51
|
Wong J, Kelly K, Mittra A, Gonzalez SJ, Song KY, Simpson G, Coffin R, Fong Y. A third-generation herpesvirus is effective against gastroesophageal cancer. J Surg Res 2010; 163:214-20. [PMID: 20538290 DOI: 10.1016/j.jss.2010.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/18/2010] [Accepted: 03/05/2010] [Indexed: 01/10/2023]
Abstract
BACKGROUND Gastroesophageal cancer remains a leading cause of cancer deaths and is uniformly fatal in patients presenting with metastases and recurrence. This study sets out to determine the effect of a third-generation, replication-competent, oncolytic herpes simplex type 1 virus containing transgenes encoding for a fusogenic membrane glycoprotein and Fcy::Fur, against gastroesophageal cancer. METHODS The cytotoxic effect of the virus was tested on human gastroesophageal cancer cell lines OCUM-2MD3, MKN-45, AGS, MKN-1, MKN-74, and BE-3 at sequential multiplicities of infection (MOI). Cytotoxicity was measured using a lactate dehydrogenase assay. Viral replication was tested by serially diluting supernatants from viral infections and titering on VERO cells via standard plaque assay. Correlations of cytotoxicity and viral replication were also investigated. RESULTS All cell lines were susceptible to viral infection and demonstrated a dose-dependent effect, with greater and faster cytotoxicity at higher MOIs. Viral replication was supported in the cell lines tested, with peak titers by d 5, some supporting as high as >40,000× amplification. Cell lines with longer doubling times (>30 h) also achieved higher viral titers at a MOI of 0.1. Cell lines with shorter doubling times achieved 50% cell kill in fewer days, with an average of 2.3 d for cell lines with doubling times under 30 h compared with 4.4 d for cell lines with doubling times over 30 h. CONCLUSION These results suggest that this third-generation oncolytic herpesvirus can effectively infect and lyse gastroesophageal cancer cells and may provide a novel therapy against gastroesophageal cancer.
Collapse
Affiliation(s)
- Joyce Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Lin F, Ren X, Guo H, Ding Q, Zheng AC. Expression, purification of the UL3 protein of herpes simplex virus type 1, and production of UL3 polyclonal antibody. J Virol Methods 2010; 166:72-6. [PMID: 20188759 DOI: 10.1016/j.jviromet.2010.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a common pathogen which causes infections of the mucocutaneous membranes. The UL3 protein belongs to a group of HSV-1 late proteins. To date, the function of the UL3 protein in cell culture, animal models, and natural infection is unknown. To investigate further the function of the UL3 protein, this study was undertaken to express the UL3 protein and raise a polyclonal antibody. The UL3 gene was cloned in the prokaryotic expression vector pET-28a (+) to yield pET-28a (+)-UL3. The His6-tagged UL3 protein was expressed in Escherichia coli (E. coli) BL21 (DE3) cells and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). After purification by nickel affinity chromatography and refolding, the recombinant protein was used to raise the anti-UL3 polyclonal antibody. Western blot analysis demonstrated that the UL3 protein was recognized by the polyclonal antibody, and immunofluorescent assay also showed that the antibody was able to recognize the UL3 protein in the cells infected with HSV-1.
Collapse
Affiliation(s)
- Fusen Lin
- Molecular Virology and Viral Immunology Research Group, National Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, China
| | | | | | | | | |
Collapse
|
53
|
Saito K, Shirasawa H, Isegawa N, Shiiba M, Uzawa K, Tanzawa H. Oncolytic virotherapy for oral squamous cell carcinoma using replication-competent viruses. Oral Oncol 2009; 45:1021-7. [DOI: 10.1016/j.oraloncology.2009.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/29/2009] [Accepted: 09/02/2009] [Indexed: 01/02/2023]
|
54
|
Tombácz D, Tóth JS, Petrovszki P, Boldogkoi Z. Whole-genome analysis of pseudorabies virus gene expression by real-time quantitative RT-PCR assay. BMC Genomics 2009; 10:491. [PMID: 19852823 PMCID: PMC2775753 DOI: 10.1186/1471-2164-10-491] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 10/23/2009] [Indexed: 01/26/2023] Open
Abstract
Background Pseudorabies virus (PRV), a neurotropic herpesvirus of pigs, serves as an excellent model system with which to investigate the herpesvirus life cycle both in cultured cells and in vivo. Real-time RT-PCR is a very sensitive, accurate and reproducible technique that can be used to detect very small amounts of RNA molecules, and it can therefore be applied for analysis of the expression of herpesvirus genes from the very early period of infection. Results In this study, we have developed and applied a quantitative reverse transcriptase-based real-time PCR technique in order to profile transcription from the whole genome of PRV after lytic infection in porcine kidney cells. We calculated the relative expression ratios in a novel way, which allowed us to compare different PRV genes with respect to their expression dynamics, and to divide the PRV genes into distinct kinetic classes. This is the first publication on the whole-genome analysis of the gene expression of an alpha-herpesvirus by qRT2-PCR. We additionally established the kinetic properties of uncharacterized PRV genes and revised or confirmed data on PRV genes earlier examined by traditional methods such as Northern blot analysis. Our investigations revealed that genes with the same expression properties form clusters on the PRV genome: nested overlapping genes belong in the same kinetic class, while most convergent genes belong in different kinetic classes. Further, we detected inverse relationships as concerns the expressions of EP0 and IE180 mRNAs and their antisense partners. Conclusion Most (if not all) PRV genes begin to be expressed from the onset of viral expression. No sharp boundary was found between the groups of early and late genes classified on the basis of their requirement for viral DNA synthesis. The expressions of the PRV genes were analyzed, categorized and compared by qRT2-PCR assay, with the average of the minimum cycle threshold used as a control for the calculation of a particular R value. In principle, this new calculation technique is applicable for the analysis of gene expression in all temporally changing genetic systems.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, H-6720, Hungary.
| | | | | | | |
Collapse
|
55
|
Donofrio G, Franceschi V, Capocefalo A, Cavirani S, Sheldon IM. Isolation and characterization of bovine herpesvirus 4 (BoHV-4) from a cow affected by post partum metritis and cloning of the genome as a bacterial artificial chromosome. Reprod Biol Endocrinol 2009; 7:83. [PMID: 19691825 PMCID: PMC2734843 DOI: 10.1186/1477-7827-7-83] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 08/19/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus with a Worldwide distribution in cattle and is often isolated from the uterus of animals with postpartum metritis or pelvic inflammatory disease. Virus strain adaptation to an organ, tissue or cell type is an important issue for the pathogenesis of disease. To explore the mechanistic role of viral strain variation for uterine disease, the present study aimed to develop a tool enabling precise genetic discrimination between strains of BoHV-4 and to easily manipulate the viral genome. METHODS A strain of BoHV-4 was isolated from the uterus of a persistently infected cow and designated BoHV-4-U. The authenticity of the isolate was confirmed by RFLP-PCR and sequencing using the TK and IE2 loci as genetic marker regions for the BoHV-4 genome. The isolated genome was cloned as a Bacterial Artificial Chromosome (BAC) and manipulated through recombineering technology RESULTS The BoHV-4-U genome was successfully cloned as a BAC, and the stability of the pBAC-BoHV-4-U clone was confirmed over twenty passages, with viral growth similar to the wild type virus. The feasibility of using BoHV-4-U for mutagenesis was demonstrated using the BAC recombineering system. CONCLUSION The analysis of genome strain variation is a key method for investigating genes associated with disease. A resource for dissection of the interactions between BoHV-4 and host endometrial cells was generated by cloning the genome of BoHV-4 as a BAC.
Collapse
Affiliation(s)
- Gaetano Donofrio
- Dipartimento di Salute Animale, Facoltà di Medicina Veterinaria, Università di Parma, via del Taglio 10, 43100 Parma, Italy
| | - Valentina Franceschi
- Dipartimento di Salute Animale, Facoltà di Medicina Veterinaria, Università di Parma, via del Taglio 10, 43100 Parma, Italy
| | - Antonio Capocefalo
- Dipartimento di Salute Animale, Facoltà di Medicina Veterinaria, Università di Parma, via del Taglio 10, 43100 Parma, Italy
| | - Sandro Cavirani
- Dipartimento di Salute Animale, Facoltà di Medicina Veterinaria, Università di Parma, via del Taglio 10, 43100 Parma, Italy
| | - Iain Martin Sheldon
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| |
Collapse
|
56
|
Polarized DNA ejection from the herpesvirus capsid. J Mol Biol 2009; 392:885-94. [PMID: 19631662 DOI: 10.1016/j.jmb.2009.07.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 11/21/2022]
Abstract
Ejection of DNA from the capsid is an early step in infection by all herpesviruses. Ejection or DNA uncoating occurs after a parental capsid has entered the host cell cytoplasm, migrated to the nucleus, and bound to a nuclear pore. DNA exits the capsid through the portal vertex and proceeds by way of the nuclear pore complex into the nucleoplasm where it is transcribed and replicated. Here, we describe use of an in vitro uncoating system to determine which genome end exits first from the herpes simplex virus 1 capsid. Purified DNA-containing capsids were bound to a solid surface and warmed under conditions in which some, but not all, of the DNA was ejected. Restriction endonuclease digestion was then used to identify the genomic origin of the ejected DNA. The results support the view that the S segment end exits the capsid first. Preferential release at the S end demonstrates that herpesvirus DNA uncoating conforms to the paradigm in double-stranded DNA bacteriophage where the last end packaged is the first to be ejected. Release of herpes simplex virus 1 DNA beginning at the S end causes the first gene to enter the host cell nucleus to be alpha4, a transcription factor required for expression of early genes.
Collapse
|
57
|
Rodriguez SS, Castro MG, Brown OA, Goya RG, Console GM. GENE THERAPY FOR THE TREATMENT OF PITUITARY TUMORS. Expert Rev Endocrinol Metab 2009; 4:359-370. [PMID: 20186255 PMCID: PMC2825701 DOI: 10.1586/eem.09.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pituitary adenomas constitute the most frequent neuroendocrine pathology in humans. Current therapies include surgery, radiotherapy and pharmacological approaches. Although useful, none of them offers a permanent cure. Current research efforts to implement gene therapy in pituitary tumors include the treatment of experimental adenomas with adenoviral vector-mediated transfer of the suicide gene for thymidine kinase, which converts the prodrug ganciclovir into a toxic metabolite. In some cases, the suicide transgene has been placed under the control of pituitary cell-type specific promoters. Also, regulatable adenoviral vector systems are being assessed in gene therapy approaches for experimental pituitary tumors. Although the efficiency and safety of current viral vectors must be optimized before clinical use, they remain as highly promising therapeutic tools.
Collapse
Affiliation(s)
- Silvia S. Rodriguez
- Histology and Embryology B-CICPBA
- INIBIOLP-CONICET, Faculty of Medicine, University of La Plata
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars Sinai Medical Center, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Oscar A. Brown
- Histology and Embryology B-CICPBA
- INIBIOLP-CONICET, Faculty of Medicine, University of La Plata
| | - Rodolfo G. Goya
- Histology and Embryology B-CICPBA
- INIBIOLP-CONICET, Faculty of Medicine, University of La Plata
| | | |
Collapse
|
58
|
Silberhumer GR, Zakian K, Malhotra S, Brader P, Gönen M, Koutcher J, Fong Y. Relationship between 31P metabolites and oncolytic viral therapy sensitivity in human colorectal cancer xenografts. Br J Surg 2009; 96:809-16. [DOI: 10.1002/bjs.6604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Background
Studies using phosphorus magnetic resonance spectroscopy (MRS) have pointed to the significance of phospholipid metabolite alterations as biochemical markers for tumour progression or therapy response.
Methods
Spectroscopic imaging was performed in colorectal flank tumours in nude mice. In vivo tumour doubling times for each cell line were measured. In vivo sensitivity of each tumour line to treatment with G207 and NV1020 oncolytic viruses was assessed. Correlations between viral sensitivity and tumour doubling time and phosphorus MRS were estimated.
Results
For G207 virus, in vitro cytotoxicity tests showed cell viability at multiplicities of infection (ratio of viral particles per tumour cell) of 0·1 on day 6 as follows: C85, less than 1 per cent; HCT8, 1 per cent; LS174T, 9 per cent; HT29, 18 per cent; and C18, 92 per cent. Respective values for NV1020 were 1, 18, 4, 18 and 86 per cent. The phosphoethanolamine to phosphocholine ratio was significantly lower in virus-sensitive than -insensitive cells, and was dependent on tumour doubling time.
Conclusion
Alterations in membrane phospholipid metabolites that relate to proliferation of cancer cells affect the efficacy of oncolytic viral therapy. MRS proved a highly sensitive non-invasive tool for predicting the efficacy of viruses.
Collapse
Affiliation(s)
- G R Silberhumer
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - K Zakian
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - S Malhotra
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - P Brader
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - M Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - J Koutcher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Y Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
59
|
Abstract
All herpesviruses have a layer of protein called the tegument that lies between the virion membrane and the capsid. The tegument consists of multiple, virus-encoded protein species that together can account for nearly half the total virus protein. To clarify the structure of the tegument and its attachment to the capsid, we used electron microscopy and protein analysis to examine the tegument of herpes simplex virus type 1 (HSV-1). Electron microscopic examination of intact virions revealed that whereas the tegument was asymmetrically distributed around the capsid in extracellular virions, it was symmetrically arranged in cell-associated virus. Examination of virions after treatment with nonionic detergent demonstrated that: (i) in extracellular virus the tegument was resistant to removal with Triton X-100 (TX-100), whereas it was lost nearly completely when cell-associated virus was treated in the same way; (ii) the tegument in TX-100-treated extracellular virions was asymmetrically distributed around the capsid as it is in unextracted virus; and (iii) in some images, tegument was seen to be linked to the capsid by short, regularly spaced connectors. Further analysis was carried out with extracellular virus harvested from cells at different times after infection. It was observed that while the amount of tegument present in virions was not affected by time of harvest, the amount remaining after TX-100 treatment increased markedly as the time of harvest was increased from 24 h to 64 h postinfection. The results support the view that HSV-1 virions undergo a time-dependent change in which the tegument is transformed from a state in which it is symmetrically organized around the capsid and extractable with TX-100 to a state where it is asymmetrically arranged and resistant to extraction.
Collapse
|
60
|
Robinson KE, Meers J, Gravel JL, McCarthy FM, Mahony TJ. The essential and non-essential genes of Bovine herpesvirus 1. J Gen Virol 2008; 89:2851-2863. [DOI: 10.1099/vir.0.2008/002501-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an economically important pathogen of cattle associated with respiratory and reproductive disease. To further develop BoHV-1 as a vaccine vector, a study was conducted to identify the essential and non-essential genes required for in vitro viability. Random-insertion mutagenesis utilizing a Tn5 transposition system and targeted gene deletion were employed to construct gene disruption and gene deletion libraries, respectively, of an infectious clone of BoHV-1. Transposon insertion position and confirmation of gene deletion were determined by direct sequencing. The essential or non-essential requirement of either transposed or deleted open reading frames (ORFs) was assessed by transfection of respective BoHV-1 DNA into host cells. Of the 73 recognized ORFs encoded by the BoHV-1 genome, 33 were determined to be essential and 36 to be non-essential for virus viability in cell culture; determining the requirement of the two dual copy ORFs was inconclusive. The majority of ORFs were shown to conform to the in vitro requirements of BoHV-1 homologues encoded by human herpesvirus 1 (HHV-1). However, ORFs encoding glycoprotein K (UL53), regulatory, membrane, tegument and capsid proteins (UL54, UL49.5, UL49, UL35, UL20, UL16 and UL7) were shown to differ in requirement when compared to HHV-1-encoded homologues.
Collapse
Affiliation(s)
- Karl E. Robinson
- School of Veterinary Science, University of Queensland, St Lucia, Brisbane, QLD, Australia
- Department of Primary Industries and Fisheries, St Lucia, Brisbane, QLD, Australia
| | - Joanne Meers
- School of Veterinary Science, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Jennifer L. Gravel
- Department of Primary Industries and Fisheries, St Lucia, Brisbane, QLD, Australia
| | - Fiona M. McCarthy
- Department of Primary Industries and Fisheries, St Lucia, Brisbane, QLD, Australia
| | - Timothy J. Mahony
- Department of Primary Industries and Fisheries, St Lucia, Brisbane, QLD, Australia
| |
Collapse
|
61
|
Kelly KJ, Wong J, Fong Y. Herpes simplex virus NV1020 as a novel and promising therapy for hepatic malignancy. Expert Opin Investig Drugs 2008; 17:1105-13. [PMID: 18549346 DOI: 10.1517/13543784.17.7.1105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Patients with hepatic malignancy have a dismal prognosis with standard therapies. NV1020 is an oncolytic herpes simplex virus that has potential to be a safe and effective therapeutic agent for this disease. OBJECTIVE We set out to discuss the development of NV1020 as an oncolytic agent and explore the potential role of this particular virus in the setting of human hepatic cancer. METHODS The scope of this review includes an overview of preclinical experience with NV1020, as well as an examination of current standard and developing therapies for liver cancer. The primary focus, however, is on the safety and potential clinical efficacy of NV1020 against hepatic malignancy. RESULTS/CONCLUSION We have found that NV1020 is a safe, novel therapeutic agent for treatment of refractory hepatic malignancy.
Collapse
Affiliation(s)
- Kaitlyn J Kelly
- Memorial Sloan-Kettering Cancer Center, Department of Surgery, 1275 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
62
|
Brown JC. High G+C Content of Herpes Simplex Virus DNA: Proposed Role in Protection Against Retrotransposon Insertion. Open Biochem J 2007; 1:33-42. [PMID: 19543363 PMCID: PMC2606590 DOI: 10.2174/1874091x00701010033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/15/2007] [Accepted: 11/20/2007] [Indexed: 12/04/2022] Open
Abstract
The herpes simplex virus dsDNA genome is distinguished by an unusually high G+C nucleotide content. HSV-1 and HSV-2, for instance, have GC contents of 68% and 70% respectively, while that of the host (human) genome is 41%. To determine how GC content varies with genome location, GC content was measured separately in coding and intergenic regions of HSV-1 DNA. The results showed that the 75 genes constitute a uniform population with a mean GC content of 66.9 ± 4.1%. In contrast, intergenic regions were found in two non-overlapping populations, one with a mean GC content (69.3 ± 4.6% n=32) similar to the coding regions and another where the GC content is lower (56.0 ± 4.9 n=30). Compared to other regions of the genome, intergenic regions with reduced GC content were found to be enriched in local GC minima, CACACA sequences and a primary target sequence (TTAAAA) for retrotransposition events. The results are interpreted to suggest that a high GC content is part of the way HSV-1 protects its genes from invasion by mobile genetic elements active during cell differentiation in the nervous system.
Collapse
Affiliation(s)
- Jay C Brown
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| |
Collapse
|
63
|
Herpes viral oncolysis: a novel cancer therapy. J Am Coll Surg 2007; 205:S69-75. [PMID: 17916523 DOI: 10.1016/j.jamcollsurg.2007.06.333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/20/2022]
|
64
|
Abstract
Aiming for regeneration of severed or lost parts of the body, the combined application of gene therapy and tissue engineering has received much attention by regenerative medicine. Techniques of molecular biology can enhance the regenerative potential of a biomaterial by co-delivery of therapeutic genes, and several different strategies have been used to achieve that goal. Possibilities for application are many-fold and have been investigated to regenerate tissues such as skin, cartilage, bone, nerve, liver, pancreas and blood vessels. This review discusses advantages and problems encountered with the different gene delivery strategies as far as they relate to tissue engineering, analyses the positive aspects of polymeric gene delivery from matrices and discusses advances and future challenges of gene transfer strategies in selected tissues.
Collapse
Affiliation(s)
- Oliver Bleiziffer
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
- *Correspondence to: Ulrich KNESER, M.D. Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstr. 12, 91054 Erlangen, Germany. Tel.: +49-9131-85-33277; Fax: +49-9131-85-39327 E-mail:
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Feng Yao
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
- *Correspondence to: Ulrich KNESER, M.D. Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstr. 12, 91054 Erlangen, Germany. Tel.: +49-9131-85-33277; Fax: +49-9131-85-39327 E-mail:
| |
Collapse
|
65
|
Iwahori S, Shirata N, Kawaguchi Y, Weller SK, Sato Y, Kudoh A, Nakayama S, Isomura H, Tsurumi T. Enhanced phosphorylation of transcription factor sp1 in response to herpes simplex virus type 1 infection is dependent on the ataxia telangiectasia-mutated protein. J Virol 2007; 81:9653-64. [PMID: 17609267 PMCID: PMC2045397 DOI: 10.1128/jvi.00568-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The ataxia telangiectasia-mutated (ATM) protein, a member of the related phosphatidylinositol 3-like kinase family encoded by a gene responsible for the human genetic disorder ataxia telangiectasia, regulates cellular responses to DNA damage and viral infection. It has been previously reported that herpes simplex virus type 1 (HSV-1) infection induces activation of protein kinase activity of ATM and hyperphosphorylation of transcription factor, Sp1. We show that ATM is intimately involved in Sp1 hyperphosphorylation during HSV-1 infection rather than individual HSV-1-encoded protein kinases. In ATM-deficient cells or cells silenced for ATM expression by short hairpin RNA targeting, hyperphosphorylation of Sp1 was prevented even as HSV-1 infection progressed. Mutational analysis of putative ATM phosphorylation sites on Sp1 and immunoblot analysis with phosphopeptide-specific Sp1 antibodies clarified that at least Ser-56 and Ser-101 residues on Sp1 became phosphorylated upon HSV-1 infection. Serine-to-alanine mutations at both sites on Sp1 considerably abolished hyperphosphorylation of Sp1 upon infection. Although ATM phosphorylated Ser-101 but not Ser-56 on Sp1 in vitro, phosphorylation of Sp1 at both sites was not detected at all upon infection in ATM-deficient cells, suggesting that cellular kinase(s) activated by ATM could be involved in phosphorylation at Ser-56. Upon viral infection, Sp1-dependent transcription in ATM expression-silenced cells was almost the same as that in ATM-intact cells, suggesting that ATM-dependent phosphorylation of Sp1 might hardly affect its transcriptional activity during the HSV-1 infection. ATM-dependent Sp1 phosphorylation appears to be a global response to various DNA damage stress including viral DNA replication.
Collapse
Affiliation(s)
- Satoko Iwahori
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Kari I, Syrjänen S, Johansson B, Peri P, He B, Roizman B, Hukkanen V. Antisense RNA directed to the human papillomavirus type 16 E7 mRNA from herpes simplex virus type 1 derived vectors is expressed in CaSki cells and downregulates E7 mRNA. Virol J 2007; 4:47. [PMID: 17547759 PMCID: PMC1892547 DOI: 10.1186/1743-422x-4-47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 06/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human papillomavirus (HPV) infection is known to be the most important etiologic factor of cervical cancer. There is no HPV specific therapy available for treatment of invasive squamous cell carcinoma of the cervix and its precursor lesions. The present study elucidates the potential to use herpes simplex virus (HSV) derived vectors for expression of antisense RNA to HPV -16 E7 oncogene. RESULTS We have constructed replication competent, nonneuroinvasive HSV-1 vectors, deleted of the gamma134.5 gene. The vectors express RNA antisense to the first 100 nucleotides of the HPV-16 E7 gene. We assayed the ability of the antisense E7 vectors R5225 (tk-) and R5226 (tk+), to produce antisense RNA, as well as the consequent effects on E7 mRNA and protein levels in HPV-16 positive CaSki cells. Anti-E7 RNA was expressed by both constructs in a dose-dependent manner. Expression of HPV-16 E7 mRNA was downregulated effectively in CaSki cells infected with the tk- recombinant R5225 or with R5226. The tk+ recombinant R5226 was effective in downregulating E7 protein expression. CONCLUSION We have shown that anti-E7 RNA expressed from an HSV vector could efficiently downregulate HPV-16 E7 mRNA and E7 protein expression in CaSki cells. We conclude that HSV vectors may become a useful tool for gene therapy of HPV infections.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Cell Line, Tumor
- Down-Regulation
- Gene Expression/drug effects
- Gene Expression Regulation, Viral
- Genetic Vectors/genetics
- Herpesvirus 1, Human/genetics
- Human papillomavirus 16/genetics
- Humans
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Papillomavirus E7 Proteins
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Antisense/pharmacology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/biosynthesis
Collapse
Affiliation(s)
- Ilkka Kari
- Department of Virology, Institute of Dentistry, University of Turku, Turku, Finland
- MediCity Research Laboratory, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Stina Syrjänen
- MediCity Research Laboratory, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Bo Johansson
- MediCity Research Laboratory, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Clinical Virology, Karolinska University Hospital, Stockholm, Sweden
| | - Piritta Peri
- Department of Virology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Bin He
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, USA
| | - Bernard Roizman
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, IL, USA
| | - Veijo Hukkanen
- Department of Virology, Institute of Dentistry, University of Turku, Turku, Finland
- MediCity Research Laboratory, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Microbiology, University of Oulu, Oulu, Finland
| |
Collapse
|
67
|
Gao Q, Sun M, Wang X, Geller AI. Isolation of an enhancer from the rat tyrosine hydroxylase promoter that supports long-term, neuronal-specific expression from a neurofilament promoter, in a helper virus-free HSV-1 vector system. Brain Res 2007; 1130:1-16. [PMID: 17169349 PMCID: PMC2694737 DOI: 10.1016/j.brainres.2006.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 12/13/2022]
Abstract
Direct gene transfer into neurons, using a virus vector, has been used to study neuronal physiology and learning, and has potential for supporting gene therapy treatments for specific neurological diseases. Many of these applications require high-level, long-term recombinant gene expression, in forebrain neurons. We previously showed that addition of upstream sequences from the rat tyrosine hydroxylase (TH) promoter to a neurofilament heavy gene (NF-H) promoter supports long-term expression in forebrain neurons, from helper virus-free Herpes Simplex Virus (HSV-1) vectors. This element in the TH promoter satisfied the definition of an enhancer; it displayed activity at a distance from the basal promoter, and in both orientations. This enhancer supported physiological studies that required long-term expression; a modified neurofilament promoter, containing an insulator upstream of the TH-NFH promoter, supported expression in approximately 11,400 striatal neurons at 6 months after gene transfer, and expression for 7, 8, or 14 months, the longest times tested. In contrast, the NF-H promoter alone does not support long-term expression, indicating that the critical sequences are in the 6.3 kb fragment of the TH promoter. In this study, we performed a deletion analysis to identify the critical sequences in the TH promoter that support long-term expression. We localized these critical sequences to an approximately 320 bp fragment, and two subfragments of approximately 100 bp each. Vectors that contained each of these small fragments supported levels of long-term, neuronal-specific expression that were similar to the levels supported by a vector that contained the initial 6.3 kb fragment of the TH promoter. These small fragments of the TH promoter may benefit construction of vectors for physiological studies, and may support studies on the mechanism by which this enhancer supports long-term expression.
Collapse
Affiliation(s)
- Qingshen Gao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA, 02132
| | - Mei Sun
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA, 02132
| | - Xiaodan Wang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA, 02132
| | - Alfred I. Geller
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA, 02132
| |
Collapse
|
68
|
Abstract
Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair.
Collapse
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, D-50937 Cologne, Germany
| | | | | |
Collapse
|
69
|
Kemeny N, Brown K, Covey A, Kim T, Bhargava A, Brody L, Guilfoyle B, Haag NP, Karrasch M, Glasschroeder B, Knoll A, Getrajdman G, Kowal KJ, Jarnagin WR, Fong Y. Phase I, Open-Label, Dose-Escalating Study of a Genetically Engineered Herpes Simplex Virus, NV1020, in Subjects with Metastatic Colorectal Carcinoma to the Liver. Hum Gene Ther 2006; 17:1214-24. [PMID: 17107303 DOI: 10.1089/hum.2006.17.1214] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current regimens of systemic chemotherapy result in only modest lengthening of survival in patients with advanced stage, liver-dominant, metastatic colorectal cancer who have failed first-line chemotherapy. The objective of this study was to investigate the safety and tolerability of NV1020, a replication-competent, attenuated, genetically engineered herpes simplex virus type 1 (HSV-1), in patients with hepatic colorectal metastases refractory to first-line chemotherapy. A phase I, open-label, dose-escalating study of a single 10-min hepatic arterial infusion of NV1020 in four cohorts. Three patients in each cohort received doses of 3 x 10(6), 1 x 10(7), 3 x 10(7), and 1 x 10(8) plaque-forming units. Adverse events were either mild or moderate in severity, and self-limiting. Only three serious adverse events (one transient rise in serum y-glutamyltransferase, one diarrhea, and one leukocytosis) experienced by three patients were considered to be possibly or probably related to NV1020. There were no deaths during the study, and there was no evidence of disseminated herpes infection. Viral presence was detected in only one saliva sample and two serum samples from one asymptomatic patient in the highest dose cohort. In the first week after viral administration only rare and minor increases were noted for tumor necrosis factor-alpha (six samples; three patients; peak, 40 pg/ml), interleukin (IL)-1 (two samples; two patients; peak, 28 pg/ml), and interferon-y (four samples; two subjects; peak, 54 pg/ml). No IL-2 was detected. Mild liver enzyme elevations were self-limiting and not associated with clinical symptoms. We conclude that NV1020, a genetically engineered but replication-competent HSV-1 oncolytic virus, can be safely administered into the hepatic artery without significant effects on normal liver function.
Collapse
Affiliation(s)
- Nancy Kemeny
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kemeny N, Brown K, Covey A, Kim T, Bhargava A, Brody L, Guilfoyle B, Haag NP, Karrasch M, Glasschroeder B, Knoll A, Getrajdman G, Kowal KJ, Jarnagin WR, Fong Y. Phase I, Open-Label, Dose-Escalating Study of a Genetically Engineered Herpes Simplex Virus, NV1020, in Subjects with Metastatic Colorectal Carcinoma to the Liver. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
71
|
Stiles BM, Adusumilli PS, Bhargava A, Stanziale SF, Kim TH, Chan MK, Huq R, Wong R, Rusch VW, Fong Y. Minimally invasive localization of oncolytic herpes simplex viral therapy of metastatic pleural cancer. Cancer Gene Ther 2006; 13:53-64. [PMID: 16037824 PMCID: PMC1351128 DOI: 10.1038/sj.cgt.7700860] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpes simplex virus-1 (HSV-1) oncolytic therapy and gene therapy are promising treatment modalities against cancer. NV1066, one such HSV-1 virus, carries a marker gene for enhanced green fluorescent protein (EGFP). The purpose of this study was to determine whether NV1066 is cytotoxic to lung cancer and whether EGFP is a detectable marker of viral infection in vitro and in vivo. We further investigated whether EGFP expression in infected cells can be used to localize the virus and to identify small metastatic tumor foci (<1 mm) in vivo by means of minimally invasive endoscopic systems equipped with fluorescent filters. In A549 human lung cancer cells, in vitro viral replication was determined by plaque assay, cell kill by LDH release assay, and EGFP expression by flow cytometry. In vivo, A549 cells were injected into the pleural cavity of athymic mice. Mice were treated with intrapleural injection of NV1066 or saline and examined for EGFP expression in tumor deposits using a stereomicroscope or a fluorescent thoracoscopic system. NV1066 replicated in, expressed EGFP in infected cells and killed tumor cells in vitro. In vivo, treatment with intrapleural NV1066 decreased pleural disease burden, as measured by chest wall nodule counts and organ weights. EGFP was easily visualized in tumor deposits, including microscopic foci, by fluorescent thoracoscopy. NV1066 has significant oncolytic activity against a human NSCLC cell line and is effective in limiting the progression of metastatic disease in an in vivo orthotopic model. By incorporating fluorescent filters into endoscopic systems, a minimally invasive means for diagnosing small metastatic pleural deposits and localization of viral therapy for thoracic malignancies may be developed using the EGFP marker gene inserted in oncolytic herpes simplex viruses.
Collapse
Affiliation(s)
| | | | - Amit Bhargava
- From the Department of Surgery and Molecular cytology core facility
| | | | - Teresa H. Kim
- From the Department of Surgery and Molecular cytology core facility
| | - Mei-Ki Chan
- From the Department of Surgery and Molecular cytology core facility
| | - Rumana Huq
- Memorial Sloan–Kettering Cancer Center, New York, New York
| | - Richard Wong
- From the Department of Surgery and Molecular cytology core facility
| | - Valerie W. Rusch
- From the Department of Surgery and Molecular cytology core facility
| | - Yuman Fong
- From the Department of Surgery and Molecular cytology core facility
- Address for correspondence: Yuman Fong, MD, Department of Surgery, H1223, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, Phone: (212) 639-2016 Fax: (212) 639-4031, E-mail:
| |
Collapse
|
72
|
Yamamoto S, Deckter LA, Kasai K, Chiocca EA, Saeki Y. Imaging immediate-early and strict-late promoter activity during oncolytic herpes simplex virus type 1 infection and replication in tumors. Gene Ther 2006; 13:1731-6. [PMID: 16871231 DOI: 10.1038/sj.gt.3302831] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An increasing number of oncolytic viruses have been developed and studied for cancer therapy. In response to needs for non-invasive monitoring and imaging of oncolytic virotherapy, several different approaches, including a positron emission tomography-based method, a method using secreted marker peptides, and optical imaging-based methods, have been reported. Among these modalities, we utilized the luciferase-based bioluminescent assay/imaging systems to determine the kinetics and dynamics of a productive viral infection. The replication cycle of herpes simplex virus type 1 (HSV-1) is punctuated by a temporal cascade of three classes of viral genes: immediate-early (IE), early (E) and late (L) genes. U(L)39- and gamma(1)34.5-deleted, replication-conditional HSV-1 mutants that express firefly luciferase under the control of the IE4/5 or strict-late gC promoters were generated. These oncolytic viruses were examined in cultured cells and a mouse tumor model. IE promoter- and strict-late promoter-mediated luciferase expression was confirmed to indicate viral infection and replication, respectively. Incorporation of a strict-late promoter-driven luciferase cassette into oncolytic HSV-1 vectors would be useful for assessing tumor oncolysis in preclinical tumor treatment studies.
Collapse
Affiliation(s)
- S Yamamoto
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Cancer Hospital and Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
73
|
Tibbetts SA, Suarez F, Steed AL, Simmons JA, Virgin HW. A gamma-herpesvirus deficient in replication establishes chronic infection in vivo and is impervious to restriction by adaptive immune cells. Virology 2006; 353:210-9. [PMID: 16797052 DOI: 10.1016/j.virol.2006.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/04/2006] [Accepted: 05/16/2006] [Indexed: 02/08/2023]
Abstract
Chronic gamma-herpesvirus infection is a dynamic process involving latent infection, reactivation from latency, and low level persistent replication. The gamma-herpesviruses maintain latent infection in restricted subsets of hematopoietic cells as a result of an intricate balance between host factors that suppress infection and viral factors that facilitate evasion of the immune response. Immune effectors limit reactivation and subsequent replication events, and the adaptive immune response ultimately restricts infection to a level compatible with life-long infection. However, it has not been possible to determine whether the immune system constrains chronic infection by directly targeting latently infected cells in vivo due to the complex nature of chronic infection. To begin to address this issue, we generated a murine gamma-herpesvirus 68 (gammaHV68) deficient in its ability to replicate or undergo reactivation from latency via a mutation in the single-stranded DNA binding protein encoded by ORF6. Even in the absence of lytic replication, this virus established long-term infection in peritoneal cells of wild-type mice at levels identical to that of wild-type gammaHV68, and generated an immune response that was sufficient to protect against secondary challenge with wild-type gammaHV68. Nevertheless, the number of latently infected cells was not significantly altered in mice deficient in T cells or both T cells and B cells, demonstrating that the adaptive immune system is incapable of altering infection with a virus lacking the capacity for lytic replication and reactivation from latency. Thus, these data support the conclusion that latency is immunologically silent.
Collapse
Affiliation(s)
- Scott A Tibbetts
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
74
|
Stiles BM, Adusumilli PS, Stanziale SF, Eisenberg DP, Bhargava A, Kim TH, Chan MK, Huq R, Gonen M, Fong Y. Estrogen enhances the efficacy of an oncolytic HSV-1 mutant in the treatment of estrogen receptor-positive breast cancer. Int J Oncol 2006; 28:1429-39. [PMID: 16685445 PMCID: PMC1459534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Oncolytic herpes simplex virus-1 (HSV-1) mutants selectively replicate in and lyse tumor cells. Viral replication is dependent on the cellular proliferative mechanism. Estrogen increases cellular proliferation and decreases apoptosis in estrogen receptor-positive (ER+) human breast cancer cells. We hypothesize that the cellular changes produced by estrogen may enhance oncolytic viral replication and improve the treatment of ER+ breast cancer cells. Estrogen increased proliferation and replication of the HSV-1 mutant, NV1066, in ER+ breast cancer cells. Additionally, cells grown with estrogen had lower rates of apoptosis and higher bcl-2 levels at baseline and after infection. Estrogen enhanced the oncolytic effect of NV1066, with cell kills of 95% and 97% at MOIs of 0.1 and 0.5, compared to 53 and 87% respectively without estrogen (p<0.001). Therapy of ER+ human breast cancer cells with a replication-competent HSV-1 mutant is improved in the presence of estrogen, in contrast to more standard therapies, such as chemotherapy and radiation, which demonstrate decreased efficacy in similar conditions. These data provide the mechanistic basis for the use of oncolytic HSV-1 in patients with hormone receptor-positive breast cancer, particularly if the disease progresses with conventional therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mithat Gonen
- Epidemiology and Biostatistics, Memorial Sloan–Kettering Cancer Center 1275 York Ave, New York, New York 10021
| | - Yuman Fong
- Address for correspondence: Yuman Fong, MD, Murray F. Brennan Chair in Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, Phone: (212) 639-2016, Fax: (646) 422-2358, E-mail:
| |
Collapse
|
75
|
Mullerad M, Eisenberg DP, Akhurst TJ, Adusumilli PS, Riedl CC, Bhargava A, Gonen M, Finn R, Scardino PT, Fong Y. Use of positron emission tomography to target prostate cancer gene therapy by oncolytic herpes simplex virus. Mol Imaging Biol 2006; 8:30-5. [PMID: 16362150 PMCID: PMC1397882 DOI: 10.1007/s11307-005-0028-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Herpes simplex virus (HSV) oncolytic gene therapy is a promising treatment modality against cancer. We have demonstrated that androgen-induced cellular changes enhance oncolytic viral replication and improve efficacy in the treatment of androgen-dependent prostate cancer cell line. Imaging of changes in 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) uptake by positron emission tomography (PET) is a sensitive method of detecting altered cellular metabolism involved in cancer therapy. We therefore hypothesized that FDG-PET can predict tumor response to oncolytic HSV therapy. In this study, androgen increased cell kill (74%) in vitro and enhanced viral yield (2.4-fold) in vivo following HSV therapy. This enhanced efficacy was predicted by high FDG accumulation in intact animals compared to low FDG uptake following orchiectomy (p = 0.002). This proof-of-concept study provides the mechanistic basis for selecting patients for targeted oncolytic viral therapy by means of a noninvasive molecular imaging method in the treatment of prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Amit Bhargava
- Department of Epidemiology and Biostatistics Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | | | | | | - Yuman Fong
- Department of Urology, Department of Surgery
- Address for correspondence: Yuman Fong, MD, Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan-Kettering Cancer, Center 1275 York Avenue, New York, New York 10021, Phone: (212) 639-2016, Fax: (646) 422-2358, E-mail:
| |
Collapse
|
76
|
Chun YS, Adusumilli PS, Fong Y. Employing tumor hypoxia for oncolytic therapy in breast cancer. J Mammary Gland Biol Neoplasia 2005; 10:311-8. [PMID: 16826462 DOI: 10.1007/s10911-006-9004-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Hypoxia is a common tumor condition associated with metastases, therapeutic resistance, and poor patient survival. Forty percent of breast cancers are hypoxic, with a median oxygen concentration of 3.9%, and a third of tumors have regions less than 0.3%. Normal breast tissue is reported to have oxygen concentrations greater than 9%. This tumor hypoxia in breast cancer confers resistance to conventional radiation therapy and chemotherapy, as well as making estrogen-receptor-positive tumors less sensitive to hormonal therapy. Novel treatment modalities are needed to target hypoxic tumor cells. Lower tumor oxygen levels compared with surrounding normal tissues may be utilized to target and enhance herpes oncolytic viral therapy in breast cancer. Attenuated oncolytic herpes simplex viruses offer a unique cancer treatment by specifically infecting, replicating within, and lysing tumor cells. They carry genetically engineered mutations to reduce their virulence and attenuate their ability to infect normal tissues. Studies have shown the safety and efficacy of oncolytic herpes simplex viruses in treating breast cancer both in humans and in preclinical models. The placement of essential viral genes under the control of a hypoxia-responsive enhancer, which is upregulated selectively in hypoxic tissue, represents a promising strategy to target oncolytic viruses precisely to hypoxic cancer cells. In this review we describe strategies to harness hypoxia as a trigger for oncolytic viral gene expression in breast cancer, thereby increasing the specificity of viral infection, replication, and cytotoxicity to hypoxic areas of tumor. Such a targeted approach will increase efficacy in the therapy of hypoxic tumors while achieving a reduction in total dose of viral therapy.
Collapse
Affiliation(s)
- Yun Shin Chun
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
77
|
Martínez-Jiménez MI, Alonso JC, Ayora S. Bacillus subtilis bacteriophage SPP1-encoded gene 34.1 product is a recombination-dependent DNA replication protein. J Mol Biol 2005; 351:1007-19. [PMID: 16055153 DOI: 10.1016/j.jmb.2005.06.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/22/2005] [Accepted: 06/29/2005] [Indexed: 11/16/2022]
Abstract
SPP1-encoded replication and recombination proteins, involved in the early steps of the initiation of concatemeric DNA synthesis, have been analyzed. Dimeric G34.1P exonuclease degrades, with a 5' to 3' polarity and in a Mg2+-dependent reaction, preferentially linear double-stranded (ds) DNA rather than single-stranded (ss) DNA. Binding of the replisome organizer, G38P, to its cognate sites (oriDNA) halts the 5' to 3' exonucleolytic activity of G34.1P on dsDNA. The G35P recombinase increases the affinity of G34.1P for dsDNA, and stimulates G34.1P activity on dsDNA, but not on ssDNA. Then, filamented G35P promotes limited strand exchange with a homologous sequence. The ssDNA binding protein, G36P, protects ssDNA from the G34.1P exonuclease activity and stimulates G35P-catalyzed strand exchange. The data presented suggest a model for the role of G34.1P during initiation of sigma replication: G38P bound to oriDNA might halt replication fork progression, and G35P, G34.1P and G36P in concert might lead to the re-establishment of a unidirectional recombination-dependent replication that accounts for the direction of DNA packaging.
Collapse
Affiliation(s)
- María I Martínez-Jiménez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
78
|
Kulkarni RP, Wu DD, Davis ME, Fraser SE. Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy. Proc Natl Acad Sci U S A 2005; 102:7523-8. [PMID: 15897455 PMCID: PMC1140437 DOI: 10.1073/pnas.0501950102] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantitatively understanding how nonviral gene delivery vectors (polyplexes) are transported inside cells is essential before they can be optimized for gene therapy and medical applications. In this study, we used spatio-temporal image correlation spectroscopy (ICS) to follow polymer-nucleic acid particles (polyplexes) of various sizes and analyze their diffusive-like and flow behaviors intracellularly to elucidate the mechanisms responsible for their transport. ICS is a quantitative imaging technique that allows the assessment of particle motion in complex systems, although it has not been widely used to date. We find that the internalized polyplexes are able to use microtubule motors for intracellular trafficking and exhibit different transport behaviors for short (<10 s) versus long (approximately 60 s) correlation times. This motion can be explained by a memory effect of the microtubule motors. These results reveal that, although microtubule motor biases may be present for short periods of time, resulting in a net directional velocity, the overall long-term motion of the polyplexes is best described as a random walk-like process. These studies suggest that spatio-temporal ICS is a powerful technique for assessing the nature of intracellular motion and provides a quantitative tool to compare the transport of different objects within a living cell.
Collapse
Affiliation(s)
- Rajan P Kulkarni
- Option in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
79
|
Eming SA, Krieg T, Davidson JM. Gene transfer in tissue repair: status, challenges and future directions. Expert Opin Biol Ther 2005; 4:1373-86. [PMID: 15335305 DOI: 10.1517/14712598.4.9.1373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wound repair involves a complex interaction of various cell types, extracellular matrix molecules and soluble mediators. Details on signals controlling wound cell activities are beginning to emerge. In recent years this knowledge has been applied to a number of therapeutic strategies in soft tissue repair. Key challenges include re-adjusting the adult repair process in order to augment diseased healing processes, and providing the basis for a regenerative rather than a reparative wound environment. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trials indicates that an important aspect of the growth factor wound-healing paradigm is the effective delivery of these polypeptides to the wound site. A molecular genetic approach in which genetically modified cells synthesise and deliver the desired growth factor in a time-regulated manner is a powerful means to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. This article summarises repair mechanisms and their failure, and gives an overview of techniques and studies applied to gene transfer in tissue repair. It also provides perspectives on potential targets for gene transfer technology.
Collapse
Affiliation(s)
- Sabine A Eming
- University of Cologne, Department of Dermatology, Cologne, Joseph-Stelzmann Str. 9, 50931 Köln, Germany.
| | | | | |
Collapse
|
80
|
Gamba G, Cavalieri H, Courreges MC, Massouh EJ, Benencia F. Early inhibition of nitric oxide production increases HSV-1 intranasal infection. J Med Virol 2004; 73:313-22. [PMID: 15122810 DOI: 10.1002/jmv.20093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here, we studied the role of nitric oxide (NO) production during the first steps of the respiratory infection of BALB/c mice with herpes simplex virus type 1 (HSV-1), strain F. Nitric oxide synthase II (NOS-II) mRNA and protein were detected by reverse transcription (RT)-PCR and dot blot, respectively in samples of lungs and turbinates early post-infection (p.i.). Immunohistochemical analysis revealed pulmonar macrophages and PMN expressing NOS-II in the lungs of infected animals. Animals intranasally treated with aminoguanidine (AG), a NOS inhibitor, during the first steps of infection, showed a dose-dependent increase in pneumonitis compared to controls. Viral titres in turbinates, lungs, and brains were higher in AG treated mice. Finally, histopathology studies revealed a stronger inflammation in eyes, and lungs of these animals. Taken together, these results suggest a role of NO in controlling primary HSV intranasal infection.
Collapse
Affiliation(s)
- Gisela Gamba
- Laboratory of Immunochemistry, Department of Biological Chemistry, Faculty of Sciences, University of Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
81
|
Abstract
The herpes simplex virus (HSV) has a 152 kbp dsDNA encoding probably 84 proteins. The approximate number of ORFs is 94, from which seven are doubled. The most probable number of single copy ORFs is 84 after omitting the two latency associated transcripts (LAT)/ORFs and the putative UL27.5 ORF. The high gene number creates a "crowded" genome with several overlapping transcripts. The unique long (U(L)) segment has at least 10 interposed ORFs, the existence of which was not obvious at first sequence analysis, while the unique short (U(S)) segment has two such genes. The surplus of ORFs causes complex transcription patterns: (1) Transcripts with common initiation signals but different termination; (2) Transcripts with different initiation sites but co-terminal ends; (3) "Nested" transcripts differing at both, the initiation as well as termination signals, having partially collinear sequences. At least three or possibly four ORF (gene) pairs (UL9.5/UL10; UL27/UL27.5; UL43/UL43.5; ICP34.5/ORF P and O) occupy both DNA strands at complementary positions rising anti-sense transcripts expressed by an antagonistic mechanism of mutual exclusion. The anti-sense mRNA mechanism might also operate when either LAT or ICP0 ORFs are expressed during latency assuring the absence of lytic virus replication. In contrast, during productive replication the cascade regulation of gene expression predominates, based on stepwise activation of immediate early (IE), early (E), early late (EL) and late (L) promoters. The promoters of different expression kinetic classes (alpha, beta, gamma-1 and gamma-2) are equipped with different number of cellular transcription factor binding and/or enhancer motifs. Surprisingly, only a few HSV mRNAs are being spliced (ICP0, UL15, US1, US12/ICP47). As reviewed here, the transcription pattern of the great majority of overlapping ORFs within the HSV-1 was quite convincingly elucidated, with exception of the putative UL27.5 gene. The UL27.5 transcript was not identified yet. Since the existence of the UL27.5 gene was based on indirect rather than direct evidence, it needs final confirmation.
Collapse
Affiliation(s)
- Július Rajcáni
- Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
82
|
Abstract
Oncolytic viruses have been considered as a potential form of cancer treatment throughout the last century because of their ability to lyse and destroy tumor cells both in tissue culture and in animal models of cancer. However, it is only during the past decade that new molecular technologies have become available and understanding of genetic and molecular components of these viruses has increased to the point that they can be manipulated and made safe for use in treatment in humans. Thus there has been a revival of the concepts of conditionally replication-competent viruses and suicide gene therapy to supplement currently existing cancer therapies. While a wide variety of viruses have been closely studied for this purpose, herpes simplex virus type-1 (HSV-1) has received particularly close attention. The inherent cytotoxicity of this virus, if harnessed and made to be selective in the context of a tumor microenvironment, makes this an ideal candidate for further development. Furthermore, its large genome size, ability to infect cells with a high degree of efficiency, and the presence of an inherent viral-specific thymidine kinase gene add to its potential capabilities. This review explores work performed in this field and its potential for application in the treatment of cancers in humans.
Collapse
Affiliation(s)
- Emil Lou
- Department of Microbiology and Immunology, SUNY Upstate Medical University, College of Medicine, Syracuse, NY 13210, USA.
| |
Collapse
|
83
|
Lan P, Dong C, Qi Y, Xiao G, Xue F. Gene therapy for mice sarcoma with oncolytic herpes simplex virus-1 lacking the apoptosis-inhibiting gene, icp34.5. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:379-86. [PMID: 12895296 DOI: 10.5483/bmbrep.2003.36.4.379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mutant herpes simplex virus 1, mtHSV, was constructed by inserting the E. coli beta-galactosidase gene into the loci of icp34.5, the apoptosis-inhibiting gene of HSV. The mtHSV replicated in and lysed U251 (human glioma cells), EJ (human bladder cells), and S-180 (mice sarcoma cells), but not Wish (human amnion cells) cells. With its intact tk (thymidine kinase) gene, mtHSV exhibited susceptibility to acyclovir (ACV), which provided an approach to control viral replication. An in vivo test with mtHSV was conducted in immune-competent mice bearing sarcoma S-180 tumors, which were treated with a single intratumoral injection of mtHSV or PBS. Tumor dimensions then were measured at serial time points, and the tumor volumes were calculated. Sarcoma growth was significantly inhibited with prolonged time and reduced tumor volume. There was microscopic evidence of necrosis of tumors in treated mice, whereas no damage was found in other organs. Immunohistochemical staining revealed that virus replication was exclusively confined to the treated tumor cells. HSV-1 DNA was detected in tumors, but not in the other organs by a polymerase chain reaction analysis. From these experiments, we concluded that mtHSV should be a safe and promising oncolytic agent for cancer treatment.
Collapse
Affiliation(s)
- Ping Lan
- Institute of Virology, Wuhan University, Wuhan 430072, P. R. China
| | | | | | | | | |
Collapse
|
84
|
Tibbetts SA, Loh J, Van Berkel V, McClellan JS, Jacoby MA, Kapadia SB, Speck SH, Virgin HW. Establishment and maintenance of gammaherpesvirus latency are independent of infective dose and route of infection. J Virol 2003; 77:7696-701. [PMID: 12805472 PMCID: PMC164792 DOI: 10.1128/jvi.77.13.7696-7701.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are important human pathogens that establish long-term latent infections. Understanding of the initiation and maintenance of latent infections has important implications for the prevention and treatment of gammaherpesvirus-related diseases. Although much is known about gammaherpesvirus pathogenesis, it is unclear how the infectious dose of a virus influences its ability to establish latent infection. To examine the relationship between the infectious dose and gammaherpesvirus latency, we inoculated wild-type mice with 0.01 to 10(6) PFU of murine gammaherpesvirus 68 (gammaHV68) and quantitatively measured latency and acute-phase replication. Surprisingly, during latency, the frequencies of ex vivo reactivation were similar over a 10(7)-fold range of doses for i.p. infection and over a 10(4)-fold range of doses for intranasal infection. Further, the frequencies of cells harboring viral genome during latency did not differ substantially over similar dose ranges. Although the kinetics of acute-phase replication were delayed at small doses of virus, the peak titer did not differ significantly between mice infected with a large dose of virus and those infected with a small dose of virus. The results presented here indicate that any initiation of infection leads to substantial acute-phase replication and subsequent establishment of a maximal level of latency. Thus, infections with doses as small as 0.1 PFU of gammaHV68 result in stable levels of acute-phase replication and latent infection. These results demonstrate that the equilibrium level of establishment of gammaherpesvirus latency is independent of the infectious dose and route of infection.
Collapse
Affiliation(s)
- Scott A Tibbetts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Borst EM, Messerle M. Construction of a cytomegalovirus-based amplicon: a vector with a unique transfer capacity. Hum Gene Ther 2003; 14:959-70. [PMID: 12869214 DOI: 10.1089/104303403766682223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytomegalovirus (CMV) has a number of interesting properties that qualifies it as a vector for gene transfer. Especially appealing is the ability of the CMV genome to persist in hematopoietic progenitor cells and the packaging capacity of the viral capsid that accommodates a DNA genome of 230 kbp. In order to exploit the packaging capacity of the CMV capsid we investigated whether the principles of an amplicon vector can be applied to CMV. Amplicons are herpesviral vectors, which contain only the cis-active sequences required for replication and packaging of the vector genome. For construction of a CMV amplicon the sequences comprising the lytic origin of replication (orilyt) and the cleavage packaging recognition sites (pac) of human CMV were cloned onto a plasmid. A gene encoding the green fluorescent protein was used as a model transgene. The amplicon plasmid replicated in the presence of a CMV helper virus and was packaged into CMV particles, with replication and packaging being dependent on the presence of the orilyt and pac sequences. The packaged amplicon could be transferred to recipient cells and reisolated from the transduced cells. Analysis of the DNA isolated from CMV capsids revealed that the CMV amplicon was packaged as a concatemer with a size of approximately 210 kbp. The CMV amplicon vector has the potential to transfer therapeutic genes with a size of more than 200 kbp and thus provides a unique transfer capacity among viral vectors.
Collapse
Affiliation(s)
- Eva Maria Borst
- Virus Cell Interaction Group, Medical Faculty, University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | | |
Collapse
|
86
|
Kretz A, Wybranietz WA, Hermening S, Lauer UM, Isenmann S. HSV-1 VP22 augments adenoviral gene transfer to CNS neurons in the retina and striatum in vivo. Mol Ther 2003; 7:659-69. [PMID: 12718909 DOI: 10.1016/s1525-0016(03)00062-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
One of the obstacles to efficient vector-mediated gene transfer to the CNS is limited transduction of target neurons. The VP22 tegument protein of HSV-1 can cross biological membranes and translocate the VP22 protein from primarily transfected cells to many surrounding cells in vitro. Here, we employed an adenoviral vector coding for a VP22-GFP fusion protein driven by a CMV promoter to test its capability of transducing CNS neurons in vivo. Intraocular administration of Ad.VP22-GFP in the rat doubled both the retinal area containing transduced, GFP-expressing cells and the absolute number of GFP-expressing retinal neurons compared to Ad.GFP transduction. Following injection of Ad.VP22-GFP into the mouse brain, the transduced striatal area was increased by a factor of 7 compared to intracerebral injection of Ad.GFP. In both retina and striatum, GFP-expressing cells were identified as mainly neurons. Thus, VP22 greatly augments adenovirus-mediated transgene delivery to CNS neuronsin vivo, making VP22 a promising tool for enhancing the efficacy of adenoviral gene transfer of protective factors to the CNS.
Collapse
Affiliation(s)
- A Kretz
- Department of Neurology, Neuroregeneration Laboratory, Tübingen, Germany
| | | | | | | | | |
Collapse
|
87
|
Nozawa N, Daikoku T, Koshizuka T, Yamauchi Y, Yoshikawa T, Nishiyama Y. Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting. J Virol 2003; 77:3204-16. [PMID: 12584344 PMCID: PMC149782 DOI: 10.1128/jvi.77.5.3204-3216.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL51 gene products are virion-associated phosphoproteins with apparent molecular masses of 27, 29, and 30 kDa in HSV-1-infected cells. In this study, we have investigated the intracellular localization and distribution of UL51 protein both in infected cells and in transfected cells expressing only UL51. We found that this protein colocalized closely with Golgi marker proteins such as the Golgi-58K protein and GM130 in transfected cells expressing only UL51. However, in infected cells, the UL51 protein localized to the juxtanuclear region but only partially colocalized with the Golgi maker proteins. Mutant protein analysis revealed that the N-terminal 15 amino acid residues of the UL51 protein sufficed for this Golgi localization property. The UL51 protein redistributed on addition of brefeldin A. This was prevented by pretreatment with 2-deoxyglucose and sodium azide, which results in ATP depletion, but not by pretreatment with NaF and AlCl(3), which activates heterotrimeric G proteins. Moreover, we found that palmitoylation of the UL51 protein through the N-terminal cysteine at position 9 was necessary for its Golgi localization. Protease digestion analysis suggested that the UL51 protein localized on the cytoplasmic face of the membrane in UL51-transfected cells, while in infected cells it localized mainly to the inside of cytoplasmic vesicles and/or the viral envelope. Transmission immunoelectron microscopy revealed an association of UL51 protein-specific labeling with cytoplasmic virions and also with some membranous structure. We infer from these observations that internalization of UL51 protein into the cytoplasmic vesicle and/or virion may occur in association with viral envelopment in HSV-infected cells.
Collapse
Affiliation(s)
- Naoki Nozawa
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
88
|
Hermiston TW, Kuhn I. Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther 2002; 9:1022-35. [PMID: 12522441 DOI: 10.1038/sj.cgt.7700542] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses are attractive therapeutics for cancer because they selectively amplify, through replication and spread, the input dose of virus in the target tumor. To date, clinical trials have demonstrated marked safety but have not realized their theoretical efficacy potential. In this review, we consider the potential of armed therapeutic viruses, whose lytic potential is enhanced by genetically engineered therapeutic transgene expression from the virus, as potential vehicles to increase the potency of these agents. Several classes of therapeutic genes are outlined, and potential synergies and hurdles to their delivery from replicating viruses are discussed.
Collapse
|
89
|
Varghese S, Rabkin SD. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 2002; 9:967-78. [PMID: 12522436 DOI: 10.1038/sj.cgt.7700537] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Indexed: 12/29/2022]
Abstract
Oncolytic herpes simplex virus type 1 (HSV-1) vectors are emerging as an effective and powerful therapeutic approach for cancer. Replication-competent HSV-1 vectors with mutations in genes that affect viral replication, neuropathogenicity, and immune evasiveness have been developed and tested for their safety and efficacy in a variety of mouse models. Evidence to-date following administration into the brain attests to their safety, an important observation in light of the neuropathogenicity of the virus. Phase I clinical traits of three vectors, G207, 1716, and NV1020, are either ongoing or completed, with no adverse events attributed to the virus. These and other HSV-1 vectors are effective against a myriad of solid tumors in mice, including glioma, melanoma, breast, prostate, colon, ovarian, and pancreatic cancer. Enhancement of activity was observed when HSV-1 vectors were used in combination with traditional therapies such as radiotherapy and chemotherapy, providing an attractive strategy to pursue in the clinic. Oncolytic HSV-1 vectors expressing "suicide" genes (thymidine kinase, cytosine deaminase, rat cytochrome P450) or immunostimulatory genes (IL-12, GM-CSF, etc.) have been constructed to maximize tumor destruction through multimodal therapeutic mechanisms. Further advances in virus delivery and tumor specificity should improve the likelihood for successful translation to the clinic.
Collapse
Affiliation(s)
- Susan Varghese
- Molecular Neurosurgery Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
90
|
Bennett JJ, Delman KA, Burt BM, Mariotti A, Malhotra S, Zager J, Petrowsky H, Mastorides S, Federoff H, Fong Y. Comparison of safety, delivery, and efficacy of two oncolytic herpes viruses (G207 and NV1020) for peritoneal cancer. Cancer Gene Ther 2002; 9:935-45. [PMID: 12386832 DOI: 10.1038/sj.cgt.7700510] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Indexed: 01/08/2023]
Abstract
G207 and NV1020 are two replication-competent, multimutant oncolytic herpes simplex viruses evaluated in the current studies for their anticancer effects in the treatment of gastric cancer. Deletion of both gamma(1)34.5 genes and inactivation of ICP6 (ribonucleotide reductase) allows G207 to selectively replicate within tumor cells. NV1020 is another attenuated recombinant herpes virus with deletions of the HSV joint region, with deletion of only one copy of the gamma(1)34.5 gene, and with the ICP6 gene intact. In vitro, both G207 and NV1020 effectively infected, replicated, and killed human gastric cancer cells, with NV1020 being more effective at lower concentrations of virus. In a murine xenograft model of peritoneally disseminated gastric cancer, both NV1020 and G207 reduced tumor burden when given intraperitoneally (i.p.) at higher doses. When viral doses were lowered or when advanced tumor was treated, i.p. NV1020 was superior to i.p. G207. In vitro viral replication and cytotoxicity predicted the in vivo antitumor response. Intravenous delivery of either G207 or NV1020 failed to reduce tumor burden, demonstrating the importance of regional therapy as treatment for compartmentalized malignancy. Both agents were safe for use in animals, and immunohistochemistry performed on mouse tissue revealed selective viral targeting of tumor. Oncolytic therapy using genetically engineered HSVs represents a promising strategy for peritoneal malignancies.
Collapse
Affiliation(s)
- Joseph J Bennett
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Oyama M, Yazaki T, Ohigashi T, Hoshi M, Horiguchi Y, Oya M, Asakura H, Nakashima J, Tachibana M, Uyemura K, Murai M. Application of conditionally replicating herpes vector for gene therapy treatment of urologic neoplasms. MOLECULAR UROLOGY 2002; 4:83-7. [PMID: 12006247 DOI: 10.1089/10915360050138639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Herpes vector has been widely used for experimental gene therapy. We herein review the strategies of such therapy for the treatment of urologic neoplasms. Most experimental studies of genetically altered viruses have employed replication-incompetent vectors. However, such viruses are unable to infect additional cells subsequent to the initial infection event. Therefore, this strategy has relied heavily on the bystander effect because a large number of noninfected tumor cells remain. Conditionally replicating herpes vector G207 has been developed in order to overcome potential problems of safety and tumor specificity for human use. It has been used to treat malignant brain tumors because of its neural tropism. In the last few years, applications of G207 for non-neural tumors have been reported. Because G207 may be useful for the treatment of urologic malignant tumors, we evaluated the antitumor effect against several types of tumor cells both in vitro and in vivo. Our data suggest that G207 may be applicable for the treatment of urologic malignant tumors.
Collapse
Affiliation(s)
- M Oyama
- Department of Urology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Wustner JT, Arnold S, Lock M, Richardson JC, Himes VB, Kurtzman G, Peluso RW. Production of recombinant adeno-associated type 5 (rAAV5) vectors using recombinant herpes simplex viruses containing rep and cap. Mol Ther 2002; 6:510-8. [PMID: 12377193 DOI: 10.1006/mthe.2002.0695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We developed a scaleable production system for adeno-associated virus type 5 (AAV5)-based vectors using a replication-defective recombinant herpes simplex type 1 virus (rHSV) containing the rep and cap genes of AAV5. Multiple rHSV isolates containing AAV5 rep and cap with normal or altered p5 promoter elements were constructed and tested in vector production. Compared with rAAV5 vector yields obtained by plasmid transfection, yields of rAAV5 using any of the rHSV isolates were low. Evidence suggests that the low vector yields are a consequence of the extensive and early cytopathology induced by the rHSV isolates. In addition, we found a correlation between the amount of Rep52 or Rep40 proteins and the amount of vector produced by each rHSV isolate, suggesting that packaging of vector DNA into virus particles is rate-limiting when using rHSV to generate rAAV5 vectors.
Collapse
Affiliation(s)
- Jason T Wustner
- Targeted Genetics Corporation, Sharon Hill, Pennsylvania 19079, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Bearer EL, Satpute-Krishnan P. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: tracks, motors, and polymerization machines. CURRENT DRUG TARGETS. INFECTIOUS DISORDERS 2002; 2:247-64. [PMID: 12462128 PMCID: PMC3616324 DOI: 10.2174/1568005023342407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in microbiology implicate the cytoskeleton in the life cycle of some pathogens, such as intracellular bacteria, Rickettsia and viruses. The cellular cytoskeleton provides the basis for intracellular movements such as those that transport the pathogen to and from the cell surface to the nuclear region, or those that produce cortical protrusions that project the pathogen outwards from the cell surface towards an adjacent cell. Transport in both directions within the neuron is required for pathogens such as the herpesviruses to travel to and from the nucleus and perinuclear region where replication takes place. This trafficking is likely to depend on cellular motors moving on a combination of microtubule and actin filament tracks. Recently, Bearer et al. reconstituted retrograde transport of herpes simplex virus (HSV) in the giant axon of the squid. These studies identified the tegument proteins as the viral proteins most likely to recruit retrograde motors for the transport of HSV to the neuronal nucleus. Similar microtubule-based intracellular movements are part of the biological behavior of vaccinia, a poxvirus, and of adenovirus. Pathogen-induced surface projections and motility within the cortical cytoplasm also play a role in the life cycle of intracellular pathogens. Such motility is driven by pathogen-mediated actin polymerization. Virulence depends on this actin-based motility, since virulence is reduced in Listeria ActA mutants that lack the ability to recruit Arp2/3 and polymerize actin and in vaccinia virus mutants that cannot stimulate actin polymerization. Inhibition of intracellular movements provides a potential strategy to limit pathogenicity. The host cell motors and tracks, as well as the pathogen factors that interact with them, are potential targets for novel antimicrobial therapy.
Collapse
Affiliation(s)
- E L Bearer
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, RI 02912, USA.
| | | |
Collapse
|
94
|
Abstract
Herpes simplex virus infections still cause significant morbidity in immunocompetent and immunodeficient patients, in spite of the availability of specific anti-viral therapy. Latency and neurovirulence are central to the pathogenesis of infection, and the mechanisms underlying these properties are not yet completely known. Major advances of the recent years should shed light on the mechanisms governing host-virus interaction, and are illustrated in this review. They include the discovery of molecules acting as receptors for the virus, models for studying virus-neuron interaction during latency and reactivation, and animal models of neurovirulence.
Collapse
Affiliation(s)
- Flore Rozenberg
- Laboratoire de virologie faculté de médecine Cochin-Port-Royal-Saint-Vincent de Paul, 82, avenue Denfert-Rochereau, 75674 Paris, France.
| |
Collapse
|
95
|
Koshizuka T, Goshima F, Takakuwa H, Nozawa N, Daikoku T, Koiwai O, Nishiyama Y. Identification and characterization of the UL56 gene product of herpes simplex virus type 2. J Virol 2002; 76:6718-28. [PMID: 12050385 PMCID: PMC136277 DOI: 10.1128/jvi.76.13.6718-6728.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The UL56 gene product of herpes simplex virus (HSV) has been shown to play an important role in viral pathogenicity. However, the properties and functions of the UL56 protein are little understood. We raised rabbit polyclonal antisera specific for the UL56 protein of HSV type 2 (HSV-2) and examined its expression and properties. The gene product was identified as three polypeptides with apparent molecular masses ranging from 32 to 35 kDa in HSV-2-infected cells, and at least one species was phosphorylated. Studies of their origins showed that the UL56 protein of HSV-2 is also translated from the upstream in-frame methionine codon that is not present in the HSV-1 genome. Synthesis was first detected at 6 h postinfection and was not abolished by the viral DNA synthesis inhibitor phosphonoacetic acid. Indirect immunofluorescence studies revealed that the UL56 protein localized to both the Golgi apparatus and cytoplasmic vesicles in HSV-2-infected and single UL56-expressing cells. Deletion mutant analysis showed that the C-terminal hydrophobic region of the protein was required for association with the cytoplasmic membrane and that the N-terminal proline-rich region was important for its translocation to the Golgi apparatus and cytoplasmic vesicles. Moreover, the results of protease digestion assays and sucrose gradient fractionation strongly suggested that UL56 is a tail-anchored type II membrane protein associated with lipid rafts. We thus hypothesized that the UL56 protein, as a tail-anchored type II membrane protein, may be involved in vesicular trafficking in HSV-2-infected cells.
Collapse
Affiliation(s)
- Tetsuo Koshizuka
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, 65 Tsumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
96
|
Mahony TJ, McCarthy FM, Gravel JL, West L, Young PL. Construction and manipulation of an infectious clone of the bovine herpesvirus 1 genome maintained as a bacterial artificial chromosome. J Virol 2002; 76:6660-8. [PMID: 12050379 PMCID: PMC136292 DOI: 10.1128/jvi.76.13.6660-6668.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome of bovine herpesvirus 1 (BoHV-1) strain V155 has been cloned as a bacterial artificial chromosome (BAC). Following electroporation into Escherichia coli strain DH10B, the BoHV-1 BAC was stably propagated over multiple generations of its host. BAC DNA recovered from DH10B cells and transfected into bovine cells produced a cytopathic effect which was indistinguishable from that of the parent virus. Analysis of the replication kinetics of the viral progeny indicated that insertion of the BAC vector into the thymidine kinase gene did not affect viral replication. Specific manipulation of the BAC was demonstrated by deleting the gene encoding glycoprotein E by homologous recombination in DH10B cells facilitated by GET recombination. These studies illustrate that the propagation and manipulation of herpesviruses in bacterial systems will allow for rapid and accurate characterization of BoHV-1 genes. In turn, this will allow for the full utilization of BoHV-1 as a vaccine vector.
Collapse
Affiliation(s)
- Timothy J Mahony
- Queensland Agricultural Biotechnology Centre, Agency for Food and Fibre Sciences, Gehrmann Laboratories, Research Road, St. Lucia, Queensland 4072, Australia.
| | | | | | | | | |
Collapse
|
97
|
Abstract
Over the past decade, the unprecedented growth in science and technology has fueled the development of novel treatment strategies to combat disease. The creative and innovative efforts of scientists and clinicians to overcome the multitude of unforeseen obstacles to success is no better exemplified than in the field of cancer gene therapy. Since its inception, developers of cancer gene therapy have been charged with the challenge of altering basic tumor biology or, alternatively, the host responses for the purpose of tumor eradication and prevention. Several major therapeutic strategies have emerged from preclinical studies, and results from these early studies hold promise for altering the clinical outcome in a variety of malignancies. These strategies may be broadly subcategorized and range in intent from alteration of the tumor cell phenotype by replacement of defective cellular response genes (e.g., mutated or deleted tumor suppressor genes) to the enhancement of the immunological response to cancer (e.g., amplification of the cell surface antigen signature or modulation of the host response). Not surprisingly, the increasingly intricate nature of tumor biology revealed over the past several years has effectively raised the bar of success for those involved in the development of effective molecular and cancer gene therapy strategies. This, in turn, has led to the development of more complex therapies that frequently draw upon multiple disciplines in an effort to optimize treatment response.
Collapse
Affiliation(s)
- James C Cusack
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Cox Building, Room 626, 100 Blossom Street, Boston, MA 02114, USA.
| | | |
Collapse
|
98
|
Nozawa N, Daikoku T, Yamauchi Y, Takakuwa H, Goshima F, Yoshikawa T, Nishiyama Y. Identification and characterization of the UL7 gene product of herpes simplex virus type 2. Virus Genes 2002; 24:257-66. [PMID: 12086147 DOI: 10.1023/a:1015332716927] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have raised a rabbit polyclonal antiserum against a recombinant 6x His-tagged herpes simplex virus type 2 (HSV-2) UL7 fusion protein expressed in Escherichia coli. The antiserum specifically reacted with a 33 kDa protein in HSV-1 and HSV-2-infected cell lysates, and was used to characterize the UL7 gene product of HSV-2. The UL7 protein was produced in the late phase of infection, and its synthesis was highly inhibited, but not abolished by the addition of acyclovir (ACV). The UL7 protein associated with extracellular virions and also with all types of capsids, including A, B, and C capsids, though the association seemed to be weak. Indirect immunofluorescence studies revealed that at 9 h postinfection, UL7 specific fluorescence was detected in part or all of the nucleus, and the specific fluorescence colocalized with the scaffold protein ICP35. However, at later times postinfection, the UL7 protein was mainly detected as a mass in a juxtanuclear cytoplasmic region. In addition, transmission immunoelectron microscopy (TIEM) confirmed the association of the UL7 protein with intracellular capsids and virions in HSV-2-infected cells. The HSV-2 UL7 protein contained a domain highly conserved in all herpesviruses, part of which exhibited a homology with domains in the fission yeast Schizosaccharomyces pombe DNA topoisomerase III. We discuss the possibility that the UL7 protein may play a supplementary role in the viral DNA cleavage/packaging process.
Collapse
Affiliation(s)
- Naoki Nozawa
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
99
|
Blank SV, Rubin SC, Coukos G, Amin KM, Albelda SM, Molnar-Kimber KL. Replication-selective herpes simplex virus type 1 mutant therapy of cervical cancer is enhanced by low-dose radiation. Hum Gene Ther 2002; 13:627-39. [PMID: 11916486 DOI: 10.1089/10430340252837224] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1)-based oncolytic treatment is a promising therapeutic approach for malignancy. Recombinant strains of HSV-1 containing mutations in the ICP 34.5 protein have been shown to replicate preferentially in rapidly proliferating malignant cells, resulting in a direct cytolytic effect. We assessed the efficacy of multimutated HSV-1 strains on human cervical cancer, and then used these viruses in combination with radiation therapy, the standard treatment for cervical cancer. The HSV-1 mutants 4009, 7020, 3616, and G207 induced significant lysis of three established human cervical cancer cell lines in vitro in a dose-dependent manner. G207 intratumoral treatment of established subcutaneous C33a tumors in severe combined immunodeficient (SCID) mice significantly reduced tumor burden by 50%. Weekly and triweekly treatments improved efficacy and inhibited flank tumor growth in an administration frequency-dependent manner without toxicity. Combination therapy of a low dose of radiation (1.5 or 3 Gy) and replication-selective HSV mutants infection exhibited increased antitumor effects against cervical cancer cells in vitro. The in vivo effect of G207 combined with low-dose radiation was studied in Me180 xenografts in athymic mice. Treatment of established Me180 tumor nodules with 3 Gy followed by intratumoral G207 administration greatly improved efficacy, resulting in 42% complete eradication of tumor. In conclusion, single and multiple intratumoral injections of G207 significantly reduced tumor burden in xenogeneic models of cervical cancer, and the addition of low-dose radiation further potentiated the effect. These results suggest that replication-selective HSV-1 mutants may be potent oncolytic agents for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Stephanie V Blank
- Department of Obstetrics and Gynecology, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Tsitoura E, Lucas M, Revol-Guyot V, Epstein AL, Manservigi R, Mavromara P. Expression of hepatitis C virus envelope glycoproteins by herpes simplex virus type 1-based amplicon vectors. J Gen Virol 2002; 83:561-566. [PMID: 11842251 DOI: 10.1099/0022-1317-83-3-561] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1)-based amplicon vectors expressing hepatitis C virus (HCV) E1 and E2 glycoproteins were investigated. HSV-1 amplicon vectors carrying the E1E2p7- or E2p7-coding sequences of HCV type 1a under the control of the HSV-1 IE4 (alpha22/alpha47) promoter were constructed. Studies of infected HepG2, WRL 68 or Vero cells indicated that HSV-1-based amplicon vectors express high levels of HCV glycoproteins that are processed correctly. Immunofluorescence microscopy combined with immunoprecipitation and endoglycosidase treatment of cells infected with the HSV-1-based vectors expressing E1 and E2 showed that the two glycoproteins were retained in the endoplasmic reticulum and had the expected glycosylation patterns. Furthermore, although most of the E1 and E2 proteins formed disulfide-linked aggregates, significant amounts of monomeric forms of the two proteins were detected by SDS-PAGE under non-reducing conditions, suggesting the presence of non-covalently associated E1 and E2. Similar results were produced by a replication-competent recombinant HSV-1 vector expressing HCV E1 and E2. These results indicated that HSV-1-based amplicon vectors represent a useful expression system for the study of HCV glycoproteins.
Collapse
Affiliation(s)
- Eliza Tsitoura
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas, Sofias Avenue, Athens, Greece1
| | - Michaela Lucas
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas, Sofias Avenue, Athens, Greece1
| | - Valerie Revol-Guyot
- Centre de Genetique Moleculaire et Cellulaire, UMR 5534 CNRS, Universite Claude Bernard Lyon I, 69622 Villeurbanne Cedex, France2
| | - Alberto L Epstein
- Centre de Genetique Moleculaire et Cellulaire, UMR 5534 CNRS, Universite Claude Bernard Lyon I, 69622 Villeurbanne Cedex, France2
| | - Roberto Manservigi
- Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, Ferrara 1-44100, Italy3
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas, Sofias Avenue, Athens, Greece1
| |
Collapse
|