51
|
Franke H, Krügel U, Illes P. P2 receptors and neuronal injury. Pflugers Arch 2006; 452:622-44. [PMID: 16645849 DOI: 10.1007/s00424-006-0071-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 02/08/2023]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) was proposed to be an activity-dependent signaling molecule that regulates glia-glia and glia-neuron communications. ATP is a neurotransmitter of its own right and, in addition, a cotransmitter of other classical transmitters such as glutamate or GABA. The effects of ATP are mediated by two receptor families belonging either to the P2X (ligand-gated cationic channels) or P2Y (G protein-coupled receptors) types. P2X receptors are responsible for rapid synaptic responses, whereas P2Y receptors mediate slow synaptic responses and other types of purinergic signaling involved in neuronal damage/regeneration. ATP may act at pre- and postsynaptic sites and therefore, it may participate in the phenomena of long-term potentiation and long-term depression of excitatory synaptic transmission. The release of ATP into the extracellular space, e.g., by exocytosis, membrane transporters, and connexin hemichannels, is a widespread physiological process. However, ATP may also leave cells through their plasma membrane damaged by inflammation, ischemia, and mechanical injury. Functional responses to the activation of multiple P2 receptors were found in neurons and glial cells under normal and pathophysiological conditions. P2 receptor-activation could either be a cause or a consequence of neuronal cell death/glial activation and may be related to detrimental and/or beneficial effects. The present review aims at demonstrating that purinergic mechanisms correlate with the etiopathology of brain insults, especially because of the massive extracellular release of ATP, adenosine, and other neurotransmitters after brain injury. We will focus in this review on the most important P2 receptor-mediated neurodegenerative and neuroprotective processes and their beneficial modulation by possible therapeutic manipulations.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | |
Collapse
|
52
|
Arthur DB, Georgi S, Akassoglou K, Insel PA. Inhibition of apoptosis by P2Y2 receptor activation: novel pathways for neuronal survival. J Neurosci 2006; 26:3798-804. [PMID: 16597733 PMCID: PMC6674138 DOI: 10.1523/jneurosci.5338-05.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell survival is an essential function in the development and maintenance of the nervous system. We demonstrate here a previously unappreciated role for extracellular nucleotide signaling through the P2Y2 receptor in the survival of neurons: PC12 (pheochromocytoma 12) cells and dorsal root ganglion neurons are protected from serum starvation-induced apoptosis by ATP, UTP, and ATPgammaS, an effect mediated via P2Y2 receptors, as demonstrated by small interfering RNA and genetic knock-out models. This protection occurs independently of neurophin signaling but requires Src activation of ERK (extracellular signal-regulated kinase) and Akt. Moreover, ATPgammaS and NGF act synergistically to enhance neuronal survival through enhanced TrkA signaling. The results, which define a novel mechanism for inhibition of apoptosis, implicate parallel, interacting systems--extracellular nucleotides/P2Y2 receptors and neurotrophin/TrkA--to sustain neuronal survival.
Collapse
|
53
|
Erb L, Liao Z, Seye CI, Weisman GA. P2 receptors: intracellular signaling. Pflugers Arch 2006; 452:552-62. [PMID: 16586093 DOI: 10.1007/s00424-006-0069-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
P2 receptors for extracellular nucleotides are divided into two categories: the ion channel receptors (P2X) and the G-protein-coupled receptors (P2Y). For the P2X receptors, signal transduction appears to be relatively simple. Upon activation by extracellular ATP, a channel comprised of P2X receptor subunits opens and allows cations to move across the plasma membrane, resulting in changes in the electrical potential of the cell that, in turn, propagates a signal. This regulated flux of ions across the plasma membrane has important signaling functions, especially in impulse propagation in the nervous system and in muscle contractility. In addition, P2X receptor activation causes the accumulation of calcium ions in the cytoplasm, which is responsible for activating numerous signaling molecules. For the P2Y receptors, signal transduction is more complex. Intracellular signaling cascades are the main routes of communication between G-protein-coupled receptors and regulatory targets within the cell. These signaling cascades operate mainly by the sequential activation or deactivation of heterotrimeric and monomeric G proteins, phospholipases, protein kinases, adenylyl and guanylyl cyclases, and phosphodiesterases that regulate many cellular processes, including proliferation, differentiation, apoptosis, metabolism, secretion, and cell migration. In addition, there are numerous ion channels, cell adhesion molecules and receptor tyrosine kinases that are modulated by P2Y receptors and operate to transmit an extracellular signal to an intracellular response. These intracellular signaling pathways and their regulation by P2 receptors are discussed in this review.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, University of Missouri-Columbia, Life Sciences Center, 1201 Rollins Rd., Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
54
|
May C, Weigl L, Karel A, Hohenegger M. Extracellular ATP activates ERK1/ERK2 via a metabotropic P2Y1 receptor in a Ca2+ independent manner in differentiated human skeletal muscle cells. Biochem Pharmacol 2006; 71:1497-509. [PMID: 16533496 DOI: 10.1016/j.bcp.2006.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/30/2022]
Abstract
ATP is released at the neuromuscular junction to regulate development and proliferation. The sequential expression of P2X and P2Y receptors has been correlated to these effects in many species and cell lines. We have therefore investigated ATP mediated signalling in differentiated primary human skeletal muscle cells. ATP was capable to trigger Ca2+ transients in these cells via P2Y receptors which were not attributable to Ca2+ influx via P2X receptors. Instead, ATP propagated the formation of inositol phosphate (IP) with an EC50 of 21.3 microM. The Ca2+ transient provoked by ATP was abrogated roughly 75% by the phospholipase C (PLC) inhibitor, U73122. Interestingly, the ryanodine sensitive Ca2+ pool was not involved in ATP triggered Ca2+ release. On mRNA level and by a pharmacological approach we confirmed the presence of the P2Y1, P2Y2, P2Y4 and P2Y6 receptors. Substantially, ATP activated IP formation via a P2Y1 receptor. In addition, ATP elicited extracellular signal regulated kinase (ERK)1/2 phosphorylation in a time and concentration dependent manner, again mainly via P2Y1 receptors. The ATP mediated ERK1/2 phosphorylation was strictly dependent on phospholipase C and PI3 kinase activity. Importantly, ATP mediated ERK1/2 phosphorylation was Ca2+ independent. This observation was corroborated by the finding that conventional protein kinase C inhibitors did not suppress ATP triggered ERK1/2 phosphorylation. Taken together, these observations highlight the importance of ATP as a co-neurotransmitter at the neuromuscular junction via dual signalling, i.e. IP3 receptor mediated Ca2+ transients and Ca2+ insensitive phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Christopher May
- Institute of Pharmacology, Medical University Vienna, Austria
| | | | | | | |
Collapse
|
55
|
Kim JH, Kim HJ. Direct involvement of G protein alpha(q/11) subunit in regulation of muscarinic receptor-mediated sAPPalpha release. Arch Pharm Res 2006; 28:1275-81. [PMID: 16350855 DOI: 10.1007/bf02978212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The G(q/11) protein-coupled receptors, such as muscarinic (M1 & M3) receptors, have been shown to regulate the release of a soluble amyloid precursor protein (sAPPalpha) produced from alpha-secretase processing. However, there is no direct evidence for the precise characteristics of G proteins, and the signaling mechanism for the regulation of G(q/11) protein-coupled receptor-mediated sAPPalpha release is not clearly understood. This study examined whether the muscarinic receptor-mediated release of sAPPalpha is directly regulated by Galpha(q/11) proteins. The HEK293 cells were transiently cotransfected with muscarinic M3 receptors and a dominant-negative minigene construct of the G protein alpha subunit. The sAPPalpha release in the media was measured using an antibody specific for sAPP. The sAPPalpha release enhancement induced by muscarinic receptor stimulation was decreased by a G(q/11) minigene construct, whereas it was not blocked by a control minigene construct (the Galpha carboxy peptide in random order, Galpha(q)R) or Galpha(i) constructs. This indicated a direct role of the Galpha(q/11) protein in the regulation of muscarinic M3 receptor-mediated sAPPalpha release. We also investigated whether the transactivation of the epidermal growth factor receptor (EGFR) by a muscarinic agonist could regulate the sAPPalpha release in SH-SY5Y cells. Pretreatment of a specific EGFR kinase inhibitor, tyrophostin AG1478 (250 nM), blocked the EGF-stimulated sAPPalpha release, but did not block the oxoM-stimulated sAPPalpha release. This demonstrated that the transactivation of the EGFR by muscarinic receptor activation was not involved in the muscarinic receptor-mediated sAPPalpha release.
Collapse
Affiliation(s)
- Jin Hyoung Kim
- Division of Pharmaceutical Bioscience, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | | |
Collapse
|
56
|
Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, González FA, Seye CI, Erb L. Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 2006; 31:169-83. [PMID: 15953819 DOI: 10.1385/mn:31:1-3:169] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 01/05/2023]
Abstract
In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry and Neuroscience Program, University of Missouri-Columbia, Columbia, MO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Heine C, Heimrich B, Vogt J, Wegner A, Illes P, Franke H. P2 receptor-stimulation influences axonal outgrowth in the developing hippocampus in vitro. Neuroscience 2006; 138:303-11. [PMID: 16431028 DOI: 10.1016/j.neuroscience.2005.11.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/02/2005] [Accepted: 11/09/2005] [Indexed: 01/27/2023]
Abstract
Extracellular ATP might act as a trophic factor on growing axons during development of the CNS via P2 receptors. In the present study the postnatal presence of selected P2 receptor subtypes was analyzed and their putative trophic capacity in entorhino-hippocampal slice co-cultures of mouse brain was tested. The effect of the P2 receptor ligands 2-methylthioadenosine-5'-triphosphate (P2X/Y receptor agonist) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (P2X/Y receptor antagonist) on axonal growth and fiber density of biocytin-labeled hippocampal projections was compared both with untreated cultures and with cultures treated with artificial cerebrospinal fluid. After 10 days in vitro, double immunofluorescence labeling revealed the expression of P2X(1), P2X(2), P2X(4) as well as P2Y(1) and P2Y(2) receptors in the examined regions of entorhinal fiber termination. Further, quantitative analysis of identified biocytin-traced entorhinal fibers showed a significant increase in fiber density in the dentate gyrus after incubation of the slices with the P2 receptor agonist 2-methylthioadenosine-5'-triphosphate. This neurite outgrowth promoting effect was completely abolished by the P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid. Our in vitro data indicate that ATP via its P2X and P2Y receptors can shape hippocampal connectivity during development.
Collapse
Affiliation(s)
- C Heine
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Miyosawa K, Sasaki M, Ohkubo S, Nakahata N. Different Pathways for Activation of Extracellular Signal-Regulated Kinase through Thromboxane A2 Receptor Isoforms. Biol Pharm Bull 2006; 29:719-24. [PMID: 16595906 DOI: 10.1248/bpb.29.719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thromboxane A2 receptor (TP) consists of two alternatively spliced isoforms, TPalpha and TPbeta, which differ in their cytoplasmic tails. In the present study, we examined the difference in signal transduction of TPalpha and TPbeta, using stably expressing cells of TPalpha and TPbeta. The cells expressing TPalpha (TPalpha-SC2) and TPbeta (TPbeta-SC15) were selected based on the similar binding sites of [3H]-SQ29548, a TP antagonist. U46619, a TP agonist, elicited phosphoinositide hydrolysis in TPalpha-SC2 and TPbeta-SC15 cells with a similar concentration-dependency. U46619 also caused the phosphorylation of extracellular signal-regulated kinase (ERK1/2) in both TPalpha-SC2 and TPbeta-SC15 cells. While the peak of the phosphorylation of ERK1/2 was observed 5 min after addition of U46619 in TPalpha-SC2 cells, the long lasting phosphorylation up to 60 min was in TPbeta-SC15 cells. U46619-induced phosphorylation of ERK1/2 at 5 min was inhibited by pertussis toxin in both cells, suggesting that G(i) is involved in the phosphorylation mediated via both TP isoforms. Interfering G(12/13) activity by overexpression of p115-RGS reduced U46619-induced ERK1/2 phosphorylation in TPbeta-SC15 cells, but not in TPalpha-SC2 cells. H89, an inhibitor of protein kinase A (PKA), reduced U46619-induced ERK1/2 phosphorylation in TPalpha-SC2 cells, but not in TPbeta-SC15 cells. These results indicate that G(i) may be involved in TP-mediated ERK1/2 phosphorylation in both isoforms. In addition, H89-sensitive kinase and G(12/13) may be involved in TP-mediated ERK1/2 phosphorylation in TPalpha and TPbeta, respectively.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Adenoviridae/genetics
- Animals
- Blotting, Western
- CHO Cells
- Cricetinae
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Genetic Vectors
- Hydrolysis
- Isomerism
- Isoquinolines/pharmacology
- Pertussis Toxin/pharmacology
- Phosphatidylinositols/metabolism
- Plasmids/genetics
- Receptors, Cell Surface/drug effects
- Receptors, Thromboxane A2, Prostaglandin H2/drug effects
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sulfonamides/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Katsutoshi Miyosawa
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | | | | | | |
Collapse
|
59
|
Baker OJ, Camden JM, Ratchford AM, Seye CI, Erb L, Weisman GA. Differential coupling of the P2Y1 receptor to Galpha14 and Galphaq/11 proteins during the development of the rat salivary gland. Arch Oral Biol 2005; 51:359-70. [PMID: 16336941 DOI: 10.1016/j.archoralbio.2005.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 10/11/2005] [Accepted: 10/14/2005] [Indexed: 02/06/2023]
Abstract
UNLABELLED In rat submandibular gland (SMG), the P2Y1 receptor (P2Y1R) mediates increases in the intracellular calcium concentration, [Ca2+]i that diminish as the animal ages from 1 to 4-6 weeks. However, P2Y1R mRNA levels do not change with age, suggesting that the age-dependent decrease in the [Ca2+]i response to P2Y1R agonists may be due to alterations in the activity of a component of the P2Y1R signalling pathway. OBJECTIVES To assess whether the decrease in P2Y1R-mediated intracellular calcium signalling in SMG cells as rats age is due to a decrease in P2Y1R coupling to G proteins or to a decrease in the expression of a cognate G protein. DESIGN SMG cells were isolated from Sprague-Dawley rats. P2Y1R function was assessed by measuring 2-MeSADP-induced increases in [Ca2+]i and ERK1/2 activation. P2Y(1)R-mediated activation of G proteins was determined by the [35S]GTPgammaS binding assay. Gq protein expression was determined by RT-PCR, Northern, and Western analysis. RESULTS In SMG cells from 1-week-old rats, two bands (52 and 42kDa) were detected using anti-Galpha14 antibody, whereas in SMG cells from 4- to 6-week-old rats only the 42 kDa band was detected. Furthermore, 2-MeSADP-induced GTPgamma35S binding to Galpha14 and Galphaq/11 decreases in SMG cells from 4- to 6-week-old rats as compared to 1-week-old rats. CONCLUSIONS These findings suggest that the age-dependent decrease in P2Y1R-mediated intracellular calcium signalling in rat SMG cells is due to a loss of 52 kDa Galpha14 and indicate the differential coupling of the P2Y1R to Galpha14 and Galphaq/11 as the gland develops.
Collapse
Affiliation(s)
- Olga J Baker
- Department of Biochemistry, University of Missouri-Columbia, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA
| | | | | | | | | | | |
Collapse
|
60
|
Delicado EG, Jiménez AI, Carrasquero LMG, Castro E, Miras-Portugal MT. Cross-talk among epidermal growth factor, Ap(5)A, and nucleotide receptors causing enhanced ATP Ca(2+) signaling involves extracellular kinase activation in cerebellar astrocytes. J Neurosci Res 2005; 81:789-96. [PMID: 16052566 DOI: 10.1002/jnr.20609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In previous papers, we reported that ATP calcium responses in cerebellar astrocytes were strongly potentiated by preincubation with nanomolar concentrations of the diadenosine pentaphosphate Ap(5)A. However, the intracellular signaling pathway mediating this effect was not defined. We also showed that stimulation of astrocytes with the dinucleotide led to the activation of extracellular regulated kinases (ERKs). Here, we examined whether ERKs are involved in the potentiating mechanism and intracellular mechanism leading to their activation. Epidermal growth factor (EGF) exactly reproduced the potentiation displayed by the dinucleotide. Moreover, the potentiation of ATP responses by Ap(5)A and EGF was completely abolished by the MAP kinase (MEK) inhibitor U-0126, indicating that ERK activation is a required step for the potentiation event. Our data also indicated that ERK activation and the potentiation of ATP calcium responses were sensitive to the src-like kinase inhibitor herbimycin A, p21(ras) farnesyltransferase inhibitor peptide, and some PKC inhibitors. Taken together, our findings reveal that Ap(5)A triggers the potentiation of ATP calcium responses through an intracellular mechanism that is insensitive to pertussis toxin and that this potentiation requires src protein-mediated ERK activation and the participation of an atypical protein kinase C isoform activated downstream from ERK.
Collapse
Affiliation(s)
- Esmerilda G Delicado
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | |
Collapse
|
61
|
Sak K, Illes P. Neuronal and glial cell lines as model systems for studying P2Y receptor pharmacology. Neurochem Int 2005; 47:401-412. [PMID: 16081187 DOI: 10.1016/j.neuint.2005.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/31/2005] [Indexed: 11/18/2022]
Abstract
Investigation of the role of extracellular nucleotides in nervous system has been one of the main topics of the P2Y receptor research throughout the years. In parallel to numerous studies on primary culture systems, various neuronal and non-neuronal cell lines have been used to model in vitro the processes mediated by extracellular nucleotides. In this review article, a survey of expression profiles of G protein-coupled P2Y receptor subtypes in nervous-system-derived cell lines is presented, by analysing the receptor expression at the mRNA, protein, and functional level. The variability of receptor expression profiles in established cell lines is further discussed, bringing forward some general properties for neuronal and glial malignant cell lines.
Collapse
Affiliation(s)
- Katrin Sak
- Rudolf-Boehm Institute of Pharmacology and Toxicology, and Interdisciplinary Center for Clinical Research, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany.
| | | |
Collapse
|
62
|
Franke H, Illes P. Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 2005; 109:297-324. [PMID: 16102837 DOI: 10.1016/j.pharmthera.2005.06.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/06/2005] [Indexed: 12/12/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) has been recognized as a ubiquitous, unstable signalling molecule, acting as a fast neurotransmitter and modulator of transmitter release and neuronal excitability. Recent findings have demonstrated that ATP is a growth factor participating in differentiation, cell proliferation, and survival, as well as a toxic agent that mediates cellular degeneration and death. Potential sources of extracellular purines in the nervous system include neurons, glia, endothelium, and blood. A complex family of ectoenzymes rapidly hydrolyzes or interconverts extracellular nucleotides, thereby either terminating their signalling action or producing an active metabolite of altered purinoceptor selectivity. Most effects are mediated through the 2 main subclasses of specific cell surface receptors, P2X and P2Y. Members of these P2X/Y receptor families are widely expressed in the central nervous system (CNS) and are involved in glia-glia and glia-neuron communications, whereby they play important physiological and pathophysiological roles in a variety of biological processes. After different kinds of "acute" CNS injury (e.g., ischemia, hypoxia, mechanical stress, axotomy), extracellular ATP can reach high concentrations, up to the millimolar range, flowing out from cells into the extracellular space, exocytotically, via transmembrane transport, or as a result of cell damage. In this review, P2 receptor activation as a cause or a consequence of neuronal cell activation or death and/or glial activation is described. The involvement of P2 receptors is also described under different "chronic" pathological conditions, such as pain, epilepsia, toxic influence of ethanol or amphetamine, retinal diseases, Alzheimer's disease (AD), and possibly, Parkinson's disease. The relationship between changes in P2 receptor expression and the specific response of different cell types to injury is extremely complex and can be related to detrimental and/or beneficial effects. The present review therefore considers ATP acting via P2 receptors as a potent regulator of normal physiological and pathological processes in the brain, with a focus on pathophysiological implications of P2 receptor functions.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany.
| | | |
Collapse
|
63
|
Horovitz-Fried M, Cooper DR, Patel NA, Cipok M, Brand C, Bak A, Inbar A, Jacob AI, Sampson SR. Insulin rapidly upregulates protein kinase Cdelta gene expression in skeletal muscle. Cell Signal 2005; 18:183-93. [PMID: 16095881 DOI: 10.1016/j.cellsig.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 04/07/2005] [Indexed: 11/28/2022]
Abstract
Recent studies in our laboratories have shown that Protein Kinase C delta (PKCdelta) is essential for insulin-induced glucose transport in skeletal muscle, and that insulin rapidly stimulates PKCdelta activity skeletal muscle. The purpose of this study was to examine mechanisms of regulation of PKCdelta protein availability. Studies were done on several models of mammalian skeletal muscle and utilized whole cell lysates of differentiated myotubes. PKCdelta protein levels were determined by Western blotting techniques, and PKCdelta RNA levels were determined by Northern blotting, RT-PCR and Real-Time RT-PCR. Insulin stimulation increased PKCdelta protein levels in whole cell lysates. This effect was not due to an inhibition by insulin of the rate of PKCdelta protein degradation. Insulin also increased 35S-methionine incorporation into PKCdelta within 5-15 min. Pretreatment of cells with transcription or translation inhibitors abrogated the insulin-induced increase in PKCdelta protein levels. We also found that insulin rapidly increased the level of PKCdelta RNA, an effect abolished by inhibitors of transcription. The insulin-induced increase in PKCdelta expression was not reduced by inhibition of either PI3 Kinase or MAP kinase, indicating that these signaling mechanisms are not involved, consistent with insulin activation of PKCdelta. Studies on cells transfected with the PKCdelta promoter demonstrate that insulin activated the promoter within 5 min. This study indicates that the expression of PKCdelta may be regulated in a rapid manner during the course of insulin action in skeletal muscle and raise the possibility that PKCdelta may be an immediate early response gene activated by insulin.
Collapse
|
64
|
Yang L, Cranson D, Trinkaus-Randall V. Cellular injury induces activation of MAPK via P2Y receptors. J Cell Biochem 2005; 91:938-50. [PMID: 15034929 DOI: 10.1002/jcb.10774] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wound healing is a complex process that involves cell communication, migration, proliferation, and changes in gene expression. One of the first events after injury is the rapid release of Ca(2+) that propagates as a wave to neighboring cells (Klepeis et al. [2001]: J. Cell. Sci. 114:4185-4195). Our goal was to examine the signaling events induced by cellular injury and identify extracellular molecules that induce the activation of extracellular signal responsive kinase (ERK) (p42/44). In this study we demonstrated that injury induced ERK1/2 activation occurred within 2 min and was negligible by 15 min. Treatment of unwounded cells with wound media caused activation of ERK that could be inhibited by apyrase III. Stimulation with epidermal growth factor (EGF) did not mimic the injury response and it was not detected in the wound media. To identify the active component, size fractionation was performed and factor(s) less than 3 kDa that induced the release of Ca(2+) and activation of ERK1/2 were identified. Activity was not altered by heat denaturation, incubation with proteinase K but it was lost by treatment with apyrase. Adenosine triphosphate (ATP), uridine triphosphate (UTP), adenosine diphosphate (ADP), and uridine diphosphate (UDP) promoted activation by 2 min with similar profiles as that generated by injury. Preincubation with phospholipase C inhibitor, U73122, inhibited activation that was induced by injury and/or nucleotides. Lack of activation by alpha-beta-methylATP (alpha, beta-MeATP) and beta-gamma-methylATP (beta, gamma-MeATP) to purinergic (P)2X receptors further indicated that activation occurs via P2Y and not P2X purinergic receptors. These results indicate that injury-induced activation of ERK1/2 is mediated by a P2Y signaling pathway.
Collapse
Affiliation(s)
- LingLing Yang
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
65
|
Behrsing HP, Vulliet PR. Mitogen-activated protein kinase mediates purinergic-enhanced nerve growth factor-induced neurite outgrowth in PC12 cells. J Neurosci Res 2005; 78:64-74. [PMID: 15372494 DOI: 10.1002/jnr.20236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1999, we reported new observations that several compounds, including ATP, enhance neurite expression in PC12 cells when coapplied with nerve growth factor (NGF). Because purinergic and NGF signaling have several potential interfaces in PC12 cells, a series of experiments was conducted to elucidate the signal mediators contributing to the enhancement. Activities of selected kinases were measured and Western blots evaluated mitogen-activated protein kinase (MAPK) active and nonactive isoforms in lysates of the treated PC12 cells. In terms of purinergic potency, ATP and beta,gamma-methylene ATP elicited the greatest neurite-enhancing effect, whereas adenosine and alpha,beta-methylene ATP elicited the smallest. The effectiveness of a nonhydrolyzable analog such as beta,gamma-methylene ATP indicates that a nonmetabolic process is responsible. In response to ATP, NGF, or NGF + ATP, MAPK activity (measured by 32P incorporation) was maximal within 2 hr and remained statistically elevated over control levels throughout the 24 hr monitored. At maximal 32P incorporation, MAPK activity in response to ATP, NGF, and NGF + ATP was two-, four-, and sixfold higher, respectively, than control values; the observed increase was qualitatively confirmed using Western blots. Short-term inhibition experiments with protein kinase C and MAPK indicated that MAPK transduces the enhancing signal. We conclude from these experiments that ATP coapplied with NGF increases PC12 neurite expression by elevation of MAPK activity, likely by P2 receptor activation, and suggest that combination therapies with NGF and its enhancing adjunct compounds may be plausible for certain degenerative neurological disorders.
Collapse
|
66
|
Chorna NE, Santiago-Pérez LI, Erb L, Seye CI, Neary JT, Sun GY, Weisman GA, González FA. P2Y2 receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 2004; 91:119-32. [PMID: 15379893 DOI: 10.1111/j.1471-4159.2004.02699.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanical or ischemic trauma to the CNS causes the release of nucleotides and other neurotransmitters into the extracellular space. Nucleotides can activate nucleotide receptors that modulate the expression of genes implicated in cellular adaptive responses. In this investigation, we used human 1321N1 astrocytoma cells expressing a recombinant P2Y2 receptor to assess the role of this receptor in the regulation of anti-apoptotic (bcl-2 and bcl-xl) and pro-apoptotic (bax) gene expression. Acute treatment with the P2Y2 receptor agonist UTP up-regulated bcl-2 and bcl-xl, and down-regulated bax, gene expression. Activation of P2Y2 receptors was also coupled to the phosphorylation of cyclic AMP responsive element binding protein that positively regulates bcl-2 and bcl-xl gene expression. Cyclic AMP responsive element decoy oligonucleotides markedly attenuated the UTP-induced increase in bcl-2 and bcl-xl mRNA levels. Activation of P2Y2 receptors induced the phosphorylation of the pro-apoptotic factor Bad and caused a reduction in bax/bcl-2 mRNA expression ratio. All these signaling pathways are known to be involved in cell survival mechanisms. Using cDNA microarray analysis and RT-PCR, P2Y2 receptors were found to up-regulate the expression of genes for neurotrophins, neuropeptides and growth factors including nerve growth factor 2; neurotrophin 3; glia-derived neurite-promoting factor, as well as extracellular matrix proteins CD44 and fibronectin precursor--genes known to regulate neuroprotection. Consistent with this observation, conditioned media from UTP-treated 1321N1 cells expressing P2Y2 receptors stimulated the outgrowth of neurites in PC-12 cells. Taken together, our results suggest an important novel role for the P2Y2 receptor in survival and neuroprotective mechanisms under pathological conditions.
Collapse
Affiliation(s)
- Nataliya E Chorna
- Department of Chemistry, Rio Piedras Campus, University of Puerto Rico, San Juan, Puerto Rico
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Muscella A, Greco S, Elia MG, Storelli C, Marsigliante S. Differential signalling of purinoceptors in HeLa cells through the extracellular signal-regulated kinase and protein kinase C pathways. J Cell Physiol 2004; 200:428-39. [PMID: 15254971 DOI: 10.1002/jcp.20033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that HeLa cells express P2Y2 and P2Y6 receptors endogenously and determined the pathways by which the P2Y2 controls proliferation and Na+/K+ATPase activity. Our objective in this study was to investigate the hypothesis that P2Y6 also controls proliferation and Na+/K+ATPase activity; the pathways used in these actions were partially characterised. We found that P2Y6 activation controlled cell proliferation but not the activity of the Na+/K+ATPase. UDP activation of P2Y6 provoked: (a) an increase in free cytosolic calcium; (b) the activation of protein kinase C-alpha, -beta, -delta, -epsilon, and -zeta but not of PKC-iota and -eta; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2); (d) the expression of c-Fos protein. The P2Y6 induced cell proliferation was blocked by the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD098059, thereby indicating that the ERK pathway mediates the mitogenic signalling of P2Y6. PKC and phosphoinositide 3-kinase (PI3K) inhibitors were tested at two different time points of ERK1/2 phosphorylation (10 and 60 min). The results suggest that novel PKCs and PI3K initiate the response but both conventional and atypical PKCs are required for the maintenance of the UDP-induced phosphorylation of ERK1/2. The induction of c-Fos was greatly diminished by conventional or atypical PKC-zeta inhibition, suggesting that it may be due to PKC-alpha/beta and -zeta activity. These observations demonstrate that UDP acts as a proliferative agent in HeLa cells activating multiple signalling pathways involving conventional, novel, and atypical PKCs, PI3K, and ERK. Of these pathways, conventional and atypical PKCs appear responsible for the induction of c-Fos, while ERK is responsible for cell proliferation and depends upon both novel and atypical PKCs and PI3K activities.
Collapse
Affiliation(s)
- Antonella Muscella
- Laboratorio di Fisiologia Cellulare, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università di Lecce, Ecotekne, Lecce, Italia
| | | | | | | | | |
Collapse
|
68
|
Prasad A, Fernandis AZ, Rao Y, Ganju RK. Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem 2004; 279:9115-24. [PMID: 14645233 DOI: 10.1074/jbc.m308083200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal and CXCR4-mediated leukocyte migration. Slit-2 was shown to be frequently inactivated in lung and breast cancers because of hypermethylation of its promoter region. Furthermore, the CXCR4/CXCL12 axis has been reported recently to be actively involved in breast cancer metastasis to target organs such as lymph nodes, lung, and bone. In this study, we sought to characterize the effect of Slit (=Slit-2) on the CXCL12/CXCR4-mediated metastatic properties of breast cancer cells. We demonstrate here that breast cancer cells and tissues derived from breast cancer patients express Robo 1 and 2 receptors. We also show that Slit treatment inhibits CXCL12/CXCR4-induced breast cancer cell chemotaxis, chemoinvasion, and adhesion, the fundamental components that promote metastasis. Slit had no significant effect on the CXCL12-induced internalization process of CXCR4. In addition, characterization of signaling events revealed that Slit inhibits CXCL12-induced tyrosine phosphorylation of focal adhesion components such as RAFTK/Pyk2 at residues 580 and 881, focal adhesion kinase at residue 576, and paxillin. We found that Slit also inhibits CXCL12-induced phosphatidylinositol 3-kinase, p44/42 MAP kinase, and metalloproteinase 2 and 9 activities. However, it showed no effect on JNK and p38 MAP kinase activities. To our knowledge, this is the first report to analyze in detail the effect of Slit on breast cancer cell motility as well as its effect on the critical components of the cancer cell chemotactic machinery. Studies of the Slit-Robo complex may foster new anti-chemotactic approaches to block cancer cell metastasis.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
69
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
70
|
Liu J, Liao Z, Camden J, Griffin KD, Garrad RC, Santiago-Pérez LI, González FA, Seye CI, Weisman GA, Erb L. Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 2003; 279:8212-8. [PMID: 14670955 DOI: 10.1074/jbc.m312230200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many G protein-coupled receptors activate growth factor receptors, although the mechanisms controlling this transactivation are unclear. We have identified two proline-rich, SH3 binding sites (PXXP) in the carboxyl-terminal tail of the human P2Y(2) nucleotide receptor that directly associate with the tyrosine kinase Src in protein binding assays. Furthermore, Src co-precipitated with the P2Y(2) receptor in 1321N1 astrocytoma cells stimulated with the P2Y(2) receptor agonist UTP. A mutant P2Y(2) receptor lacking the PXXP motifs was found to stimulate calcium mobilization and serine/threonine phosphorylation of the Erk1/2 mitogen-activated protein kinases, like the wild-type receptor, but was defective in its ability to stimulate tyrosine phosphorylation of Src and Src-dependent tyrosine phosphorylation of the proline-rich tyrosine kinase 2, epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor. Dual immunofluorescence labeling of the P2Y(2) receptor and the EGFR indicated that UTP caused an increase in the co-localization of these receptors in the plasma membrane that was prevented by the Src inhibitor PP2. Together, these data suggest that agonist-induced binding of Src to the SH3 binding sites in the P2Y(2) receptor facilitates Src activation, which recruits the EGFR into a protein complex with the P2Y(2) receptor and allows Src to efficiently phosphorylate the EGFR.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Meshki J, Tuluc F, Bredetean O, Ding Z, Kunapuli SP. Molecular mechanism of nucleotide-induced primary granule release in human neutrophils: role for the P2Y2 receptor. Am J Physiol Cell Physiol 2003; 286:C264-71. [PMID: 14613890 DOI: 10.1152/ajpcell.00287.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotides are released during vascular injury from activated platelets and broken cells, which could stimulate human neutrophils. In this study, we characterized the P2Y receptors and investigated the functional effects of extracellular nucleotides on human neutrophils. Pharmacological characterization using selective agonists and pertussis toxin revealed that human neutrophils express only functional P2Y2 receptors. However, P2Y2 receptor agonists ATP or uridine triphosphate (UTP) caused intracellular Ca2+ increases in isolated human neutrophils with an EC50 of 1 microM but failed to cause release of primary granules from human neutrophils. ATP and UTP were equally potent in causing elastase release from human neutrophils in the presence of exogenous soluble fibrinogen, whereas ADP and UDP were without effect. We investigated whether nucleotides depend on generated arachidonic acid metabolites to cause degranulation. However, phenidone and MK-886, inhibitors of the 5-lipoxygenase pathway, failed to block nucleotide-induced intracellular calcium mobilization and elastase release. ATP and UTP caused activation of p38 MAPK and ERK1/2 in human neutrophils. In addition, the inhibitors of the MAPK pathway, SB-203580 and U-0126, inhibited nucleotide-induced elastase release. We conclude that fibrinogen is required for nucleotide-induced primary granule release from human neutrophils through the P2Y2 receptor without a role for arachidonic acid metabolites. Both ERK1/2 and p38 MAPK play an important role in nucleotide-induced primary granule release from human neutrophils.
Collapse
Affiliation(s)
- John Meshki
- Department of Physiology, Temple University Medical School, 3420 N. Broad St., Philadelphia, PA, 19140, USA
| | | | | | | | | |
Collapse
|
72
|
Tapia JA, García-Marin LJ, Jensen RT. Cholecystokinin-stimulated protein kinase C-delta kinase activation, tyrosine phosphorylation, and translocation are mediated by Src tyrosine kinases in pancreatic acinar cells. J Biol Chem 2003; 278:35220-35230. [PMID: 12842900 DOI: 10.1074/jbc.m303119200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein kinase C-delta (PKC-delta) is involved in growth, differentiation, tumor suppression, and regulation of other cellular processes. PKC-delta activation causes translocation, tyrosine phosphorylation, and serine-threonine kinase activity. However, little is known about the ability of G protein-coupled receptors to activate these processes or the mediators involved. In the present study, we explored the ability of the neurotransmitter/hormone, CCK, to stimulate these changes in PKC-delta and explored the mechanisms. In rat pancreatic acini under basal conditions, PKC-delta is almost exclusively located in cytosol. CCK and TPA stimulated a rapid PKC-delta translocation to membrane and nuclear fractions, which was transient with CCK. CCK stimulated rapid tyrosine phosphorylation of PKC-delta and increased kinase activity. Using tyrosine kinase (B44) and a tyrosine phosphatase inhibitor (orthovanadate), changes in both CCK- and TPA-stimulated PKC-delta tyrosine phosphorylation were shown to correlate with changes in its kinase activity but not translocation. Both PKC-delta tyrosine phosphorylation and activation occur exclusively in particulate fractions. The Src kinase inhibitors, SU6656 and PP2, but not the inactive related compound, PP3, inhibited CCK- and TPA-stimulated PKC-delta tyrosine phosphorylation and activation. In contrast, PP2 also had a lesser effect on CCK- but not TPA-stimulated PKC-delta translocation. CCK stimulated the association of Src kinases with PKC-delta, demonstrated by co-immunoprecipitation. These results demonstrate that CCKA receptor activation results in rapid translocation, tyrosine phosphorylation, and activation of PKC-delta. Stimulation of PKC-delta translocation precedes tyrosine phosphorylation, which is essential for activation to occur. Activation of Src kinases is essential for the tyrosine phosphorylation and kinase activation to occur and plays a partial role in translocation.
Collapse
Affiliation(s)
- Jose A Tapia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | |
Collapse
|
73
|
Crosby D, Poole AW. Physical and functional interaction between protein kinase C delta and Fyn tyrosine kinase in human platelets. J Biol Chem 2003; 278:24533-41. [PMID: 12721299 DOI: 10.1074/jbc.m301847200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increasing number of tyrosine kinases have been shown to associate with isoforms of the protein kinase C (PKC) family. Here, we show evidence for physical and functional interaction between PKCdelta and the Src family kinase Fyn in human platelets activated by alboaggregin-A, a snake venom capable of activating both GPIb-V-IX and GPVI adhesion receptors. This interaction involves phosphorylation of PKCdelta on tyrosine and is specific in that other isoforms of PKC, PKCepsilon and lambda, which also become tyrosine-phosphorylated, do not interact with Fyn. In addition, PKCdelta does not interact with other platelet-expressed tyrosine kinases Syk, Src, or Btk. Stimulation also leads to activation of both Fyn and PKCdelta and to serine phosphorylation of Fyn within a PKC consensus sequence. Alboaggregin-A-dependent activation of Fyn is blocked by bisindolylmaleimide I, suggesting a role for PKC isoforms in regulating Fyn activity. Platelet activation with alboaggregin-A induces translocation of the two kinases from cytoplasm to the plasma membrane of platelets, as observed by confocal immunofluorescence microscopy. Translocation of Fyn and PKCdelta are blocked by PP1 and bisindolylmaleimide I, showing a dependence upon Src and PKC kinase activities. Although PKC activity is required for translocation, it is not required for association between the two kinases, because this was not blocked by bisindolylmaleimide I. Rottlerin, which inhibited PKCdelta activity, did not block translocation of either PKCdelta or Fyn but potentiated platelet aggregation, 5-hydroxytryptamine secretion, and the calcium response induced by alboaggregin-A, indicating that this kinase plays a negative role in the control of these processes.
Collapse
Affiliation(s)
- David Crosby
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
74
|
Vonend O, Grote T, Oberhauser V, von Kügelgen I, Rump LC. P2Y-receptors stimulating the proliferation of human mesangial cells through the MAPK42/44 pathway. Br J Pharmacol 2003; 139:1119-26. [PMID: 12871830 PMCID: PMC1573950 DOI: 10.1038/sj.bjp.0705358] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Mesangial cell proliferation is observed in a number of kidney diseases. The sympathetic cotransmitter ATP is suspected to play a major role in proliferative processes. Therefore, the effects of exogenous ATP on human mesangial cells in culture were studied. 2. Fresh human kidney cortex was processed to obtain mesangial cells in culture. Effects of nucleotides on [(3)H]thymidine incorporation, the activation of mitogen-activated protein kinase and the cell number were studied. The involved P2-receptors were characterized pharmacologically. In addition, we searched for mRNA for P2Y- and P2X-receptors by RT-PCR. 3. ATP (0.1-300 micro M) and related nucleotides induced a significant increase in [(3)H]thymidine incorporation up to 220% of control. The adenine nucleotides ATP and ADP were about equally effective. Also ATP-gamma-S, UTP, ADP-beta-S and 2-m-thio-ADP induced a weaker response. UDP and alpha-beta-methylene-ATP failed to induce an effect on [(3)H]thymidine uptake. 4. ATP (100 micro M) induced a fast activation of the MAPK(42/44) pathway. The effects of ATP on MAPK(42/44) activation and [(3)H]thymidine incorporation were reduced by the MAPK inhibitor PD 98059. Platelet-derived growth factor (PDGF 5 ng ml(-1)) increased the cell number to more than 122% of control. ATP (10 micro M) on top of PDGF amplified PDGF induced cell proliferation to 136% of control. 5. RT-PCR products for P2Y(1,2,4,6,11,12)- and P2X(1,2,4,5,6,7)-receptor subtypes were detected in human mesangial cells. 6. ATP has mitogenic effects on human mesangial cells. DNA synthesis is increased by the activation of the MAPK(42/44) pathway. ATP amplifies PDGF-induced cell hyperplasia.
Collapse
Affiliation(s)
- Oliver Vonend
- Department of Internal Medicine, Marienhospital Herne, Ruhr-University Bochum, Germany
| | - Tobias Grote
- Department of Internal Medicine, Marienhospital Herne, Ruhr-University Bochum, Germany
| | - Vitus Oberhauser
- Department of Internal Medicine, Marienhospital Herne, Ruhr-University Bochum, Germany
| | | | - Lars Christian Rump
- Department of Internal Medicine, Marienhospital Herne, Ruhr-University Bochum, Germany
- Author for correspondence:
| |
Collapse
|
75
|
Farshori PQ, Shah BH, Arora KK, Martinez-Fuentes A, Catt KJ. Activation and nuclear translocation of PKCdelta, Pyk2 and ERK1/2 by gonadotropin releasing hormone in HEK293 cells. J Steroid Biochem Mol Biol 2003; 85:337-47. [PMID: 12943720 DOI: 10.1016/s0960-0760(03)00226-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanism of agonist-induced activation of Pyk2 and its relationship with ERK1/2 phosphorylation was analyzed in HEK293 cells stably expressing the gonadotropin releasing hormone (GnRH) receptor. GnRH stimulation caused rapid and sustained phosphorylation of ERK1/2 and Pyk2 that was accompanied by their nuclear translocation. Pyk2 was also localized on cell membranes and at focal adhesions. Dominant negative Pyk2 (PKM) had no effect on GnRH-induced ERK1/2 phosphorylation and c-fos expression. These actions of GnRH on ERK1/2 and Pyk2 were mimicked by activation of protein kinase C (PKC) and were abolished by its inhibition. GnRH caused translocation of PKCalpha and delta, but not of epsilon, iota and lambda, to the cell membrane, as well as phosphorylation of Raf at Ser338, a major site in the activation of MEK/ERK1/2. Stimulation of HEK293 cells by EGF caused marked ERK1/2 phosphorylation that was attenuated by the selective EGFR receptor (EGF-R) kinase inhibitor, AG1478. However, GnRH-induced ERK1/2 activation was independent of EGF-R activation. These results indicate that activation of PKC is responsible for GnRH-induced phosphorylation of both ERK1/2 and Pyk2, and that Pyk2 activation does not contribute to GnRH signaling. Moreover, GnRH-induced phosphorylation of ERK1/2 and expression of c-fos in HEK293 cells is independent of Src and EGF-R transactivation, and is mediated through the PKC/Raf/MEK cascade.
Collapse
Affiliation(s)
- Parvaiz Q Farshori
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
76
|
Muscella A, Elia MG, Greco S, Storelli C, Marsigliante S. Activation of P2Y2 receptor induces c-FOS protein through a pathway involving mitogen-activated protein kinases and phosphoinositide 3-kinases in HeLa cells. J Cell Physiol 2003; 195:234-40. [PMID: 12652650 DOI: 10.1002/jcp.10242] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases 1 and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by Gö6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When Gö6976 and PD098059, or Gö6976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or Gö6976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC- epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC- epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC- epsilon pathways to induce c-Fos protein and HeLa cell proliferation.
Collapse
Affiliation(s)
- Antonella Muscella
- Laboratory Physiology, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, University of Lecce, Ecotekne, Lecce, Italy
| | | | | | | | | |
Collapse
|
77
|
Sarma T, Voyno-Yasenetskaya T, Hope TJ, Rasenick MM. Heterotrimeric G-proteins associate with microtubules during differentiation in PC12 pheochromocytoma cells. FASEB J 2003; 17:848-59. [PMID: 12724344 DOI: 10.1096/fj.02-0730com] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tubulin modifies G-protein signaling and heterotrimeric G-proteins regulate microtubule assembly. Here we report an interplay among G-protein-coupled receptor and receptor tyrosine kinase (such as nerve growth factor-NGF) signaling systems in PC12 pheochromocytoma cells that resulted in a translocation of Galpha(s), Galpha(i1), and Galpha(o) from cell bodies to cellular processes where they appear to localize with tubulin-containing structures. This relocation appeared to depend on the integrity of microtubules, as it was blocked and reversed by nocodazole. Latrunculin, which promotes actin filament depolymerization, had no effect. Both deconvolution microscopy and immunoprecipitation showed a significant increase of Galpha association with microtubules that was coincident with the extension of "neurites." There were distinctions among the Galpha subtypes, with Galpha(s) showing the most profound NGF-induced colocalization with tubulin. Translocation of Galpha was blocked by agents that inhibit the MAP kinases required for neuronal differentiation, suggesting that G-protein relocation is triggered by the intracellular signals for differentiation. Consistent with this, Galpha in Neuro-2A cells, which spontaneously differentiate, showed a similar translocation coincident with differentiation. Thus, diverse signals that promote neuronal differentiation and changes in cell morphology may use specific G-proteins to evoke cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Tulika Sarma
- Department of Physiology, College of Medicine, Chicago, Illinois 60612-7342, USA
| | | | | | | |
Collapse
|
78
|
Budagian V, Bulanova E, Brovko L, Orinska Z, Fayad R, Paus R, Bulfone-Paus S. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. J Biol Chem 2003; 278:1549-60. [PMID: 12424250 DOI: 10.1074/jbc.m206383200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ATP-gated ion channel P2X receptors are expressed on the surface of most immune cells and can trigger multiple cellular responses, such as membrane permeabilization, cytokine production, and cell proliferation or apoptosis. Despite broad distribution and pleiotropic activities, signaling pathways downstream of these ionotropic receptors are still poorly understood. Here, we describe intracellular signaling events in Jurkat cells treated with millimolar concentrations of extracellular ATP. Within minutes, ATP treatment resulted in the phosphorylation and activation of p56(lck) kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase but not p38 kinase. These effects were wholly dependent upon the presence of extracellular Ca(2+) ions in the culture medium. Nevertheless, calmodulin antagonist calmidazolium and CaM kinase inhibitor KN-93 both had no effect on the activation of p56(lck) and ERK, whereas a pretreatment of Jurkat cells with MAP kinase kinase inhibitor P098059 was able to abrogate phosphorylation of ERK. Further, expression of c-Jun and c-Fos proteins and activator protein (AP-1) DNA binding activity were enhanced in a time-dependent manner. In contrast, DNA binding activity of NF-kappa B was reduced. ATP failed to stimulate the phosphorylation of ERK and c-Jun N-terminal kinase and activation of AP-1 in the p56(lck)-deficient isogenic T cell line JCaM1, suggesting a critical role for p56(lck) kinase in downstream signaling. Regarding the biological significance of the ATP-induced signaling events we show that although extracellular ATP was able to stimulate proliferation of both Jurkat and JCaM1 cells, an increase in interleukin-2 transcription was observed only in Jurkat cells. The nucleotide selectivity and pharmacological profile data supported the evidence that the ATP-induced effects in Jurkat cells were mediated through the P2X7 receptor. Taken together, these results demonstrate the ability of extracellular ATP to activate multiple downstream signaling events in a human T-lymphoblastoid cell line.
Collapse
Affiliation(s)
- Vadim Budagian
- Department of Immunology and Cellular Biology, Research Center Borstel, D-23845 Borstel, Germany
| | | | | | | | | | | | | |
Collapse
|
79
|
Tapia JA, Bragado MJ, García-Marín LJ, Jensen RT. Cholecystokinin-stimulated tyrosine phosphorylation of PKC-delta in pancreatic acinar cells is regulated bidirectionally by PKC activation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1593:99-113. [PMID: 12431789 DOI: 10.1016/s0167-4889(02)00346-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PKC-delta is important in cell growth, apoptosis, and secretion. Recent studies show its stability is regulated by tyrosine phosphorylation (TYR-P), which can be stimulated by a number of agents. Many of these stimuli also activate phospholipase C (PLC) cascades and little is known about the relationship between these cascades and PKC-delta TYR-P. Cholecystokinin (CCK) stimulates PKCs but it is unknown if it causes PKC-delta TYR-P and if so, the relationship between these cascades is unknown. In rat pancreatic acini, CCK-8 stimulated rapid PKC-delta TYR-P by activation of the low affinity CCK(A) receptor state. TPA had a similar effect. BAPTA did not decrease CCK-stimulated PKC-delta TYR-P but instead, increased it. A23187 did not stimulate PKC-delta TYR-P. Wortmannin and LY 294002 did not alter CCK-stimulated PKC-delta TYR-P. GF 109203X, at low concentrations, increased PKC-delta TYR-P stimulated by CCK or TPA and at higher concentrations, inhibited it. The cPKC inhibitors, Gö 6976 and safingol, caused a similar increase in TPA- and CCK-stimulated PKC-delta TYR-P. These results demonstrate that CCK(A) receptor activation causes PKC-delta TYR-P through activation of only one of its two receptor affinity states. This PKC-delta TYR-P is not directly influenced by changes in [Ca(2+)](i); however, the resultant activation of PKC-alpha has an inhibitory effect. Therefore, CCK activates both stimulatory and inhibitory PKC cascades regulating PKC-delta TYR-P and, hence, likely plays an important role in regulating PKC-delta degradation and cellular abundance.
Collapse
Affiliation(s)
- Jose A Tapia
- Departamento de Fisiología, Universidad de Extremadura, Cáceres 10071, Spain
| | | | | | | |
Collapse
|
80
|
Buckley KA, Hipskind RA, Gartland A, Bowler WB, Gallagher JA. Adenosine triphosphate stimulates human osteoclast activity via upregulation of osteoblast-expressed receptor activator of nuclear factor-kappa B ligand. Bone 2002; 31:582-90. [PMID: 12477572 DOI: 10.1016/s8756-3282(02)00877-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nucleotides such as adenosine triphosphate (ATP) and uridine triphosphate (UTP) exist in the extracellular environment where they are agonists at P2 receptors. Both P2Y G-protein-coupled receptors and P2X ligand-gated ion channels are expressed by osteoblasts and osteoclasts, reflected in the diverse nucleotide-induced effects reported to occur in bone. Previous reports have implicated ATP as a proresorptive agent; however, these studies were unable to determine whether ATP mediated its actions directly on osteoclasts, or indirectly via osteoblasts. The development of techniques to generate human osteoclasts in vitro has allowed us to further investigate the intriguing role of extracellular nucleotides with regard to osteoclast activity. This study reports that nearly all P2-receptor-subtype mRNAs were expressed throughout human osteoclast development, and provides evidence for functional P2 receptor expression by these cells. In cultures of human osteoclasts alone, neither ATP nor UTP affected the quantity of resorption by these cells; however, in cocultures of osteoblast-like UMR-106 cells and human osteoclasts, ATP, but not UTP, greatly enhanced resorption, indicating a role for osteoblasts in mediating the proresorptive effects of ATP. Furthermore, ATP, but not UTP, elevated receptor activator of nuclear factor-kappaB ligand (RANKL) mRNA and protein expression by UMR-106 cells. These data are consistent with observations that UMR-106 cells predominantly express P2Y(1) with low expression of P2Y(2), thereby explaining the response to ATP and not UTP, and further substantiating the involvement of osteoblasts in ATP-induced effects on osteoclasts. These results significantly advance our understanding of the role of P2 receptors in bone, and indicate that local-acting ATP may play a pivotal role in osteoclast activation at bone-resorbing sites by inducing elevated expression of RANKL.
Collapse
Affiliation(s)
- K A Buckley
- Human Bone Cell Research Group, Department of Human Anatomy and Cell Biology, New Medical School, University of Liverpool, UK.
| | | | | | | | | |
Collapse
|
81
|
Abstract
Microglial activation by purines and pyrimidines is reviewed, with emphasis on the actions of adenosine 5'-triphosphate (ATP) on chemotaxis or releases of plasminogen and cytokines from microglia. ATP activates microglia, causing morphological changes with membrane ruffling. Activated microglia exhibit chemotaxis to ATP. Microglia stimulated by a low concentration of ATP (approximately 30-50 microM) rapidly release plasminogen (within 5-10 min), which may protect neurons. Microglia stimulated by a higher concentration of ATP release tumor necrosis factor-alpha (TNF-alpha), 2-3 h after the stimulation and interleukin-6 (IL-6), 6 h after the stimulation. It is reported that TNF-alpha stimulation causes an increase in the expression of IL-6 receptor mRNA and expression in neuronal cells (März et al. 1996. Brain Res 706:71-79). After binding with gp130, the IL-6 receptor matures and can accept IL-6 molecules. It is speculated that neurons may require several hours to prepare for the full reception of IL-6, which induces a more efficient protective effect by IL-6 after stimulation with TNF-alpha. After neurons are ready to accept IL-6 fully, microglia release IL-6 to neurons. Stronger and longer stimulation by ATP may change the function of microglia and cause cell death. The conditions evoking the heavy stimulation would result from serious injury. Activated microglia act as scavenger cells that induce apoptosis in damaged neurons by releasing toxic factors, including NO, and removing dead cells, their remnants, or dangerous debris by phagocytosis. These actions lead to a suitable environment for tissue repair and neural regeneration. The fate of neurons may therefore be regulated in part by ATP through the activation of microglia.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Section of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
82
|
Jiménez AI, Castro E, Delicado EG, Miras-Portugal MT. Specific diadenosine pentaphosphate receptor coupled to extracellular regulated kinases in cerebellar astrocytes. J Neurochem 2002; 83:299-308. [PMID: 12423240 DOI: 10.1046/j.1471-4159.2002.01111.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we show specific intracellular responses evoked by the stimulation of astrocytes with the P1,P5-di(adenosine-5')pentaphosphate, Ap5A. The stimulation of astrocytes with micromolar concentrations of the dinucleotide elicited rapid increases in intracellular calcium concentration ([Ca2+]i), showing an EC50 value of 15.27 +/- 0.61 micro m. Moreover, the stimulation of cells with nanomolar concentrations of Ap5A, unable to induce calcium responses, increased the phosphorylated forms of extracellular-signal regulated kinase 1/2 (ERK) with an EC50 value of 9.8 +/- 2.4 nm. The maximal activation was observed at 100 nm Ap5A, which was similar to that produced by epidermal growth factor (EGF) under the same experimental conditions. The present data reported here indicate that Ap5A mediated these effects by interacting with a specific receptor, not yet identified, which was different from the P2Y1 and P2Y2/P2Y4 receptors present in all individual astrocytes.
Collapse
Affiliation(s)
- Ana I Jiménez
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
83
|
Bayer AL, Heidkamp MC, Patel N, Porter MJ, Engman SJ, Samarel AM. PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2002; 283:H695-706. [PMID: 12124218 DOI: 10.1152/ajpheart.00021.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proline-rich tyrosine kinase 2 (PYK2) is a member of the focal adhesion kinase (FAK) family of nonreceptor protein tyrosine kinases. PYK2 has been implicated in linking G protein-coupled receptors to activation of mitogen-activated protein kinase cascades and cellular growth in a variety of cell types. To determine whether PYK2 expression and phosphorylation is altered in left ventricular (LV) myocardium undergoing LV hypertrophy (LVH) and heart failure in vivo, suprarenal abdominal aortic coarctation was performed in 160-g male Sprague-Dawley rats. Immunohistochemistry and Western blotting were performed on LV tissue 1, 8, and 24 wk after aortic banding. Aortic banding produced sustained hypertension and gradually developing LVH. PYK2 levels were increased 1.8 +/- 0.2-, 2.7 +/- 0.6-, and 2.0 +/- 0.2-fold in 1-, 8-, and 24-wk banded animals compared with their respective sham-operated controls. The increase in PYK2 expression was paralleled by an increase in PYK2 phosphorylation, both of which preceded the development of LVH. Immunohistochemistry revealed that enhanced PYK2 expression occurred predominantly in the cardiomyocyte population. Furthermore, there was a high degree of correlation (R = 0.75; P < 0.001) between the level of PYK2 and the degree of LVH in 24-wk sham and banded animals. In contrast, FAK levels and FAK phosphorylation were not increased before the development of LVH. However, there was a high degree of correlation (R = 0.68; P < 0.001) between the level of FAK and the degree of LVH in 24-wk sham and banded rats. There was also a significant increase in the ratio of phosphospecific anti-FAK to FAK at this time point. These data are consistent with a role for PYK2 in the induction of pressure overload-induced cardiomyocyte hypertrophy, and suggest that PYK2 and FAK have distinctly different roles in LVH progression.
Collapse
Affiliation(s)
- Allison L Bayer
- The Cardiovascular Institute and Department of Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
84
|
Sarkar S, Svoboda M, de Beaumont R, Freedman AS. The role of Aktand RAFTK in beta1 integrin mediated survival of precursor B-acute lymphoblastic leukemia cells. Leuk Lymphoma 2002; 43:1663-71. [PMID: 12400610 DOI: 10.1080/1042819021000003009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this study, we report that the related adhesion focal tyrosine kinase RAFTK, is an upstream kinase in beta1 integrin mediated activation of Akt. Stimulation through beta1 integrins by fibronectin reversed apoptosis induced by adriamycin. Inhibitors of phosphatidylinositol 3-kinase (PI3 kinase)/Akt (LY 294002), tyrosine kinases (Herbimycin-A) and the cytotoxic agent adriamycin induced apoptosis of REH cells. beta1 integrin ligation induced activation of Akt, and tyrosine phosphorylation of RAFTK and FAK, but not SYK in REH cells. This suggested that RAFTK and FAK activation might be linked to Akt activation. Evidence that RAFTK is a modulator of Akt came from phorbol myristic acetate (PMA) stimulation. RAFTK and Akt were activated but FAK was not. Using fibroblasts from FAK -/- mice, which express high levels of RAFTK, fibronectin plating enhanced Akt activation. Pretreatment of REH cells with a P13 kinase/Akt inhibitor LY 294002 did not inhibit RAFTK tyrosine phosphorylation showing that RAFTK is upstream of P13k/Akt. Further evidence for a link between RAFTK tyrosine phosphorylation and Akt activation was the observation that the p85 subunit of P13 kinase associated with RAFTK following integrin ligation in REH cells. These results suggest that RAFTK plays an anti-apoptotic role through the activation of Akt.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | | | | | | |
Collapse
|
85
|
Watano T, Matsuoka I, Ogawa K, Kimura J. Effects of anions on ATP-induced [Ca2+], increase in NG108-15 cells. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 89:302-8. [PMID: 12184737 DOI: 10.1254/jjp.89.302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the effects of anions on different P2 receptors by measuring ATP-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in fura-2-loaded NG108-15 and PC12 cells. In NG108-15 cells, ATP at 100 microM and 1 mM induced a transient and a sustained [Ca2+]i increase, respectively. The former, but not the latter, was inhibited by U-73122, indicating that the former was via the P2Y2 receptor and the latter via the P2X7 receptor. When external Cl- was replaced by other anions, the [Ca2+]i increase mediated by the P2Y2 receptor was not changed, but that mediated by the P2X7 receptor varied in the order of aspartate- > methanesulfonate > Cl- > Br > or = I-. In PC12 cells, transient [Ca2+]i increases mediated by the P2Y2 and P2X2 receptors were not affected by various anions. These results suggest that modulation by anions is unique to the P2X7 receptor and does not occur in P2Y2 and P2X2 receptors. This may be because the mechanism of ATP binding to the P2X7 receptor may be different than that to other P2 receptors.
Collapse
Affiliation(s)
- Tomokazu Watano
- Department of Pharmacology, Fukushima Medical University, School of Medicine, Hikarigaoka, Japan
| | | | | | | |
Collapse
|
86
|
Ohsawa K, Mori A, Horie S, Saito T, Okuma Y, Nomura Y, Murayama T. Arachidonic acid release and prostaglandin F2alpha formation induced by phenylarsine oxide in PC12 cells: possible involvement of secretory phospholipase A2 activity. Biochem Pharmacol 2002; 64:117-24. [PMID: 12106612 DOI: 10.1016/s0006-2952(02)01078-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of phospholipase A2 (PLA2) causing arachidonic acid (AA) release is involved in neuronal cell functions. Previously, we reported AA release and prostaglandin F(2alpha) (PGF(2alpha)) formation via activation of cytosolic PLA2 by orthovanadate (Na3VO4), an inhibitor of tyrosine phosphatases, in rat pheochromocytoma PC12 cells. We investigated the effects of phenylarsine oxide (PAO), which reacts with sulfhydryl groups of proteins and thus acts as an inhibitor of tyrosine phosphatases, on AA release and PGF(2alpha) formation in PC12 cells. PAO stimulated [3H]AA release from the prelabeled cells and PGF(2alpha) formation. The PAO responses were dependent upon the concentrations used (10 microM to 0.5mM) and on extracellular CaCl2. [3H]AA release induced by PAO was decreased significantly by inhibition of secretory, but not cytosolic, PLA2. [3H]AA release by PAO was not reversed by washing the cells, but the addition of dithiol compounds such as 2,3-dimercapto-1-propanol decreased the release from the PAO-treated cells. The existence of mRNA of types IB and IIC secretory PLA2 in PC12 cells was detected by reverse transcriptase-polymerase chain reaction using specific primers. Addition of secretory PLA2 from bee venom to the assay mixture stimulated [3H]AA release, and PAO enhanced the response synergistically. The addition of 0.1mM PAO directly enhanced the activity of secretory PLA2 from bee venom. These findings suggest that PAO stimulates AA release and PGF(2alpha) formation probably via activation of secretory PLA2 in PC12 cells.
Collapse
Affiliation(s)
- Keiko Ohsawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
87
|
Watano T, Matsuoka I, Kimura J. Inhibitory effects of metals on ATP-induced current through P2X7 receptor in NG108-15 cells. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 89:296-301. [PMID: 12184736 DOI: 10.1254/jjp.89.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the effects of heavy metal ions on the ATP-induced nonselective cation current through P2X7 receptor (I(NS x P2X7)) in NG108-15 cells using the whole-cell patch-clamp technique. Cu2+ inhibited the I(NS x P2X7) most potently among the metal ions investigated. Other metals such as Ni2+, Cd2+, Zn2+ and Co2+ also inhibited the I(NS x P2X7) in concentration-dependent manners. The order of potency was Cu2+ >> Ni2+ > Cd2+ > Zn2+ > Co2+ with IC50 values of 16 nM, 0.79 microM, 1.2 microM, 3.0 microM and 4.6 microM, respectively. Fe3+ (10 and 100 microM) and Mn2+ (10 microM) did not affect the INS P2X7. A high concentration of Mn2+ (100 microM) slightly inhibited the I(NS x P2X7). When the concentration-response curve of ATP was obtained in the presence of 3 and 10 nM Cu2+, the maximal response but not the EC50 value appeared to be reduced, suggesting that the inhibition is not competitive. These results suggest that under physiological and toxicological conditions, metal ions, such as Cu2+, Ni2+, Cd2+, Zn2+ and Co2+, may modulate P2X7 receptor channels as inhibitors.
Collapse
Affiliation(s)
- Tomokazu Watano
- Department of Pharmacology, Fukushima Medical University, School of Medicine, Hikarigaoka, Japan
| | | | | |
Collapse
|
88
|
Liu R, Bell PD, Peti-Peterdi J, Kovacs G, Johansson A, Persson AEG. Purinergic receptor signaling at the basolateral membrane of macula densa cells. J Am Soc Nephrol 2002; 13:1145-51. [PMID: 11961001 DOI: 10.1097/01.asn.0000014827.71910.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purinergic receptors are important in the regulation of renal hemodynamics; therefore, this study sought to determine if such receptors influence macula densa cell function. Isolated glomeruli containing macula densa cells, with and without the cortical thick ascending limb, were loaded with the Ca(2+) sensitive indicators, Fura Red (confocal microscopy) or fura 2 (conventional video image analysis). Studies were performed on an inverted microscope in a chamber with a flow-through perfusion system. Changes in cytosolic calcium concentration ([Ca(2+)](i)) from exposed macula densa plaques were assessed upon addition of adenosine, ATP, UTP, ADP, or 2-methylthio-ATP (2- MeS-ATP) for 2 min added to the bathing solution. There was no change in [Ca(2+)](i) with addition of adenosine (10(-7) to 10(-3) M). UTP and ATP (10(-4) M) caused [Ca(2+)](i) to increase by 268 +/- 40 nM (n = 21) and 295 +/- 53 nM (n = 21), respectively, whereas in response to 2MesATP and ADP, [Ca(2+)](i) increased by only 67 +/- 13 nM (n = 8) and 93 +/- 36 nM (n = 14), respectively. Dose response curve for ATP (10(-7) to 10(-3) M) added in bath showed an EC(50) of 15 microM. No effect on macula densa [Ca(2+)](i) was seen when ATP was added from the lumen. ATP caused similar increases in macula densa [Ca(2+)](i) in the presence or absence of bath Ca(2+) and addition of 5 mM ethyleneglycotetraacetic acid (EGTA). Suramin (an antagonist of P2X and P2Y receptors) completely inhibited ATP-induced [Ca(2+)](i) dynamics. Also, ATP-Ca(2+) responsiveness was prevented by the phospholipase C inhibitor, U-73122, but not by its inactive analog, U-73343. These results suggest that macula densa cells possess P2Y(2) purinergic receptors on basolateral but not apical membranes and that activation of these receptors results in the mobilization of Ca(2+).
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Physiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
89
|
D'Ambrosi N, Murra B, Cavaliere F, Amadio S, Bernardi G, Burnstock G, Volonté C. Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 2002; 108:527-34. [PMID: 11738265 DOI: 10.1016/s0306-4522(01)00431-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In a previous study we used P2 receptor antagonists to inhibit diverse responses that nerve growth factor (NGF) promotes and coordinates in PC12 cells and we suggested that P2 receptors partake in the NGF signalling cascade. In this paper, we examine the direct role of extracellular P2 receptor agonists as neurotrophic factors. ATP and 2-Cl-ATP promote neurite regeneration after priming PC12 cells with NGF and the effect is dose-dependent, with an EC(50) of about 5 and 3 microM, respectively. The number of cell clumps bearing neurites was maximally induced in day 1 and it was maintained up to about one week by ATP, or up to at least 2 weeks by 2-Cl-ATP. The involvement of P1 receptors or intracellular inosine in these actions was excluded, whereas various antagonists of P2 receptors were inhibitory. Moreover, NGF and ATP caused a direct up-regulation of P2X(2), P2X(3), P2X(4) and P2Y(2), but not P2Y(4) receptor proteins under neurite-regenerating conditions, as well as extracellular signal-regulated kinase (Erk)1-2 tyrosine/threonine phosphorylation and activation. Finally, ATP, 2-Cl-ATP and ATPgammaS enhanced neurite initiation evoked by sub-optimal NGF concentrations and ATP and 2-Cl-ATP fully sustained survival of PC12 cells after serum deprivation. Our results establish that P2 receptor agonists can behave as neurotrophic factors for neuronal cells and suggest a potential interplay between ATP and NGF in the signalling pathways triggered on their target cells.
Collapse
Affiliation(s)
- N D'Ambrosi
- Fondazione Santa Lucia, Via Ardeatina, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
90
|
Amadio S, D'Ambrosi N, Cavaliere F, Murra B, Sancesario G, Bernardi G, Burnstock G, Volonté C. P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology 2002; 42:489-501. [PMID: 11955520 DOI: 10.1016/s0028-3908(01)00197-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study we investigate the presence, modulation and biological function of P2 receptors and extracellular ATP in cultured cerebellar granule neurons. As we demonstrate by RT-PCR and western blotting, both P2X and P2Y receptor subtypes are expressed and furthermore regulated as a function of neuronal maturation. In early primary cultures, mRNA for most of the P2 receptor subtypes, except P2X(6), are found, while in older cultures only P2X(3), P2Y(1) and P2Y(6) mRNA persist. In contrast, P2 receptor proteins are more prominent in mature neurons, with the exception of P2Y(1). We also report that extracellular ATP acts as a cell death mediator for fully differentiated and mature granule neurons, for dissociated striatal primary cells and hippocampal organotypic cultures, inducing both apoptotic and necrotic features of degeneration. ATP causes cell death with EC(50) in the 20-50 microM range within few minutes of exposure and with a time lapse of at most two hours. Additional agonists for P2 receptors induce toxic effects, whereas selected antagonists are protective. Cellular swelling, lactic dehydrogenase release and nuclei fragmentation are among the features of ATP-evoked cell death, which also include direct P2 receptor modulation. Comparably to P2 receptor antagonists previously shown preventing glutamate-toxicity, here we report that competitive and non-competitive NMDA receptor antagonists inhibit the detrimental consequences of extracellular ATP. Due to the massive extracellular release of purine nucleotides and nucleosides often occurring during a toxic insult, our data indicate that extracellular ATP can now be included among the potential causes of CNS neurodegenerative events.
Collapse
Affiliation(s)
- S Amadio
- Fondazione Santa Lucia, Via Ardeatina 354, 00179, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Keogh RJ, Houliston RA, Wheeler-Jones CPD. Human endothelial Pyk2 is expressed in two isoforms and associates with paxillin and p130Cas. Biochem Biophys Res Commun 2002; 290:1470-7. [PMID: 11820787 DOI: 10.1006/bbrc.2002.6350] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proline-rich kinase 2 (Pyk2) is a non-receptor tyrosine kinase belonging to the focal adhesion kinase family. Many stimuli can initiate phosphorylation and activation of Pyk2 but its specific activators and downstream targets are still largely unidentified and little is known of the mechanisms or role of Pyk2 activation in endothelial cells. In human umbilical vein endothelial cells (HUVEC), we show that (1) Pyk2 is phosphorylated on tyrosine residues 402, 580, and 881 in response to stimulation with G-protein-coupled receptor agonists (GPCAs), vascular endothelial growth factor, and the cytokine interleukin-1alpha; (2) HUVEC express mRNA for two isoforms of Pyk2 which do not appear to be regulated transcriptionally by GPCAs, growth factors, or cytokines; and (3) Pyk2 is localised to the cytosol and associates through its C-terminus with the cytoskeletal protein paxillin and the adapter molecule p130Cas in phosphorylation-independent interactions. These results demonstrate that Pyk2 is rapidly activated and associates with structural and adapter proteins suggesting that it is an important kinase involved in mediating acute responses in endothelium.
Collapse
Affiliation(s)
- Rosemary J Keogh
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | | | | |
Collapse
|
92
|
Unterberger U, Moskvina E, Scholze T, Freissmuth M, Boehm S. Inhibition of adenylyl cyclase by neuronal P2Y receptors. Br J Pharmacol 2002; 135:673-84. [PMID: 11834615 PMCID: PMC1573178 DOI: 10.1038/sj.bjp.0704514] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
P2Y receptors inhibiting adenylyl cyclase have been found in blood platelets, glioma cells, and endothelial cells. In platelets and glioma cells, these receptors were identified as P2Y(12). Here, we have used PC12 cells to search for adenylyl cyclase inhibiting P2Y receptors in a neuronal cellular environment. ADP and ATP (0.1 - 100 microM) left basal cyclic AMP accumulation unaltered, but reduced cyclic AMP synthesis stimulated by activation of endogenous A(2A) or recombinant beta(2) receptors. Forskolin-dependent cyclic AMP production was reduced by <or=1 microM and enhanced by 10 - 100 microM ADP; this latter effect was turned into an inhibition when A(2A) receptors were blocked. The nucleotide inhibition of cyclic AMP synthesis was not altered when P2X receptors were blocked, but abolished by pertussis toxin. The rank order of agonist potencies for the reduction of cyclic AMP was (IC(50) values): 2-methylthio-ADP (0.12 nM)=2-methylthio-ATP (0.13 nM)>ADPbetaS (71 nM)>ATP (164 nM)=ADP (244 nM). The inhibition by ADP was not antagonized by suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid, or adenosine-3'-phosphate-5'-phosphate, but attenuated by reactive blue 2, ATP(alpha)S, and 2-methylthio-AMP. RT - PCR demonstrated the expression of P2Y(2), P2Y(4), P2Y(6), and P2Y(12), but not P2Y(1), receptors in PC12 cells. In Northern blots, only P2Y(2) and P2Y(12) were detectable. Differentiation with NGF did not alter these hybridization signals and left the nucleotide inhibition of adenylyl cyclase unchanged. We conclude that P2Y(12) receptors are expressed in neuronal cells and inhibit adenylyl cyclase activity.
Collapse
Affiliation(s)
- Ursula Unterberger
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Eugenia Moskvina
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Thomas Scholze
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Stefan Boehm
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
- Author for correspondence:
| |
Collapse
|
93
|
Hou M, Harden TK, Kuhn CM, Baldetorp B, Lazarowski E, Pendergast W, Möller S, Edvinsson L, Erlinge D. UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y(6) receptors. Am J Physiol Heart Circ Physiol 2002; 282:H784-92. [PMID: 11788430 DOI: 10.1152/ajpheart.00997.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitogenic effects of the extracellular nucleotides ATP and UTP are mediated by P2Y(1), P2Y(2), and P2Y(4) receptors. However, it has not been possible to examine the highly expressed UDP-sensitive P2Y(6) receptor because of the lack of stable, selective agonists. In rat aorta smooth muscle cells (vascular smooth muscle cells; VSMC), UDP and UTP stimulated (3)H-labeled thymidine incorporation with similar pEC(50) values (5.96 and 5.69). Addition of hexokinase did not reduce the mitogenic effect of UDP. In cells transfected with P2Y receptors the stable pyrimidine agonist uridine 5'-O-(2-thiodiphosphate) (UDPbetaS) was specific for P2Y(6) with no effect on P2Y(1), P2Y(2), or P2Y(4) receptors. UDPbetaS stimulated [(3)H]thymidine and [(3)H]leucine incorporation and increased cell number in VSMC. Flow cytometry demonstrated that UDP stimulated cell cycle progression to both the S and G(2) phases. The intracellular signal pathways were dependent on phospholipase C, possibly protein kinase C-delta, and a tyrosine kinase pathway but independent of G(i) proteins, eicosanoids, and protein kinase A. The half-life of P2Y(6) receptor mRNA was <1 h by competitive RT-PCR. The mitogen-activated protein kinase kinase inhibitor PD-098059 significantly suppressed, whereas ATP and interleukin-1beta upregulated, expression of P2Y(6) receptor mRNA. The results demonstrate that UDP stimulates mitogenesis through activation of P2Y(6) receptors and that the receptor is regulated by factors important in the development of vascular disease.
Collapse
Affiliation(s)
- Mingyan Hou
- Division of Experimental Vascular Research, Department of Medicine, University Hospital, SE-221 85 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lee CS, Bae YS, Lee SD, Suh PG, Ryu SH. ATP-induced mitogenesis is modulated by phospholipase D2 through extracellular signal regulated protein kinase dephosphorylation in rat pheochromocytoma PC12 cells. Neurosci Lett 2001; 313:117-20. [PMID: 11682141 DOI: 10.1016/s0304-3940(01)02233-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular ATP has been known to have many functions as a fast transmitter, and a co-transmitter, and to have morphogenic and mitogenic activity in neuronal cells. Although it was reported that ATP activates phospholipase D (PLD), the role of PLD versus the ATP function was unclear in neuronal cells. In this study, we investigated the role of PLD on the ATP-induced extracellular signal regulated protein kinase (ERK) activation and mitogenic effect in rat pheochromocytoma PC12 cells. In these cells ATP caused PLD2 activation and ERK phosphorylation, which was dramatically reduced by wild-type PLD2-overexpression but not by lipase-inactive-mutant PLD2-overexpression. The accumulation of phosphatidic acid (PA) by preincubating PC12 cells with propranolol (an inhibitor of PA phosphohydrolase) also decreased the ERK phosphorylation. Inhibition of phosphatases by okadaic acid or pervanadate completely blocked PLD2-dependent ERK dephosphorylation. In addition, ATP-stimulated thymidine incorporation was reduced by the overexpression of wild-type PLD2, but not by the overexpression of lipase-inactive-mutant PLD2. Okadaic acid pretreatment overcame the decrease of ATP-induced thymidine incorporation by PLD2 overexpression. Taken together, we suggest that PLD2 activity might play a negative role in ATP-induced ERK phosphorylation and mitogenic signal possibly through phosphatases.
Collapse
Affiliation(s)
- C S Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, 790-784, Pohang, South Korea
| | | | | | | | | |
Collapse
|
95
|
Chaulet H, Desgranges C, Renault MA, Dupuch F, Ezan G, Peiretti F, Loirand G, Pacaud P, Gadeau AP. Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin. Circ Res 2001; 89:772-8. [PMID: 11679406 DOI: 10.1161/hh2101.098617] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Migration and proliferation of arterial smooth muscle cells (SMCs) play a prominent role in the development of atherosclerotic plaques and restenosis lesions. Most of the growth-regulatory molecules potentially involved in these pathological conditions also demonstrate chemotactic properties. Extracellular purine and pyrimidine nucleotides have been shown to induce cell cycle progression and to elicit growth of cultured vascular SMCs. Moreover, the P2Y(2) ATP/UTP receptor was overexpressed in intimal thickening, suggesting a role of these nucleotides in vascular remodeling. Using the Transwell system migration assay, we demonstrate that extracellular ATP, UTP, and UDP exhibit a concentration-dependent chemotactic effect on cultured rat aortic SMCs. UTP, the most powerful nucleotide inducer of migration, elicited significant responses from 10 nmol/L. In parallel, UTP increased osteopontin expression dose-dependently. The blockade of osteopontin or its integrin receptors alpha(v)beta(3)/beta(5) by specific antibodies or antagonists inhibited UTP-induced migration. Moreover, the blockade of ERK-1/ERK-2 MAP kinase or rho protein pathways led to the inhibition of both UTP-induced osteopontin increase and migration, demonstrating the central role of osteopontin in this process. Taken together, these results suggest that extracellular nucleotides, and particularly UTP, can induce arterial SMC migration via the action of osteopontin.
Collapse
MESH Headings
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/pharmacology
- Animals
- Aorta
- Calcium/metabolism
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Diffusion Chambers, Culture
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Extracellular Space/metabolism
- Intracellular Signaling Peptides and Proteins
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nucleotides/pharmacology
- Oligopeptides/pharmacology
- Osteopontin
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Rats
- Rats, Wistar
- Sialoglycoproteins/metabolism
- Uridine Diphosphate/pharmacology
- Uridine Triphosphate/pharmacology
- rho-Associated Kinases
- rhoA GTP-Binding Protein/metabolism
Collapse
|
96
|
Grobben B, Claes P, Van Kolen K, Roymans D, Fransen P, Sys SU, Slegers H. Agonists of the P2Y(AC)-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 2001; 78:1325-38. [PMID: 11579141 DOI: 10.1046/j.1471-4159.2001.00524.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that an ecto-NPPase modulates the ATP- and ADP-mediated P2Y(AC)-receptor activation in rat C6 glioma. In the present study, 2MeSADP and Ap(3)A induced no detectable PI turnover and were identified as specific agonists of the P2Y(AC)-receptor with EC(50) values of 250 +/- 37 pM and 1 +/- 0.5 microM, respectively. P2Y(AC)-receptor stimulation increased MAP kinase (ERK1/2) activation that returned to the basal level 4 h after stimulation and was correlated with a gradual desensitization of the P2Y(AC)-purinoceptor. The purinoceptor antagonists DIDS and RB2 blocked MAP kinase activation. An IP(3)-independent Ca(2+)-influx was observed after P2Y(AC)-receptor activation. Inhibition of this influx by Ca(2+)-chelation, did not affect MAP kinase activation. Pertussis toxin, toxin B, selective PKC-inhibitors and a specific MEK-inhibitor inhibited the 2MeSADP- and Ap(3)A-induced MAP kinase activation. In addition, transfection with dominant negative RhoA(Asn19) rendered C6 cells insensitive to P2Y(AC)-receptor-mediated MAP kinase activation whereas dominant negative ras was without effect. Immunoprecipitation experiments indicated a significant increase in the phosphorylation of raf-1 after P2Y(AC)-receptor activation. We may conclude that P2Y(AC)-purinoceptor agonists activate MAP kinase through a G(i)-RhoA-PKC-raf-MEK-dependent, but ras- and Ca(2+)-independent cascade.
Collapse
Affiliation(s)
- B Grobben
- Department of Biochemistry, Cellular Biochemistry, Universiteit Antwerpen, Universitaire Instelling Antwerpen, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
97
|
Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K. Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 2001; 78:1339-49. [PMID: 11579142 DOI: 10.1046/j.1471-4159.2001.00514.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microglia play various important roles in the CNS via the synthesis of cytokines. The ATP-evoked production of interleukin-6 (IL-6) and its intracellular signals were examined using a mouse microglial cell line, MG-5. ATP, but not its metabolites, produced IL-6 in a concentration-dependent manner. Although ATP activated two mitogen-activated protein kinases, i.e. p38 and extracellular signal-regulated protein kinase, only p38 was involved in the IL-6 induction. However, the activation of p38 was not sufficient for the IL-6 induction because 2'- and 3'-O-(4-benzoylbenzoyl) ATP, an agonist to P2X7 receptors, failed to produce IL-6 despite the fact that it activated p38. Unlike in other cytokines in microglial cells, P2Y rather than P2X7 receptors seem to have a major role in the IL-6 production by the cells. The ATP-evoked IL-6 production was attenuated by Gö6976, an inhibitor of Ca(2+)-dependent protein kinase C (PKC). The P2Y receptor responsible for these responses was insensitive to pertussis toxin (PTX) and was linked to phospholipase C. Taken together, ATP acting on PTX-insensitive P2Y receptors activates p38 and Ca(2+)-dependent PKC, thereby resulting in the mRNA expression and release of IL-6 in MG-5. This is a novel pathway for the induction of cytokines in microglia.
Collapse
Affiliation(s)
- Y Shigemoto-Mogami
- Division of Pharmacology, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Claes P, Grobben B, Van Kolen K, Roymans D, Slegers H. P2Y(AC)(-)-receptor agonists enhance the proliferation of rat C6 glioma cells through activation of the p42/44 mitogen-activated protein kinase. Br J Pharmacol 2001; 134:402-8. [PMID: 11564659 PMCID: PMC1572964 DOI: 10.1038/sj.bjp.0704271] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Extracellularly added P(1),P(3)-di(adenosine-5') triphosphate (Ap(3)A), P(1),P(4)-di(adenosine-5') tetraphosphate (Ap(4)A), ATP, ADP, AMP and adenosine are growth inhibitory for rat C6 glioma cells. Analysis of nucleotide hydrolysis and the use of nucleotidase inhibitors demonstrated that the latter inhibition is due to hydrolysis of the nucleotides to adenosine. 2. Agonists of the P2Y(AC)(-)-receptor enhance the growth of C6 cells if their hydrolysis to adenosine is inhibited by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). In these conditions, the potency to stimulate cell growth parallels the ranking of the receptor agonists, i.e. 2-methylthioadenosine-5'-diphosphate (2MeSADP)>Ap(3)A>Ap(4)A. ATP and ADP are still hydrolysed in the presence of PPADS and have no proliferative effect on C6 cells. 3. The enhanced growth is due to a P2Y(AC)(-)-receptor-mediated activation of p42/44 mitogen-activated protein kinase (MAPK) as shown by immunoblotting and protein kinase assays for active MAPK and the use of the MAPK/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059. 4. The UTP-induced enhancement of the growth of C6 cells is due to activation of MAPK by a PPADS sensitive nucleotide receptor. 5. In conclusion, the effect of nucleotides on the growth of C6 cells is determined by ecto-nucleotidases and by activation of nucleotide receptors. Hydrolysis of nucleotides to adenosine induces growth inhibition while inhibition of the hydrolysis of agonists of the P2Y(AC)(-)-receptor enhances cell growth by activation of MAPK.
Collapse
Affiliation(s)
- Patrik Claes
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
| | - Bert Grobben
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
| | - Kristof Van Kolen
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
| | - Dirk Roymans
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
| | - Herman Slegers
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
- Author for correspondence:
| |
Collapse
|
99
|
Weisman G, Griffin K, Santiago-Pérez L, Liu J, Krugh B, Flores R, Chorna N, Santos-Berríos C, Vivas-Mejía P, Garrad R, González F, Erb L. P2Y2receptors regulate multiple signal transduction pathways in monocytic cells. Drug Dev Res 2001. [DOI: 10.1002/ddr.1187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
100
|
Abstract
Lung surfactant is synthesized in the alveolar type II cell. Its lipids and hydrophobic proteins (SP-B and SP-C) are stored in lamellar bodies and secreted by regulated exocytosis. In contrast, the hydrophilic proteins (SP-A and SP-D) appear to be secreted independently of lamellar bodies. Regulation of surfactant secretion is mediated by at least three distinct signaling mechanisms: activation of adenylate cyclase with formation of cAMP and activation of cAMP-dependent protein kinase; activation of protein kinase C; and a Ca(2+)-regulated mechanism that likely results in the activation of Ca(2+)-calmodulin-dependent protein kinase. These signaling mechanisms are activated by a variety of agonists, some of which may have a physiological role. ATP is one such agent and it activates all three signaling mechanisms. There is increasing information on the identity of several of the signaling proteins involved in surfactant secretion although others remain to be established. In particular the identity of the phospholipase C, protein kinase C and phospholipase D isomers expressed in the type II cell and/or involved in surfactant secretion has been established. Distal steps in the secretory pathway beyond protein kinase activation as well as the physiological regulation of surfactant secretion, are major issues that need to be addressed.
Collapse
Affiliation(s)
- S A Rooney
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, P.O. Box 208064, New Haven, CT 06520-8064, USA.
| |
Collapse
|