51
|
Naigeon M, Roulleaux Dugage M, Danlos FX, Boselli L, Jouniaux JM, de Oliveira C, Ferrara R, Duchemann B, Berthot C, Girard L, Flippot R, Albiges L, Farhane S, Saulnier P, Lacroix L, Griscelli F, Roman G, Hulett T, Marabelle A, Cassard L, Besse B, Chaput N. Human virome profiling identified CMV as the major viral driver of a high accumulation of senescent CD8 + T cells in patients with advanced NSCLC. SCIENCE ADVANCES 2023; 9:eadh0708. [PMID: 37939189 PMCID: PMC10631735 DOI: 10.1126/sciadv.adh0708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Circulating senescent CD8+ T (T8sen) cells are characterized by a lack of proliferative capacities but retain cytotoxic activity and have been associated to resistance to immunotherapy in patients with advanced non-small cell lung cancer (aNSCLC). We aimed to better characterize T8sen and to determine which factors were associated with their accumulation in patients with aNSCLC. Circulating T8sen cells were characterized by a higher expression of SA-βgal and the transcription factor T-bet, confirming their senescent status. Using whole virome profiling, cytomegalovirus (CMV) was the only virus associated with T8sen. CMV was necessary but not sufficient to explain high accumulation of T8sen (T8senhigh status). In CMV+ patients, the proportion of T8sen cells increased with cancer progression. Last, CMV-induced T8senhigh phenotype but not CMV seropositivity itself was associated with worse progression-free and overall survival in patients treated with anti-PD-(L)1 therapy but not with chemotherapy. Overall, CMV is the unique viral driver of T8sen-driven resistance to anti-PD-(L)1 antibodies in patients with aNSCLC.
Collapse
Affiliation(s)
- Marie Naigeon
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Matthieu Roulleaux Dugage
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Service d’Oncologie Médicale, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - François-Xavier Danlos
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015 and Centre d’Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | - Lisa Boselli
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Caroline de Oliveira
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Roberto Ferrara
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Boris Duchemann
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Département d’oncologie thoracique et médicale, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Caroline Berthot
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Lou Girard
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Ronan Flippot
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Laurence Albiges
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Siham Farhane
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015 and Centre d’Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | | | - Ludovic Lacroix
- AMMICa, UAR 3655/US23, Gustave Roussy, Villejuif, France
- Département de Biologie Médicale et Pathologie Médicales, Gustave Roussy, Villejuif, France
| | - Frank Griscelli
- Département de Biologie Médicale et Pathologie Médicales, Gustave Roussy, Villejuif, France
| | - Gabriel Roman
- CDI Laboratories Inc., 1 N. Haven Street, Suite B001, Baltimore, MD 21224, USA
| | - Tyler Hulett
- CDI Laboratories Inc., 1 N. Haven Street, Suite B001, Baltimore, MD 21224, USA
| | - Aurélien Marabelle
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015 and Centre d’Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | - Lydie Cassard
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| |
Collapse
|
52
|
Zhu J, Liu S, Fang J, Cui Z, Wang B, Wang Y, Liu L, Wang Q, Cao X. Enzymolysis-based RNA pull-down identifies YTHDC2 as an inhibitor of antiviral innate response. Cell Rep 2023; 42:113192. [PMID: 37776518 DOI: 10.1016/j.celrep.2023.113192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/06/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023] Open
Abstract
The innate immune response must be terminated in a timely manner at the late stage of infection to prevent unwanted inflammation. The role of m6A-modified RNAs and their binding partners in this process is not well known. Here, we develop an enzymolysis-based RNA pull-down (eRP) method that utilizes the immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) to fish out m6A-modified RNA-associated proteins. We apply eRP to capture the methylated single-stranded RNA (ssRNA) probe-associated proteins and identify YT521-B homology domain-containing 2 (YTHDC2) as the m6A-modified interferon β (IFN-β) mRNA-binding protein. YTHDC2, induced in macrophages at the late stage of virus infection, recruits IFN-stimulated exonuclease ISG20 (IFN-stimulated exonuclease gene 20) to degrade IFN-β mRNA, consequently inhibiting antiviral innate immune response. In vitro and in vivo deficiency of YTHDC2 increases IFN-β production at the late stage of viral infection. Our findings establish an eRP method to effectively identify RNA-protein interactions and add mechanistic insight to the termination of innate response for maintaining homeostasis.
Collapse
Affiliation(s)
- Jun Zhu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuo Liu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jiali Fang
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zenghui Cui
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bingjing Wang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuzhou Wang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Chinese Academy of Medical Sciences Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
53
|
Im SJ, Obeng RC, Nasti TH, McManus D, Kamphorst AO, Gunisetty S, Prokhnevska N, Carlisle JW, Yu K, Sica GL, Cardozo LE, Gonçalves ANA, Kissick HT, Nakaya HI, Ramalingam SS, Ahmed R. Characteristics and anatomic location of PD-1 +TCF1 + stem-like CD8 T cells in chronic viral infection and cancer. Proc Natl Acad Sci U S A 2023; 120:e2221985120. [PMID: 37782797 PMCID: PMC10576122 DOI: 10.1073/pnas.2221985120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/31/2023] [Indexed: 10/04/2023] Open
Abstract
CD8 T cells play an essential role in antitumor immunity and chronic viral infections. Recent findings have delineated the differentiation pathway of CD8 T cells in accordance with the progenitor-progeny relationship of TCF1+ stem-like and Tim-3+TCF1- more differentiated T cells. Here, we investigated the characteristics of stem-like and differentiated CD8 T cells isolated from several murine tumor models and human lung cancer samples in terms of phenotypic and transcriptional features as well as their location compared to virus-specific CD8 T cells in the chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. We found that CD8 tumor-infiltrating lymphocytes (TILs) in both murine and human tumors exhibited overall similar phenotypic and transcriptional characteristics compared to corresponding subsets in the spleen of chronically infected mice. Moreover, stem-like CD8 TILs exclusively responded and produced effector-like progeny CD8 T cells in vivo after antigenic restimulation, confirming their lineage relationship and the proliferative potential of stem-like CD8 TILs. Most importantly, similar to the preferential localization of PD-1+ stem-like CD8 T cells in T cell zones of the spleen during chronic LCMV infection, we found that the PD-1+ stem-like CD8 TILs in lung cancer samples are preferentially located not in the tumor parenchyma but in tertiary lymphoid structures (TLSs). The stem-like CD8 T cells are present in TLSs located within and at the periphery of the tumor, as well as in TLSs closely adjacent to the tumor parenchyma. These findings suggest that TLSs provide a protective niche to support the quiescence and maintenance of stem-like CD8 T cells in the tumor.
Collapse
Affiliation(s)
- Se Jin Im
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon16419, Republic of Korea
| | - Rebecca C. Obeng
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Tahseen H. Nasti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Daniel McManus
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Alice O. Kamphorst
- Department of Immunology and Immunotherapy, Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Sivaram Gunisetty
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Nataliya Prokhnevska
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Urology, Emory University School of Medicine, Atlanta, GA30322
| | - Jennifer W. Carlisle
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA30322
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322
| | - Ke Yu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
| | - Gabriel L. Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | | | | | - Haydn T. Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Urology, Emory University School of Medicine, Atlanta, GA30322
| | | | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA30322
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
54
|
Jung KI, McKenna S, Vijayamahantesh V, He Y, Hahm B. Protective versus Pathogenic Type I Interferon Responses during Virus Infections. Viruses 2023; 15:1916. [PMID: 37766322 PMCID: PMC10538102 DOI: 10.3390/v15091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Following virus infections, type I interferons are synthesized to induce the expression of antiviral molecules and interfere with virus replication. The importance of early antiviral type I IFN response against virus invasion has been emphasized during COVID-19 as well as in studies on the microbiome. Further, type I IFNs can directly act on various immune cells to enhance protective host immune responses to viral infections. However, accumulating data indicate that IFN responses can be harmful to the host by instigating inflammatory responses or inducing T cell suppression during virus infections. Also, inhibition of lymphocyte and dendritic cell development can be caused by type I IFN, which is independent of the traditional signal transducer and activator of transcription 1 signaling. Additionally, IFNs were shown to impair airway epithelial cell proliferation, which may affect late-stage lung tissue recovery from the infection. As such, type I IFN-virus interaction research is diverse, including host antiviral innate immune mechanisms in cells, viral strategies of IFN evasion, protective immunity, excessive inflammation, immune suppression, and regulation of tissue repair. In this report, these IFN activities are summarized with an emphasis placed on the functions of type I IFNs recently observed during acute or chronic virus infections.
Collapse
Affiliation(s)
| | | | | | | | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA; (K.I.J.); (S.M.); (V.V.); (Y.H.)
| |
Collapse
|
55
|
Qin Z, Liu H, Sheng Q, Dan J, Wu X, Li H, Wang L, Zhang S, Yuan C, Yuan H, Wang H, Zhou R, Luo Y, Xie X. Mutant p53 leads to low-grade IFN-I-induced inflammation and impairs cGAS-STING signalling in mice. Eur J Immunol 2023; 53:e2250211. [PMID: 37377275 DOI: 10.1002/eji.202250211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and environmental stimulations, resulting in chronic inflammation and even carcinogenesis. However, the connection between IFN-I and p53 mutation is poorly understood. Here, we investigated IFN-I status in the context of mutant p53 (p53N236S , p53S). We observed significant cytosolic double-stranded DNA (dsDNA) derived from nuclear heterochromatin in p53S cells, along with an increased expression of IFN-stimulated genes. Further study revealed that p53S promoted cyclic GMP-AMP synthase (cGAS) and IFN-regulatory factor 9 (IRF9) expression, thus activating the IFN-I pathway. However, p53S/S mice were more susceptible to herpes simplex virus 1 infection, and the cGAS-stimulator of IFN genes (STING) pathway showed a decline trend in p53S cells in response to poly(dA:dT) accompanied with decreased IFN-β and IFN-stimulated genes, whereas the IRF9 increased in response to IFN-β stimulation. Our results illustrated the p53S mutation leads to low-grade IFN-I-induced inflammation via consistent low activation of the cGAS-STING-IFN-I axis, and STAT1-IRF9 pathway, therefore, impairs the protective cGAS-STING signalling and IFN-I response encountered with exogenous DNA attack. These results suggested the dual molecular mechanisms of p53S mutation in inflammation regulation. Our results could be helping in further understanding of mutant p53 function in chronic inflammation and provide information for developing new therapeutic strategies for chronic inflammatory diseases or cancer.
Collapse
Affiliation(s)
- Ziyi Qin
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huan Liu
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qihuan Sheng
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juhua Dan
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoming Wu
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao Li
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lulin Wang
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shuojie Zhang
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chao Yuan
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hongjun Yuan
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hui Wang
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruoyu Zhou
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Luo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoli Xie
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
56
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
57
|
Reghupaty SC, Kanwal S, Mendoza RG, Davis E, Li H, Lai Z, Dozmorov MG, Faison MO, Siddiqui RA, Sarkar D. Dysregulation of Type I Interferon (IFN-I) Signaling: A Potential Contributor to Racial Disparity in Hepatocellular Carcinoma (HCC). Cancers (Basel) 2023; 15:4283. [PMID: 37686559 PMCID: PMC10486472 DOI: 10.3390/cancers15174283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
African-American (AA)/Black hepatocellular carcinoma (HCC) patients have increased incidence and decreased survival rates compared to non-Hispanic (White) patients, the underlying molecular mechanism of which is not clear. Analysis of existing RNA-sequencing (RNA-seq) data in The Cancer Genome Atlas (TCGA) and in-house RNA-sequencing of 14 White and 18 AA/Black HCC patients revealed statistically significant activation of type I interferon (IFN-I) signaling pathway in AA/Black patients. A four-gene signature of IFN-stimulated genes (ISGs) showed increased expression in AA/Black HCC tumors versus White. HCC is a disease of chronic inflammation, and IFN-Is function as pro-inflammatory cytokines. We tested efficacy of ginger extract (GE), a dietary compound known for anti-inflammatory properties, on HCC cell lines derived from White (HepG2), AA/Black (Hep3B and O/20) and Asian (HuH-7) patients. GE exhibited a significantly lower IC50 on Hep3B and O/20 cells than on HepG2 and HuH-7 cells. The GE treatment inhibited the activation of downstream mediators of IFN-I signaling pathways and expression of ISGs in all four HCC cells. Our data suggest that ginger can potentially attenuate IFN-I-mediated signaling pathways in HCC, and cells from AA/Black HCC patients may be more sensitive to ginger. AA/Black HCC patients might benefit from a holistic diet containing ginger.
Collapse
Affiliation(s)
| | - Sadia Kanwal
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Rachel G. Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Eva Davis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Haiwen Li
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Mikhail G. Dozmorov
- Department of Biostatistics and Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Milton Omar Faison
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA;
| | - Rafat Ali Siddiqui
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
58
|
Moreau TRJ, Bondet V, Rodero MP, Duffy D. Heterogeneity and functions of the 13 IFN-α subtypes - lucky for some? Eur J Immunol 2023; 53:e2250307. [PMID: 37367434 DOI: 10.1002/eji.202250307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Type I IFNs are critical for host responses to viral infection and are also implicated in the pathogenesis of multiple autoimmune diseases. Multiple subtypes exist within the type I IFN family, in particular 13 distinct IFN-α genes, which signal through the same heterodimer receptor that is ubiquitously expressed by mammalian cells. Both evolutionary genetic studies and functional antiviral assays strongly suggest differential functions and activity between the 13 IFN-α subtypes, yet we still lack a clear understanding of these different roles. This review summarizes the evidence from studies describing differential functions of IFN-α subtypes and highlights potential reasons for discrepancies between the reports. We examine both acute and chronic viral infection, as well as autoimmunity, and integrate a more recent awareness of the importance of anti-IFN-α autoantibodies in shaping the type I IFN responses in these different conditions.
Collapse
Affiliation(s)
- Thomas R J Moreau
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathieu P Rodero
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
59
|
Harker JA, Greene TT, Barnett BE, Bao P, Dolgoter A, Zuniga EI. IL-6 and IL-27 play both distinct and redundant roles in regulating CD4 T-cell responses during chronic viral infection. Front Immunol 2023; 14:1221562. [PMID: 37583704 PMCID: PMC10424726 DOI: 10.3389/fimmu.2023.1221562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
The IL-6 cytokine family signals through the common signal transduction molecule gp130 combined with a cytokine-specific receptor. Gp130 signaling on CD4 T cells is vital in controlling chronic infection of mice with lymphocytic choriomeningitis virus clone 13 (LCMV Cl13), but the precise role of individual members of the IL-6 cytokine family is not fully understood. Transcriptional analysis highlighted the importance of gp130 signaling in promoting key processes in CD4 T cells after LCMV Cl13 infection, particularly genes associated with T follicular helper (Tfh) cell differentiation and IL-21 production. Further, Il27r-/-Il6ra-/- mice failed to generate antibody or CD8 T-cell immunity and to control LCMV Cl13. Transcriptomics and phenotypic analyses of Il27r-/-Il6ra-/- Tfh cells revealed that IL-6R and IL-27R signaling was required to activate key pathways within CD4 T cells. IL-6 and IL-27 signaling has distinct and overlapping roles, with IL-6 regulating Tfh differentiation, IL-27 regulating CD4 T cell survival, and both redundantly promoting IL-21.
Collapse
Affiliation(s)
- James A. Harker
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Trever T. Greene
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Burton E. Barnett
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Phuc Bao
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Aleksandr Dolgoter
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Elina I. Zuniga
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
60
|
Jung IY, Bartoszek RL, Rech AJ, Collins SM, Ooi SK, Williams EF, Hopkins CR, Narayan V, Haas NB, Frey NV, Hexner EO, Siegel DL, Plesa G, Porter DL, Cantu A, Everett JK, Guedan S, Berger SL, Bushman FD, Herbst F, Fraietta JA. Type I Interferon Signaling via the EGR2 Transcriptional Regulator Potentiates CAR T Cell-Intrinsic Dysfunction. Cancer Discov 2023; 13:1636-1655. [PMID: 37011008 PMCID: PMC10330003 DOI: 10.1158/2159-8290.cd-22-1175] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown promise in treating hematologic cancers, but resistance is common and efficacy is limited in solid tumors. We found that CAR T cells autonomously propagate epigenetically programmed type I interferon signaling through chronic stimulation, which hampers antitumor function. EGR2 transcriptional regulator knockout not only blocks this type I interferon-mediated inhibitory program but also independently expands early memory CAR T cells with improved efficacy against liquid and solid tumors. The protective effect of EGR2 deletion in CAR T cells against chronic antigen-induced exhaustion can be overridden by interferon-β exposure, suggesting that EGR2 ablation suppresses dysfunction by inhibiting type I interferon signaling. Finally, a refined EGR2 gene signature is a biomarker for type I interferon-associated CAR T cell failure and shorter patient survival. These findings connect prolonged CAR T cell activation with deleterious immunoinflammatory signaling and point to an EGR2-type I interferon axis as a therapeutically amenable biological system. SIGNIFICANCE To improve CAR T cell therapy outcomes, modulating molecular determinants of CAR T cell-intrinsic resistance is crucial. Editing the gene encoding the EGR2 transcriptional regulator renders CAR T cells impervious to type I interferon pathway-induced dysfunction and improves memory differentiation, thereby addressing major barriers to progress for this emerging class of cancer immunotherapies. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert L. Bartoszek
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J. Rech
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra M. Collins
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Soon-Keat Ooi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik F. Williams
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin R. Hopkins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek Narayan
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi B. Haas
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noelle V. Frey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth O. Hexner
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L. Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David L. Porter
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Guedan
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Shelley L. Berger
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lead Contact
| |
Collapse
|
61
|
Jin ML, Jeong KW. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med 2023; 55:1333-1347. [PMID: 37394580 PMCID: PMC10394043 DOI: 10.1038/s12276-023-01014-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 07/04/2023] Open
Abstract
The development and immune evasion of cancer stem cells (CSCs) limit the efficacy of currently available anticancer therapies. Recent studies have shown that epigenetic reprogramming regulates the expression of characteristic marker proteins and tumor plasticity associated with cancer cell survival and metastasis in CSCs. CSCs also possess unique mechanisms to evade external attacks by immune cells. Hence, the development of new strategies to restore dysregulated histone modifications to overcome cancer resistance to chemotherapy and immunotherapy has recently attracted attention. Restoring abnormal histone modifications can be an effective anticancer strategy to increase the therapeutic effect of conventional chemotherapeutic and immunotherapeutic drugs by weakening CSCs or by rendering them in a naïve state with increased sensitivity to immune responses. In this review, we summarize recent findings regarding the role of histone modifiers in the development of drug-resistant cancer cells from the perspectives of CSCs and immune evasion. In addition, we discuss attempts to combine currently available histone modification inhibitors with conventional chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
62
|
Bénard A, Mittelstädt A, Klösch B, Glanz K, Müller J, Schoen J, Nüse B, Brunner M, Naschberger E, Stürzl M, Mattner J, Muñoz LE, Sohn K, Grützmann R, Weber GF. IL-3 orchestrates ulcerative colitis pathogenesis by controlling the development and the recruitment of splenic reservoir neutrophils. Cell Rep 2023; 42:112637. [PMID: 37300834 DOI: 10.1016/j.celrep.2023.112637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/03/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a global health issue with an increasing incidence. Although the pathogenesis of IBDs has been investigated intensively, the etiology of IBDs remains enigmatic. Here, we report that interleukin-3 (Il-3)-deficient mice are more susceptible and exhibit increased intestinal inflammation during the early stage of experimental colitis. IL-3 is locally expressed in the colon by cells harboring a mesenchymal stem cell phenotype and protects by promoting the early recruitment of splenic neutrophils with high microbicidal capability into the colon. Mechanistically, IL-3-dependent neutrophil recruitment involves CCL5+ PD-1high LAG-3high T cells, STAT5, and CCL20 and is sustained by extramedullary splenic hematopoiesis. During acute colitis, Il-3-/- show, however, increased resistance to the disease as well as reduced intestinal inflammation. Altogether, this study deepens our understanding of IBD pathogenesis, identifies IL-3 as an orchestrator of intestinal inflammation, and reveals the spleen as an emergency reservoir for neutrophils during colonic inflammation.
Collapse
Affiliation(s)
- Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Anke Mittelstädt
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Klösch
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karolina Glanz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Jan Müller
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Björn Nüse
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Maximilian Brunner
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georg F Weber
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
63
|
Kharel A, Shen J, Brown R, Chen Y, Nguyen C, Alson D, Bluemn T, Fan J, Gai K, Zhang B, Kudek M, Zhu N, Cui W. Loss of PBAF promotes expansion and effector differentiation of CD8 + T cells during chronic viral infection and cancer. Cell Rep 2023; 42:112649. [PMID: 37330910 PMCID: PMC10592487 DOI: 10.1016/j.celrep.2023.112649] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
During chronic viral infection and cancer, it has been established that a subset of progenitor CD8+ T cells continuously gives rise to terminally exhausted cells and cytotoxic effector cells. Although multiple transcriptional programs governing the bifurcated differentiation trajectories have been previously studied, little is known about the chromatin structure changes regulating CD8+ T cell-fate decision. In this study, we demonstrate that the chromatin remodeling complex PBAF restrains expansion and promotes exhaustion of CD8+ T cells during chronic viral infection and cancer. Mechanistically, transcriptomic and epigenomic analyses reveal the role of PBAF in maintaining chromatin accessibility of multiple genetic pathways and transcriptional programs to restrain proliferation and promote T cell exhaustion. Harnessing this knowledge, we demonstrate that perturbation of PBAF complex constrained exhaustion and promoted expansion of tumor-specific CD8+ T cells resulting in antitumor immunity in a preclinical melanoma model, implicating PBAF as an attractive target for cancer immunotherapeutic.
Collapse
Affiliation(s)
- Arjun Kharel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Brown
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christine Nguyen
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Donia Alson
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Theresa Bluemn
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Fan
- Department of Medicine/Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kexin Gai
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Department of Medicine/Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Matthew Kudek
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
64
|
Dervovic D, Malik AA, Chen ELY, Narimatsu M, Adler N, Afiuni-Zadeh S, Krenbek D, Martinez S, Tsai R, Boucher J, Berman JM, Teng K, Ayyaz A, Lü Y, Mbamalu G, Loganathan SK, Lee J, Zhang L, Guidos C, Wrana J, Valipour A, Roux PP, Reimand J, Jackson HW, Schramek D. In vivo CRISPR screens reveal Serpinb9 and Adam2 as regulators of immune therapy response in lung cancer. Nat Commun 2023; 14:3150. [PMID: 37258521 PMCID: PMC10232477 DOI: 10.1038/s41467-023-38841-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
How the genetic landscape governs a tumor's response to immunotherapy remains poorly understood. To assess the immune-modulatory capabilities of 573 genes associated with altered cytotoxicity in human cancers, here we perform CRISPR/Cas9 screens directly in mouse lung cancer models. We recover the known immune evasion factors Stat1 and Serpinb9 and identify the cancer testis antigen Adam2 as an immune modulator, whose expression is induced by KrasG12D and further elevated by immunotherapy. Using loss- and gain-of-function experiments, we show that ADAM2 functions as an oncogene by restraining interferon and TNF cytokine signaling causing reduced presentation of tumor-associated antigens. ADAM2 also restricts expression of the immune checkpoint inhibitors PDL1, LAG3, TIGIT and TIM3 in the tumor microenvironment, which might explain why ex vivo expanded and adoptively transferred cytotoxic T-cells show enhanced cytotoxic efficacy in ADAM2 overexpressing tumors. Together, direct in vivo CRISPR/Cas9 screens can uncover genetic alterations that control responses to immunotherapies.
Collapse
Affiliation(s)
- Dzana Dervovic
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ahmad A Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Edward L Y Chen
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Masahiro Narimatsu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Nina Adler
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Somaieh Afiuni-Zadeh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Dagmar Krenbek
- Department of Pathology and Bacteriology, Klinik Floridsdorf, Vienna, Austria
| | - Sebastien Martinez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jonathan Boucher
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Jacob M Berman
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Katie Teng
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Arshad Ayyaz
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - YiQing Lü
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Geraldine Mbamalu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sampath K Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Otolaryngology, Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Jongbok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Laboratory Medicine and Pathobiology, Immunology, University of Toronto, Toronto, ON, Canada
| | - Cynthia Guidos
- SickKids Research Institute, University Health Network, Toronto, ON, Canada
| | - Jeffrey Wrana
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Arschang Valipour
- Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jüri Reimand
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Hartland W Jackson
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
65
|
Jin J, Mu Y, Zhang H, Sturmlechner I, Wang C, Jadhav RR, Xia Q, Weyand CM, Goronzy JJ. CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. NATURE AGING 2023; 3:600-616. [PMID: 37118554 PMCID: PMC10388378 DOI: 10.1038/s43587-023-00399-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2023] [Indexed: 04/30/2023]
Abstract
Chronic systemic inflammation is one of the hallmarks of the aging immune system. Here we show that activated T cells from older adults contribute to inflammaging by releasing mitochondrial DNA (mtDNA) into their environment due to an increased expression of the cytokine-inducible SH2-containing protein (CISH). CISH targets ATP6V1A, an essential component of the proton pump V-ATPase, for proteasomal degradation, thereby impairing lysosomal function. Impaired lysosomal activity caused intracellular accumulation of multivesicular bodies and amphisomes and the export of their cargos, including mtDNA. CISH silencing in T cells from older adults restored lysosomal activity and prevented amphisomal release. In antigen-specific responses in vivo, CISH-deficient CD4+ T cells released less mtDNA and induced fewer inflammatory cytokines. Attenuating CISH expression may present a promising strategy to reduce inflammation in an immune response of older individuals.
Collapse
Affiliation(s)
- Jun Jin
- Multiscale Research Institute for Complex Systems, Fudan University, Shanghai, China.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Huimin Zhang
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Chenyao Wang
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Rohit R Jadhav
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Qiong Xia
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Cornelia M Weyand
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jorg J Goronzy
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
66
|
Kamyshnyi A, Koval H, Kobevko O, Buchynskyi M, Oksenych V, Kainov D, Lyubomirskaya K, Kamyshna I, Potters G, Moshynets O. Therapeutic Effectiveness of Interferon-α2b against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience. Int J Mol Sci 2023; 24:ijms24086887. [PMID: 37108051 PMCID: PMC10138580 DOI: 10.3390/ijms24086887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Despite several targeted antiviral drugs against SARS-CoV-2 currently being available, the application of type I interferons (IFNs) still deserves attention as an alternative antiviral strategy. This study aimed to assess the therapeutic effectiveness of IFN-α in hospitalized patients with COVID-19-associated pneumonia. The prospective cohort study included 130 adult patients with coronavirus disease (COVID-19). A dose of 80,000 IU of IFN-α2b was administered daily intranasally for 10 days. Adding IFN-α2b to standard therapy reduces the length of the hospital stay by 3 days (p < 0.001). The level of CT-diagnosed lung injuries was reduced from 35% to 15% (p = 0.011) and CT injuries decreased from 50% to 15% (p = 0.017) by discharge. In the group of patients receiving IFN-α2b, the SpO2 index before and after treatment increased from 94 (92-96, Q1-Q3) to 96 (96-98, Q1-Q3) (p < 0.001), while the percentage of patients with normal saturation increased (from 33.9% to 74.6%, p < 0.05), but the level of SpO2 decreased in the low (from 52.5% to 16.9%) and very low (from 13.6% to 8.5%) categories. The addition of IFN-α2b to standard therapy has a positive effect on the course of severe COVID-19.
Collapse
Affiliation(s)
- Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Halyna Koval
- Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Teatralnaya Square, 2, 58002 Chernivtsi, Ukraine
- Department of Infectious Disease, Chernivtsi Regional Clinical Hospital, Holovna, 137, 58000 Chernivtsi, Ukraine
| | - Olha Kobevko
- Department of Infectious Disease, Chernivtsi Regional Clinical Hospital, Holovna, 137, 58000 Chernivtsi, Ukraine
| | - Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical University, Maiakovskyi Avenue 26, 69000 Zaporizhzhia, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kyiv, Ukraine
| |
Collapse
|
67
|
Yin X, He L, Guo Z. T-cell exhaustion in CAR-T-cell therapy and strategies to overcome it. Immunology 2023. [PMID: 36942414 DOI: 10.1111/imm.13642] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tumour immunotherapy has achieved good therapeutic effects in clinical practice and has received increased attention. Cytotoxic T cells undoubtedly play an important role in tumour immunotherapy. As a revolutionary tumour immunotherapy approach, chimeric antigen receptor T-cell (CAR-T-cell) therapy has made breakthroughs in the treatment of haematological cancers. However, T cells are easily exhausted in vivo, especially after they enter solid tumours. The exhaustion of T cells can lead to poor results of CAR-T-cell therapy in the treatment of solid tumours. Here, we review the reasons for T-cell exhaustion and how T-cell exhaustion develops. We also review and discuss ways to improve CAR-T-cell therapy effects by regulating T-cell exhaustion.
Collapse
Affiliation(s)
- Xuechen Yin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- CAR-T R&D, Nanjing Blue Shield Biotechnology Co., Ltd., Nanjing, 210023, China
| |
Collapse
|
68
|
Pan T, Cao G, Tang E, Zhao Y, Penaloza-MacMaster P, Fang Y, Huang J. A single-cell atlas reveals shared and distinct immune responses and metabolic profiles in SARS-CoV-2 and HIV-1 infections. Front Genet 2023; 14:1105673. [PMID: 36992700 PMCID: PMC10040851 DOI: 10.3389/fgene.2023.1105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Within the inflammatory immune response to viral infection, the distribution and cell type-specific profiles of immune cell populations and the immune-mediated viral clearance pathways vary according to the specific virus. Uncovering the immunological similarities and differences between viral infections is critical to understanding disease progression and developing effective vaccines and therapies. Insight into COVID-19 disease progression has been bolstered by the integration of single-cell (sc)RNA-seq data from COVID-19 patients with data from related viruses to compare immune responses. Expanding this concept, we propose that a high-resolution, systematic comparison between immune cells from SARS-CoV-2 infection and an inflammatory infectious disease with a different pathophysiology will provide a more comprehensive picture of the viral clearance pathways that underscore immunological and clinical differences between infections. Methods: Using a novel consensus single-cell annotation method, we integrate previously published scRNA-seq data from 111,566 single PBMCs from 7 COVID-19, 10 HIV-1+, and 3 healthy patients into a unified cellular atlas. We compare in detail the phenotypic features and regulatory pathways in the major immune cell clusters. Results: While immune cells in both COVID-19 and HIV-1+ cohorts show shared inflammation and disrupted mitochondrial function, COVID-19 patients exhibit stronger humoral immunity, broader IFN-I signaling, elevated Rho GTPase and mTOR pathway activity, and downregulated mitophagy. Discussion: Our results indicate that differential IFN-I signaling regulates the distinct immune responses in the two diseases, revealing insight into fundamental disease biology and potential therapeutic candidates.
Collapse
Affiliation(s)
- Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Yu Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | | | - Yun Fang
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
69
|
Bénard A, Hansen FJ, Uhle F, Klösch B, Czubayko F, Mittelstädt A, Jacobsen A, David P, Podolska MJ, Anthuber A, Swierzy I, Schaack D, Mühl-Zürbes P, Steinkasserer A, Weyand M, Weigand MA, Brenner T, Krautz C, Grützmann R, Weber GF. Interleukin-3 protects against viral pneumonia in sepsis by enhancing plasmacytoid dendritic cell recruitment into the lungs and T cell priming. Front Immunol 2023; 14:1140630. [PMID: 36911737 PMCID: PMC9996195 DOI: 10.3389/fimmu.2023.1140630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Rationale Sepsis, a global health burden, is often complicated by viral infections leading to increased long-term morbidity and mortality. Interleukin-3 (IL-3) has been identified as an important mediator amplifying acute inflammation in sepsis; however, its function in the host response to viral infections during sepsis remains elusive. Objectives To investigate the role of IL-3 during viral pneumonia in sepsis. Methods We included septic patients from two different cohorts and used in vitro and in vivo assays. The obtained data were substantiated using a second model (SARS-CoV-2 infections). Measurements and main results Low plasma IL-3 levels were associated with increased herpes simplex virus (HSV) airway infections in septic patients, resulting in reduced overall survival. Likewise, Il-3-deficient septic mice were more susceptible to pulmonary HSV-1 infection and exhibited higher pulmonary inflammation than control mice. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating plasmacytoid dendritic cells (pDCs) into the airways and by enhancing pDC-mediated T cell activation upon viral stimulation. Interestingly, the ability of IL-3 to improve adaptive immunity was confirmed in patients with SARS-CoV-2 infections. Conclusion Our study identifies IL-3 as a predictive disease marker for viral reactivation in sepsis and reveals that IL-3 improves antiviral immunity by enhancing the recruitment and the function of pDCs.
Collapse
Affiliation(s)
- Alan Bénard
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Frederik J. Hansen
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bettina Klösch
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Franziska Czubayko
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anne Jacobsen
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paul David
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Malgorzata J. Podolska
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Izabela Swierzy
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dominik Schaack
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Krautz
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg F. Weber
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
70
|
Preston SP, Allison CC, Schaefer J, Clow W, Bader SM, Collard S, Forsyth WO, Clark MP, Garnham AL, Li-Wai-Suen CSN, Peiris T, Teale J, Mackiewicz L, Davidson S, Doerflinger M, Pellegrini M. A necroptosis-independent function of RIPK3 promotes immune dysfunction and prevents control of chronic LCMV infection. Cell Death Dis 2023; 14:123. [PMID: 36792599 PMCID: PMC9931694 DOI: 10.1038/s41419-023-05635-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Necroptosis is a lytic and inflammatory form of cell death that is highly constrained to mitigate detrimental collateral tissue damage and impaired immunity. These constraints make it difficult to define the relevance of necroptosis in diseases such as chronic and persistent viral infections and within individual organ systems. The role of necroptotic signalling is further complicated because proteins essential to this pathway, such as receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), have been implicated in roles outside of necroptotic signalling. We sought to address this issue by individually defining the role of RIPK3 and MLKL in chronic lymphocytic choriomeningitis virus (LCMV) infection. We investigated if necroptosis contributes to the death of LCMV-specific CD8+ T cells or virally infected target cells during infection. We provide evidence showing that necroptosis was redundant in the pathogenesis of acute forms of LCMV (Armstrong strain) and the early stages of chronic (Docile strain) LCMV infection in vivo. The number of immune cells, their specificity and reactivity towards viral antigens and viral loads are not altered in the absence of either MLKL or RIPK3 during acute and during the early stages of chronic LCMV infection. However, we identified that RIPK3 promotes immune dysfunction and prevents control of infection at later stages of chronic LCMV disease. This was not phenocopied by the loss of MLKL indicating that the phenotype was driven by a necroptosis-independent function of RIPK3. We provide evidence that RIPK3 signaling evoked a dysregulated type 1 interferone response which we linked to an impaired antiviral immune response and abrogated clearance of chronic LCMV infection.
Collapse
Affiliation(s)
- Simon P. Preston
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia ,SYNthesis Research, Bio21 Institute, Parkville, VIC Australia
| | - Cody C. Allison
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Jan Schaefer
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - William Clow
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Stefanie M. Bader
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Sophie Collard
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Wasan O. Forsyth
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Michelle P. Clark
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Alexandra L. Garnham
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Connie S. N. Li-Wai-Suen
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Thanushi Peiris
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Jack Teale
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Liana Mackiewicz
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Sophia Davidson
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
71
|
Deng S, Graham ML, Chen XM. The Complexity of Interferon Signaling in Host Defense against Protozoan Parasite Infection. Pathogens 2023; 12:319. [PMID: 36839591 PMCID: PMC9962834 DOI: 10.3390/pathogens12020319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Protozoan parasites, such as Plasmodium, Leishmania, Toxoplasma, Cryptosporidium, and Trypanosoma, are causative agents of health-threatening diseases in both humans and animals, leading to significant health risks and socioeconomic losses globally. The development of effective therapeutic and prevention strategies for protozoan-caused diseases requires a full understanding of the pathogenesis and protective events occurring in infected hosts. Interferons (IFNs) are a family of cytokines with diverse biological effects in host antimicrobial defense and disease pathogenesis, including protozoan parasite infection. Type II IFN (IFN-γ) has been widely recognized as the essential defense cytokine in intracellular protozoan parasite infection, whereas recent studies also revealed the production and distinct function of type I and III IFNs in host defense against these parasites. Decoding the complex network of the IFN family in host-parasite interaction is critical for exploring potential new therapeutic strategies against intracellular protozoan parasite infection. Here, we review the complex effects of IFNs on the host defense against intracellular protozoan parasites and the crosstalk between distinct types of IFN signaling during infections.
Collapse
Affiliation(s)
- Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
72
|
Adamska JZ, Verma R, Gupta S, Hagan T, Wimmers F, Floyd K, Li Q, Valore EV, Wang Y, Trisal M, Vilches-Moure JG, Subramaniam S, Walkley CR, Suthar MS, Li JB, Pulendran B. Ablation of Adar1 in myeloid cells imprints a global antiviral state in the lung and heightens early immunity against SARS-CoV-2. Cell Rep 2023; 42:112038. [PMID: 36732946 PMCID: PMC9842623 DOI: 10.1016/j.celrep.2023.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Under normal homeostatic conditions, self-double-stranded RNA (self-dsRNA) is modified by adenosine deaminase acting on RNA 1 (ADAR1) to prevent the induction of a type I interferon-mediated inflammatory cascade. Antigen-presenting cells (APCs) sense pathogen-associated molecular patterns, such as dsRNA, to activate the immune response. The impact of ADAR1 on the function of APCs and the consequences to immunity are poorly understood. Here, we show that ADAR1 deletion in CD11c+ APCs leads to (1) a skewed myeloid cell compartment enriched in inflammatory cDC2-like cells, (2) enhanced numbers of activated tissue resident memory T cells in the lung, and (3) the imprinting of a broad antiviral transcriptional signature across both immune and non-immune cells. The resulting changes can be partially reversed by blocking IFNAR1 signaling and promote early resistance against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study provides insight into the consequences of self-dsRNA sensing in APCs on the immune system.
Collapse
Affiliation(s)
- Julia Z Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Rohit Verma
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Katharine Floyd
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Center, Emory School of Medicine, Atlanta, GA 30329, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Erika V Valore
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Yanli Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Mehul S Suthar
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Center, Emory School of Medicine, Atlanta, GA 30329, USA
| | - Jin Billy Li
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
73
|
Prokhnevska N, Cardenas MA, Valanparambil RM, Sobierajska E, Barwick BG, Jansen C, Reyes Moon A, Gregorova P, delBalzo L, Greenwald R, Bilen MA, Alemozaffar M, Joshi S, Cimmino C, Larsen C, Master V, Sanda M, Kissick H. CD8 + T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 2023; 56:107-124.e5. [PMID: 36580918 PMCID: PMC10266440 DOI: 10.1016/j.immuni.2022.12.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/11/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
Improvements in tumor immunotherapies depend on better understanding of the anti-tumor T cell response. By studying human tumor-draining lymph nodes (TDLNs), we found that activated CD8+ T cells in TDLNs shared functional, transcriptional, and epigenetic traits with TCF1+ stem-like cells in the tumor. The phenotype and TCR overlap suggested that these TDLN cells were precursors to tumor-resident stem-like CD8+ T cells. Murine tumor models revealed that tumor-specific CD8+ T cells were activated in TDLNs but lacked an effector phenotype. These stem-like cells migrated into the tumor, where additional co-stimulation from antigen-presenting cells drove effector differentiation. This model of CD8+ T cell activation in response to cancer is different from that of canonical CD8+ T cell activation to acute viruses, and it proposes two stages of tumor-specific CD8+ T cell activation: initial activation in TDLNs and subsequent effector program acquisition within the tumor after additional co-stimulation.
Collapse
Affiliation(s)
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajesh M Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewelina Sobierajska
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin G Barwick
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline Jansen
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Adriana Reyes Moon
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Petra Gregorova
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luke delBalzo
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel Greenwald
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehrdad Alemozaffar
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Shreyas Joshi
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Cara Cimmino
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Christian Larsen
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Viraj Master
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Martin Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Haydn Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
74
|
Kasmani MY, Zander R, Chung HK, Chen Y, Khatun A, Damo M, Topchyan P, Johnson KE, Levashova D, Burns R, Lorenz UM, Tarakanova VL, Joshi NS, Kaech SM, Cui W. Clonal lineage tracing reveals mechanisms skewing CD8+ T cell fate decisions in chronic infection. J Exp Med 2023; 220:e20220679. [PMID: 36315049 PMCID: PMC9623343 DOI: 10.1084/jem.20220679] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
Although recent evidence demonstrates heterogeneity among CD8+ T cells during chronic infection, developmental relationships and mechanisms underlying their fate decisions remain incompletely understood. Using single-cell RNA and TCR sequencing, we traced the clonal expansion and differentiation of CD8+ T cells during chronic LCMV infection. We identified immense clonal and phenotypic diversity, including a subset termed intermediate cells. Trajectory analyses and infection models showed intermediate cells arise from progenitor cells before bifurcating into terminal effector and exhausted subsets. Genetic ablation experiments identified that type I IFN drives exhaustion through an IRF7-dependent mechanism, possibly through an IFN-stimulated subset bridging progenitor and exhausted cells. Conversely, Zeb2 was critical for generating effector cells. Intriguingly, some T cell clones exhibited lineage bias. Mechanistically, we identified that TCR avidity correlates with an exhausted fate, whereas SHP-1 selectively restricts low-avidity effector cell accumulation. Thus, our work elucidates novel mechanisms underlying CD8+ T cell fate determination during persistent infection and suggests two potential pathways leading to exhaustion.
Collapse
Affiliation(s)
- Moujtaba Y. Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Ryan Zander
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - H. Kay Chung
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Paytsar Topchyan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Kaitlin E. Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Darya Levashova
- Department of Microbiology, Immunology, and Cancer Biology, and Carter Immunology Center, University of Virginia, Charlottesville, VA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Ulrike M. Lorenz
- Department of Microbiology, Immunology, and Cancer Biology, and Carter Immunology Center, University of Virginia, Charlottesville, VA
| | - Vera L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| |
Collapse
|
75
|
Qiu J, Xu B, Ye D, Ren D, Wang S, Benci JL, Xu Y, Ishwaran H, Beltra JC, Wherry EJ, Shi J, Minn AJ. Cancer cells resistant to immune checkpoint blockade acquire interferon-associated epigenetic memory to sustain T cell dysfunction. NATURE CANCER 2023; 4:43-61. [PMID: 36646856 DOI: 10.1038/s43018-022-00490-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/10/2022] [Indexed: 01/18/2023]
Abstract
Prolonged interferon (IFN) signaling in cancer cells can promote resistance to immune checkpoint blockade (ICB). How cancer cells retain effects of prolonged IFN stimulation to coordinate resistance is unclear. We show that, across human and/or mouse tumors, immune dysfunction is associated with cancer cells acquiring epigenetic features of inflammatory memory. Here, inflammatory memory domains, many of which are initiated by chronic IFN-γ, are maintained by signal transducer and activator of transcription (STAT)1 and IFN regulatory factor (IRF)3 and link histone 3 lysine 4 monomethylation (H3K4me1)-marked chromatin accessibility to increased expression of a subset of IFN-stimulated genes (ISGs). These ISGs include the RNA sensor OAS1 that amplifies type I IFN (IFN-I) and immune inhibitory genes. Abrogating cancer cell IFN-I signaling restores anti-programmed cell death protein 1 (PD1) response by increasing IFN-γ in immune cells, promoting dendritic cell and CD8+ T cell interactions, and expanding T cells toward effector-like states rather than exhausted states. Thus, cancer cells acquire inflammatory memory to augment a subset of ISGs that promote and predict IFN-driven immune dysfunction.
Collapse
Affiliation(s)
- Jingya Qiu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.,Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bihui Xu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.,Incyte, Wilmington, DE, USA
| | - Darwin Ye
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.,Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Diqiu Ren
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shangshang Wang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.,Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph L Benci
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.,Bristol Myers Squibb, Princeton, NJ, USA
| | - Yuanming Xu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.,Pfizer, San Diego, CA, USA
| | - Hemant Ishwaran
- Division of Biostatistics, Department of Epidemiology and Public Health, University of Miami, Miami, FL, USA
| | - Jean-Christophe Beltra
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.,Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA. .,Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA. .,Institute of Immunology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
76
|
Shen S, Rui Y, Wang Y, Su J, Yu X. SARS-CoV-2, HIV, and HPV: Convergent evolution of selective regulation of cGAS-STING signaling. J Med Virol 2023; 95:e28220. [PMID: 36229923 PMCID: PMC9874546 DOI: 10.1002/jmv.28220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Recognizing aberrant cytoplasmic double-stranded DNA and stimulating innate immunity is essential for the host's defense against viruses and tumors. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that synthesizes the second messenger 2'3'-cGAMP and subsequently activates stimulator of interferon genes (STING)-mediated activation of TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and the production of type I interferon (IFN-I). Both the cGAS-STING-mediated IFN-I antiviral defense and the countermeasures developed by diverse viruses have been extensively studied. However, recent studies have revealed a convergent evolutionary feature of severe acute respiratory syndrome coronavirus 2 and human immunodeficiency virus (HIV) viral proteins in terms of the selective regulation of cGAS-STING-mediated nuclear factor-κB (NF-κB) signaling without any effect on cGAS-STING-mediated TBK1/IRF3 activation and IFN production. The potential beneficial effect of this cGAS-STING-mediated, NF-κB-dependent antiviral effect, and the possible detrimental effect of IFN-I in the pathogenesis of coronavirus disease 2019 and HIV infection deserve more attention and future investigation.
Collapse
Affiliation(s)
- Si Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Xiao‐Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
77
|
Khan SM, Desai R, Coxon A, Livingstone A, Dunn GP, Petti A, Johanns TM. Impact of CD4 T cells on intratumoral CD8 T-cell exhaustion and responsiveness to PD-1 blockade therapy in mouse brain tumors. J Immunother Cancer 2022; 10:jitc-2022-005293. [PMID: 36543376 PMCID: PMC9772691 DOI: 10.1136/jitc-2022-005293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glioblastoma is a fatal disease despite aggressive multimodal therapy. PD-1 blockade, a therapy that reinvigorates hypofunctional exhausted CD8 T cells (Tex) in many malignancies, has not shown efficacy in glioblastoma. Loss of CD4 T cells can lead to an exhausted CD8 T-cell phenotype, and terminally exhausted CD8 T cells (Tex term) do not respond to PD-1 blockade. GL261 and CT2A are complementary orthotopic models of glioblastoma. GL261 has a functional CD4 T-cell compartment and is responsive to PD-1 blockade; notably, CD4 depletion abrogates this survival benefit. CT2A is composed of dysfunctional CD4 T cells and is PD-1 blockade unresponsive. We leverage these models to understand the impact of CD4 T cells on CD8 T-cell exhaustion and PD-1 blockade sensitivity in glioblastoma. METHODS Single-cell RNA sequencing was performed on flow sorted tumor-infiltrating lymphocytes from female C57/BL6 mice implanted with each model, with and without PD-1 blockade therapy. CD8+ and CD4+ T cells were identified and separately analyzed. Survival analyses were performed comparing PD-1 blockade therapy, CD40 agonist or combinatorial therapy. RESULTS The CD8 T-cell compartment of the models is composed of heterogenous CD8 Tex subsets, including progenitor exhausted CD8 T cells (Tex prog), intermediate Tex, proliferating Tex, and Tex term. GL261 is enriched with the PD-1 responsive Tex prog subset relative to the CT2A and CD4-depleted GL261 models, which are composed predominantly of the PD-1 blockade refractory Tex term subset. Analysis of the CD4 T-cell compartments revealed that the CT2A microenvironment is enriched with a suppressive Treg subset and an effector CD4 T-cell subset that expresses an inhibitory interferon-stimulated (Isc) signature. Finally, we demonstrate that addition of CD40 agonist to PD-1 blockade therapy improves survival in CT2A tumor-bearing mice. CONCLUSIONS Here, we describe that dysfunctional CD4 T cells are associated with terminal CD8 T-cell exhaustion, suggesting CD4 T cells impact PD-1 blockade efficacy by controlling the severity of exhaustion. Given that CD4 lymphopenia is frequently observed in patients with glioblastoma, this may represent a basis for resistance to PD-1 blockade. We demonstrate that CD40 agonism may circumvent a dysfunctional CD4 compartment to improve PD-1 blockade responsiveness, supporting a novel synergistic immunotherapeutic approach.
Collapse
Affiliation(s)
- Saad M Khan
- Department of Neurosurgery, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Rupen Desai
- Department of Neurosurgery, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Andrew Coxon
- Department of Neurosurgery, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Alexandra Livingstone
- Department of Medicine, Division of Medical Oncology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allegra Petti
- Department of Neurosurgery, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Tanner M Johanns
- Department of Medicine, Division of Medical Oncology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
78
|
Abstract
Innate immunity acts as the first line of defense against pathogen invasion. During Toxoplasma gondii infection, multiple innate immune sensors are activated by invading microbes or pathogen-associated molecular patterns (PAMPs). However, how inflammasome is activated and its regulatory mechanisms during T. gondii infection remain elusive. Here, we showed that the infection of PRU, a lethal type II T. gondii strain, activates inflammasome at the early stage of infection. PRU tachyzoites, RNA and soluble tachyzoite antigen (STAg) mainly triggered the NLRP3 inflammasome, while PRU genomic DNA (gDNA) specially activated the AIM2 inflammasome. Furthermore, mice deficient in AIM2, NLRP3, or caspase-1/11 were more susceptible to T. gondii PRU infection, and the ablation of inflammasome signaling impaired antitoxoplasmosis immune responses by enhancing type I interferon (IFN-I) production. Blockage of IFN-I receptor fulfilled inflammasome-deficient mice competent immune responses as WT mice. Moreover, we have identified that the suppressor of cytokine signaling 1 (SOCS1) is a key negative regulator induced by inflammasome-activated IL-1β signaling and inhibits IFN-I production by targeting interferon regulatory factor 3 (IRF3). In general, our study defines a novel protective role of inflammasome activation during toxoplasmosis and identifies a critical regulatory mechanism of the cross talk between inflammasome and IFN-I signaling for understanding infectious diseases. IMPORTANCE As a key component of innate immunity, inflammasome is critical for host antitoxoplasmosis immunity, but the underlying mechanisms are still elusive. In this study, we found that inflammasome signaling was activated by PAMPs of T. gondii, which generated a protective immunity against T. gondii invasion by suppressing type I interferon (IFN-I) production. Mechanically, inflammasome-coupled IL-1β signaling triggered the expression of negative regulator SOCS1, which bound to IRF3 to inhibit IFN-I production. The role of IFN-I in anti-T. gondii immunity is little studied and controversial, and here we also found IFN-I is harmful to host antitoxoplasmosis immunity by using knockout mice and recombinant proteins. In general, our study identifies a protective role of inflammasomes to the host during T. gondii infection and a novel mechanism by which inflammasome suppresses IFN-I signaling in antitoxoplasmosis immunity, which will likely provide new insights into therapeutic targets for toxoplasmosis and highlight the cross talk between innate immune signaling in infectious diseases prevention.
Collapse
|
79
|
Chen W, Teo JMN, Yau SW, Wong MYM, Lok CN, Che CM, Javed A, Huang Y, Ma S, Ling GS. Chronic type I interferon signaling promotes lipid-peroxidation-driven terminal CD8+ T cell exhaustion and curtails anti-PD-1 efficacy. Cell Rep 2022; 41:111647. [DOI: 10.1016/j.celrep.2022.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
|
80
|
Yin GQ, Chen KP, Gu XC. Heterogeneity of immune control in chronic hepatitis B virus infection: Clinical implications on immunity with interferon-α treatment and retreatment. World J Gastroenterol 2022; 28:5784-5800. [PMID: 36353205 PMCID: PMC9639659 DOI: 10.3748/wjg.v28.i40.5784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue. Interferon-α (IFN-α) treatment has been used to treat hepatitis B for over 20 years, but fewer than 5% of Asians receiving IFN-α treatment achieve functional cure. Thus, IFN-α retreatment has been introduced to enhance antiviral function. In recent years, immune-related studies have found that the complex interactions between immune cells and cytokines could modulate immune response networks, in-cluding both innate and adaptive immunity, triggering immune responses that control HBV replication. However, heterogeneity of the immune system to control HBV infection, particularly HBV-specific CD8+ T cell heterogeneity, has consequ-ential effects on T cell-based immunotherapy for treating HBV infection. Altogether, the host’s genetic variants, negative-feedback regulators and HBV components affecting the immune system's ability to control HBV. In this study, we reviewed the literature on potential immune mechanisms affecting the immune control of HBV and the clinical effects of IFN-α treatment and retreatment.
Collapse
Affiliation(s)
- Guo-Qing Yin
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ke-Ping Chen
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiao-Chun Gu
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
81
|
Zander R, Khatun A, Kasmani MY, Chen Y, Cui W. Delineating the transcriptional landscape and clonal diversity of virus-specific CD4 + T cells during chronic viral infection. eLife 2022; 11:e80079. [PMID: 36255051 PMCID: PMC9629829 DOI: 10.7554/elife.80079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Although recent evidence indicates that CD4+ T cells responding to chronic viral infection are functionally heterogenous, our understanding of the developmental relationships between these subsets, and a determination of how their transcriptional landscape compares to their acute infection counterparts remains unclear. Additionally, whether cell-intrinsic factors such as TCR usage influence CD4+ T cell fate commitment during persistent infection has not previously been studied. Herein, we perform single-cell RNA sequencing (scRNA-seq) combined with single-cell T cell receptor sequencing (scTCR-seq) on virus-specific CD4+ T cells isolated from mice infected with chronic lymphocytic choriomeningitis virus (LCMV) infection. We identify several transcriptionally distinct states among the Th1, Tfh, and memory-like T cell subsets that form at the peak of infection, including the presence of a previously unrecognized Slamf7+ subset with cytolytic features. We further show that the relative distribution of these populations differs substantially between acute and persistent LCMV infection. Moreover, while the progeny of most T cell clones displays membership within each of these transcriptionally unique populations, overall supporting a one cell-multiple fate model, a small fraction of clones display a biased cell fate decision, suggesting that TCR usage may impact CD4+ T cell development during chronic infection. Importantly, comparative analyses further reveal both subset-specific and core gene expression programs that are differentially regulated between CD4+ T cells responding to acute and chronic LCMV infection. Together, these data may serve as a useful framework and allow for a detailed interrogation into the clonal distribution and transcriptional circuits underlying CD4+ T cell differentiation during chronic viral infection.
Collapse
Affiliation(s)
- Ryan Zander
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
| | - Achia Khatun
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Yao Chen
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Weiguo Cui
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
82
|
Kasmani MY, Ciecko AE, Brown AK, Petrova G, Gorski J, Chen YG, Cui W. Autoreactive CD8 T cells in NOD mice exhibit phenotypic heterogeneity but restricted TCR gene usage. Life Sci Alliance 2022; 5:5/10/e202201503. [PMID: 35667687 PMCID: PMC9170949 DOI: 10.26508/lsa.202201503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Paired scRNA-seq and scTCR-seq reveals that diabetogenic CD8 T cells in the islets and spleens of NOD mice exhibit phenotypic and clonal heterogeneity despite restricted TCR gene usage. Expression of certain TCR genes correlates with clonal proliferation and effector phenotype. Type 1 diabetes (T1D) is an autoimmune disorder defined by CD8 T cell–mediated destruction of pancreatic β cells. We have previously shown that diabetogenic CD8 T cells in the islets of non-obese diabetic mice are phenotypically heterogeneous, but clonal heterogeneity remains relatively unexplored. Here, we use paired single-cell RNA and T-cell receptor sequencing (scRNA-seq and scTCR-seq) to characterize autoreactive CD8 T cells from the islets and spleens of non-obese diabetic mice. scTCR-seq demonstrates that CD8 T cells targeting the immunodominant β-cell epitope IGRP206-214 exhibit restricted TCR gene usage. scRNA-seq identifies six clusters of autoreactive CD8 T cells in the islets and six in the spleen, including memory and exhausted cells. Clonal overlap between IGRP206-214–reactive CD8 T cells in the islets and spleen suggests these cells may circulate between the islets and periphery. Finally, we identify correlations between TCR genes and T-cell clonal expansion and effector fate. Collectively, our work demonstrates that IGRP206-214–specific CD8 T cells are phenotypically heterogeneous but clonally restricted, raising the possibility of selectively targeting these TCR structures for therapeutic benefit.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Ashley E Ciecko
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Galina Petrova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jack Gorski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
83
|
Zoellner N, Coesfeld N, De Vos FH, Denter J, Xu HC, Zimmer E, Knebel B, Al-Hasani H, Mossner S, Lang PA, Floss DM, Scheller J. Synthetic mimetics assigned a major role to IFNAR2 in type I interferon signaling. Front Microbiol 2022; 13:947169. [PMID: 36118237 PMCID: PMC9480868 DOI: 10.3389/fmicb.2022.947169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/β receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry. Using this approach, multimeric single-binding GFP-mCherry ligands induced synthetic IFNAR1/IFNAR2 receptor complexes and initiated STAT1/2 mediated signal transduction via Jak1 and Tyk2. Homodimeric GFP and mCherry ligands showed that IFNAR2 but not IFNAR1 homodimers were sufficient to induce STAT1/2 signaling. Transcriptome analysis revealed that synthetic murine type I IFN signaling was highly comparable to IFNα4 signaling. Moreover, replication of vesicular stomatitis virus (VSV) in a cell culture-based viral infection model using MC57 cells was significantly inhibited after stimulation with synthetic ligands. Using intracellular deletion variants and point mutations, Y510 and Y335 in murine IFNAR2 were verified as unique phosphorylation sites for STAT1/2 activation, whereas the other tyrosine residues in IFNAR1 and IFNAR2 were not involved in STAT1/2 phosphorylation. Comparative analysis of synthetic human IFNARs supports this finding. In summary, our data showed that synthetic type I IFN signal transduction is originating from IFNAR2 rather than IFNAR1.
Collapse
Affiliation(s)
- Nele Zoellner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Noémi Coesfeld
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Henry De Vos
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Denter
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Haifeng C. Xu
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elena Zimmer
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sofie Mossner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A. Lang
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M. Floss
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
84
|
Zemek RM, Chin WL, Fear VS, Wylie B, Casey TH, Forbes C, Tilsed CM, Boon L, Guo BB, Bosco A, Forrest ARR, Millward MJ, Nowak AK, Lake RA, Lassmann T, Joost Lesterhuis W. Temporally restricted activation of IFNβ signaling underlies response to immune checkpoint therapy in mice. Nat Commun 2022; 13:4895. [PMID: 35986006 PMCID: PMC9390963 DOI: 10.1038/s41467-022-32567-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 08/06/2022] [Indexed: 02/08/2023] Open
Abstract
The biological determinants of the response to immune checkpoint blockade (ICB) in cancer remain incompletely understood. Little is known about dynamic biological events that underpin therapeutic efficacy due to the inability to frequently sample tumours in patients. Here, we map the transcriptional profiles of 144 responding and non-responding tumours within two mouse models at four time points during ICB. We find that responding tumours display on/fast-off kinetics of type-I-interferon (IFN) signaling. Phenocopying of this kinetics using time-dependent sequential dosing of recombinant IFNs and neutralizing antibodies markedly improves ICB efficacy, but only when IFNβ is targeted, not IFNα. We identify Ly6C+/CD11b+ inflammatory monocytes as the primary source of IFNβ and find that active type-I-IFN signaling in tumour-infiltrating inflammatory monocytes is associated with T cell expansion in patients treated with ICB. Together, our results suggest that on/fast-off modulation of IFNβ signaling is critical to the therapeutic response to ICB, which can be exploited to drive clinical outcomes towards response. Immune checkpoint blockade (ICB) is partially successful as a cancer therapy. Here using mouse models, the authors transcriptionally monitor responding and non-responding tumours showing that responding tumours were associated with transient IFN-β signalling which could promote the anti-tumour response.
Collapse
|
85
|
Svanberg C, Nyström S, Govender M, Bhattacharya P, Che KF, Ellegård R, Shankar EM, Larsson M. HIV-1 induction of tolerogenic dendritic cells is mediated by cellular interaction with suppressive T cells. Front Immunol 2022; 13:790276. [PMID: 36032117 PMCID: PMC9399885 DOI: 10.3389/fimmu.2022.790276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-1 infection gives rise to a multi-layered immune impairment in most infected individuals. The chronic presence of HIV-1 during the priming and activation of T cells by dendritic cells (DCs) promotes the expansion of suppressive T cells in a contact-dependent manner. The mechanism behind the T cell side of this HIV-induced impairment is well studied, whereas little is known about the reverse effects exerted on the DCs. Herein we assessed the phenotype and transcriptome profile of mature DCs that have been in contact with suppressive T cells. The HIV exposed DCs from cocultures between DCs and T cells resulted in a more tolerogenic phenotype with increased expression of e.g., PDL1, Gal-9, HVEM, and B7H3, mediated by interaction with T cells. Transcriptomic analysis of the DCs separated from the DC-T cell coculture revealed a type I IFN response profile as well as an activation of pathways involved in T cell exhaustion. Taken together, our data indicate that the prolonged and strong type I IFN signaling in DCs, induced by the presence of HIV during DC-T cell cross talk, could play an important role in the induction of tolerogenic DCs and suppressed immune responses seen in HIV-1 infected individuals.
Collapse
Affiliation(s)
- Cecilia Svanberg
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pradyot Bhattacharya
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karlhans F. Che
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Rada Ellegård
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Marie Larsson,
| |
Collapse
|
86
|
Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2022; 18:503-516. [PMID: 35650334 PMCID: PMC9157043 DOI: 10.1038/s41574-022-00688-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Enteroviruses are believed to trigger or accelerate islet autoimmunity in genetically susceptible individuals, thereby resulting in loss of functional insulin-producing β-cells and type 1 diabetes mellitus (T1DM). Although enteroviruses are primarily involved in acute and lytic infections in vitro and in vivo, they can also establish a persistent infection. Prospective epidemiological studies have strongly associated the persistence of enteroviruses, especially coxsackievirus B (CVB), with the appearance of islet autoantibodies and an increased risk of T1DM. CVB can persist in pancreatic ductal and β-cells, which leads to structural or functional alterations of these cells, and to a chronic inflammatory response that promotes recruitment and activation of pre-existing autoreactive T cells and β-cell autoimmune destruction. CVB persistence in other sites, such as the intestine, blood cells and thymus, has been described; these sites could serve as a reservoir for infection or reinfection of the pancreas, and this persistence could have a role in the disturbance of tolerance to β-cells. This Review addresses the involvement of persistent enterovirus infection in triggering islet autoimmunity and T1DM, as well as current strategies to control enterovirus infections for preventing or reducing the risk of T1DM onset.
Collapse
Affiliation(s)
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France.
| |
Collapse
|
87
|
El Hajj H, Bazarbachi A. Interplay between innate immunity and the viral oncoproteins Tax and HBZ in the pathogenesis and therapeutic response of HTLV-1 associated adult T cell leukemia. Front Immunol 2022; 13:957535. [PMID: 35935975 PMCID: PMC9352851 DOI: 10.3389/fimmu.2022.957535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
The Human T-cell Leukemia virus type 1 (HTLV-1) causes an array of pathologies, the most aggressive of which is adult T-cell leukemia (ATL), a fatal blood malignancy with dismal prognosis. The progression of these diseases is partly ascribed to the failure of the immune system in controlling the spread of virally infected cells. HTLV-1 infected subjects, whether asymptomatic carriers or symptomatic patients are prone to opportunistic infections. An increasing body of literature emphasizes the interplay between HTLV-1, its associated pathologies, and the pivotal role of the host innate and adoptive immune system, in shaping the progression of HTLV-1 associated diseases and their response to therapy. In this review, we will describe the modalities adopted by the malignant ATL cells to subvert the host innate immune response with emphasis on the role of the two viral oncoproteins Tax and HBZ in this process. We will also provide a comprehensive overview on the function of innate immunity in the therapeutic response to chemotherapy, anti-viral or targeted therapies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- *Correspondence: Ali Bazarbachi,
| |
Collapse
|
88
|
Boukhaled GM, Gadalla R, Elsaesser HJ, Abd-Rabbo D, Quevedo R, Yang SYC, Guo M, Wang BX, Noamani B, Gray D, Lau SCM, Taylor K, Aung K, Spreafico A, Hansen AR, Saibil SD, Hirano N, Guidos C, Pugh TJ, McGaha TL, Ohashi PS, Sacher AG, Butler MO, Brooks DG. Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy. Nat Immunol 2022; 23:1273-1283. [PMID: 35835962 DOI: 10.1038/s41590-022-01262-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFN-Is) are central regulators of anti-tumor immunity and responses to immunotherapy, but they also drive the feedback inhibition underlying therapeutic resistance. In the present study, we developed a mass cytometry approach to quantify IFN-I-stimulated protein expression across immune cells and used multi-omics to uncover pre-therapy cellular states encoding responsiveness to inflammation. Analyzing peripheral blood cells from multiple cancer types revealed that differential responsiveness to IFN-Is before anti-programmed cell death protein 1 (PD1) treatment was highly predictive of long-term survival after therapy. Unexpectedly, IFN-I hyporesponsiveness efficiently predicted long-term survival, whereas high responsiveness to IFN-I was strongly associated with treatment failure and diminished survival time. Peripheral IFN-I responsive states were not associated with tumor inflammation, identifying a disconnect between systemic immune potential and 'cold' or 'hot' tumor states. Mechanistically, IFN-I responsiveness was epigenetically imprinted before therapy, poising cells for differential inflammatory responses and dysfunctional T cell effector programs. Thus, we identify physiological cell states with clinical importance that can predict success and long-term survival of PD1-blocking immunotherapy.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| | - Ramy Gadalla
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Diala Abd-Rabbo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mengdi Guo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ben X Wang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Babak Noamani
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Diana Gray
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Sally C M Lau
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Oncology, Perlmutter Cancer Center, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Kirsty Taylor
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kyaw Aung
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aaron R Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Samuel D Saibil
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Guidos
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian G Sacher
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcus O Butler
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
89
|
Dahlgren MW, Plumb AW, Niss K, Lahl K, Brunak S, Johansson-Lindbom B. Type I Interferons Promote Germinal Centers Through B Cell Intrinsic Signaling and Dendritic Cell Dependent Th1 and Tfh Cell Lineages. Front Immunol 2022; 13:932388. [PMID: 35911733 PMCID: PMC9326081 DOI: 10.3389/fimmu.2022.932388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Type I interferons (IFNs) are essential for antiviral immunity, appear to represent a key component of mRNA vaccine-adjuvanticity, and correlate with severity of systemic autoimmune disease. Relevant to all, type I IFNs can enhance germinal center (GC) B cell responses but underlying signaling pathways are incompletely understood. Here, we demonstrate that a succinct type I IFN response promotes GC formation and associated IgG subclass distribution primarily through signaling in cDCs and B cells. Type I IFN signaling in cDCs, distinct from cDC1, stimulates development of separable Tfh and Th1 cell subsets. However, Th cell-derived IFN-γ induces T-bet expression and IgG2c isotype switching in B cells prior to this bifurcation and has no evident effects once GCs and bona fide Tfh cells developed. This pathway acts in synergy with early B cell-intrinsic type I IFN signaling, which reinforces T-bet expression in B cells and leads to a selective amplification of the IgG2c+ GC B cell response. Despite the strong Th1 polarizing effect of type I IFNs, the Tfh cell subset develops into IL-4 producing cells that control the overall magnitude of the GCs and promote generation of IgG1+ GC B cells. Thus, type I IFNs act on B cells and cDCs to drive GC formation and to coordinate IgG subclass distribution through divergent Th1 and Tfh cell-dependent pathways.
Collapse
Affiliation(s)
| | - Adam W. Plumb
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kristoffer Niss
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Katharina Lahl
- Immunology Section, Lund University, Lund, Sweden
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Søren Brunak
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, Lund, Sweden
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- *Correspondence: Bengt Johansson-Lindbom,
| |
Collapse
|
90
|
Smith JA, Gaikwad AA, Mathew L, Rech B, Faro JP, Lucci JA, Bai Y, Olsen RJ, Byrd TT. AHCC® Supplementation to Support Immune Function to Clear Persistent Human Papillomavirus Infections. Front Oncol 2022; 12:881902. [PMID: 35814366 PMCID: PMC9256908 DOI: 10.3389/fonc.2022.881902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To determine the efficacy, safety, and durability of the use of AHCC supplementation for 6 months to support the host immune system to clear high-risk human papillomavirus (HPV) infections. The AHCC supplement is a proprietary, standardized extract of cultured lentinula edodes mycelia (AHCC®, Amino Up, Ltd., Sapporo, Japan) that has been shown to have unique immune modulatory benefits. Study Design This was a randomized, double-blind, placebo-controlled study (CTN: NCT02405533) in 50 women over 30 years of age with confirmed persistent high-risk HPV infections for greater than 2 years. Patients were randomized to placebo once daily for 12 months (N = 25) or AHCC 3-g supplementation by mouth once daily on empty stomach for 6 months followed by 6 months of placebo (N = 25). Every 3 months, patients were evaluated with HPV DNA and HPV RNA testing as well as a blood sample collected to evaluate a panel of immune markers including interferon-alpha, interferon-beta (IFN-β), interferon-gamma (IFN-γ), IgG1, T lymphocytes, and natural killer (NK) cell levels. At the completion of the 12-month study period, patients on the placebo arm were given the option to continue on the study to receive AHCC supplementation unblinded for 6 months with the same follow-up appointments and testing as the intervention arm. Results Fifty women with high-risk HPV were enrolled, and 41 completed the study. Fourteen (63.6%) of the 22 patients in the AHCC supplementation arm were HPV RNA/HPV DNA negative after 6 months, with 64.3% (9/14) achieving a durable response defined as being HPV RNA/HPV DNA negative 6 months off supplementation. On the placebo arm, two (10.5%) of 19 patients were HPV negative at 12 months. In the twelve placebo arm patients who elected to continue on the unblinded study, 50% (n = 6) were HPV RNA/HPV DNA negative after 6 months of AHCC supplementation. At the time of completion of the study, there were a total of 34 patients (22 blinded and 12 unblinded) who had received AHCC supplementation with an overall response rate of 58.8% that cleared HPV persistent infections. At the time of enrollment, the mean IFN-β level was 60.5 ± 37.6 pg/ml in women with confirmed persistent HPV infections. Suppression of IFN-β to less than 20 pg/ml correlated with an increase in T lymphocytes and IFN-γ and durable clearance of HPV infections in women who received AHCC supplementation. Conclusion Results from this phase II study demonstrated that AHCC 3 g once daily was effective to support the host immune system to eliminate persistent HPV infections and was well tolerated with no significant adverse side effects reported. The duration of AHCC supplementation required beyond the first negative result needs more evaluation to optimize success for durable outcomes. The suppression of the IFN-β level to less than 20 pg/ml correlated with clearance of HPV infections and merits further evaluation as a clinical tool for monitoring patients with HPV infections. Clinical Trial Registration clinicaltrials.gov/ct2/, identifier NCT02405533
Collapse
Affiliation(s)
- Judith A. Smith
- Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health McGovern Medical School, Houston, TX, United States
- Department of Pharmacy, UT Heath-Memorial Hermann Cancer Center, Houston, TX, United States
- *Correspondence: Judith A. Smith,
| | - Anjali A. Gaikwad
- Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health McGovern Medical School, Houston, TX, United States
| | - Lata Mathew
- Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health McGovern Medical School, Houston, TX, United States
| | - Barbara Rech
- UT Physicians Women’s Center, Houston, TX, United States
| | - Jonathan P. Faro
- Specialists in Obstetrics & Gynecology, Houston, TX, United States
| | - Joseph A. Lucci
- Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health McGovern Medical School, Houston, TX, United States
- Department of Pharmacy, UT Heath-Memorial Hermann Cancer Center, Houston, TX, United States
| | - Yu Bai
- Department of Pathology, UT Health McGovern Medical School, Houston, TX, United States
| | - Randall J. Olsen
- Department of Molecular Pathology, Houston Methodist Research Institute, Houston, TX, United States
| | - Teresa T. Byrd
- Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health McGovern Medical School, Houston, TX, United States
| |
Collapse
|
91
|
Chen PM, Katsuyama E, Satyam A, Li H, Rubio J, Jung S, Andrzejewski S, Becherer JD, Tsokos MG, Abdi R, Tsokos GC. CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. SCIENCE ADVANCES 2022; 8:eabo4271. [PMID: 35704572 PMCID: PMC9200274 DOI: 10.1126/sciadv.abo4271] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Infection is one of the major causes of mortality in patients with systemic lupus erythematosus (SLE). We previously found that CD38, an ectoenzyme that regulates the production of NAD+, is up-regulated in CD8+ T cells of SLE patients and correlates with the risk of infection. Here, we report that CD38 reduces CD8+ T cell function by negatively affecting mitochondrial fitness through the inhibition of multiple steps of mitophagy, a process that is critical for mitochondria quality control. Using a murine lupus model, we found that administration of a CD38 inhibitor in a CD8+ T cell-targeted manner reinvigorated their effector function, reversed the defects in autophagy and mitochondria, and improved viral clearance. We conclude that CD38 represents a target to mitigate infection rates in people with SLE.
Collapse
Affiliation(s)
- Ping-Min Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eri Katsuyama
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jose Rubio
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
92
|
Sumida TS, Dulberg S, Schupp JC, Lincoln MR, Stillwell HA, Axisa PP, Comi M, Unterman A, Kaminski N, Madi A, Kuchroo VK, Hafler DA. Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells. Nat Immunol 2022; 23:632-642. [PMID: 35301508 PMCID: PMC8989655 DOI: 10.1038/s41590-022-01152-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Although inhibition of T cell coinhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. In the present study, we show that type 1 interferon (IFN-I) regulates coinhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses established the dynamic regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors (TFs) and TF footprint analysis revealed two regulator modules with different temporal kinetics that control expression of coinhibitory receptors and IFN-I response genes, with SP140 highlighted as one of the key regulators that differentiates LAG-3 and TIGIT expression. Finally, we found that the dynamic IFN-I response in vitro closely mirrored T cell features in acute SARS-CoV-2 infection. The identification of unique TFs controlling coinhibitory receptor expression under IFN-I response may provide targets for enhancement of immunotherapy in cancer, infectious diseases and autoimmunity.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Shai Dulberg
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center, Hannover, Germany
| | - Matthew R Lincoln
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Helen A Stillwell
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Pierre-Paul Axisa
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Michela Comi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Avraham Unterman
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Pulmonary Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Asaf Madi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
93
|
STING Agonists/Antagonists: Their Potential as Therapeutics and Future Developments. Cells 2022; 11:cells11071159. [PMID: 35406723 PMCID: PMC8998017 DOI: 10.3390/cells11071159] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
The cGAS STING pathway has received much attention in recent years, and it has been recognized as an important component of the innate immune response. Since the discovery of STING and that of cGAS, many observations based on preclinical models suggest that the faulty regulation of this pathway is involved in many type I IFN autoinflammatory disorders. Evidence has been accumulating that cGAS/STING might play an important role in pathologies beyond classical immune diseases, as in, for example, cardiac failure. Human genetic mutations that result in the activation of STING or that affect the activity of cGAS have been demonstrated as the drivers of rare interferonopathies affecting young children and young adults. Nevertheless, no data is available in the clinics demonstrating the therapeutic benefit in modulating the cGAS/STING pathway. This is due to the lack of STING/cGAS-specific low molecular weight modulators that would be qualified for clinical exploration. The early hopes to learn from STING agonists, which have reached the clinics in recent years for selected oncology indications, have not yet materialized since the initial trials are progressing very slowly. In addition, transforming STING agonists into potent selective antagonists has turned out to be more challenging than expected. Nevertheless, there has been progress in identifying novel low molecular weight compounds, in some cases with unexpected mode of action, that might soon move to clinical trials. This study gives an overview of some of the potential indications that might profit from modulation of the cGAS/STING pathway and a short overview of the efforts in identifying STING modulators (agonists and antagonists) suitable for clinical research and describing their potential as a "drug".
Collapse
|
94
|
Teh CE, Preston SP, Robbins AK, Stutz MD, Cooney J, Clark MP, Policheni AN, Allison CC, Mackiewicz L, Arandjelovic P, Ebert G, Doerflinger M, Tan T, Rankin LC, Teh PP, Belz GT, Kallies A, Strasser A, Pellegrini M, Gray DHD. Caspase-8 has dual roles in regulatory T cell homeostasis balancing immunity to infection and collateral inflammatory damage. Sci Immunol 2022; 7:eabn8041. [PMID: 35333545 DOI: 10.1126/sciimmunol.abn8041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting the potent immunosuppressive properties of FOXP3+ regulatory T cells (Tregs) has substantial therapeutic potential for treating autoimmune and inflammatory diseases. Yet, the molecular mechanisms controlling Treg homeostasis, particularly during inflammation, remain unclear. We report that caspase-8 is a central regulator of Treg homeostasis in a context-specific manner that is decisive during immune responses. In mouse genetic models, targeting caspase-8 in Tregs led to accumulation of effector Tregs resistant to apoptotic cell death. Conversely, inflammation induced the MLKL-dependent necroptosis of caspase-8-deficient lymphoid and tissue Tregs, which enhanced immunity to a variety of chronic infections to promote clearance of viral or parasitic pathogens. However, improved immunity came at the risk of lethal inflammation in overwhelming infections. Caspase-8 inhibition using a clinical-stage compound revealed that human Tregs have heightened sensitivity to necroptosis compared with conventional T cells. These findings reveal a fundamental mechanism in Tregs that could be targeted to manipulate the balance between immune tolerance versus response for therapeutic benefit.
Collapse
Affiliation(s)
- Charis E Teh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Alissa K Robbins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael D Stutz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - James Cooney
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle P Clark
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Antonia N Policheni
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Philip Arandjelovic
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gregor Ebert
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tania Tan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lucille C Rankin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peggy P Teh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Renal Medicine, Alfred Health, Melbourne, VIC, Australia.,Department of Nephrology, Western Health, Melbourne, VIC, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
95
|
Swainson LA, Sharma AA, Ghneim K, Ribeiro SP, Wilkinson P, Dunham RM, Albright RG, Wong S, Estes JD, Piatak M, Deeks SG, Hunt PW, Sekaly RP, McCune JM. IFN-α blockade during ART-treated SIV infection lowers tissue vDNA, rescues immune function, and improves overall health. JCI Insight 2022; 7:153046. [PMID: 35104248 PMCID: PMC8983135 DOI: 10.1172/jci.insight.153046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Type I IFNs (TI-IFNs) drive immune effector functions during acute viral infections and regulate cell cycling and systemic metabolism. That said, chronic TI-IFN signaling in the context of HIV infection treated with antiretroviral therapy (ART) also facilitates viral persistence, in part by promoting immunosuppressive responses and CD8+ T cell exhaustion. To determine whether inhibition of IFN-α might provide benefit in the setting of chronic, ART-treated SIV infection of rhesus macaques, we administered an anti-IFN-α antibody followed by an analytical treatment interruption (ATI). IFN-α blockade was well-tolerated and associated with lower expression of TI-IFN-inducible genes (including those that are antiviral) and reduced tissue viral DNA (vDNA). The reduction in vDNA was further accompanied by higher innate proinflammatory plasma cytokines, expression of monocyte activation genes, IL-12-induced effector CD8+ T cell genes, increased heme/metabolic activity, and lower plasma TGF-β levels. Upon ATI, SIV-infected, ART-suppressed nonhuman primates treated with anti-IFN-α displayed lower levels of weight loss and improved erythroid function relative to untreated controls. Overall, these data demonstrated that IFN-α blockade during ART-treated SIV infection was safe and associated with the induction of immune/erythroid pathways that reduced viral persistence during ART while mitigating the weight loss and anemia that typically ensue after ART interruption.
Collapse
Affiliation(s)
- Louise A. Swainson
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ashish Arunkumar Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Khader Ghneim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Susan Pereira Ribeiro
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Peter Wilkinson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Richard M. Dunham
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA.,ViiV Healthcare, Research Triangle, North Carolina, USA
| | - Rebecca G. Albright
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Samson Wong
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA.,Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Steven G. Deeks
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Joseph M. McCune
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA.,HIV Frontiers/Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
96
|
Interferon α/β Decoy Receptor Encoded by a Variant in the Dryvax Smallpox Vaccine Contributes to Virulence and Correlates with Severe Vaccine Side Effects. mBio 2022; 13:e0010222. [PMID: 35189701 PMCID: PMC8903894 DOI: 10.1128/mbio.00102-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although providing long-lasting immunity, smallpox vaccination was associated with local and systemic reactions and rarely with severe complications, including progressive vaccinia and postvaccinia encephalitis. As the Dryvax smallpox vaccine consists of a population of variants, we investigated a particularly pathogenic isolate called clone 3 (CL3). Virus replication was monitored by inserting the gene encoding firefly luciferase (Luc) into the genomes of CL3 and ACAM2000, the second-generation smallpox vaccine derived from a less virulent clone. Greater luminescence occurred following intranasal or intraperitoneal inoculation of mice with CL3-Luc than ACAM2000-Luc. Previous genome sequencing of CL3 and ACAM2000 revealed numerous differences that could affect pathogenicity. We focused on a 4.2-kbp segment, containing several open reading frames, in CL3 that is absent from ACAM2000 and determined that lower virulence of the latter was associated with a truncation of the interferon α/β (IFN-α/β) decoy receptor. Truncation of the decoy receptor in CL3-Luc and repair of the truncated version in ACAM2000-Luc decreased and increased virulence, respectively. Blockade of the mouse type 1 IFN receptor increased the virulence of ACAM2000-Luc to that of CL3-Luc, consistent with the role of IFN in attenuating the former. The severities of disease following intracranial inoculation of immunocompetent mice and intraperitoneal inoculation of T cell-depleted mice were also greater in viruses expressing the full-length decoy receptor. Previous evidence for the low affinity of a similarly truncated decoy receptor for IFN and the presence of a full-length decoy receptor in virus isolated from a patient with progressive vaccinia support our findings.
Collapse
|
97
|
Nguyen NZN, Tran VG, Baek J, Kim Y, Youn EH, Na SW, Park SJ, Seo SK, Kwon B. IL-33 Coordinates Innate Defense to Systemic Candida albicans Infection by Regulating IL-23 and IL-10 in an Opposite Way. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:660-671. [PMID: 35022276 DOI: 10.4049/jimmunol.2100495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Invasive candidiasis has high mortality rates in immunocompromised patients, causing serious health problems. In mouse models, innate immunity protects the host by rapidly mobilizing a variety of resistance and tolerance mechanisms to systemic Candida albicans infection. We have previously demonstrated that exogenous IL-33 regulates multiple steps of innate immunity involving resistance and tolerance processes. In this study, we systematically analyzed the in vivo functions of endogenous IL-33 using Il33 -/- mice and in vitro immune cell culture. Tubular epithelial cells mainly secreted IL-33 in response to systemic C. albicans infection. Il33 -/- mice showed increased mortality and morbidity, which were due to impaired fungal clearance. IL-33 initiated an innate defense mechanism by costimulating dendritic cells to produce IL-23 after systemic C. albicans infection, which in turn promoted the phagocytosis of neutrophils through secretion of GM-CSF by NK cells. The susceptibility of Il33 -/- mice was also associated with increased levels of IL-10, and neutralization of IL-10 resulted in enhanced fungal clearance in Il33 -/- mice. However, depletion of IL-10 overrode the effect of IL-33 on fungal clearance. In Il10 -/- mouse kidneys, MHC class II+F4/80+ macrophages were massively differentiated after C. albicans infection, and these cells were superior to MHC class II-F4/80+ macrophages that were preferentially differentiated in wild-type mouse kidneys in killing of extracellular hyphal C. albicans Taken together, our results identify IL-33 as critical early regulator controlling a serial downstream signaling events of innate defense to C. albicans infection.
Collapse
Affiliation(s)
- Nu Z N Nguyen
- BK21 Integrated Immunomodulation Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Vuvi G Tran
- Center for Immunology and Infectious Diseases, University of California at Davis, Davis, CA
| | - Jiyeon Baek
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Younghee Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Eun H Youn
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Seung W Na
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea.,Division of Pulmonology, Department of Internal Medicine, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea; and
| | - Sang J Park
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea.,Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea;
| | - Byungsuk Kwon
- BK21 Integrated Immunomodulation Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea; .,Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
98
|
Démoulins T, Baron ML, Gauchat D, Kettaf N, Reed SJ, Charpentier T, Kalinke U, Lamarre A, Ahmed R, Sékaly RP, Sarkar S, Kalia V. Induction of thymic atrophy and loss of thymic output by type-I interferons during chronic viral infection. Virology 2022; 567:77-86. [PMID: 35032866 DOI: 10.1016/j.virol.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023]
Abstract
Type-I interferon (IFN-I) signals exert a critical role in disease progression during viral infections. However, the immunomodulatory mechanisms by which IFN-I dictates disease outcomes remain to be fully defined. Here we report that IFN-I signals mediate thymic atrophy in viral infections, with more severe and prolonged loss of thymic output and unique kinetics and subtypes of IFN-α/β expression in chronic infection compared to acute infection. Loss of thymic output was linked to inhibition of early stages of thymopoiesis (DN1-DN2 transition, and DN3 proliferation) and pronounced apoptosis during the late DP stage. Notably, infection-associated thymic defects were largely abrogated upon ablation of IFNαβR and partially mitigated in the absence of CD8 T cells, thus implicating direct as well as indirect effects of IFN-I on thymocytes. These findings provide mechanistic underpinnings for immunotherapeutic strategies targeting IFN-1 signals to manipulate disease outcomes during chronic infections and cancers.
Collapse
Affiliation(s)
- Thomas Démoulins
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Dominique Gauchat
- Centre Hospitalier de l'Université de Montréal (CHUM), 1000, rue Saint-Denis, Montréal, Québec, H2X 0C1, Canada
| | - Nadia Kettaf
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Saint-Luc, Montréal, QC, H2X 1P1, Canada
| | - Steven James Reed
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Tania Charpentier
- Centre INRS-Institut Armand-Frappier, 531, Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Alain Lamarre
- Centre INRS-Institut Armand-Frappier, 531, Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Rafi Ahmed
- Department of Microbiology & Immunology, School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, USA
| | - Rafick-Pierre Sékaly
- Department of Pathology, Emory University Winship Cancer Center, Atlanta, GA, USA
| | - Surojit Sarkar
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Pediatrics, Division of Hematology and Oncology, University of Washington, Seattle, WA, 98195, USA.
| | - Vandana Kalia
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Pediatrics, Division of Hematology and Oncology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
99
|
Schwerdtfeger M, Dickow J, Schmitz Y, Francois S, Karakoese Z, Malyshkina A, Knuschke T, Dittmer U, Sutter K. Immunotherapy With Interferon α11, But Not Interferon Beta, Controls Persistent Retroviral Infection. Front Immunol 2022; 12:809774. [PMID: 35126368 PMCID: PMC8810532 DOI: 10.3389/fimmu.2021.809774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 01/24/2023] Open
Abstract
Type I Interferons (IFNs), including numerous IFNα subtypes and IFNβ, are key molecules during innate and adaptive immune responses against viral infections. These cytokines exert various non-redundant biological activities, although binding to the same receptor. Persistent viral infections are often characterized by increased IFN signatures implicating a potential role of type I IFNs in disease pathogenesis. Using the well-established Friend retrovirus (FV) mouse model, we compared the therapeutic efficacy of IFNα11 and IFNβ in acute and chronic retroviral infection. We observed a strong antiviral activity of both IFNs during acute FV infection, whereas only IFNα11 and not IFNβ could also control persistent FV infection. The therapeutic treatment with IFNα11 induced the expression of antiviral IFN-stimulated genes (ISG) and improved cytotoxic T cell responses. Finally, dysfunctional CD8+ T cells solely regained cytotoxicity after IFNα11 treatment. Our data provide evidence for opposing activities of type I IFNs during chronic retroviral infections. IFNβ was shown to be involved in immune dysfunction in chronic infections, whereas IFNα11 had a strong antiviral potential and reactivated exhausted T cells during persistent retroviral infection. In contrast, during acute infection, both type I IFNs were able to efficiently suppress FV replication.
Collapse
Affiliation(s)
| | - Julia Dickow
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | - Yasmin Schmitz
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | - Sandra Francois
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | - Torben Knuschke
- Institute for Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Kathrin Sutter,
| |
Collapse
|
100
|
Pratumchai I, Zak J, Huang Z, Min B, Oldstone MBA, Teijaro JR. B cell-derived IL-27 promotes control of persistent LCMV infection. Proc Natl Acad Sci U S A 2022; 119:e2116741119. [PMID: 35022243 PMCID: PMC8784116 DOI: 10.1073/pnas.2116741119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified a critical role for B cell-produced cytokines in regulating both humoral and cellular immunity. Here, we show that B cells are an essential source of interleukin-27 (IL-27) during persistent lymphocytic choriomeningitis virus (LCMV) clone 13 (Cl-13) infection. By using conditional knockout mouse models with specific IL-27p28 deletion in B cells, we observed that B cell-derived IL-27 promotes survival of virus-specific CD4 T cells and supports functions of T follicular helper (Tfh) cells. Mechanistically, B cell-derived IL-27 promotes CD4 T cell function, antibody class switch, and the ability to control persistent LCMV infection. Deletion of IL-27ra in T cells demonstrated that T cell-intrinsic IL-27R signaling is essential for viral control, optimal CD4 T cell responses, and antibody class switch during persistent LCMV infection. Collectively, our findings identify a cellular mechanism whereby B cell-derived IL-27 drives antiviral immunity and antibody responses through IL-27 signaling on T cells to promote control of LCMV Cl-13 infection.
Collapse
Affiliation(s)
- Isaraphorn Pratumchai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Booki Min
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Michael B A Oldstone
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037;
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|