Ciemerych MA, Brzoska E. Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis. Cell Adh Migr 2016; 11:384-398. [PMID: 27736296 PMCID: PMC5569967 DOI: 10.1080/19336918.2016.1227911] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor −1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras-Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle.
Collapse
Affiliation(s)
- Kamil Kowalski
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | | | - Maria Sikorska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Jagoda Płaczkiewicz
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Paulina Cichosz
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Magdalena Kowalewska
- b Department of Molecular and Translational Oncology , Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology , Warsaw , Poland.,c Department of Immunology, Biochemistry and Nutrition , Medical University of Warsaw , Warsaw , Poland
| | - Władysława Stremińska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | | | - Marta Koblowska
- d Laboratory of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw , Poland.,e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Anna Fogtman
- e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Roksana Iwanicka-Nowicka
- d Laboratory of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw , Poland.,e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Maria A Ciemerych
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Edyta Brzoska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| |
Collapse
|
78
|
Mu Y, Hao Z, He J, Yan R, Liu H, Zhang L, Liu H, Hu X, Li Q. Effects of β-like cell autotransplantation through hepatic arterial intervention on diabetic dogs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 44:1333-8. [PMID: 27328726 DOI: 10.3109/21691401.2015.1052471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exogenous insulin and EGFP genes were transduced into bone marrow mesenchymal stem cells of beagle dogs using the retroviral vector pMSCV to prepare β-like cells. These cells were autotransplanted into the liver of diabetic dogs through hepatic arterial intervention, and physiological indices before and after transplantation were monitored. Autotransplantation of β-like cells significantly improved blood sugar, insulin levels, and body mass of diabetic dogs (P < 0.01) continuously for over 80 weeks. Since the liver function remained normal and no tumors formed, this method was determined to be reliable and safe. Intrahepatic autotransplantation of β-like cells had long-term, reliable, and safe therapeutic effects on diabetic dogs.
Collapse
Affiliation(s)
- Yongxu Mu
- a Department of Endocrinology , First Affiliated Hospital of Medical College of Xi'an Jiaotong University , Xi'an , PR China.,b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Zhiming Hao
- a Department of Endocrinology , First Affiliated Hospital of Medical College of Xi'an Jiaotong University , Xi'an , PR China
| | - Junfeng He
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Ruiqiang Yan
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Haiyan Liu
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Lei Zhang
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Heming Liu
- a Department of Endocrinology , First Affiliated Hospital of Medical College of Xi'an Jiaotong University , Xi'an , PR China.,b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Xiaoyan Hu
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Qiming Li
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| |
Collapse
|
79
|
Assi R, Foster TR, He H, Stamati K, Bai H, Huang Y, Hyder F, Rothman D, Shu C, Homer-Vanniasinkam S, Cheema U, Dardik A. Delivery of mesenchymal stem cells in biomimetic engineered scaffolds promotes healing of diabetic ulcers. Regen Med 2016; 11:245-60. [PMID: 26986810 DOI: 10.2217/rme-2015-0045] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM We hypothesized that delivery of mesenchymal stem cells (MSCs) in a biomimetic collagen scaffold improves wound healing in a diabetic mouse model. MATERIALS & METHODS Rolled collagen scaffolds containing MSCs were implanted or applied topically to diabetic C57BL/6 mice with excisional wounds. RESULTS Rolled scaffolds were hypoxic, inducing MSC synthesis and secretion of VEGF. Diabetic mice with wounds treated with rolled scaffolds containing MSCs showed increased healing compared with controls. Histologic examination showed increased cellular proliferation, increased VEGF expression and capillary density, and increased numbers of macrophages, fibroblasts and smooth muscle cells. Addition of laminin to the collagen scaffold enhanced these effects. CONCLUSION Activated MSCs delivered in a biomimetic-collagen scaffold enhanced wound healing in a translationally relevant diabetic mouse model.
Collapse
Affiliation(s)
- Roland Assi
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Trenton R Foster
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hao He
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Katerina Stamati
- UCL Institute of Orthopaedics & Musculoskeletal Sciences, UCL Division of Surgery & Interventional Sciences, University College London, London, UK
| | - Hualong Bai
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Yuegao Huang
- Departments of Diagnostic Radiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Departments of Diagnostic Radiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Douglas Rothman
- Departments of Diagnostic Radiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shervanthi Homer-Vanniasinkam
- UCL Institute of Orthopaedics & Musculoskeletal Sciences, UCL Division of Surgery & Interventional Sciences, University College London, London, UK
| | - Umber Cheema
- UCL Institute of Orthopaedics & Musculoskeletal Sciences, UCL Division of Surgery & Interventional Sciences, University College London, London, UK
| | - Alan Dardik
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| |
Collapse
|
80
|
Hypoxia enhances the protective effects of placenta-derived mesenchymal stem cells against scar formation through hypoxia-inducible factor-1α. Biotechnol Lett 2016; 38:931-9. [PMID: 26932904 DOI: 10.1007/s10529-016-2067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To explore the effect of placenta-derived mesenchymal stem cells on scar formation as well as the underlying mechanism. RESULTS The isolated placenta-derived mesenchymal stem cells from mice were distributed in the wounded areas of scalded mouse models, attenuated inflammatory responses and decreased the deposition of collagens, thus performing a beneficial effect against scar formation. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells and hypoxia-inducible factor-1α was involved in the protective effect of placenta-derived mesenchymal stem cells in hypoxic condition. CONCLUSIONS Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells through hypoxia-inducible factor-1α and PMSCs may have a potential application in the treatment of wound.
Collapse
|
81
|
Xu Y, Fu M, Li Z, Fan Z, Li X, Liu Y, Anderson PM, Xie X, Liu Z, Guan J. A prosurvival and proangiogenic stem cell delivery system to promote ischemic limb regeneration. Acta Biomater 2016; 31:99-113. [PMID: 26689466 DOI: 10.1016/j.actbio.2015.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/17/2015] [Accepted: 12/11/2015] [Indexed: 12/20/2022]
Abstract
Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. STATEMENT OF SIGNIFICANCE Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the ischemic environment of the injured limbs. To increase therapeutic efficacy, high rate of cell survival is essential, which current approaches do not support. In this work, we tested the hypothesis that a stem cell delivery system that can continuously release a prosurvival and proangiogenic growth factor will promote high rates of cell survival in the ischemic limbs. The prosurvival effect could augment cell survival before vascularization is established, while the proangiogenic effect could stimulate quick angiogenesis to achieve long-term cell survival. Meanwhile, the differentiation of stem cells into endothelial and myogenic lineages, and cell paracrine effects will enhance vascularization and muscle regeneration.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Minghuan Fu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Zhihong Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Division of General Surgery, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201200, China
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Ying Liu
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Peter M Anderson
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, OH 43210, United States
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Tongji Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
82
|
Woodell-May JE, Tan ML, King WJ, Swift MJ, Welch ZR, Murphy MP, McKale JM. Characterization of the Cellular Output of a Point-of-Care Device and the Implications for Addressing Critical Limb Ischemia. Biores Open Access 2015; 4:417-24. [PMID: 26634187 PMCID: PMC4652191 DOI: 10.1089/biores.2015.0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Critical limb ischemia (CLI) is a terminal disease with high morbidity and healthcare costs due to limb loss. There are no effective medical therapies for patients with CLI to prevent amputation. Cell-based therapies are currently being investigated to address this unmet clinical need and have shown promising preliminary results. The purpose of this study was to characterize the output of a point-of-care cell separator (MarrowStim P.A.D. Kit), currently under investigation for the treatment of CLI, and compare its output with Ficoll-based separation. The outputs of the MarrowStim P.A.D. Kit and Ficoll separation were characterized using an automated hematology analyzer, colony-forming unit (CFU) assays, and tubulogenesis assays. Hematology analysis indicated that the MarrowStim P.A.D. Kit concentrated the total nucleated cells, mononuclear cells, and granulocytes compared with baseline bone marrow aspirate. Cells collected were positive for VEGFR-2, CD3, CD14, CD34, CD45, CD56, CD105, CD117, CD133, and Stro-1 antigen. CFU assays demonstrated that the MarrowStim P.A.D. Kit output a significantly greater number of mesenchymal stem cells and hematopoietic stem cells compared with cells output by Ficoll separation. There was no significant difference in the number of endothelial progenitor cells output by the two separation techniques. Isolated cells from both techniques formed interconnected nodes and microtubules in a three-dimensional cell culture assay. This information, along with data currently being collected in large-scale clinical trials, will help instruct how different cellular fractions may affect the outcomes for CLI patients.
Collapse
Affiliation(s)
- Jennifer E. Woodell-May
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
- Address correspondence to: Jennifer E. Woodell-May, PhD, Biomet Biologics, LLC., A subsidiary of Biomet, Inc., 56, East Bell Drive, Warsaw, IN 46581, E-mail:
| | - Matthew L. Tan
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| | - William J. King
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| | - Matthew J. Swift
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| | - Zachary R. Welch
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - James M. McKale
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| |
Collapse
|
83
|
Xu Y, Li Z, Li X, Fan Z, Liu Z, Xie X, Guan J. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels. Acta Biomater 2015; 26:23-33. [PMID: 26277379 DOI: 10.1016/j.actbio.2015.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 01/02/2023]
Abstract
Stem cell therapy has potential to regenerate skeletal muscle tissue in ischemic limb. However, the delivered stem cells experience low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as their modulus may be tailored to induce the differentiation. Yet current approaches used to manipulate hydrogel modulus often simultaneously vary other properties that also affect stem cell differentiation, such as chemical structure, composition and water content. Thus it is challenging to demonstrate the decoupled effect of hydrogel modulus on stem cell differentiation. In this report, we decoupled the hydrogel modulus from chemical structure, composition, and water content using injectable and thermosensitive hydrogels. The hydrogels were synthesized from N-isopropylacrylamide (NIPAAm), acrylic acid (AAc), and degradable macromer 2-hydroxyethyl methacrylate-oligomer [oligolatide, oligohydroxybutyrate, or oligo(trimethylene carbonate)]. We found that using the same monomer composition and oligomer chemical structure but different oligomer length can independently vary hydrogel modulus. Rat bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels with elastic expansion moduli of 11, 20, and 40 kPa, respectively. After 14 days of culture, significant myogenic differentiation was achieved for the hydrogel with elastic expansion modulus of 20 kPa, as judged from both the gene and protein expression. In addition, MSCs exhibited an elastic expansion modulus-dependent proliferation rate. The most significant proliferation was observed in the hydrogel with elastic expansion modulus of 40 kPa. These results demonstrate that the developed injectable and thermosensitive hydrogels with suitable modulus has the potential to deliver stem cells into ischemic limb for enhanced myogenic differentiation and muscle regeneration. STATEMENT OF SIGNIFICANCE Stem cell therapy for skeletal muscle regeneration in ischemic limb experiences low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as hydrogel modulus may be modulated to induce the differentiation. Yet current approaches used to modulate hydrogel modulus may simultaneously vary other properties that also affect stem cell myogenic differentiation, such as chemistry, composition and water content. In this report, we decoupled the hydrogel modulus from chemistry, composition, and water content using injectable and thermosensitive hydrogels. We found that mesenchymal stem cells best differentiated into myogenic lineage in the hydrogel with elastic modulus of 20 kPa.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhenqing Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Tongji Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
84
|
Visweswaran M, Pohl S, Arfuso F, Newsholme P, Dilley R, Pervaiz S, Dharmarajan A. Multi-lineage differentiation of mesenchymal stem cells - To Wnt, or not Wnt. Int J Biochem Cell Biol 2015; 68:139-47. [PMID: 26410622 DOI: 10.1016/j.biocel.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent precursor cells originating from several adult connective tissues. MSCs possess the ability to self-renew and differentiate into several lineages, and are recognized by the expression of unique cell surface markers. Several lines of evidence suggest that various signal transduction pathways and their interplay regulate MSC differentiation. To that end, a critical player in regulating MSC differentiation is a group of proteins encoded by the Wnt gene family, which was previously known for influencing various stages of embryonic development and cell fate determination. As MSCs have gained significant clinical attention for their potential applications in regenerative medicine, it is imperative to unravel the mechanisms by which molecular regulators control differentiation of MSCs for designing cell-based therapeutics. It is rather coincidental that the functional outcome(s) of Wnt-induced signals share similarities with cellular redox-mediated networks from the standpoint of MSC biology. Furthermore, there is evidence for a crosstalk between Wnt and redox signalling, which begs the question whether Wnt-mediated differentiation signals involve the intermediary role of reactive oxygen species. In this review, we summarize the impact of Wnt signalling on multi-lineage differentiation of MSCs, and attempt to unravel the intricate interplay between Wnt and redox signals.
Collapse
Affiliation(s)
- Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Sebastian Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Rodney Dilley
- Ear Sciences Centre, University of Western Australia and Ear Science Institute Australia, Perth, Western Australia 6008, Australia
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
85
|
Bader AM, Klose K, Bieback K, Korinth D, Schneider M, Seifert M, Choi YH, Kurtz A, Falk V, Stamm C. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLoS One 2015; 10:e0138477. [PMID: 26380983 PMCID: PMC4575058 DOI: 10.1371/journal.pone.0138477] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hypoxic preconditioning was shown to improve the therapeutic efficacy of bone marrow-derived multipotent mesenchymal stromal cells (MSCs) upon transplantation in ischemic tissue. Given the interest in clinical applications of umbilical cord blood-derived MSCs, we developed a specific hypoxic preconditioning protocol and investigated its anti-apoptotic and pro-angiogenic effects on cord blood MSCs undergoing simulated ischemia in vitro by subjecting them to hypoxia and nutrient deprivation with or without preceding hypoxic preconditioning. Cell number, metabolic activity, surface marker expression, chromosomal stability, apoptosis (caspases-3/7 activity) and necrosis were determined, and phosphorylation, mRNA expression and protein secretion of selected apoptosis and angiogenesis-regulating factors were quantified. Then, human umbilical vein endothelial cells (HUVEC) were subjected to simulated ischemia in co-culture with hypoxically preconditioned or naïve cord blood MSCs, and HUVEC proliferation was measured. Migration, proliferation and nitric oxide production of HUVECs were determined in presence of cord blood MSC-conditioned medium. Cord blood MSCs proved least sensitive to simulated ischemia when they were preconditioned for 24 h, while their basic behavior, immunophenotype and karyotype in culture remained unchanged. Here, “post-ischemic” cell number and metabolic activity were enhanced and caspase-3/7 activity and lactate dehydrogenase release were reduced as compared to non-preconditioned cells. Phosphorylation of AKT and BAD, mRNA expression of BCL-XL, BAG1 and VEGF, and VEGF protein secretion were higher in preconditioned cells. Hypoxically preconditioned cord blood MSCs enhanced HUVEC proliferation and migration, while nitric oxide production remained unchanged. We conclude that hypoxic preconditioning protects cord blood MSCs by activation of anti-apoptotic signaling mechanisms and enhances their angiogenic potential. Hence, hypoxic preconditioning might be a translationally relevant strategy to increase the tolerance of cord blood MSCs to ischemia and improve their therapeutic efficacy in clinical applications.
Collapse
Affiliation(s)
- Andreas Matthäus Bader
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | | | - Maria Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Seifert
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
86
|
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have demonstrated significant potentials for the treatment of inflammatory bowel disease. Clinical feasible methods to individually document the MSC recruitment to intestinal mucosa is lacking. Here, we proposed that endomicroscopy could noninvasively track MSCs in vivo at cellular resolution. METHOD Isolated Sprague Dawley rat MSC was characterized, fluorescently labeled, and imaged ex vivo using an endomicroscope. Then enhanced green fluorescent protein (eGFP)-labeled MSC was tracked in vivo, and acquired images were compared with immunofluorescence, immunohistology, and fluorescent in situ hybridization results. RESULTS Endomicroscopy visualized clearly the eGFP-labeled or carboxyfluorescein succinimidyl ester-stained MSC ex vivo. Endomicroscopy using the FIVE1 system could track eGFP-labeled MSC with distinct in vivo features. Immunofluorescence, immunohistochemistry, and fluorescent in situ hybridization confirmed the presence of eGFP-positive cells. In vivo endomicroscopy could quantify the transplanted MSCs that homed to colonic mucosa of the recipient rat in multiple models, including the rat-to-rat allograft, human-to-rat xenograft, hypoxia-induced MSC, and busulfan immunosuppressed recipient rat models. After hypoxia induction, there was a trend of enhanced rat MSC homing to the inflamed mucosa as visualized by endomicroscopy (114.1 in hypoxia group versus 34.3 in other 3 groups combined, t = 2.14, P = 0.0644). CONCLUSIONS Endomicroscopy is a novel and promising tool to track transplanted MSCs to the colonic mucosa. This clinical available noninvasive cellular tracking method may provide new insight to individualize each recipient's regimen in the future.
Collapse
|
87
|
Li Y, Fan L, Hu J, Zhang L, Liao L, Liu S, Wu D, Yang P, Shen L, Chen J, Jin Y. MiR-26a Rescues Bone Regeneration Deficiency of Mesenchymal Stem Cells Derived From Osteoporotic Mice. Mol Ther 2015; 23:1349-1357. [PMID: 26050992 DOI: 10.1038/mt.2015.101] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 05/27/2015] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis, caused by a relative increase of bone resorption over bone formation, is characterized by decreased bone mass and bone strength, resulting in an increased incidence of bone fractures, which often leads to further disability and early mortality in the elderly due to impaired bone healing ability. The majority of therapeutics currently used in clinics for the treatment of osteoporosis are antiresorptive agents that exert their clinical effect by decreasing the rate of bone resorption. However, strategies solely aimed at antiresorption have limited therapeutic efficacy in restoring bone remodeling balance and enhancing osteoporotic fracture healing. Here, we report that miR-26a plays a critical role in modulating bone formation during osteoporosis. We found that miR-26a treatment could effectively improve the osteogenic differentiation capability of mesenchymal stem cells isolated from littermate-derived ovariectomized osteoporotic mice both in vitro and in vivo. MiR-26a exerts its effect by directly targeting Tob1, the negative regulator of BMP/Smad signaling pathway by binding to the 3'-untranslated region and thus repressing Tob1 protein expression. Our findings indicate that miR-26a may be a promising therapeutic candidate to enhance bone formation in treatment of osteoporosis and to promote bone regeneration in osteoporotic fracture healing.
Collapse
Affiliation(s)
- Yan Li
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Longkun Fan
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Department of Oral and Maxillofacial Surgery, Cangzhou Center Hospital, Hebei, P.R. China
| | - Jiang Hu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Leilei Zhang
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Li Liao
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Shiyu Liu
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Dan Wu
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Ping Yang
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Lijuan Shen
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Jihua Chen
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China.
| | - Yan Jin
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China.
| |
Collapse
|
88
|
Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff RR, Nolta JA, Fierro FA. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells 2015; 33:1818-28. [PMID: 25702874 PMCID: PMC10757456 DOI: 10.1002/stem.1976] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells/multipotent stromal cells (MSCs) are promising therapeutics for a variety of conditions. However, after transplantation, cell retention remains extremely challenging. Given that many hypoxic signals are transitory and that the therapeutic administration of MSCs is typically into tissues that are normally hypoxic, we studied the effect of hypoxic preconditioning (HP) prior to new exposure to hypoxia. We show that preincubation for 2 days or more in 1% oxygen reduces serum deprivation-mediated cell death, as observed by higher cell numbers and lower incorporation of EthD-III and Annexin V. Consistently, HP-MSCs expressed significantly lower levels of cytochrome c and heme oxygenase 1 as compared to controls. Most importantly, HP-MSCs showed enhanced survival in vivo after intramuscular injection into immune deficient NOD/SCID-IL2Rgamma(-/-) mice. Interestingly, HP-MSCs consume glucose and secrete lactate at a slower rate than controls, possibly promoting cell survival, as glucose remains available to the cells for longer periods of time. In addition, we compared the metabolome of HP-MSCs to controls, before and after hypoxia and serum deprivation, and identified several possible mediators for HP-mediated cell survival. Overall, our findings suggest that preincubation of MSCs for 2 days or more in hypoxia induces metabolic changes that yield higher retention after transplantation.
Collapse
Affiliation(s)
- Julie Beegle
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Kinga Lakatos
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Stefanos Kalomoiris
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Heather Stewart
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - R Rivkah Isseroff
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Jan A Nolta
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Fernando A Fierro
- Institute for Regenerative Cures, University of California, Davis, California, USA
| |
Collapse
|
89
|
Liu J, Hao H, Xia L, Ti D, Huang H, Dong L, Tong C, Hou Q, Zhao Y, Liu H, Fu X, Han W. Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia. PLoS One 2015; 10:e0126715. [PMID: 25996677 PMCID: PMC4440823 DOI: 10.1371/journal.pone.0126715] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/07/2015] [Indexed: 01/21/2023] Open
Abstract
Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI). Mesenchymal stem cells (MSCs) are multipotent secretory cells that are suitable for clinical DLLI treatment, but their use has been hampered by poor survival after injection. Hypoxia can significantly enhance the capacity of MSCs to secrete angiogenic factors. We investigated transient hypoxia pretreatment of MSCs to facilitate revascularization in DLLI. Rat bone marrow MSCs (BM-MSCs) were cultured at different oxygen concentrations for varying time periods. The results indicated that transient pretreatment (5% O2, 48 h) not only increased the expression of VEGF-1α, ANG, HIF-1α and MMP-9 in BM-MSCs as assessed by real-time RT-PCR, but also increased the expression of Bcl-2 as determined by western blotting. The transplantation of pretreated BM-MSCs into rats with DLLI demonstrated accelerated vascular reconstruction when assayed by angiography and immunohistochemistry. CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days. The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle. Double immunofluorescence studies confirmed that the pretreated BM-MSCs promoted the proliferation and inhibited the apoptosis of endothelial cells. In vitro, pretreated BM-MSCs increased the migratory and tube forming capacity of endothelial cells (ECs). Hypoxia pretreatment of BM-MSCs significantly improved angiogenesis in response to tissue ischemia by ameliorating endothelial cell dysfunction and is a promising therapeutic treatment for DLLI.
Collapse
Affiliation(s)
- Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Lei Xia
- Department of Medical Administration, Chinese PLA General Hospital, Beijing, China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Hong Huang
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Liang Dong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Qian Hou
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Yali Zhao
- Central laboratory, Hainan branch of Chinese PLA General Hospital, Sanya, China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WH); ( (XF)
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WH); ( (XF)
| |
Collapse
|
90
|
Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, Kuo HP, Chong KY. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther 2015; 6:97. [PMID: 25986930 PMCID: PMC4487587 DOI: 10.1186/s13287-015-0081-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/19/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs. METHODS Hypoxic preconditioning was achieved in MSCs under an optimal hypoxic environment. The expression levels of cytoprotective factors and their biological effects on damaged alveolar epithelial cells or transforming growth factor-beta 1-treated fibroblast cells were studied in co-culture experiments in vitro. Furthermore, hypoxia-preconditioned MSCs (HP-MSCs) were intratracheally instilled into bleomycin-induced pulmonary fibrosis mice at day 3, and lung functions, cellular, molecular and pathological changes were assessed at 7 and 21 days after bleomycin administration. RESULTS The expression of genes for pro-survival, anti-apoptotic, anti-oxidant and growth factors was upregulated in MSCs under hypoxic conditions. In transforming growth factor-beta 1-treated MRC-5 fibroblast cells, hypoxia-preconditioned MSCs attenuated extracellular matrix production through paracrine effects. The pulmonary respiratory functions significantly improved for up to 18 days of hypoxia-preconditioned MSC treatment. Expression of inflammatory factors and fibrotic factor were all downregulated in the lung tissues of the hypoxia-preconditioned MSC-treated mice. Histopathologic examination observed a significant amelioration of the lung fibrosis. Several LacZ-labeled MSCs were observed within the lungs in the hypoxia-preconditioned MSC treatment groups at day 21, but no signals were detected in the normoxic MSC group. Our data further demonstrated that upregulation of hepatocyte growth factor possibly played an important role in mediating the therapeutic effects of transplanted hypoxia-preconditioned MSCs. CONCLUSION Transplantation of hypoxia-preconditioned MSCs exerted better therapeutic effects in bleomycin-induced pulmonary fibrotic mice and enhanced the survival rate of engrafted MSCs, partially due to the upregulation of hepatocyte growth factor.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Division of Biotechnology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| | - Kong-Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China.
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China.
- Rong-Hsing Translational Medicine Center, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | - Tsai-Hsien Hung
- Division of Biotechnology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| | - Young-Bin Chen
- Institute of Biotechnology, National Taiwan University, Taichung, Taiwan, Republic of China.
| | - Chung-Hsing Hsieh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Thoracic Medicine, St Paul's Hospital, Taoyuan, Taiwan, Republic of China.
- Department of Thoracic Medicine, Ton-Yen General Hospital, Hsinchu, Taiwan, Republic of China.
| | - Han-Pin Kuo
- Department of Thoracic Medicine, Pulmonary Disease Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan, Republic of China.
- Department of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| | - Kowit-Yu Chong
- Division of Biotechnology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| |
Collapse
|
91
|
Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 2015; 23:1045-59. [PMID: 23676629 DOI: 10.3727/096368913x667709] [Citation(s) in RCA: 670] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are one of a few stem cell types to be applied in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair. In addition to their multipotent differentiation potential, a strong paracrine capacity has been proposed as the principal mechanism that contributes to tissue repair. Apart from cytokine/chemokine secretion, MSCs also display a strong capacity for mitochondrial transfer and microvesicle (exosomes) secretion in response to injury with subsequent promotion of tissue regeneration. These unique properties of MSCs make them an invaluable cell type to repair damaged tissues/organs. Although MSCs offer great promise in the treatment of degenerative diseases and inflammatory disorders, there are still many challenges to overcome prior to their widespread clinical application. Particularly, their in-depth paracrine mechanisms remain a matter for debate and exploration. This review will highlight the discovery of the paracrine mechanism of MSCs, regulation of the paracrine biology of MSCs, important paracrine factors of MSCs in modulation of tissue repair, exosome and mitochondrial transfer for tissue repair, and the future perspective for MSC-based therapy.
Collapse
Affiliation(s)
- Xiaoting Liang
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
92
|
Duinhouwer LE, Tüysüz N, Rombouts EWJC, ter Borg MND, Mastrobattista E, Spanholtz J, Cornelissen JJ, ten Berge D, Braakman E. Wnt3a protein reduces growth factor-driven expansion of human hematopoietic stem and progenitor cells in serum-free cultures. PLoS One 2015; 10:e0119086. [PMID: 25807521 PMCID: PMC4373922 DOI: 10.1371/journal.pone.0119086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Ex vivo expansion of hematopoietic stem and progenitor cells (HSPC) is a promising approach to improve insufficient engraftment after umbilical cord blood stem cell transplantation (UCB-SCT). Although culturing HSPC with hematopoietic cytokines results in robust proliferation, it is accompanied with extensive differentiation and loss of self-renewal capacity. Wnt signaling has been implicated in regulating HSPC fate decisions in vivo and in promoting HSPC self-renewal by inhibition of differentiation, but the effects of Wnt on the ex vivo expansion of HSPC are controversial. Here, we demonstrate that exogenous Wnt3a protein suppresses rather than promotes the expansion of UCB-derived CD34+ cells in serum free expansion cultures. The reduced expansion was also observed in cultures initiated with Lin-CD34+CD38lowCD45RA-CD90+ cells which are highly enriched in HSC and was also observed in response to activation of beta-catenin signaling by GSK3 inhibition. The presence of Wnt3a protein during the culture reduced the frequency of multilineage CFU-GEMM and the long-term repopulation ability of the expanded HSPC. These data suggest that Wnt signaling reduces expansion of human HSPC in growth factor-driven expansion cultures by promoting differentiation of HSPC.
Collapse
Affiliation(s)
- Lucia E. Duinhouwer
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Nesrin Tüysüz
- Erasmus MC Stem Cell Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | - Jan J. Cornelissen
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Derk ten Berge
- Erasmus MC Stem Cell Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Eric Braakman
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
93
|
Liu Y, Ma T. Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog 2014; 31:468-81. [PMID: 25504836 DOI: 10.1002/btpr.2034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC-based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage-specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yijun Liu
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, 32310
| | | |
Collapse
|
94
|
Kudo T, Kubo M, Katsura S, Nishimoto A, Ueno K, Samura M, Fujii Y, Hosoyama T, Hamano K. Hypoxically preconditioned human peripheral blood mononuclear cells improve blood flow in hindlimb ischemia xenograft model. Am J Transl Res 2014; 6:570-579. [PMID: 25360221 PMCID: PMC4212931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
Transplantation of peripheral blood mononuclear cells (PBMNCs) is a promising therapeutic approach for the treatment of hindlimb ischemia. However, insufficient angiogenesis in ischemic hindlimb after cell transplantation reduces the importance and practicality of this approach. Previously, we demonstrated using mouse models that hypoxic preconditioning augmented the cellular functions of rodent PBMNCs, such as increased cell adhesion capacity and accelerated neovascularization in ischemic hindlimb. To test the clinical application of this therapeutic strategy in this study, we investigated whether the protocol of hypoxic preconditioning, which was established in a condition of 2% O2 for 24 h, can be made available for human PBMNCs (hPBMNCs). In addition, we grafted preconditioned hPBMNCs in a hindlimb ischemia mouse model. Hypoxic preconditioning enhanced cell adhesion capacity and oxidative stress resistance in hPBMNCs. We also observed an up-regulation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in hPBMNCs by hypoxic preconditioning. Furthermore, preconditioned hPBMNCs significantly recovered limb blood flow in ischemic mice after transplantation. These results indicate that our established preconditioning protocol is available for hPBMNCs to effectively reinforce multiple cellular functions. Taken together with our series of study, we believe that this simple but powerful therapeutic strategy will be helpful in curing patients with severe hindlimb ischemia.
Collapse
Affiliation(s)
- Tomoaki Kudo
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineJapan
| | - Masayuki Kubo
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineJapan
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesJapan
| | - Shunsaku Katsura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineJapan
| | - Arata Nishimoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineJapan
| | - Koji Ueno
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineJapan
| | - Makoto Samura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineJapan
| | - Yasuhiko Fujii
- Department of Blood Transfusion Regeneration and Cell Therapy Center, Yamaguchi University Graduate School of MedicineJapan
| | - Tohru Hosoyama
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineJapan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineJapan
| |
Collapse
|
95
|
Thomas D, Fontana G, Chen X, Sanz-Nogués C, Zeugolis DI, Dockery P, O'Brien T, Pandit A. A shape-controlled tuneable microgel platform to modulate angiogenic paracrine responses in stem cells. Biomaterials 2014; 35:8757-8766. [DOI: 10.1016/j.biomaterials.2014.06.053] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 01/08/2023]
|
96
|
Abstract
Stem cell transplantation therapy has emerged as a promising regenerative medicine for ischemic stroke and other neurodegenerative disorders. However, many issues and problems remain to be resolved before successful clinical applications of the cell-based therapy. To this end, some recent investigations have sought to benefit from well-known mechanisms of ischemic/hypoxic preconditioning. Ischemic/hypoxic preconditioning activates endogenous defense mechanisms that show marked protective effects against multiple insults found in ischemic stroke and other acute attacks. As in many other cell types, a sub-lethal hypoxic exposure significantly increases the tolerance and regenerative properties of stem cells and progenitor cells. So far, a variety of preconditioning triggers have been tested on different stem cells and progenitor cells. Preconditioned stem cells and progenitors generally show much better cell survival, increased neuronal differentiation, enhanced paracrine effects leading to increased trophic support, and improved homing to the lesion site. Transplantation of preconditioned cells helps to suppress inflammatory factors and immune responses, and promote functional recovery. Although the preconditioning strategy in stem cell therapy is still an emerging research area, accumulating information from reports over the last few years already indicates it as an attractive, if not essential, prerequisite for transplanted cells. It is expected that stem cell preconditioning and its clinical applications will attract more attention in both the basic research field of preconditioning as well as in the field of stem cell translational research. This review summarizes the most important findings in this active research area, covering the preconditioning triggers, potential mechanisms, mediators, and functional benefits for stem cell transplant therapy.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
97
|
Pankajakshan D, Agrawal DK. Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890954 DOI: 10.19104/jbtr.2014.107] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cell therapy show great optimism in the treatment of several diseases. MSCs are attractive candidates for cell therapy because of easy isolation, high expansion potential giving unlimited pool of transplantable cells, low immunogenicity, amenability to ex vivo genetic modification, and multipotency. The stem cells orchestrate the repair process by various mechanisms such as transdifferentiation, cell fusion, microvesicles or exosomes and most importantly by secreting paracrine factors. The MSCs release several angiogenic, mitogenic, anti-apoptotic, anti-inflammatory and anti-oxidative factors that play fundamental role in regulating tissue repair in various vascular and cardiac diseases. The therapeutic release of these factors by the cells can be enhanced by several strategies like genetic modification, physiological and pharmacological preconditioning, improved cell culture and selection methods, and biomaterial based approaches. The current review describes the impact of paracrine factors released by MSCs on vascular repair and regeneration in myocardial infarction, restenosis and peripheral artery disease, and the various strategies adopted to enhance the release of these paracrine factors to enhance organ function.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
98
|
Guan S, Wang Z, Xin F, Xin H. Wnt5a is associated with the differentiation of bone marrow mesenchymal stem cells in vascular calcification by connecting with different receptors. Mol Med Rep 2014; 10:1985-91. [PMID: 25109262 DOI: 10.3892/mmr.2014.2449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/23/2014] [Indexed: 11/06/2022] Open
Abstract
Vascular calcification significantly affects the health of the elderly. Increasing evidence proved that vascular calcification is an actively regulated osteogenic process. The osteochondrocytic differentiation of mesenchymal stem cells (MSCs) is a significant step of osteogenic processes. The Wnt pathways has been identified as contributing to the regulation of osteogenic mineralization during development and disease. However, it remains unknown whether these MSCs in the vascular calcification differentiate into normal vascular smooth muscle cells (VSMCs) in vivo in order to treat damaged vascular tissue or into calcified VSMCs to aggravate calcification correlated to the Wnt pathways. Thus, it is necessary to analyze the mechanisms of MSC differentiation in detail. In the present study a cell‑cell co‑culturing in vitro system was used to observe MSCs that directly interact with normal or calcified VSMCs during calcification and to investigate the gene expression of the Wnt pathways during the process. Direct co‑cultures were established by seeding two different cell types, VSMCs or calcified VSMCs, or a mixture of both at ratios of 5,000:5,000 cells/1.7 cm2 onto either gelatin‑coated 1.7‑cm2 chamber slides for immunohistochemical analysis or gelatin‑coated 75‑cm2 tissue culture flasks for protein or RNA isolation. Osteoblastic differentiation was evaluated by examining the cell morphology and assessing the activity of alkaline phosphatase in the cell lysates by alkaline phosphatase staining. Additionally, the mRNA expression levels of the genes encoding for proteins involved in the Wnt signaling proteins, Wnt5A, LRP6, Ror2, c‑Jun‑N‑terminal kinase and β‑catenin, were assessed in each group. The present study demonstrated that Wnts are expressed in the progress of differentiation of MSCs during calcification. MSCs can differentiate into different cell phenotypes when there is direct cell‑cell contact with VSMCs or calcified VSMCs, and the Wnt5a/Ror2 signaling pathway may be associated with the determination of differentiation of MSCs in this process.
Collapse
Affiliation(s)
- Siming Guan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhimin Wang
- Department of Neurology, The First People's Hospital of Taizhou, Taizhou, Zhejiang 318020, P.R. China
| | - Fang Xin
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Huaping Xin
- Department of Neurology, The First People's Hospital of Taizhou, Taizhou, Zhejiang 318020, P.R. China
| |
Collapse
|
99
|
Jose S, Hughbanks ML, Binder BYK, Ingavle GC, Leach JK. Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine-Histidine-Lysine (GHK)-modified alginate hydrogels. Acta Biomater 2014; 10:1955-64. [PMID: 24468583 DOI: 10.1016/j.actbio.2014.01.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/23/2013] [Accepted: 01/16/2014] [Indexed: 01/15/2023]
Abstract
Recombinant proteins and cytokines are under broad preclinical and clinical investigation to promote angiogenesis, but their success is limited by ineffective delivery, lack of long-term stability and excessive cost. Mesenchymal stem/stromal cells (MSC) secrete bioactive trophic factors, and thus, may provide an effective alternative to address these challenges. Glycine-Histidine-Lysine (GHK) is a peptide fragment of osteonectin, a matricellular protein with reported proangiogenic potential. We examined the capacity of GHK to up-regulate secretion of proangiogenic factors from human MSC in culture and when covalently coupled to alginate hydrogels. GHK had no apparent cytotoxic effects on MSC in culture over a wide range of concentrations. We detected a dose-dependent increase in vascular endothelial growth factor (VEGF) concentration in media conditioned by GHK-treated MSC, which increased endothelial cell proliferation, migration and tubule formation. We covalently coupled GHK to alginate using carbodiimide chemistry, and human MSC were entrapped in alginate hydrogels to assess VEGF secretion. Similar to monolayer culture, MSC responded to GHK-modified gels by secreting increased concentrations of VEGF and basic fibroblast growth factor compared to unmodified gels. The pre-treatment of MSC with antibodies to α6 and β1 integrins prior to entrapment in GHK-modified gels abrogated VEGF secretion, suggesting that the proangiogenic response of MSC was integrin-mediated. These data demonstrate that the proangiogenic potential of MSC can be significantly increased by the presentation of GHK with a biodegradable carrier, therefore increasing their clinical potential when used for tissue repair.
Collapse
Affiliation(s)
- Soumia Jose
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Marissa L Hughbanks
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Bernard Y K Binder
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Ganesh C Ingavle
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Orthopaedic Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
100
|
Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Péault B. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 2014; 71:1353-74. [PMID: 24158496 PMCID: PMC11113613 DOI: 10.1007/s00018-013-1462-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/17/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) can regenerate tissues by direct differentiation or indirectly by stimulating angiogenesis, limiting inflammation, and recruiting tissue-specific progenitor cells. MSCs emerge and multiply in long-term cultures of total cells from the bone marrow or multiple other organs. Such a derivation in vitro is simple and convenient, hence popular, but has long precluded understanding of the native identity, tissue distribution, frequency, and natural role of MSCs, which have been defined and validated exclusively in terms of surface marker expression and developmental potential in culture into bone, cartilage, and fat. Such simple, widely accepted criteria uniformly typify MSCs, even though some differences in potential exist, depending on tissue sources. Combined immunohistochemistry, flow cytometry, and cell culture have allowed tracking the artifactual cultured mesenchymal stem/stromal cells back to perivascular anatomical regions. Presently, both pericytes enveloping microvessels and adventitial cells surrounding larger arteries and veins have been described as possible MSC forerunners. While such a vascular association would explain why MSCs have been isolated from virtually all tissues tested, the origin of the MSCs grown from umbilical cord blood remains unknown. In fact, most aspects of the biology of perivascular MSCs are still obscure, from the emergence of these cells in the embryo to the molecular control of their activity in adult tissues. Such dark areas have not compromised intents to use these cells in clinical settings though, in which purified perivascular cells already exhibit decisive advantages over conventional MSCs, including purity, thorough characterization and, principally, total independence from in vitro culture. A growing body of experimental data is currently paving the way to the medical usage of autologous sorted perivascular cells for indications in which MSCs have been previously contemplated or actually used, such as bone regeneration and cardiovascular tissue repair.
Collapse
Affiliation(s)
- Iain R. Murray
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- BHF Center for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Orthopedic Hospital Research Center and Broad Stem Cell Center, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Christopher C. West
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- BHF Center for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Winters R. Hardy
- Orthopedic Hospital Research Center and Broad Stem Cell Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- Indiana Center for Vascular Biology and Medicine, Indianapolis, USA
| | - Aaron W. James
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Tea Soon Park
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, USA
| | - Alan Nguyen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Tulyapruek Tawonsawatruk
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- BHF Center for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Lorenza Lazzari
- Cell Factory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Departments of Surgery and Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Bruno Péault
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- BHF Center for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Orthopedic Hospital Research Center and Broad Stem Cell Center, David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|