51
|
Parker ME, Ciofani M. Regulation of γδ T Cell Effector Diversification in the Thymus. Front Immunol 2020; 11:42. [PMID: 32038664 PMCID: PMC6992645 DOI: 10.3389/fimmu.2020.00042] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
γδ T cells are the first T cell lineage to develop in the thymus and take up residence in a wide variety of tissues where they can provide fast, innate-like sources of effector cytokines for barrier defense. In contrast to conventional αβ T cells that egress the thymus as naïve cells, γδ T cells can be programmed for effector function during development in the thymus. Understanding the molecular mechanisms that determine γδ T cell effector fate is of great interest due to the wide-spread tissue distribution of γδ T cells and their roles in pathogen clearance, immunosurveillance, cancer, and autoimmune diseases. In this review, we will integrate the current understanding of the role of the T cell receptor, environmental signals, and transcription factor networks in controlling mouse innate-like γδ T cell effector commitment.
Collapse
Affiliation(s)
| | - Maria Ciofani
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
52
|
Wang W, Uberoi A, Spurgeon M, Gronski E, Majerciak V, Lobanov A, Hayes M, Loke A, Zheng ZM, Lambert PF. Stress keratin 17 enhances papillomavirus infection-induced disease by downregulating T cell recruitment. PLoS Pathog 2020; 16:e1008206. [PMID: 31968015 PMCID: PMC6975545 DOI: 10.1371/journal.ppat.1008206] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) cause 5% of human cancers. Despite the availability of HPV vaccines, there remains a strong urgency to find ways to treat persistent HPV infections, as current HPV vaccines are not therapeutic for individuals already infected. We used a mouse papillomavirus infection model to characterize virus-host interactions. We found that mouse papillomavirus (MmuPV1) suppresses host immune responses via overexpression of stress keratins. In mice deficient for stress keratin K17 (K17KO), we observed rapid regression of papillomas dependent on T cells. Cellular genes involved in immune response were differentially expressed in the papillomas arising on the K17KO mice correlating with increased numbers of infiltrating CD8+ T cells and upregulation of IFNγ-related genes, including CXCL9 and CXCL10, prior to complete regression. Blocking the receptor for CXCL9/CXCL10 prevented early regression. Our data provide a novel mechanism by which papillomavirus-infected cells evade host immunity and defines new therapeutic targets for treating persistent papillomavirus infections.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Aayushi Uberoi
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Megan Spurgeon
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Ellery Gronski
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, National Cancer Institute, Frederick, MD, United States of America
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, MD, United States of America
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Amanda Loke
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, National Cancer Institute, Frederick, MD, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
53
|
Abeler-Dörner L, Laing AG, Lorenc A, Ushakov DS, Clare S, Speak AO, Duque-Correa MA, White JK, Ramirez-Solis R, Saran N, Bull KR, Morón B, Iwasaki J, Barton PR, Caetano S, Hng KI, Cambridge E, Forman S, Crockford TL, Griffiths M, Kane L, Harcourt K, Brandt C, Notley G, Babalola KO, Warren J, Mason JC, Meeniga A, Karp NA, Melvin D, Cawthorne E, Weinrick B, Rahim A, Drissler S, Meskas J, Yue A, Lux M, Song-Zhao GX, Chan A, Ballesteros Reviriego C, Abeler J, Wilson H, Przemska-Kosicka A, Edmans M, Strevens N, Pasztorek M, Meehan TF, Powrie F, Brinkman R, Dougan G, Jacobs W, Lloyd CM, Cornall RJ, Maloy KJ, Grencis RK, Griffiths GM, Adams DJ, Hayday AC. High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Nat Immunol 2020; 21:86-100. [PMID: 31844327 PMCID: PMC7338221 DOI: 10.1038/s41590-019-0549-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/29/2019] [Indexed: 01/28/2023]
Abstract
By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.
Collapse
Affiliation(s)
| | - Adam G Laing
- Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | - Anna Lorenc
- Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | - Dmitry S Ushakov
- Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | | | | | | | | | | | - Namita Saran
- Department of Immunobiology, King's College London, London, UK
| | | | - Belén Morón
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jua Iwasaki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Philippa R Barton
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Susana Caetano
- Department of Immunobiology, King's College London, London, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Keng I Hng
- Department of Immunobiology, King's College London, London, UK
| | | | - Simon Forman
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | - Kolawole O Babalola
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
| | - Jonathan Warren
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
| | - Jeremy C Mason
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
| | - Amrutha Meeniga
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
| | - Natasha A Karp
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, UK
| | | | | | - Brian Weinrick
- Department of Microbiology and Immunology, Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Albina Rahim
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Sibyl Drissler
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Justin Meskas
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Alice Yue
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Markus Lux
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Anna Chan
- Department of Immunobiology, King's College London, London, UK
| | | | | | | | | | - Matthew Edmans
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | | | - Markus Pasztorek
- Department of Immunobiology, King's College London, London, UK
- Department of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Terrence F Meehan
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
| | - Fiona Powrie
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ryan Brinkman
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | | | - William Jacobs
- Department of Microbiology and Immunology, Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Kevin J Maloy
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Richard K Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gillian M Griffiths
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | | | - Adrian C Hayday
- Department of Immunobiology, King's College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
54
|
Abstract
For over a century, mice have been used to model human disease, leading to many fundamental discoveries about mammalian biology and the development of new therapies. Mouse genetics research has been further catalysed by a plethora of genomic resources developed in the last 20 years, including the genome sequence of C57BL/6J and more recently the first draft reference genomes for 16 additional laboratory strains. Collectively, the comparison of these genomes highlights the extreme diversity that exists at loci associated with the immune system, pathogen response, and key sensory functions, which form the foundation for dissecting phenotypic traits in vivo. We review the current status of the mouse genome across the diversity of the mouse lineage and discuss the value of mice to understanding human disease.
Collapse
Affiliation(s)
- Jingtao Lilue
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
- Instituto Gulbenkian de Ciência, Oeiras, Lisbon, Portugal
| | - Anu Shivalikanjli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | | | - Thomas M. Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
55
|
Butyrophilin-like 3 Directly Binds a Human Vγ4 + T Cell Receptor Using a Modality Distinct from Clonally-Restricted Antigen. Immunity 2019; 51:813-825.e4. [PMID: 31628053 PMCID: PMC6868513 DOI: 10.1016/j.immuni.2019.09.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/12/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
Butyrophilin (BTN) and butyrophilin-like (BTNL/Btnl) heteromers are major regulators of human and mouse γδ T cell subsets, but considerable contention surrounds whether they represent direct γδ T cell receptor (TCR) ligands. We demonstrate that the BTNL3 IgV domain binds directly and specifically to a human Vγ4+ TCR, “LES” with an affinity (∼15–25 μM) comparable to many αβ TCR-peptide major histocompatibility complex interactions. Mutations in germline-encoded Vγ4 CDR2 and HV4 loops, but not in somatically recombined CDR3 loops, drastically diminished binding and T cell responsiveness to BTNL3-BTNL8-expressing cells. Conversely, CDR3γ and CDR3δ loops mediated LES TCR binding to endothelial protein C receptor, a clonally restricted autoantigen, with minimal CDR1, CDR2, or HV4 contributions. Thus, the γδ TCR can employ two discrete binding modalities: a non-clonotypic, superantigen-like interaction mediating subset-specific regulation by BTNL/BTN molecules and CDR3-dependent, antibody-like interactions mediating adaptive γδ T cell biology. How these findings might broadly apply to γδ T cell regulation is also examined. BTNL3 binds directly and specifically to Vγ4+ TCRs via its IgV domain The superantigen-like binding mode focuses on germline-encoded TCR regions In contrast, γδ TCR binding to a clonally restricted antigen is CDR3-mediated Mutagenesis indicates parallels with BTN3A1-mediated activation of Vγ9Vδ2 T cells
Collapse
|
56
|
Narita T, Nitta T, Nitta S, Okamura T, Takayanagi H. Mice lacking all of the Skint family genes. Int Immunol 2019; 30:301-309. [PMID: 29718261 DOI: 10.1093/intimm/dxy030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/25/2018] [Indexed: 11/14/2022] Open
Abstract
γδT cells develop in the thymus and play important roles in protection against infection and tumor development, but the mechanisms by which the thymic microenvironment supports γδT cell differentiation remain largely unclear. Skint1, a B7-related protein expressed in thymic epithelial cells, was shown to be essential for the development of mouse Vγ5Vδ1 γδT cells. The Skint family in mouse consists of 11 members, Skint1-11. Here we generated mutant mice lacking the entire genomic region that contains all of the Skint genes. These mice exhibited a marked reduction of Vγ5Vδ1 γδT cells in the thymus and skin, but surprisingly, had normal development of other γδT cell subsets and leukocytes including αβT, B and myeloid cells. This phenotype is essentially identical to that of Skint1-deficient mice. These results indicate that the Skint family exerts an exclusive function in regulating the development of Vγ5Vδ1 γδT cells and is dispensable for development of other leukocytes.
Collapse
Affiliation(s)
- Tomoya Narita
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Sachiko Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan.,Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
57
|
Ding X, Willenborg S, Bloch W, Wickström SA, Wagle P, Brodesser S, Roers A, Jais A, Brüning JC, Hall MN, Rüegg MA, Eming SA. Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. J Allergy Clin Immunol 2019; 145:283-300.e8. [PMID: 31401286 DOI: 10.1016/j.jaci.2019.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. OBJECTIVE Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. METHODS Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [RicEKO] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in RicEKO and control mice. RESULTS RicEKO newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in RicEKO mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. CONCLUSION Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.
Collapse
Affiliation(s)
- Xiaolei Ding
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group "Skin Homeostasis and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany; Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Prerana Wagle
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alexander Jais
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Max Planck Institute for Metabolism Research, Cologne, Germany
| | | | | | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
58
|
Abstract
T cells are central to the vertebrate immune system. Two distinct types of T cells, αβT and γδT cells, express different types of T cell antigen receptors (TCRs), αβTCR and γδTCR, respectively, that are composed of different sets of somatically rearranged TCR chains and CD3 subunits. γδT cells have recently attracted considerable attention due to their ability to produce abundant cytokines and versatile roles in host defense, tissue regeneration, inflammation, and autoimmune diseases. Both αβT and γδT cells develop in the thymus. Unlike the development of αβT cells, which depends on αβTCR-mediated positive and negative selection, the development of γδT cells, including the requirement of γδTCR, has been less well understood. αβT cells differentiate into effector cells in the peripheral tissues, whereas γδT cells acquire effector functions during their development in the thymus. In this review, we will discuss the current state of knowledge of the molecular mechanism of TCR signal transduction and its role in the thymic development of γδT cells, particularly highlighting a newly discovered mechanism that controls proinflammatory γδT cell development.
Collapse
|
59
|
Van Kaer L, Olivares-Villagómez D. Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 200:2235-2244. [PMID: 29555677 PMCID: PMC5863587 DOI: 10.4049/jimmunol.1701704] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
The intestine is continuously exposed to commensal microorganisms, food, and environmental agents and also serves as a major portal of entry for many pathogens. A critical defense mechanism against microbial invasion in the intestine is the single layer of epithelial cells that separates the gut lumen from the underlying tissues. The barrier function of the intestinal epithelium is supported by cells and soluble factors of the intestinal immune system. Chief among them are intestinal intraepithelial lymphocytes (iIELs), which are embedded in the intestinal epithelium and represent one of the single largest populations of lymphocytes in the body. Compared with lymphocytes in other parts of the body, iIELs exhibit unique phenotypic, developmental, and functional properties that reflect their key roles in maintaining the intestinal epithelial barrier. In this article, we review the biology of iIELs in supporting normal health and how their dysregulation can contribute to disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
60
|
Willcox BE, Willcox CR. γδ TCR ligands: the quest to solve a 500-million-year-old mystery. Nat Immunol 2019; 20:121-128. [PMID: 30664765 DOI: 10.1038/s41590-018-0304-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022]
Abstract
γδ T cells have been retained as a lineage over the majority of vertebrate evolution, are able to respond to immune challenges in unique ways, and are of increasing therapeutic interest. However, one central mystery has endured: the identity of the ligands recognized by the γδ T cell antigen receptor. Here we discuss the inherent challenges in answering this question, the new opportunities provided by recent studies, and the criteria by which the field might judge success.
Collapse
Affiliation(s)
- Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, Cancer Immunology and Immunotherapy Centre, Cancer Research UK Birmingham Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
61
|
Sumaria N, Martin S, Pennington DJ. Developmental origins of murine γδ T-cell subsets. Immunology 2019; 156:299-304. [PMID: 30552818 DOI: 10.1111/imm.13032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Murine γδ T cells display diverse responses to pathogens and tumours through early provision of pro-inflammatory cytokines such as interleukin-17A (IL-17) and interferon-γ (IFN-γ). Although it is now clear that acquisition of these cytokine-secreting effector fates is to a great extent developmentally pre-programmed in the thymus, the stages through which γδ progenitor cells transition, and the underlying mechanistic processes that govern these commitment events, are still largely unclear. Here, we review recent progress in the field, with particular consideration of how TCR-γδ signalling impacts on developmental programmes initiated before TCR-γδ expression.
Collapse
Affiliation(s)
- Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Stefania Martin
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
62
|
Zuberbuehler MK, Parker ME, Wheaton JD, Espinosa JR, Salzler HR, Park E, Ciofani M. The transcription factor c-Maf is essential for the commitment of IL-17-producing γδ T cells. Nat Immunol 2018; 20:73-85. [PMID: 30538336 PMCID: PMC6294311 DOI: 10.1038/s41590-018-0274-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Abstract
γδ T cells that produce the cytokine IL-17 (Tγδ17 cells) are innate-like mediators of immunity that undergo effector programming in the thymus. While regulators of Tγδ17 specialization restricted to various Vγ subsets are known, a commitment factor essential to all Tγδ17 cells has remained undefined. In this study, we identified c-Maf as a universal regulator for Tγδ17 cell differentiation and maintenance. Maf deficiency caused an absolute lineage block at the immature CD24+CD45RBlo γδ thymocyte stage, which revealed a critical checkpoint in the acquisition of effector functions. Here, c-Maf enforced Tγδ17 cell identity by promoting chromatin accessibility and expression of key type 17 program genes, notably Rorc and Blk, while antagonizing the transcription factor TCF1, which promotes IFN-γ-producing γδ T cells (Tγδ1 cells). Furthermore, γδ T cell antigen receptor (γδTCR) signal strength tuned c-Maf expression, which indicates that c-Maf is a core node connecting γδTCR signals to Tγδ17 cell transcriptional programming.
Collapse
Affiliation(s)
| | - Morgan E Parker
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Joshua D Wheaton
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Jaclyn R Espinosa
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Harmony R Salzler
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Eunchong Park
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Maria Ciofani
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
63
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
64
|
Blazquez JL, Benyamine A, Pasero C, Olive D. New Insights Into the Regulation of γδ T Cells by BTN3A and Other BTN/BTNL in Tumor Immunity. Front Immunol 2018; 9:1601. [PMID: 30050536 PMCID: PMC6050389 DOI: 10.3389/fimmu.2018.01601] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Recent findings in the immunology field have pointed out the emergent role of butyrophilins/butyrophilin-like molecules (BTN/BTNL in human, Btn/Btnl in mouse) in the modulation of γδ T cells. As long as the field develops exponentially, new relationships between certain γδ T cell subsets, on one hand, and their BTN/BTNL counterparts mainly present on epithelial and tumor cells, on the other, are described in the scientific literature. Btnl1/Btnl6 in mice and BTNL3/BTNL8 in humans regulate the homing and maturation of Vγ7+ and Vγ4+ T cells to the gut epithelium. Similarly, Skint-1 has shown to shape the dendritic epidermal T cells repertoire and their activation levels in mice. We and others have identified BTN3A proteins are the key mediators of phosphoantigen sensing by human Vγ9Vδ2 T cells. Here, we first synthesize the modulation of specific γδ T cell subsets by related BTN/BTNL molecules, in human and mice. Then, we focus on the role of BTN3A in the activation of Vγ9Vδ2 T cells, and we highlight the recent advances in the understanding of the expression, regulation, and function of BTN3A in tumor immunity. Hence, recent studies demonstrated that several signals induced by cancer cells or their microenvironment can regulate the expression of BTN3A. Moreover, antibodies targeting BTN3A have shown in vitro and in vivo efficacy in human tumors such as acute myeloid leukemia or pancreatic cancer. We thus finally discuss how these findings could help develop novel γδ T cell-based immunotherapeutical approaches.
Collapse
Affiliation(s)
- Juan-Luis Blazquez
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM105, CNRS UMR 7258, Marseille, France
| | - Audrey Benyamine
- Aix-Marseille Université (AMU), Médecine Interne Hôpital Nord, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Daniel Olive
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM105, CNRS UMR 7258, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
65
|
Zarin P, In TS, Chen EL, Singh J, Wong GW, Mohtashami M, Wiest DL, Anderson MK, Zúñiga-Pflücker JC. Integration of T-cell receptor, Notch and cytokine signals programs mouse γδ T-cell effector differentiation. Immunol Cell Biol 2018; 96:994-1007. [PMID: 29754419 PMCID: PMC6197911 DOI: 10.1111/imcb.12164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
γδ T‐cells perform a wide range of tissue‐ and disease‐specific functions that are dependent on the effector cytokines produced by these cells. However, the aggregate signals required for the development of interferon‐γ (IFNγ) and interleukin‐17 (IL‐17) producing γδ T‐cells remain unknown. Here, we define the cues involved in the functional programming of γδ T‐cells, by examining the roles of T‐cell receptor (TCR), Notch, and cytokine‐receptor signaling. KN6 γδTCR‐transduced Rag2−/− T‐cell progenitors were cultured on stromal cells variably expressing TCR and Notch ligands, supplemented with different cytokines. We found that distinct combinations of these signals are required to program IFNγ versus IL‐17 producing γδ T‐cell subsets, with Notch and weak TCR ligands optimally enabling development of γδ17 cells in the presence of IL‐1β, IL‐21 and IL‐23. Notably, these cytokines were also shown to be required for the intrathymic development of γδ17 cells. Together, this work provides a framework of how signals downstream of TCR, Notch and cytokine receptors integrate to program the effector function of IFNγ and IL‐17 producing γδ T‐cell subsets.
Collapse
Affiliation(s)
- Payam Zarin
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Tracy Sh In
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Edward Ly Chen
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Gladys W Wong
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - David L Wiest
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Michele K Anderson
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| |
Collapse
|
66
|
Kernfeld EM, Genga RMJ, Neherin K, Magaletta ME, Xu P, Maehr R. A Single-Cell Transcriptomic Atlas of Thymus Organogenesis Resolves Cell Types and Developmental Maturation. Immunity 2018; 48:1258-1270.e6. [PMID: 29884461 DOI: 10.1016/j.immuni.2018.04.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Thymus development is critical to the adaptive immune system, yet a comprehensive transcriptional framework capturing thymus organogenesis at single-cell resolution is still needed. We applied single-cell RNA sequencing (RNA-seq) to capture 8 days of thymus development, perturbations of T cell receptor rearrangement, and in vitro organ cultures, producing profiles of 24,279 cells. We resolved transcriptional heterogeneity of developing lymphocytes, and genetic perturbation confirmed T cell identity of conventional and non-conventional lymphocytes. We characterized maturation dynamics of thymic epithelial cells in vivo, classified cell maturation state in a thymic organ culture, and revealed the intrinsic capacity of thymic epithelium to preserve transcriptional regularity despite exposure to exogenous retinoic acid. Finally, by integrating the cell atlas with human genome-wide association study (GWAS) data and autoimmune-disease-related genes, we implicated embryonic thymus-resident cells as possible participants in autoimmune disease etiologies. This resource provides a single-cell transcriptional framework for biological discovery and molecular analysis of thymus organogenesis.
Collapse
Affiliation(s)
- Eric M Kernfeld
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ryan M J Genga
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kashfia Neherin
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Margaret E Magaletta
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ping Xu
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - René Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
67
|
Davey MS, Willcox CR, Baker AT, Hunter S, Willcox BE. Recasting Human Vδ1 Lymphocytes in an Adaptive Role. Trends Immunol 2018; 39:446-459. [PMID: 29680462 PMCID: PMC5980997 DOI: 10.1016/j.it.2018.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
Abstract
γδ T cells are unconventional lymphocytes commonly described as 'innate-like' in function, which can respond in both a T cell receptor (TCR)-independent and also major histocompatibility complex (MHC)-unrestricted TCR-dependent manner. While the relative importance of TCR recognition had remained unclear, recent studies revealed that human Vδ1 T cells display unexpected parallels with adaptive αβ T cells. Vδ1 T cells undergo profound and highly focussed clonal expansion from an initially diverse and private TCR repertoire, most likely in response to specific immune challenges. Concomitantly, they differentiate from a Vδ1 T cell naïve (Tnaïve) to a Vδ1 T cell effector (Teffector) phenotype, marked by the downregulation of lymphoid homing receptors and upregulation of peripheral homing receptors and effector markers. This suggests that an adaptive paradigm applies to Vδ1 T cells, likely involving TCR-dependent but MHC-unrestricted responses to microbial and non-microbial challenges.
Collapse
Affiliation(s)
- Martin S Davey
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; These authors contributed equally
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; These authors contributed equally
| | - Alfie T Baker
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stuart Hunter
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
68
|
Sutoh Y, Mohamed RH, Kasahara M. Origin and Evolution of Dendritic Epidermal T Cells. Front Immunol 2018; 9:1059. [PMID: 29868019 PMCID: PMC5960712 DOI: 10.3389/fimmu.2018.01059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/27/2018] [Indexed: 01/01/2023] Open
Abstract
Dendritic epidermal T cells (DETCs) expressing invariant Vγ5Vδ1 T-cell receptors (TCRs) play a crucial role in maintaining skin homeostasis in mice. When activated, they secrete cytokines, which recruit various immune cells to sites of infection and promote wound healing. Recently, a member of the butyrophilin family, Skint1, expressed specifically in the skin and thymus was identified as a gene required for DETC development in mice. Skint1 is a gene that arose by rodent-specific gene duplication. Consequently, a gene orthologs to mouse Skint1 exists only in rodents, indicating that Skint1-dependent DETCs are unique to rodents. However, dendritic-shaped epidermal γδ T cells with limited antigen receptor diversity appear to occur in other mammals. Even lampreys, a member of the most primitive class of vertebrates that even lacks TCRs, have γδ T-like lymphocytes that resemble DETCs. This indicates that species as divergent as mice and lampreys share the needs to have innate-like T cells at their body surface, and that the origin of DETC-like cells is as ancient as that of lymphocytes.
Collapse
Affiliation(s)
- Yoichi Sutoh
- Division of Biobank and Data Management, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Japan
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
69
|
Boutin L, Scotet E. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells. Front Immunol 2018; 9:828. [PMID: 29731756 PMCID: PMC5919976 DOI: 10.3389/fimmu.2018.00828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.
Collapse
Affiliation(s)
- Lola Boutin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Sanofi R&D, Biologics Research, Centre de Recherche Vitry Alfortville, Paris, France
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
70
|
Rhodes DA, Chen HC, Williamson JC, Hill A, Yuan J, Smith S, Rhodes H, Trowsdale J, Lehner PJ, Herrmann T, Eberl M. Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters. Front Immunol 2018; 9:662. [PMID: 29670629 PMCID: PMC5893821 DOI: 10.3389/fimmu.2018.00662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Activation of human Vγ9/Vδ2 T cells by "phosphoantigens" (pAg), the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR) transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC) transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated with efficiency of T cell activation by cytokine secretion, although direct evidence of a functional role was not obtained by knockdown experiments. Our findings indicate a link between members of the ABC protein superfamily and the BTN3A-dependent activation of γδ T cells by endogenous and exogenous pAg.
Collapse
Affiliation(s)
- David A. Rhodes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom,*Correspondence: David A. Rhodes,
| | - Hung-Chang Chen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James C. Williamson
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Alfred Hill
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jack Yuan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Harriet Rhodes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
71
|
Sumaria N, Grandjean CL, Silva-Santos B, Pennington DJ. Strong TCRγδ Signaling Prohibits Thymic Development of IL-17A-Secreting γδ T Cells. Cell Rep 2018. [PMID: 28636936 PMCID: PMC5489697 DOI: 10.1016/j.celrep.2017.05.071] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Despite a growing appreciation of γδ T cell contributions to numerous immune responses, the mechanisms that underpin their thymic development remain poorly understood. Here, using precursor/product relationships, we identify thymic stages in two distinct developmental pathways that generate γδ T cells pre-committed to subsequent secretion of either IL-17A or IFNγ. Importantly, this framework for tracking γδ T cell development has permitted definitive assessment of TCRγδ signal strength in commitment to γδ T cell effector fate; increased TCRγδ signal strength profoundly prohibited the development of all IL-17A-secreting γδ T cells, regardless of Vγ usage, but promoted the development of γδ progenitors along the IFNγ pathway. This clarifies the recently debated role of TCRγδ signal strength in commitment to distinct γδ T cell effector fates and proposes an alternate methodology for the study of γδ T cell development. CD44 and CD45RB identify two distinct thymic γδ T cell developmental pathways Cytokine-secretion-independent identification of effector fate-committed γδ T cells Sizable numbers of IL-17A-committed γδ T cells express Vγ1 and Vγ2/3 chains Increased TCRγδ signal strength prohibits development of IL-17A-secreting γδ T cells
Collapse
Affiliation(s)
- Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Capucine L Grandjean
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1600-276 Lisboa, Portugal
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
72
|
Tikoo S, Jain R, Kurz AR, Weninger W. The lymphoid cell network in the skin. Immunol Cell Biol 2018; 96:485-496. [PMID: 29457268 DOI: 10.1111/imcb.12026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 01/06/2023]
Abstract
Cutaneous immunity represents a crucial component of the mammalian immune response. The presence of a large array of commensal microorganisms along with a myriad of environmental stresses necessitates constant immuno-surveillance of the tissue. To achieve a perfect balance between immune-tolerance and immune-activation, the skin harbors strategically localized immune cell populations that modulate these responses. To maintain homeostasis, innate and adaptive immune cells assimilate microenvironmental cues and coordinate cellular and molecular functions in a spatiotemporal manner. The role of lymphoid cells in cutaneous immunity is gaining much appreciation due to their important roles in regulating skin health and pathology. In this review, we aim to highlight the recent advances in the field of cutaneous lymphoid biology.
Collapse
Affiliation(s)
- Shweta Tikoo
- The Centenary Institute, Newtown, NSW, 2042, Australia.,Discipline of Dermatology, Sydney Medical School, NSW, 2006, Australia
| | - Rohit Jain
- The Centenary Institute, Newtown, NSW, 2042, Australia.,Discipline of Dermatology, Sydney Medical School, NSW, 2006, Australia
| | | | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, 2042, Australia.,Discipline of Dermatology, Sydney Medical School, NSW, 2006, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| |
Collapse
|
73
|
Vermijlen D, Gatti D, Kouzeli A, Rus T, Eberl M. γδ T cell responses: How many ligands will it take till we know? Semin Cell Dev Biol 2018; 84:75-86. [PMID: 29402644 DOI: 10.1016/j.semcdb.2017.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
γδ T cells constitute a sizeable and non-redundant fraction of the total T cell pool in all jawed vertebrates, but in contrast to conventional αβ T cells they are not restricted by classical MHC molecules. Progress in our understanding of the role of γδ T cells in the immune system has been hampered, and is being hampered, by the considerable lack of knowledge regarding the antigens γδ T cells respond to. The past few years have seen a wealth of data regarding the TCR repertoires of distinct γδ T cell populations and a growing list of confirmed and proposed molecules that are recognised by γδ T cells in different species. Yet, the physiological contexts underlying the often restricted TCR usage and the chemical diversity of γδ T cell ligands remain largely unclear, and only few structural studies have confirmed direct ligand recognition by the TCR. We here review the latest progress in the identification and validation of putative γδ T cell ligands and discuss the implications of such findings for γδ T cell responses in health and disease.
Collapse
Affiliation(s)
- David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium.
| | - Deborah Gatti
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium
| | - Ariadni Kouzeli
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Teja Rus
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
74
|
Vantourout P, Laing A, Woodward MJ, Zlatareva I, Apolonia L, Jones AW, Snijders AP, Malim MH, Hayday AC. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology. Proc Natl Acad Sci U S A 2018; 115:1039-1044. [PMID: 29339503 PMCID: PMC5798315 DOI: 10.1073/pnas.1701237115] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The long-held view that gamma delta (γδ) T cells in mice and humans are fundamentally dissimilar, as are γδ cells in blood and peripheral tissues, has been challenged by emerging evidence of the cells' regulation by butyrophilin (BTN) and butyrophilin-like (BTNL) molecules. Thus, murine Btnl1 and the related gene, Skint1, mediate T cell receptor (TCR)-dependent selection of murine intraepithelial γδ T cell repertoires in gut and skin, respectively; BTNL3 and BTNL8 are TCR-dependent regulators of human gut γδ cells; and BTN3A1 is essential for TCR-dependent activation of human peripheral blood Vγ9Vδ2+ T cells. However, some observations concerning BTN/Btnl molecules continue to question the extent of mechanistic conservation. In particular, murine and human gut γδ cell regulation depends on pairings of Btnl1 and Btnl6 and BTNL3 and BTNL8, respectively, whereas blood γδ cells are reported to be regulated by BTN3A1 independent of other BTNs. Addressing this paradox, we show that BTN3A2 regulates the subcellular localization of BTN3A1, including functionally important associations with the endoplasmic reticulum (ER), and is specifically required for optimal BTN3A1-mediated activation of Vγ9Vδ2+ T cells. Evidence that BTNL3/BTNL8 and Btnl1/Btnl6 likewise associate with the ER reinforces the prospect of broadly conserved mechanisms underpinning the selection and activation of γδ cells in mice and humans, and in blood and extralymphoid sites.
Collapse
Affiliation(s)
- Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW11AT, United Kingdom
| | - Adam Laing
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW11AT, United Kingdom
| | - Martin J Woodward
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW11AT, United Kingdom
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW11AT, United Kingdom
| | - Luis Apolonia
- Department of Infectious Diseases, King's College London, London SE1 9RT, United Kingdom
| | - Andrew W Jones
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London NW11AT, United Kingdom
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London NW11AT, United Kingdom
| | - Michael H Malim
- Department of Infectious Diseases, King's College London, London SE1 9RT, United Kingdom
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom;
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW11AT, United Kingdom
| |
Collapse
|
75
|
Miragaia RJ, Zhang X, Gomes T, Svensson V, Ilicic T, Henriksson J, Kar G, Lönnberg T. Single-cell RNA-sequencing resolves self-antigen expression during mTEC development. Sci Rep 2018; 8:685. [PMID: 29330484 PMCID: PMC5766627 DOI: 10.1038/s41598-017-19100-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/14/2017] [Indexed: 01/03/2023] Open
Abstract
The crucial capability of T cells for discrimination between self and non-self peptides is based on negative selection of developing thymocytes by medullary thymic epithelial cells (mTECs). The mTECs purge autoreactive T cells by expression of cell-type specific genes referred to as tissue-restricted antigens (TRAs). Although the autoimmune regulator (AIRE) protein is known to promote the expression of a subset of TRAs, its mechanism of action is still not fully understood. The expression of TRAs that are not under the control of AIRE also needs further characterization. Furthermore, expression patterns of TRA genes have been suggested to change over the course of mTEC development. Herein we have used single-cell RNA-sequencing to resolve patterns of TRA expression during mTEC development. Our data indicated that mTEC development consists of three distinct stages, correlating with previously described jTEC, mTEChi and mTEClo phenotypes. For each subpopulation, we have identified marker genes useful in future studies. Aire-induced TRAs were switched on during jTEC-mTEC transition and were expressed in genomic clusters, while otherwise the subsets expressed largely overlapping sets of TRAs. Moreover, population-level analysis of TRA expression frequencies suggested that such differences might not be necessary to achieve efficient thymocyte selection.
Collapse
Affiliation(s)
- Ricardo J Miragaia
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Xiuwei Zhang
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- University of California, Berkeley, USA
| | - Tomás Gomes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Valentine Svensson
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Tomislav Ilicic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Johan Henriksson
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Gozde Kar
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Tapio Lönnberg
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
76
|
ATR Mutations Promote the Growth of Melanoma Tumors by Modulating the Immune Microenvironment. Cell Rep 2017; 18:2331-2342. [PMID: 28273450 DOI: 10.1016/j.celrep.2017.02.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/22/2016] [Accepted: 02/13/2017] [Indexed: 12/26/2022] Open
Abstract
Melanomas accumulate a high burden of mutations that could potentially generate neoantigens, yet somehow suppress the immune response to facilitate continued growth. In this study, we identify a subset of human melanomas that have loss-of-function mutations in ATR, a kinase that recognizes and repairs UV-induced DNA damage and is required for cellular proliferation. ATR mutant tumors exhibit both the accumulation of multiple mutations and the altered expression of inflammatory genes, resulting in decreased T cell recruitment and increased recruitment of macrophages known to spur tumor invasion. Taken together, these studies identify a mechanism by which melanoma cells modulate the immune microenvironment to promote continued growth.
Collapse
|
77
|
Franchini DM, Michelas M, Lanvin O, Poupot M, Fournié JJ. BTN3A1-antibodies and phosphoantigens: TCRVγ9Vδ2 "see" the difference. Eur J Immunol 2017; 47:954-957. [PMID: 28597565 DOI: 10.1002/eji.201747058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 11/11/2022]
Abstract
Human blood γδ T lymphocytes express TCRVγ9Vδ2 and respond to nonpeptide phosphoantigens (PAgs) by a mysterious mechanism involving the BTN3A1 (CD277) molecule . BTN3A1 is a butyrophilin-like protein related to CD80, PD-L1, and MHC, and is either a presenting or a co-stimulatory molecule for PAgs. Although the precise roles and molecular interactions with the TCRVγ9Vδ2 are currently not determined, it is commonly thought that all TCRVγ9Vδ2 lymphocytes 'see' PAg and BTN3A1 together, presumably in a single molecular recognition event. But whether this recognition event could be reproduced in a simplified model was not addressed in previous studies. In this issue, Starick et al. (Eur. J. Immunol. 2017. 47: 982-992) compared the response of three TCRVγ9Vδ2 pairs of murine and human cell transfectants to PAg and anti-BTN3A1 antibodies using IL-2 release as a readout. The authors found that although the two murine transfectants responded similarly to either stimuli, one murine TCRVγ9Vδ2 transfectant reacted to PAgs but not to anti-BTN3A1 (mAb 20.1). Human transductants behave in a similar fashion, demonstrating that TCRVγ9Vδ2 lymphocytes differentiate PAg and BTN3A1 signals, while species of the transductants unmask this differential sensitivity. Indeed, understanding the puzzling mode of antigen recognition by γδ T lymphocytes will be essential for developing γδ T-cell-based immunotherapies, and the authors of this study now demonstrate that TCRVγ9Vδ2 lymphocytes are able to differentiate the PAg and BTN3A1 stimuli.
Collapse
Affiliation(s)
- Don-Marc Franchini
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Marie Michelas
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Olivia Lanvin
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Jean Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| |
Collapse
|
78
|
Van Hede D, Polese B, Humblet C, Wilharm A, Renoux V, Dortu E, de Leval L, Delvenne P, Desmet CJ, Bureau F, Vermijlen D, Jacobs N. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated γδ T cells promoting tumor formation. Proc Natl Acad Sci U S A 2017; 114:E9056-E9065. [PMID: 29073102 PMCID: PMC5664550 DOI: 10.1073/pnas.1712883114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been shown that γδ T cells protect against the formation of squamous cell carcinoma (SCC) in several models. However, the role of γδ T cells in human papillomavirus (HPV)-associated uterine cervical SCC, the third-leading cause of death by cancer in women, is unknown. Here, we investigated the impact of γδ T cells in a transgenic mouse model of carcinogenesis induced by HPV16 oncoproteins. Surprisingly, γδ T cells promoted the development of HPV16 oncoprotein-induced lesions. HPV16 oncoproteins induced a decrease in epidermal Skint1 expression and the associated antitumor Vγ5+ γδ T cells, which were replaced by γδ T-cell subsets (mainly Vγ6+ γδlowCCR2+CCR6-) actively producing IL-17A. Consistent with a proangiogenic role, γδ T cells promoted the formation of blood vessels in the dermis underlying the HPV-induced lesions. In human cervical biopsies, IL-17A+ γδ T cells could only be observed at the cancer stage (SCC), where HPV oncoproteins are highly expressed, supporting the clinical relevance of our observations in mice. Overall, our results suggest that HPV16 oncoproteins induce a reorganization of the local epithelial-associated γδ T-cell subpopulations, thereby promoting angiogenesis and cancer development.
Collapse
Affiliation(s)
- Dorien Van Hede
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000 Liège, Belgium
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
- Institute for Medical Immunology, ULB, 6041 Gosselies, Belgium
| | - Barbara Polese
- Laboratory of Immunoendocrinology, GIGA Research, University of Liège, 4000 Liège, Belgium
| | - Chantal Humblet
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000 Liège, Belgium
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Virginie Renoux
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000 Liège, Belgium
| | - Estelle Dortu
- Experimental Pathology, GIGA Research, University of Liège, 4000 Liège, Belgium
| | - Laurence de Leval
- Pathologie Clinique, Institut Universitaire de Pathologie, CH-1011 Lausanne, Switzerland
| | - Philippe Delvenne
- Experimental Pathology, GIGA Research, University of Liège, 4000 Liège, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000 Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000 Liège, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium;
- Institute for Medical Immunology, ULB, 6041 Gosselies, Belgium
| | - Nathalie Jacobs
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
79
|
Konjar Š, Ferreira C, Blankenhaus B, Veldhoen M. Intestinal Barrier Interactions with Specialized CD8 T Cells. Front Immunol 2017; 8:1281. [PMID: 29075263 PMCID: PMC5641586 DOI: 10.3389/fimmu.2017.01281] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
The trillions of microorganisms that reside in the gastrointestinal tract, essential for nutrient absorption, are kept under control by a single cell barrier and large amounts of immune cells. Intestinal epithelial cells (IECs) are critical in establishing an environment supporting microbial colonization and immunological tolerance. A large population of CD8+ T cells is in direct and constant contact with the IECs and the intraepithelial lymphocytes (IELs). Due to their location, at the interphase of the intestinal lumen and external environment and the host tissues, they seem ideally positioned to balance immune tolerance and protection to preserve the fragile intestinal barrier from invasion as well as immunopathology. IELs are a heterogeneous population, with a large innate-like contribution of unknown specificity, intercalated with antigen-specific tissue-resident memory T cells. In this review, we provide a comprehensive overview of IEL physiology and how they interact with the IECs and contribute to immune surveillance to preserve intestinal homeostasis and host-microbial relationships.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Birte Blankenhaus
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
80
|
γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol 2017; 17:733-745. [PMID: 28920588 DOI: 10.1038/nri.2017.101] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.
Collapse
|
81
|
Chattaway J, Ramirez-Valdez RA, Chappell PE, Caesar JJE, Lea SM, Kaufman J. Different modes of variation for each BG lineage suggest different functions. Open Biol 2017; 6:rsob.160188. [PMID: 27628321 PMCID: PMC5043582 DOI: 10.1098/rsob.160188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023] Open
Abstract
Mammalian butyrophilins have various important functions, one for lipid binding but others as ligands for co-inhibition of αβ T cells or for stimulation of γδ T cells in the immune system. The chicken BG homologues are dimers, with extracellular immunoglobulin variable (V) domains joined by cysteines in the loop equivalent to complementarity-determining region 1 (CDR1). BG genes are found in three genomic locations: BG0 on chromosome 2, BG1 in the classical MHC (the BF-BL region) and many BG genes in the BG region just outside the MHC. Here, we show that BG0 is virtually monomorphic, suggesting housekeeping function(s) consonant with the ubiquitous tissue distribution. BG1 has allelic polymorphism but minimal sequence diversity, with the few polymorphic residues at the interface of the two V domains, suggesting that BG1 is recognized by receptors in a conserved fashion. Any phenotypic variation should be due to the intracellular region, with differential exon usage between alleles. BG genes in the BG region can generate diversity by exchange of sequence cassettes located in loops equivalent to CDR1 and CDR2, consonant with recognition of many ligands or antigens for immune defence. Unlike the mammalian butyrophilins, there are at least three modes by which BG genes evolve.
Collapse
Affiliation(s)
- John Chattaway
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | - Paul E Chappell
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Joseph J E Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
82
|
Saito T, Yano M, Ohki Y, Tomura M, Nakano N. Occludin Expression in Epidermal γδ T Cells in Response to Epidermal Stress Causes Them To Migrate into Draining Lymph Nodes. THE JOURNAL OF IMMUNOLOGY 2017; 199:62-71. [PMID: 28566372 DOI: 10.4049/jimmunol.1600848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/04/2017] [Indexed: 11/19/2022]
Abstract
Epidermal γδ T cells that reside in the front line of the skin play a pivotal role in stress immune surveillance. However, it is not clear whether these cells are involved in further induction of immune responses after they are activated in dysregulated epidermis. In this study, we found that activated γδ T cells expressed occludin and migrated into draining lymph nodes in an occludin-dependent manner. Epidermal γδ T cells in occludin-deficient mice exhibited impairments in morphology changes and motility, although they expressed activation markers at levels comparable to those in wild-type cells. Occludin deficiency weakened the induction of allergen-induced contact hypersensitivity, primarily as the result of the impaired migration of epidermal γδ T cells. Thus, occludin expression by epidermal γδ T cells upon activation in response to epidermal stress allows them to move, which could be important for augmentation of immune responses via collaboration with other cells.
Collapse
Affiliation(s)
- Takahito Saito
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Michihiro Yano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Yutaro Ohki
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Michio Tomura
- Department of Pharmaceutical Sciences, Osaka Ohtani University, Osaka 584-8541, Japan
| | - Naoko Nakano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| |
Collapse
|
83
|
Abstract
γδ T cells constitute the third arm of a tripartite adaptive immune system in jawed vertebrates, besides αβ T cells and B cells. Like the other two lymphocyte-types, they express diverse antigen receptors, capable of specific ligand recognition. Functionally, γδ T cells represent a system of differentiated subsets, sometimes engaged in cross-regulation, which ultimately determines their effect on other components of the immune system, including B cells and antibodies. γδ T cells are capable of providing help to B cells in antibody production. More recently it became clear that γδ T cells influence B cell differentiation during the peripheral stages of B cell development, control levels of circulating immunoglobulin (all subclasses), and affect production of autoantibodies. Because of this relationship between γδ T cells and B cells, the extensive variation of γδ T cells among human individuals might be expected to modulate their humoral responsiveness.
Collapse
Affiliation(s)
- Willi K Born
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States.
| | - Yafei Huang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - R Lee Reinhardt
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States
| | - Hua Huang
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States
| | - Deming Sun
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rebecca L O'Brien
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States
| |
Collapse
|
84
|
Suwanpradid J, Holcomb ZE, MacLeod AS. Emerging Skin T-Cell Functions in Response to Environmental Insults. J Invest Dermatol 2017; 137:288-294. [PMID: 27784595 PMCID: PMC5552043 DOI: 10.1016/j.jid.2016.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023]
Abstract
Skin is the primary barrier between the body and the outside world, functioning not only as a physical barrier, but also as an immunologic first line of defense. A large number of T cells populate the skin. This review highlights the ability of these cutaneous T cells to regulate skin-specific environmental threats, including microbes, injuries, solar UV radiation, and allergens. Since much of this knowledge has been advanced from murine studies, we focus our review on how the mouse state has informed the human state, emphasizing the key parallels and differences.
Collapse
Affiliation(s)
- Jutamas Suwanpradid
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary E Holcomb
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA
| | - Amanda S MacLeod
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA; Pinnell Center for Investigative Dermatology and Skin Disease Research Center, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
85
|
Keyes BE, Liu S, Asare A, Naik S, Levorse J, Polak L, Lu CP, Nikolova M, Pasolli HA, Fuchs E. Impaired Epidermal to Dendritic T Cell Signaling Slows Wound Repair in Aged Skin. Cell 2016; 167:1323-1338.e14. [PMID: 27863246 PMCID: PMC5364946 DOI: 10.1016/j.cell.2016.10.052] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/14/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023]
Abstract
Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial T cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.
Collapse
Affiliation(s)
| | - Siqi Liu
- The Rockefeller University, New York, NY 10065, USA
| | - Amma Asare
- The Rockefeller University, New York, NY 10065, USA
| | - Shruti Naik
- The Rockefeller University, New York, NY 10065, USA
| | - John Levorse
- The Rockefeller University, New York, NY 10065, USA
| | - Lisa Polak
- The Rockefeller University, New York, NY 10065, USA
| | | | | | | | - Elaine Fuchs
- The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
86
|
Fujikado N, Mann AO, Bansal K, Romito KR, Ferre EMN, Rosenzweig SD, Lionakis MS, Benoist C, Mathis D. Aire Inhibits the Generation of a Perinatal Population of Interleukin-17A-Producing γδ T Cells to Promote Immunologic Tolerance. Immunity 2016; 45:999-1012. [PMID: 27851927 PMCID: PMC5133707 DOI: 10.1016/j.immuni.2016.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 08/02/2016] [Accepted: 08/22/2016] [Indexed: 01/13/2023]
Abstract
Aire's primary mechanism of action is to regulate transcription of a battery of genes in medullary thymic epithelial cells (mTECs) and, consequently, negative selection of effector T cells and positive selection of regulatory T cells. We found that Aire-deficient mice had expanded thymic and peripheral populations of perinatally generated IL-17A+Vγ6+Vδ1+ T cells, considered to be "early responders" to tissue stress and drivers of inflammatory reactions. Aire-dependent control of Il7 expression in mTECs regulated the size of thymic IL-17A+Vγ6+Vδ1+ compartments. In mice lacking Aire and γδ T cells, certain tissues typically targeted in the "Aire-less" disease, notably the retina, were only minimally infiltrated. IL-17A+Vγ6+Vδ1+ cells were present in the retina of wild-type mice and expanded very early in Aire-deficient mice. A putatively parallel population of IL-17A+Vγ9+Vδ2+ T cells was increased in humans lacking Aire. Thus, Aire exerts multi-faceted autoimmune control that extends to a population of innate-like T cells.
Collapse
Affiliation(s)
- Noriyuki Fujikado
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander O Mann
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kushagra Bansal
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly R Romito
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Elise M N Ferre
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
87
|
Salim M, Willcox CR, Mohammed F, Hayday AC, Overduin M, Willcox BE, Knowles TJ. Secondary structure and (1)H, (13)C and (15)N resonance assignments of Skint-1: a selecting ligand for a murine γδ T cell subset implicated in tumour suppression. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:357-360. [PMID: 27492395 PMCID: PMC5039214 DOI: 10.1007/s12104-016-9700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
A study describing the (1)H, (13)C and (15)N backbone and side chain chemical shift assignments and secondary structure of Skint-1 a prototypic member of a family of mouse genes, of which Skint-1 is involved in the development of the dendritic epidermal T cell (DETC) subset of γδ T cells.
Collapse
Affiliation(s)
- M Salim
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - C R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - F Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - A C Hayday
- Francis Crick Institute, Lincoln's Inn Fields Research Laboratories, London WC2A 3LY, UK and Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - M Overduin
- Department of Biochemistry, Faculty of Medicine & Dentistry, Edmonton, T6G 2H7, Alberta, Canada
| | - B E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - T J Knowles
- Henry Wellcome Building for Biomolecular NMR, School of Cancer Sciences, University of Edgbaston, Birmingham, B15 2TT, UK.
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
88
|
Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R, Iannitto ML, Laing A, Spencer-Dene B, East P, Gibbons D, Irving PM, Pereira P, Steinhoff U, Hayday A. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell 2016; 167:203-218.e17. [PMID: 27641500 PMCID: PMC5037318 DOI: 10.1016/j.cell.2016.08.030] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαβ(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.
Collapse
Affiliation(s)
- Rafael Di Marco Barros
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; MBPhD Programme, University College London, London WC1E 6BT, UK
| | | | - Robin J Dart
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Rosie Hart
- Francis Crick Institute, London WC2A3LY, UK
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Adam Laing
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Deena Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pablo Pereira
- Department of Immunology, Pasteur Institute, 75015 Paris, France
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Epidemiology, University of Marburg, 35037 Marburg, Germany
| | - Adrian Hayday
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK.
| |
Collapse
|
89
|
Affiliation(s)
- David A. Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - John Trowsdale
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
90
|
Nitta T, Suzuki H. Thymic stromal cell subsets for T cell development. Cell Mol Life Sci 2016; 73:1021-37. [PMID: 26825337 PMCID: PMC11108406 DOI: 10.1007/s00018-015-2107-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
The thymus provides a specialized microenvironment in which a variety of stromal cells of both hematopoietic and non-hematopoietic origin regulate development and repertoire selection of T cells. Recent studies have been unraveling the inter- and intracellular signals and transcriptional networks for spatiotemporal regulation of development of thymic stromal cells, mainly thymic epithelial cells (TECs), and the molecular mechanisms of how different TEC subsets control T cell development and selection. TECs are classified into two functionally different subsets: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs induce positive selection of diverse and functionally distinct T cells by virtue of unique antigen-processing systems, while mTECs are essential for establishing T cell tolerance via ectopic expression of peripheral tissue-restricted antigens and cooperation with dendritic cells. In addition to reviewing the role of the thymic stroma in conventional T cell development, we will discuss recently discovered novel functions of TECs in the development of unconventional T cells, such as natural killer T cells and γδT cells.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| |
Collapse
|
91
|
Salim M, Knowles TJ, Hart R, Mohammed F, Woodward MJ, Willcox CR, Overduin M, Hayday AC, Willcox BE. Characterization of a Putative Receptor Binding Surface on Skint-1, a Critical Determinant of Dendritic Epidermal T Cell Selection. J Biol Chem 2016; 291:9310-21. [PMID: 26917727 PMCID: PMC4861494 DOI: 10.1074/jbc.m116.722066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 12/21/2022] Open
Abstract
Dendritic epidermal T cells (DETC) form a skin-resident γδ T cell population that makes key contributions to cutaneous immune stress surveillance, including non-redundant contributions to protection from cutaneous carcinogens. How DETC become uniquely associated with the epidermis was in large part solved by the identification of Skint-1, the prototypic member of a novel B7-related multigene family. Expressed only by thymic epithelial cells and epidermal keratinocytes, Skint-1 drives specifically the development of DETC progenitors, making it the first clear candidate for a selecting ligand for non-MHC/CD1-restricted T cells. However, the molecular mechanisms underpinning Skint-1 activity are unresolved. Here, we provide evidence that DETC selection requires Skint-1 expression on the surface of thymic epithelial cells, and depends upon specific residues on the CDR3-like loop within the membrane-distal variable domain of Skint-1 (Skint-1 DV). Nuclear magnetic resonance of Skint-1 DV revealed a core tertiary structure conserved across the Skint family, but a highly distinct surface charge distribution, possibly explaining its unique function. Crucially, the CDR3-like loop formed an electrostatically distinct surface, featuring key charged and hydrophobic solvent-exposed residues, at the membrane-distal tip of DV. These results provide the first structural insights into the Skint family, identifying a putative receptor binding surface that directly implicates Skint-1 in receptor-ligand interactions crucial for DETC selection.
Collapse
Affiliation(s)
- Mahboob Salim
- From the Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT
| | - Timothy J Knowles
- the School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT
| | - Rosie Hart
- the Francis Crick Institute, Lincoln's Inn Fields Research Laboratories, London WC2A 3LY, the Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
| | - Fiyaz Mohammed
- From the Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT
| | - Martin J Woodward
- the Francis Crick Institute, Lincoln's Inn Fields Research Laboratories, London WC2A 3LY, the Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
| | - Carrie R Willcox
- From the Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT
| | - Michael Overduin
- the School of Cancer Sciences, University of Birmingham, Henry Wellcome Building for Biomolecular NMR, Edgbaston, Birmingham B15 2TT, and
| | - Adrian C Hayday
- the Francis Crick Institute, Lincoln's Inn Fields Research Laboratories, London WC2A 3LY, the Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
| | - Benjamin E Willcox
- From the Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT,
| |
Collapse
|
92
|
Mair F, Joller S, Hoeppli R, Onder L, Hahn M, Ludewig B, Waisman A, Becher B. The NFκB-inducing kinase is essential for the developmental programming of skin-resident and IL-17-producing γδ T cells. eLife 2015; 4:e10087. [PMID: 26637788 PMCID: PMC4733042 DOI: 10.7554/elife.10087] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/02/2015] [Indexed: 12/26/2022] Open
Abstract
γδ T cells contribute to first line immune defense, particularly through their ability for rapid production of proinflammatory cytokines. The cytokine profile of γδ T cells is hard-wired already during thymic development. Yet, the molecular pathways underlying this phenomenon are incompletely understood. Here we show that signaling via the NFκB-inducing kinase (NIK) is essential for the formation of a fully functional γδ T cell compartment. In the absence of NIK, development of Vγ5(+) dendritic epidermal T cells (DETCs) was halted in the embryonic thymus, and impaired NIK function caused a selective loss of IL-17 expression by γδ T cells. Using a novel conditional mutant of NIK, we could show in vivo that NIK signaling in thymic epithelial cells is essential for the thymic hardwiring of γδ T cell cytokine production.
Collapse
Affiliation(s)
- Florian Mair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefanie Joller
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Romy Hoeppli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Matthias Hahn
- Institute for Molecular Medicine, University Medical Center, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
93
|
Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol 2015; 12:656-68. [PMID: 25864915 PMCID: PMC4716630 DOI: 10.1038/cmi.2015.28] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
γδ T cells form an important part of adaptive immune responses against infections and malignant transformation. The molecular targets of human γδ T cell receptors (TCRs) remain largely unknown, but recent studies have confirmed the recognition of phosphorylated prenyl metabolites, lipids in complex with CD1 molecules and markers of cellular stress. All of these molecules are upregulated on various cancer types, highlighting the potential importance of the γδ T cell compartment in cancer immunosurveillance and paving the way for the use of γδ TCRs in cancer therapy. Ligand recognition by the γδ TCR often requires accessory/co-stimulatory stress molecules on both T cells and target cells; this cellular stress context therefore provides a failsafe against harmful self-reactivity. Unlike αβ T cells, γδ T cells recognise their targets irrespective of HLA haplotype and therefore offer exciting possibilities for off-the-shelf, pan-population cancer immunotherapies. Here, we present a review of known ligands of human γδ T cells and discuss the promise of harnessing these cells for cancer treatment.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Gene Expression Regulation, Neoplastic/immunology
- Hemiterpenes/immunology
- Humans
- Immunotherapy/methods
- Ligands
- Models, Molecular
- Monitoring, Immunologic
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Organophosphorus Compounds/immunology
- Phosphorylation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Mateusz Legut
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
94
|
Wang H, Morita CT. Sensor Function for Butyrophilin 3A1 in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:4583-94. [PMID: 26475929 DOI: 10.4049/jimmunol.1500314] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022]
Abstract
Vγ2Vδ2 T cells play important roles in human immunity to pathogens and in cancer immunotherapy by responding to isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate. The Ig superfamily protein butyrophilin (BTN)3A1 was shown to be required for prenyl pyrophosphate stimulation. We proposed that the intracellular B30.2 domain of BTN3A1 binds prenyl pyrophosphates, resulting in a change in the extracellular BTN3A1 dimer that is detected by Vγ2Vδ2 TCRs. Such B30.2 binding was demonstrated recently. However, other investigators reported that the extracellular BTN3A1 IgV domain binds prenyl pyrophosphates, leading to the proposal that the Vγ2Vδ2 TCR recognizes the complex. To distinguish between these mechanisms, we mutagenized residues in the two binding sites and tested the mutant BTN3A1 proteins for their ability to mediate prenyl pyrophosphate stimulation of Vγ2Vδ2 T cells to proliferate and secrete TNF-α. Mutagenesis of residues in the IgV site had no effect on Vγ2Vδ2 T cell proliferation or secretion of TNF-α. In contrast, mutagenesis of residues within the basic pocket and surrounding V regions of the B30.2 domain abrogated prenyl pyrophosphate-induced proliferation. Mutations of residues making hydrogen bonds to the pyrophosphate moiety also abrogated TNF-α secretion, as did mutation of aromatic residues making contact with the alkenyl chain. Some mutations further from the B30.2 binding site also diminished stimulation, suggesting that the B30.2 domain may interact with a second protein. These findings support intracellular sensing of prenyl pyrophosphates by BTN3A1 rather than extracellular presentation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246; and
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246; and Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
95
|
Sulcova J, Maddaluno L, Meyer M, Werner S. Accumulation and activation of epidermal γδ T cells in a mouse model of chronic dermatitis is not required for the inflammatory phenotype. Eur J Immunol 2015; 45:2517-28. [DOI: 10.1002/eji.201545675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/19/2015] [Accepted: 06/15/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Jitka Sulcova
- Department of Biology; Institute of Molecular Health Sciences; ETH Zurich; Zurich Switzerland
| | - Luigi Maddaluno
- Department of Biology; Institute of Molecular Health Sciences; ETH Zurich; Zurich Switzerland
| | - Michael Meyer
- Department of Biology; Institute of Molecular Health Sciences; ETH Zurich; Zurich Switzerland
| | - Sabine Werner
- Department of Biology; Institute of Molecular Health Sciences; ETH Zurich; Zurich Switzerland
| |
Collapse
|
96
|
Zhang W, Dong F, Ke X. [The research progress of costimulatory molecule B7 family in hematological malignancy]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:626-30. [PMID: 26304094 PMCID: PMC7342630 DOI: 10.3760/cma.j.issn.0253-2727.2015.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Zhang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - Fei Dong
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoyan Ke
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
97
|
Bonneville M, Chen ZW, Déchanet-Merville J, Eberl M, Fournié JJ, Jameson JM, Lopez RD, Massaia M, Silva-Santos B. Chicago 2014 – 30years of γδ T cells. Cell Immunol 2015; 296:3-9. [DOI: 10.1016/j.cellimm.2014.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/01/2014] [Indexed: 12/31/2022]
|
98
|
Ramond C, Bandeira A, Berthault C, Pereira P, Cumano A, Burlen-Defranoux O. Characterization of Thymic Settling Progenitors in the Mouse Embryo Using In Vivo and In Vitro Assays. J Vis Exp 2015:e52795. [PMID: 26131754 DOI: 10.3791/52795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Characterizing thymic settling progenitors is important to understand the pre-thymic stages of T cell development, essential to devise strategies for T cell replacement in lymphopenic patients. We studied thymic settling progenitors from murine embryonic day 13 and 18 thymi by two complementary in vitro and in vivo techniques, both based on the "hanging drop" method. This method allowed colonizing irradiated fetal thymic lobes with E13 and/or E18 thymic progenitors distinguished by CD45 allotypic markers and thus following their progeny. Colonization with mixed populations allows analyzing cell autonomous differences in biologic properties of the progenitors while colonization with either population removes possible competitive selective pressures. The colonized thymic lobes can also be grafted in immunodeficient male recipient mice allowing the analysis of the mature T cell progeny in vivo, such as population dynamics of the peripheral immune system and colonization of different tissues and organs. Fetal thymic organ cultures revealed that E13 progenitors developed rapidly into all mature CD3(+) cells and gave rise to the canonical γδ T cell subset, known as dendritic epithelial T cells. In comparison, E18 progenitors have a delayed differentiation and were unable to generate dendritic epithelial T cells. The monitoring of peripheral blood of thymus-grafted CD3(-/-) mice further showed that E18 thymic settling progenitors generate, with time, larger numbers of mature T cells than their E13 counterparts, a feature that could not be appreciated in the short term fetal thymic organ cultures.
Collapse
Affiliation(s)
- Cyrille Ramond
- Research Center Growth and Signaling, INSERM U845, Institut Cochin; Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur
| | - Antonio Bandeira
- Unit for Biology of Lymphocyte Populations, Immunology Department, Institut Pasteur and CIMI, Unity of Treg Biology and Therapy, University of Pierre & Marie Curie
| | - Claire Berthault
- Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur
| | - Pablo Pereira
- Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur
| | - Ana Cumano
- Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur;
| | - Odile Burlen-Defranoux
- Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur
| |
Collapse
|
99
|
The SKINT1-like gene is inactivated in hominoids but not in all primate species: implications for the origin of dendritic epidermal T cells. PLoS One 2015; 10:e0123258. [PMID: 25830554 PMCID: PMC4382165 DOI: 10.1371/journal.pone.0123258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/20/2015] [Indexed: 11/20/2022] Open
Abstract
Dendritic epidermal T cells, which express an invariant Vγ5Vδ1 T-cell receptor and account for 95% of all resident T cells in the mouse epidermis, play a critical role in skin immune surveillance. These γδ T cells are generated by positive selection in the fetal thymus, after which they migrate to the skin. The development of dendritic epidermal T cells is critically dependent on the Skint1 gene expressed specifically in keratinocytes and thymic epithelial cells, suggesting an indispensable role for Skint1 in the selection machinery for specific intraepithelial lymphocytes. Phylogenetically, rodents have functional SKINT1 molecules, but humans and chimpanzees have a SKINT1-like (SKINT1L) gene with multiple inactivating mutations. In the present study, we analyzed SKINT1L sequences in representative primate species and found that all hominoid species have a common inactivating mutation, but that Old World monkeys such as olive baboons, green monkeys, cynomolgus macaques and rhesus macaques have apparently functional SKINT1L sequences, indicating that SKINT1L was inactivated in a common ancestor of hominoids. Interestingly, the epidermis of cynomolgus macaques contained a population of dendritic-shaped γδ T cells expressing a semi-invariant Vγ10/Vδ1 T-cell receptor. However, this population of macaque T cells differed from rodent dendritic epidermal T cells in that their Vγ10/Vδ1 T-cell receptors displayed junctional diversity and expression of Vγ10 was not epidermis-specific. Therefore, macaques do not appear to have rodent-type dendritic epidermal T cells despite having apparently functional SKINT1L. Comprehensive bioinformatics analysis indicates that SKINT1L emerged in an ancestor of placental mammals but was inactivated or lost multiple times in mammalian evolution and that Skint1 arose by gene duplication in a rodent lineage, suggesting that authentic dendritic epidermal T cells are presumably unique to rodents.
Collapse
|
100
|
A clonotypic Vγ4Jγ1/Vδ5Dδ2Jδ1 innate γδ T-cell population restricted to the CCR6⁺CD27⁻ subset. Nat Commun 2015; 6:6477. [PMID: 25765849 DOI: 10.1038/ncomms7477] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/02/2015] [Indexed: 01/16/2023] Open
Abstract
Here we investigate the TCR repertoire of mouse Vγ4(+) γδ T cells in correlation with their developmental origin and homeostasis. By deep sequencing we identify a high frequency of straight Vδ5Dδ2Jδ1 germline rearrangements without P- and N-nucleotides within the otherwise highly diverse Trd repertoire of Vγ4(+) cells. This sequence is infrequent in CCR6(-)CD27(+) cells, but abundant among CCR6(+)CD27(-) γδ T cells. Using an inducible Rag1 knock-in mouse model, we show that γδ T cells generated in the adult thymus rarely contain this germline-rearranged Vδ5Dδ2Jδ1 sequence, confirming its fetal origin. Single-cell analysis and deep sequencing of the Trg locus reveal a dominant CDR3 junctional motif that completes the TCR repertoire of invariant Vγ4(+)Vδ5(+) cells. In conclusion, this study identifies an innate subset of fetal thymus-derived γδ T cells with an invariant Vγ4(+)Vδ5(+) TCR that is restricted to the CCR6(+)CD27(-) subset of γδ T cells.
Collapse
|