51
|
Tian T, Li Q, Liu F, Jiang H, Yang R, Zhao Y, Kong F, Wang Y, Long X, Qiao J. Alkali and alkaline earth elements in follicular fluid and the likelihood of diminished ovarian reserve in reproductive-aged women: a case‒control study. J Ovarian Res 2024; 17:108. [PMID: 38762521 PMCID: PMC11102265 DOI: 10.1186/s13048-024-01414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Imbalances in alkali elements (AEs) and alkaline earth elements (AEEs) cause reproductive disorders. However, it remains unclear whether AEs/AEEs in follicular fluid have a relationship with the serious reproductive disorder known as diminished ovarian reserve (DOR). METHODS A nested case‒control study was carried out in China. Follicular fluid samples from 154 DOR patients and 154 controls were collected and assessed for nine AEs/AEE levels. Both the mixed and single effects of the elements on DOR were estimated with a Bayesian kernel machine (BKMR) and logistic regressions. RESULTS The DOR group had higher median concentrations of Li, Na, and K in follicular fluid (all P values < 0.05). The logistic regression showed that compared with their lowest tertile, the high tertiles of K [OR:2.45 (1.67-4.43)], Li [OR: 1.89 (1.06-3.42)], and Cs [OR: 1.97 (1.10-3.54)] were significantly associated with the odds of DOR. The BKMR model reported that the DOR likelihood increased linearly across the 25th through 75th percentiles of the nine-AE/AEE mixture, while the AE group contributed more to the overall effect. CONCLUSION This study revealed an association in which the likelihood of DOR increased with higher overall concentrations of AE/AEEs in follicular fluid. Among the nine detected elements, K, Li, and Cs exhibited significant individual associations with DOR. We provide new clues for the environmental factors on female fertility decline. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Qin Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Fang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Huahua Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Fei Kong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Yuanyuan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
52
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
53
|
Svensson K, Gennings C, Lindh C, Kiviranta H, Rantakokko P, Wikström S, Bornehag CG. EDC mixtures during pregnancy and body fat at 7 years of age in a Swedish cohort, the SELMA study. ENVIRONMENTAL RESEARCH 2024; 248:118293. [PMID: 38281561 DOI: 10.1016/j.envres.2024.118293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Some endocrine disrupting chemicals (EDC), are "obesogens" and have been associated with overweight and obesity in children. Daily exposure to different classes of EDCs demands for research with mixtures approach. OBJECTIVES This study evaluates the association, considering sex-specific effects, between prenatal exposure to EDC mixture and children's body fat at seven years of age. METHODS A total of 26 EDCs were assessed in prenatal urine and serum samples from first trimester in pregnancy from 737 mother-child pairs participating in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study. An indicator for children's "overall body fat" was calculated, using principal component analysis (PCA), based on BMI, percent body fat, waist, and skinfolds measured at seven years of age. Weighted quantile sum (WQS) regression was used to assess associations between EDC mixture and children's body fat. RESULTS Principal component (PC1) represented 83.6 % of the variance, suitable as indicator for children's "overall body fat", with positive loadings of 0.40-0.42 for each body fat measure. A significant interaction term, WQS*sex, confirmed associations in the opposite direction for boys and girls. Higher prenatal exposure to EDC mixture was borderline significant with more "overall body fat" for boys (Mean β = 0.20; 95 % CI: -0.13, 0.53) and less for girls (Mean β = -0.23; 95 % CI: -0.58, 0.13). Also, higher prenatal exposure to EDC mixture was borderline significant with more percent body fat (standardized score) for boys (Mean β = 0.09; 95 % CI: -0.04, 0.21) and less for girls (Mean β = -0.10 (-0.26, 0.05). The chemicals of concern included bisphenols, phthalates, PFAS, PAH, and pesticides with different patterns for boys and girls. DISCUSSION Borderline significant associations were found between prenatal exposure to a mixture of EDCs and children's body fat. The associations in opposite directions suggests that prenatal exposure to EDCs may present sex-specific effects on children's body fat.
Collapse
Affiliation(s)
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sverre Wikström
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden; Centre for Clinical Research, County Council of Värmland, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
54
|
Cohn EF, Clayton BLL, Madhavan M, Lee KA, Yacoub S, Fedorov Y, Scavuzzo MA, Paul Friedman K, Shafer TJ, Tesar PJ. Pervasive environmental chemicals impair oligodendrocyte development. Nat Neurosci 2024; 27:836-845. [PMID: 38528201 PMCID: PMC11088982 DOI: 10.1038/s41593-024-01599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
Exposure to environmental chemicals can impair neurodevelopment, and oligodendrocytes may be particularly vulnerable, as their development extends from gestation into adulthood. However, few environmental chemicals have been assessed for potential risks to oligodendrocytes. Here, using a high-throughput developmental screen in cultured cells, we identified environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents and personal care products, were potently and selectively cytotoxic to developing oligodendrocytes, whereas organophosphate flame retardants, commonly found in household items such as furniture and electronics, prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired oligodendrocyte development postnatally in mice and in a human 3D organoid model of prenatal cortical development. Analysis of epidemiological data showed that adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our screen. This work identifies toxicological vulnerabilities for oligodendrocyte development and highlights the need for deeper scrutiny of these compounds' impacts on human health.
Collapse
Affiliation(s)
- Erin F Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Benjamin L L Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kristin A Lee
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sara Yacoub
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuriy Fedorov
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Marissa A Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
55
|
Foreman AL, Warth B, Hessel EVS, Price EJ, Schymanski EL, Cantelli G, Parkinson H, Hecht H, Klánová J, Vlaanderen J, Hilscherova K, Vrijheid M, Vineis P, Araujo R, Barouki R, Vermeulen R, Lanone S, Brunak S, Sebert S, Karjalainen T. Adopting Mechanistic Molecular Biology Approaches in Exposome Research for Causal Understanding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7256-7269. [PMID: 38641325 PMCID: PMC11064223 DOI: 10.1021/acs.est.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.
Collapse
Affiliation(s)
- Amy L. Foreman
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, University
of Vienna, 1090 Vienna, Austria
| | - Ellen V. S. Hessel
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine, University
of Luxembourg, 6 avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gaia Cantelli
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helen Parkinson
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jelle Vlaanderen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Klara Hilscherova
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Martine Vrijheid
- Institute
for Global Health (ISGlobal), Barcelona
Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat
Pompeu Fabra, Carrer
de la Mercè, 12, Ciutat Vella, 08002 Barcelona, Spain
- Centro de Investigación Biomédica en Red
Epidemiología
y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5. Pebellón 11, Planta 0, 28029 Madrid, Spain
| | - Paolo Vineis
- Department
of Epidemiology and Biostatistics, School of Public Health, Imperial College, London SW7 2AZ, U.K.
| | - Rita Araujo
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| | | | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Søren Brunak
- Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Sylvain Sebert
- Research
Unit of Population Health, University of
Oulu, P.O. Box 8000, FI-90014 Oulu, Finland
| | - Tuomo Karjalainen
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| |
Collapse
|
56
|
Birgersson L, Odenlund S, Sturve J. Effects of Environmental Enrichment on Exposure to Human-Relevant Mixtures of Endocrine Disrupting Chemicals in Zebrafish. Animals (Basel) 2024; 14:1296. [PMID: 38731300 PMCID: PMC11083384 DOI: 10.3390/ani14091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Fish models used for chemical exposure in toxicological studies are normally kept in barren tanks without any structural environmental enrichment. Here, we tested the combined effects of environmental enrichment and exposure to two mixtures of endocrine disrupting chemicals (EDCs) in zebrafish. Firstly, we assessed whether developmental exposure to an EDC mixture (MIX G1) combined with rearing the fish in an enriched environment influenced behaviour later in life. This was evaluated using locomotion tracking one month after exposure, showing a significant interaction effect between enrichment and the MIX G1 exposure on the measured locomotion parameters. After three months, we assessed behaviour using custom-made behaviour tanks, and found that enrichment influenced swimming activity. Control fish from the enriched environment were more active than control fish from the barren environment. Secondly, we exposed adult zebrafish to a separate EDC mixture (MIX G0) after rearing them in a barren or enriched environment. Behaviour and hepatic mRNA expression for thyroid-related genes were assessed. There was a significant interaction effect between exposure and enrichment on swimming activity and an effect of environment on latency to approach the group of conspecifics, where enriched fish took more time to approach the group, possibly indicating that they were less anxious. Hepatic gene expression of a thyroid-related gene (thrb) was significantly affected by EDC exposure, while enrichment had no discernible impact on the expression of the measured genes. In conclusion, environmental enrichment is important to consider when studying the effects of EDCs in fish.
Collapse
Affiliation(s)
| | | | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden; (L.B.); (S.O.)
| |
Collapse
|
57
|
Walsh RM, Luongo R, Giacomelli E, Ciceri G, Rittenhouse C, Verrillo A, Galimberti M, Bocchi VD, Wu Y, Xu N, Mosole S, Muller J, Vezzoli E, Jungverdorben J, Zhou T, Barker RA, Cattaneo E, Studer L, Baggiolini A. Generation of human cerebral organoids with a structured outer subventricular zone. Cell Rep 2024; 43:114031. [PMID: 38583153 PMCID: PMC11322983 DOI: 10.1016/j.celrep.2024.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.
Collapse
Affiliation(s)
- Ryan M Walsh
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raffaele Luongo
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Elisa Giacomelli
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriele Ciceri
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chelsea Rittenhouse
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine Graduate School of Medical Sciences, Department of Neuroscience, New York, NY 1300, USA
| | - Antonietta Verrillo
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Maura Galimberti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; INGM, Istituto Nazionale Genetica Molecolare, 20122 Milan, Italy
| | - Vittoria Dickinson Bocchi
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Youjun Wu
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nan Xu
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - James Muller
- Developmental Biology and Immunology Programs, Sloan Kettering Institute, New York, NY 10065, USA
| | - Elena Vezzoli
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; INGM, Istituto Nazionale Genetica Molecolare, 20122 Milan, Italy
| | - Johannes Jungverdorben
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Roger A Barker
- Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Forvie Site, University of Cambridge, Cambridge, UK
| | - Elena Cattaneo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; INGM, Istituto Nazionale Genetica Molecolare, 20122 Milan, Italy
| | - Lorenz Studer
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine Graduate School of Medical Sciences, Department of Neuroscience, New York, NY 1300, USA.
| | - Arianna Baggiolini
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland.
| |
Collapse
|
58
|
Ren M, Wu T, Yang S, Gao N, Lan C, Zhang H, Lin W, Su S, Yan L, Zhuang L, Lu Q, Xu J, Han B, Bai Z, Meng F, Chen Y, Pan B, Wang B, Lu X, Fang M. Ascertaining sensitive exposure biomarkers of various metal(loid)s to embryo implantation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123679. [PMID: 38462199 DOI: 10.1016/j.envpol.2024.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Close relationships exist between metal(loid)s exposure and embryo implantation failure (EIF) from animal and epidemiological studies. However, there are still inconsistent results and lacking of sensitive metal(loid) exposure biomarkers associated with EIF risk. We aimed to ascertain sensitive metal(loid) biomarkers to EIF and provide potential biological explanations. Candidate metal(loid) biomarkers were measured in the female hair (FH), female serum (FS), and follicular fluid (FF) with various exposure time periods. An analytical framework was established by integrating epidemiological association results, comprehensive literature searching, and knowledge-based adverse outcome pathway (AOP) networks. The sensitive biomarkers of metal(loid)s along with potential biological pathways to EIF were identified in this framework. Among the concerned 272 candidates, 45 metal(loid)s biomarkers across six time periods and three biomatrix were initially identified by single-metal(loid) analyses. Two biomarkers with counterfactual results according to literature summary results were excluded, and a total of five biomarkers were further determined from 43 remained candidates in mixture models. Finally, four sensitive metal(loid) biomarkers were eventually assessed by overlapping AOP networks information, including Se and Co in FH, and Fe and Zn in FS. AOP networks also identified key GO pathways and proteins involved in regulation of oxygen species biosynthetic, cell proliferation, and inflammatory response. Partial dependence results revealed Fe in FS and Co in FH at their low levels might be potential sensitive exposure levels for EIF. Our study provided a typical framework to screen the crucial metal(loid) biomarkers and ascertain that Se and Co in FH, and Fe and Zn in FS played an important role in embryo implantation.
Collapse
Affiliation(s)
- Mengyuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Tianxiang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Shuo Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Ning Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Changxin Lan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Han Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Weinan Lin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Shu Su
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, China
| | - Lili Zhuang
- Reproductive Medicine Center, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai, 264000, China
| | - Qun Lu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; Center of Reproductive Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, 353770, USA
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing, 100871, China.
| | - Xiaoxia Lu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
59
|
Scher MS, Agarwal S, Venkatesen C. Clinical decisions in fetal-neonatal neurology I. reproductive and pregnancy health influence the neural exposome over multiple generations. Semin Fetal Neonatal Med 2024:101521. [PMID: 38658296 DOI: 10.1016/j.siny.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Interdisciplinary fetal neonatal neurology (FNN) training requires integration of reproductive health factors into evaluations of the maternal-placental-fetal (MPF) triad, neonate, and child over the first 1000 days. Serial events that occur before one or multiple pregnancies impact successive generations. A maternal-child dyad history highlights this continuity of health risk, beginning with a maternal grandmother's pregnancy. Her daughter was born preterm and later experienced polycystic ovarian syndrome further complicated by cognitive and mental health disorders. Medical problems during her pregnancy contributed to MPF triad diseases that resulted in her son's extreme prematurity. Postpartum maternal death from the complications of diabetic ketoacidosis and her child's severe global neurodevelopmental delay were adverse mother-child outcomes. A horizontal/vertical diagnostic approach to reach shared clinical decisions during FNN training requires perspectives of a dynamic neural exposome. Career-long learning is then strengthened by continued interactions from al stakeholders. Developmental origins theory applied to neuroplasticity principles help interpret phenotypic expressions as dynamic gene-environment interactions across a person's lifetime. Debiasing strategies applied to the cognitive process reduce bias to preserve therapeutic and prognostic accuracy. Social determinants of health are essential components of this strategy to be initiated during FNN training. Reduction of the global burden of neurologic disorders requires applying the positive effects from reproductive and pregnancy exposomes that will benefit the neural exposome across the lifespan.
Collapse
Affiliation(s)
- Mark S Scher
- Rainbow Babies and Children's Hospital Case Western Reserve University School of Medicine, USA.
| | - Sonika Agarwal
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, USA.
| | - Charu Venkatesen
- Cincinnati Children's Hospital, Cincinnati School of Medicine, USA.
| |
Collapse
|
60
|
Zhang M, Chen C, Sun Y, Wang Y, Du P, Ma R, Li T. Association between Ambient Volatile Organic Compounds Exposome and Emergency Hospital Admissions for Cardiovascular Disease. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5695-5704. [PMID: 38502526 DOI: 10.1021/acs.est.3c08937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The limited research on volatile organic compounds (VOCs) has not taken into account the interactions between constituents. We used the weighted quantile sum (WQS) model and generalized linear model (GLM) to quantify the joint effects of ambient VOCs exposome and identify the substances that play key roles. For a 0 day lag, a quartile increase of WQS index for n-alkanes, iso/anti-alkanes, aromatic, halogenated aromatic hydrocarbons, halogenated saturated chain hydrocarbons, and halogenated unsaturated chain hydrocarbons were associated with 1.09% (95% CI: 0.13, 2.06%), 0.98% (95% CI: 0.22, 1.74%), 0.92% (95% CI: 0.14, 1.69%), 1.03% (95% CI: 0.14, 1.93%), 1.69% (95% CI: 0.48, 2.91%), and 1.85% (95% CI: 0.93, 2.79%) increase in cardiovascular disease (CVD) emergency hospital admissions, respectively. Independent effects of key substances on CVD-related emergency hospital admissions were also reported. In particular, an interquartile range increase in 1,1,1-trichloroethane, methylene chloride, styrene, and methylcyclohexane is associated with a greater risk of CVD-associated emergency hospital admissions [3.30% (95% CI: 1.93, 4.69%), 3.84% (95% CI: 1.21, 6.53%), 5.62% (95% CI: 1.35, 10.06%), 8.68% (95% CI: 3.74, 13.86%), respectively]. We found that even if ambient VOCs are present at a considerably low concentration, they can cause cardiovascular damage. This should prompt governments to establish and improve concentration standards for VOCs and their sources. At the same time, policies should be introduced to limit VOCs emission to protect public health.
Collapse
Affiliation(s)
- Mengxue Zhang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yue Sun
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
61
|
Wu X, Nawaz S, Li Y, Zhang H. Environmental health hazards of untreated livestock wastewater: potential risks and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24745-24767. [PMID: 38499926 DOI: 10.1007/s11356-024-32853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Due to technological and economic limitations, waste products such as sewage and manure generated in livestock farming lack comprehensive scientific and centralized treatment. This leads to the exposure of various contaminants in livestock wastewater, posing potential risks to both the ecological environment and human health. This review evaluates the environmental and physical health risks posed by common pollutants in livestock wastewater and outlines future treatment methods to mitigate these risks. Residual wastes in livestock wastewater, including pathogenic bacteria and parasites surviving after epidemics or diseases on various farms, along with antibiotics, organic wastes, and heavy metals from farming activities, contribute to environmental damage and pose risks to human health. As the livestock industry's development increasingly impacts society's future negatively, addressing the issue of residual wastes in livestock wastewater discharge becomes imperative. Ongoing advancements in wastewater treatment systems are consistently updating and refining practices to effectively minimize waste exposure at the discharge source, mitigating risks to environmental ecology and human health. This review not only summarizes the "potential risks of livestock wastewater" but also explores "the prospects for the development of wastewater treatment technologies" based on current reports. It offers valuable insights to support the long-term and healthy development of the livestock industry and contribute to the sustainable development of the ecological environment.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
62
|
Reincke M, Arlt W, Damdimopoulou P, Köhrle J, Bertherat J. Endocrine disrupting chemicals are a threat to hormone health: a commentary on behalf of the ESE. Nat Rev Endocrinol 2024; 20:187-188. [PMID: 38388677 DOI: 10.1038/s41574-024-00958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Affiliation(s)
- Martin Reincke
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Germany.
| | - Wiebke Arlt
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jerome Bertherat
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Paris, France
| |
Collapse
|
63
|
Zhang S, Chou L, Zhu W, Luo W, Zhang C, Qiu J, Li M, Tan H, Guo J, Wang C, Tu K, Xu K, Yu H, Zhang X, Shi W, Zhou Q. Identify organic contaminants of high-concern based on non-targeted toxicity testing and non-targeted LC-HRMS analysis in tap water and source water along the Yangtze River. WATER RESEARCH 2024; 253:121303. [PMID: 38382288 DOI: 10.1016/j.watres.2024.121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Many organic pollutants were detected in tap water (TW) and source water (SW) along the Yangtze River. However, the potential toxic effects and the high-concern organics (HCOs) which drive the effect are still unknown. Here, a non-targeted toxicity testing method based on the concentration-dependent transcriptome and non-targeted LC-HRMS analysis combining tiered filtering were used to reveal the overall biological effects and chemical information. Subsequently, we developed a qualitative pathway-structure relationship (QPSR) model to effectively match the biological and chemical information and successfully identified HCOs in TW and SW along the Yangtze River by potential substructures of HCOs. Non-targeted toxicity testing found that the biological potency of both TW and SW was stronger in the downstream of the Yangtze River, and disruption of the endocrine system and cancer were the main drivers of the effect. In addition, non-targeted LC-HRMS analysis combined with retention time prediction results identified 3220 and 631 high-confidence compound structures in positive and negative ion modes, respectively. Then, QPSR model was further implied and identified a total of 103 HCOs, containing 35 industrial chemicals, 30 PPCPs, 26 pesticides, and 12 hormones in TW and SW, respectively. Among them, the neuroactive and hormonal compounds oxoamide, 8-iso-16-cyclohexyl-tetranor prostaglandin E2, E Keppra, and Tocris-0788 showed the highest frequency of detection, which were identified in more than 1/3 of the samples. The strategy of combining non-targeted toxicity testing and non-targeted LC-HRMS analysis will support comprehensive biological effect assessment, identification of HCOs, and risk control of mixtures.
Collapse
Affiliation(s)
- Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenxuan Zhu
- Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, MN 55105, USA
| | - Wenrui Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Meishuang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Keng Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kefan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China.
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
64
|
Rannaud-Bartaire P, Demeneix BA, Fini JB. Pressures of the urban environment on the endocrine system: Adverse effects and adaptation. Mol Cell Endocrinol 2024; 583:112125. [PMID: 38147952 DOI: 10.1016/j.mce.2023.112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
With an increasing collective awareness of the rapid environmental changes, questions and theories regarding the adaptability of organisms are emerging. Global warming as well as chemical and non-chemical pollution have been identified as triggers of these adaptative changes, but can we link different kinds of stressors to certain phenotypic traits? The physiological adaptation, and particularly endocrine system adaptation, of living beings to urban environments is a fascinating way of studying urban endocrinology, which has emerged as a research field in 2007. In this paper, we stress how endocrine disruption in humans and environment can be studied in the urban environment by measuring the levels of pollution, endocrine activities or adversity. We broaden the focus to include not only exposure to the chemicals that have invaded our private spheres and their effects on wild and domestic species but also non-chemical effectors such as light, noise and climate change. We argue that taking into account the various urban stress factors and their effects on the endocrine system would enable the adoption of new approaches to protect living organisms.
Collapse
Affiliation(s)
- Patricia Rannaud-Bartaire
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France; Université Catholique de Lille, l'hôpital Saint-Vincent-De-Paul, Boulevard de Belfort, 59000, Lille, France
| | - Barbara A Demeneix
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France
| | - Jean-Baptiste Fini
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France.
| |
Collapse
|
65
|
Zuo X, Zhang S, Bai H, Yu Q, Zhao Q, Sun M, Zhao X, Feng X. Effects of fluorene-9-bisphenol exposure on anxiety-like and social behavior in mice and protective potential of exogenous melatonin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29385-29399. [PMID: 38573577 DOI: 10.1007/s11356-024-33148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Fluorene-9-bisphenol (BHPF) is widely used in the manufacture of plastic products and potentially disrupts several physiological processes, but its biological effects on social behavior remain unknown. In this study, we investigated the effects of BHPF exposure on anxiety-like and social behavior in female mice and the potential mechanisms, thereby proposing a potential therapy strategy. We exposed female Balb/c mice to BHPF by oral gavage at different doses (0.5, 50 mg/kg bw/2-day) for 28 days, which were found BHPF (50 mg/kg) exposure affected motor activity in the open field test (OFT) and elevated cross maze (EPM), resulting in anxiety-like behaviors, as well as abnormal social behavioral deficits in the Social Interaction Test (SIT). Analysis of histopathological staining results showed that BHPF exposure caused damage to hippocampal neurons in the CA1/CA3/DG region and decreased Nissl pyramidal neurons in the CA1/CA3 regions of the hippocampus, as well as a decrease in parvalbumin neuron expression. In addition, BHPF exposure upregulated the expression of excitatory and inhibitory (E/I) vesicle transporter genes (Vglut1, Vglut2, VGAT, GAD67, Gabra) and axon growth gene (Dcc) in the mouse hippocampus. Interestingly, behavioral disturbances and E/I balance could be alleviated by exogenous melatonin (15 mg/kg bw/2-day) therapy. Our findings suggest that exogenous melatonin may be a potential therapy with protective potential for ameliorating or preventing BHPF-induced hippocampal neuronal damage and behavioral disturbances. This study provided new insight into the neurotoxicological effects on organisms exposed to endocrine-disrupting chemicals and aroused our vigilance in current environmental safety about chemical use.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Shuhui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Huijuan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Qian Yu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xizeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China.
| |
Collapse
|
66
|
Profita M, Fabbri E, Vasumini I, Valbonesi P. Endocrine disrupting chemicals in Italian drinking water systems: Insights from a three-year investigation combining chemical and effect-based tools. Heliyon 2024; 10:e26785. [PMID: 38463797 PMCID: PMC10920174 DOI: 10.1016/j.heliyon.2024.e26785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Drinking water quality can be compromised by endocrine-disrupting chemicals (EDCs). Three phenolic compounds [bisphenol A (BPA), nonylphenol (NP), and 4-octylphenol (OP)] and three hormones [17β-estradiol (E2), estrone (E1), and 17α-ethinylestradiol (EE2)] were analyzed as EDCs potentially occurring in source and drinking water from three full-scale drinking water treatment plants (DWTPs) in the Romagna area (Italy) by a combined approach of HPLC-MS/MS target analysis and effect-based tests for estrogenicity and genotoxicity. The EDC removal efficiency was evaluated at different steps along the treatment process in the most advanced DWTP. NP prevailed in all samples, followed by BPA. Sporadic contamination by OP and E1/E2 appeared only in the source waters; EE2 was never detected. No estrogenic or genotoxic activity was found, except for two samples showing estrogenicity well below the effect-based trigger value suggested for drinking water safety (0.9 ng/L EEQ). BPA and NP levels were largely below the threshold value; however, increases were observed after the intermediate steps of the treatment chain. The good quality of the water relied on the last step, i.e. the activated carbon filtration. DWTPs may represent an extra source of EDCs and monitoring chemical occurrence at all steps of the process is advisable to improve efficiency.
Collapse
Affiliation(s)
- M. Profita
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Campus of Ravenna, Italy
| | - E. Fabbri
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Campus of Ravenna, Italy
| | - I. Vasumini
- Romagna Acque Società delle Fonti SpA, Forlì, Italy
| | - P. Valbonesi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Campus of Ravenna, Italy
| |
Collapse
|
67
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
68
|
Pearce EN. Endocrine Disruptors and Thyroid Health. Endocr Pract 2024; 30:172-176. [PMID: 37956907 DOI: 10.1016/j.eprac.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
A wide variety of thyroidal endocrine-disrupting chemicals (EDCs) have been identified. Exposure to known thyroidal EDCs is ubiquitous, and many likely remain unidentified. The sources of exposure include contaminated drinking water, air pollution, pesticides and agricultural chemicals, flame retardants, cleaning supplies, personal care products, food additives and packaging materials, coatings and solvents, and medical products and equipment. EDCs can affect thyroid hormone synthesis, transport, metabolism, and action in a myriad of ways. Understanding the health effects of thyroidal EDCs has been challenging because individuals may have multiple concomitant EDC exposures and many potential EDCs are not yet well characterized. Because of the importance of thyroid hormone for brain development in early life, pregnant women and young infants are particularly vulnerable to the effects of environmental thyroid disruption. The thyroidal effects of some EDCs may be exacerbated in iodine-deficient individuals, those with thyroid autoimmunity, and those with mutations in deiodinase genes. Differential exposures to EDCs may exacerbate health disparities in disadvantaged groups. High-throughput in vitro assays and in silico methods and methods that can detect the effects of relevant EDC mixtures are needed. In addition, optimal methods for detecting the effects of thyroidal EDCs on neurodevelopment need to be developed. Common sense precautions can reduce some thyroidal EDC exposures; however, regulation of manufacturing and drinking water content will ultimately be needed to protect populations.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
69
|
Huang W, Zhang Z, Colucci M, Deng L, Yang M, Huang X, Zhou X, Jin Y, Lazzarini E, Balbi C, Juanola O, Valdata A, Bressan S, Zhan Y, Qi F, Wei Q, Yang L, Zou X, Qiu S. The mixed effect of Endocrine-Disrupting chemicals on biological age Acceleration: Unveiling the mechanism and potential intervention target. ENVIRONMENT INTERNATIONAL 2024; 184:108447. [PMID: 38246039 DOI: 10.1016/j.envint.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Although previous studies investigated the potential adverse effects of endocrine-disrupting chemicals (EDCs) on biological age acceleration and aging-related diseases, the mixed effect of multiple types of EDCs on biological age acceleration, including its potential underlying mechanism, remains unclear. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) were used to analyze biological age measures, including Klemera-Doubal method biological age (KDM-BA), phenotypic age, and homeostatic dysregulation (HD). Weight quantile sum (WQS) regression was performed to screen biological age-related EDCs (BA-EDCs) and assess the mixed effect of BA-EDCs on biological age acceleration and aging-related disease. Targets of BA-EDCs were obtained from three databases, while heart aging-related genes were obtained from the Aging Anno database. Protein-protein interaction (PPI) network and MCODE algorithm were applied to identify potential interactions between BA-EDC targets and heart aging-related genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to identify related pathways. RESULTS This cross-sectional study included 1,439 participants. A decile increase in BA-EDCs co-exposure was associated with 0.31 years and 0.17 years of KDM-BA and phenotypic age acceleration, respectively. The mixed effect of BA-EDCs was associated with an increased prevalence of atherosclerotic cardiovascular disease (ASCVD). Vitamins C and E demonstrated a significant interaction effect on the association between BA-EDCs and KDM-BA acceleration. PPI network and functional enrichment analysis indicated that the AGE-RAGE signaling pathway in diabetic complications was significantly enriched. CONCLUSION Our results showed that the co-exposure effect of BA-EDCs was associated with biological age acceleration and ASCVD, with the AGE-RAGE signaling pathway being the underlying mechanism. Vitamins C and E may also be an actionable target for preventing EDC-induced biological aging.
Collapse
Affiliation(s)
- Weichao Huang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zilong Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Faculty of Biology and Medicine, University of Lausanne UNIL, CH1011 Lausanne, Switzerland
| | - Linghui Deng
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Department of Gerontology, West China Hospital of Sichuan University, Chengdu, China
| | - Mi Yang
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xinyi Huang
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xianghong Zhou
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yumin Jin
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano Switzerland
| | - Carolina Balbi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Oriol Juanola
- Gastroenterology and Hepatology, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Department of Health Sciences and Technology (D-HEST) ETH Zurich, Zurich, CH, Switzerland
| | - Silvia Bressan
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Fang Qi
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Qiang Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Shi Qiu
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland.
| |
Collapse
|
70
|
Pérez Fernández MR, Martínez Lede I, Fernández-Varela MM, Fariñas-Valiña N, Calvo Ayuso N, Rodríguez-Garrido JI. [Depressive symptoms in a sample of women with subclinical hypothyroidism and their relationship to chlorates in tap water]. NUTR HOSP 2024. [PMID: 38328922 DOI: 10.20960/nh.04919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION depressive symptoms may develop in subclinical hypothyroidism and their presence usually facilitates recognition and the establishment of replacement treatment; however, recent studies have found no association between the two. Be-sides, thyroid function can be affected by endocrine disruptors and some of them, such as chlorates, can be found in the water we drink. OBJECTIVES to know if the type of water consumed may influence the development of depressive symptoms in patients with subclinical hypothyroidism. METHODS 96 women with subclinical hypothyroidism, without thyroid treatment, par-ticipated from a health area in Spain. We studied, among other variables, the presence of depressive symptoms, type of water consumption (tap, bottled or spring) and the level of chlorates in the tap water. RESULTS 41.7 % (40) of women presented depressive symptoms and these were related to the consumption of tap water (p = 0.001), resulting in a reliable predictor (OR, 27.79; p = 0.007). Chlorate level in the tap water was 250 µg/L, a value within the maximum limit allowed by law. CONCLUSIONS chronic exposure to chlorates in water, in women with subclinical hypo-thyroidism, at levels authorized by law, could favor the inhibition of iodine transport and the appearance of depressive symptoms. It would be interesting to test this hy-pothesis as well as its possible effect on other population profiles.
Collapse
|
71
|
Wiesinger H, Bleuler C, Christen V, Favreau P, Hellweg S, Langer M, Pasquettaz R, Schönborn A, Wang Z. Legacy and Emerging Plasticizers and Stabilizers in PVC Floorings and Implications for Recycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1894-1907. [PMID: 38241221 PMCID: PMC10832040 DOI: 10.1021/acs.est.3c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024]
Abstract
Hazardous chemicals in building and construction plastics can lead to health risks due to indoor exposure and may contaminate recycled materials. We systematically sampled new polyvinyl chloride floorings on the Swiss market (n = 151). We performed elemental analysis by X-ray fluorescence, targeted and suspect gas chromatography-mass spectrometry analysis of ortho-phthalates and alternative plasticizers, and bioassay tests for cytotoxicity and oxidative stress, and endocrine, mutagenic, and genotoxic activities (for selected samples). Surprisingly, 16% of the samples contained regulated chemicals above 0.1 wt %, mainly lead and bis(2-ethylhexyl) phthalate (DEHP). Their presence is likely related to the use of recycled PVC in new flooring, highlighting that uncontrolled recycling can delay the phase-out of hazardous chemicals. Besides DEHP, 29% of the samples contained other ortho-phthalates (mainly diisononyl and diisodecyl phthalates, DiNP and DiDP) above 0.1 wt %, and 17% of the samples indicated a potential to cause biological effects. Considering some overlap between these groups, they together make up an additional 35% of the samples of potential concern. Moreover, both suspect screening and bioassay results indicate the presence of additional potentially hazardous substances. Overall, our study highlights the urgent need to accelerate the phase-out of hazardous substances, increase the transparency of chemical compositions in plastics to protect human and ecosystem health, and enable the transition to a safe and sustainable circular economy.
Collapse
Affiliation(s)
- Helene Wiesinger
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Christophe Bleuler
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Verena Christen
- Institute
for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland,
FHNW, 4132 Muttenz, Switzerland
| | - Philippe Favreau
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Stefanie Hellweg
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Miriam Langer
- Institute
for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland,
FHNW, 4132 Muttenz, Switzerland
- Eawag—Swiss
Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Roxane Pasquettaz
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Andreas Schönborn
- Institute
of Natural Resource Sciences, ZHAW Zurich
University of Applied Science, 8820 Wädenswil, Switzerland
| | - Zhanyun Wang
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
72
|
Chung MK, House JS, Akhtari FS, Makris KC, Langston MA, Islam KT, Holmes P, Chadeau-Hyam M, Smirnov AI, Du X, Thessen AE, Cui Y, Zhang K, Manrai AK, Motsinger-Reif A, Patel CJ. Decoding the exposome: data science methodologies and implications in exposome-wide association studies (ExWASs). EXPOSOME 2024; 4:osae001. [PMID: 38344436 PMCID: PMC10857773 DOI: 10.1093/exposome/osae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 03/07/2024]
Abstract
This paper explores the exposome concept and its role in elucidating the interplay between environmental exposures and human health. We introduce two key concepts critical for exposomics research. Firstly, we discuss the joint impact of genetics and environment on phenotypes, emphasizing the variance attributable to shared and nonshared environmental factors, underscoring the complexity of quantifying the exposome's influence on health outcomes. Secondly, we introduce the importance of advanced data-driven methods in large cohort studies for exposomic measurements. Here, we introduce the exposome-wide association study (ExWAS), an approach designed for systematic discovery of relationships between phenotypes and various exposures, identifying significant associations while controlling for multiple comparisons. We advocate for the standardized use of the term "exposome-wide association study, ExWAS," to facilitate clear communication and literature retrieval in this field. The paper aims to guide future health researchers in understanding and evaluating exposomic studies. Our discussion extends to emerging topics, such as FAIR Data Principles, biobanked healthcare datasets, and the functional exposome, outlining the future directions in exposomic research. This abstract provides a succinct overview of our comprehensive approach to understanding the complex dynamics of the exposome and its significant implications for human health.
Collapse
Affiliation(s)
- Ming Kei Chung
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - John S House
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of TN, Knoxville, TN, USA
| | - Khandaker Talat Islam
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern CA, Los Angeles, CA, USA
| | - Philip Holmes
- Department of Physics, Villanova University, Villanova, Philadelphia, USA
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alex I Smirnov
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Xiuxia Du
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of NC at Charlotte, Charlotte, NC, USA
| | - Anne E Thessen
- Department of Biomedical Informatics, University of CO Anschutz Medical Campus, Aurora, CO, USA
| | - Yuxia Cui
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of NY, Rensselaer, NY, USA
| | - Arjun K Manrai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
73
|
Roger C, Paul A, Fort E, Lamouroux C, Samal A, Spinosi J, Charbotel B. Changes in the European Union definition for endocrine disruptors: how many molecules remain a cause for concern? The example of crop protection products used in agriculture in France in the six last decades. Front Public Health 2024; 11:1343047. [PMID: 38292391 PMCID: PMC10826603 DOI: 10.3389/fpubh.2023.1343047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
Background The endocrine-disrupting effects of phytopharmaceutical active substances (PAS) on human health are a public health concern. The CIPATOX-PE database, created in 2018, listed the PAS authorized in France between 1961 and 2014 presenting endocrine-disrupting effects for humans according to data from official international organizations. Since the creation of CIPATOX-PE, European regulations have changed, and new initiatives identifying substances with endocrine-disrupting effects have been implemented and new PAS have been licensed. Objectives The study aimed to update the CIPATOX-PE database by considering new 2018 European endocrine-disrupting effect identification criteria as well as the new PAS authorized on the market in France since 2015. Methods The endocrine-disrupting effect assessment of PAS from five international governmental and non-governmental initiatives was reviewed, and levels of evidence were retained by these initiatives for eighteen endocrine target organs. Results The synthesis of the identified endocrine-disrupting effects allowed to assign an endocrine-disrupting effect level of concern for 241 PAS among 980 authorized in France between 1961 and 2021. Thus, according to the updated CIPATOX-PE data, 44 PAS (18.3%) had an endocrine-disrupting effect classified as "high concern," 133 PAS (55.2%) "concern," and 64 PAS (26.6%) "unknown effect" in the current state of knowledge. In the study, 42 PAS with an endocrine-disrupting effect of "high concern" are similarly classified in CIPATOX-PE-2018 and 2021, and 2 new PAS were identified as having an endocrine-disrupting effect of "high concern" in the update, and both were previously classified with an endocrine-disrupting effect of "concern" in CIPATOX-PE-2018. Finally, a PAS was identified as having an endocrine-disrupting effect of "high concern" in CIPATOX-PE-2018 but is now classified as a PAS not investigated for endocrine-disrupting effects in CIPATOX-PE-2021. The endocrine target organs associated with the largest number of PAS with an endocrine-disrupting effect of "high concern" is the reproductive system with 31 PAS. This is followed by the thyroid with 25 PAS and the hypothalamic-pituitary axis (excluding the gonadotropic axis) with 5 PAS. Discussion The proposed endocrine-disrupting effect indicator, which is not a regulatory classification, can be used as an epidemiological tool for occupational risks and surveillance.
Collapse
Affiliation(s)
- Cloé Roger
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
| | - Adèle Paul
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
| | - Emmanuel Fort
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
| | - Céline Lamouroux
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
- CRPPE de Lyon, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| | - Areejit Samal
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai, India
| | - Johan Spinosi
- Santé Publique France, French National Public Health Agency, Paris, France
| | - Barbara Charbotel
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
- CRPPE de Lyon, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| |
Collapse
|
74
|
Lismer A, Shao X, Dumargne MC, Lafleur C, Lambrot R, Chan D, Toft G, Bonde JP, MacFarlane AJ, Bornman R, Aneck-Hahn N, Patrick S, Bailey JM, de Jager C, Dumeaux V, Trasler JM, Kimmins S. The Association between Long-Term DDT or DDE Exposures and an Altered Sperm Epigenome-a Cross-Sectional Study of Greenlandic Inuit and South African VhaVenda Men. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17008. [PMID: 38294233 PMCID: PMC10829569 DOI: 10.1289/ehp12013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND The organochlorine dichlorodiphenyltrichloroethane (DDT) is banned worldwide owing to its negative health effects. It is exceptionally used as an insecticide for malaria control. Exposure occurs in regions where DDT is applied, as well as in the Arctic, where its endocrine disrupting metabolite, p , p ' -dichlorodiphenyldichloroethylene (p , p ' -DDE) accumulates in marine mammals and fish. DDT and p , p ' -DDE exposures are linked to birth defects, infertility, cancer, and neurodevelopmental delays. Of particular concern is the potential of DDT use to impact the health of generations to come via the heritable sperm epigenome. OBJECTIVES The objective of this study was to assess the sperm epigenome in relation to p , p ' -DDE serum levels between geographically diverse populations. METHODS In the Limpopo Province of South Africa, we recruited 247 VhaVenda South African men and selected 50 paired blood serum and semen samples, and 47 Greenlandic Inuit blood and semen paired samples were selected from a total of 193 samples from the biobank of the INUENDO cohort, an EU Fifth Framework Programme Research and Development project. Sample selection was based on obtaining a range of p , p ' -DDE serum levels (mean = 870.734 ± 134.030 ng / mL ). We assessed the sperm epigenome in relation to serum p , p ' -DDE levels using MethylC-Capture-sequencing (MCC-seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq). We identified genomic regions with altered DNA methylation (DNAme) and differential enrichment of histone H3 lysine 4 trimethylation (H3K4me3) in sperm. RESULTS Differences in DNAme and H3K4me3 enrichment were identified at transposable elements and regulatory regions involved in fertility, disease, development, and neurofunction. A subset of regions with sperm DNAme and H3K4me3 that differed between exposure groups was predicted to persist in the preimplantation embryo and to be associated with embryonic gene expression. DISCUSSION These findings suggest that DDT and p , p ' -DDE exposure impacts the sperm epigenome in a dose-response-like manner and may negatively impact the health of future generations through epigenetic mechanisms. Confounding factors, such as other environmental exposures, genetic diversity, and selection bias, cannot be ruled out. https://doi.org/10.1289/EHP12013.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Charlotte Dumargne
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Christine Lafleur
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| | - Romain Lambrot
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| | - Donovan Chan
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Amanda J. MacFarlane
- Agriculture Food and Nutrition Evidence Center, Texas A&M University, Fort Worth, Texas, USA
| | - Riana Bornman
- Environmental Chemical Pollution and Health Research Unit, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Natalie Aneck-Hahn
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Sean Patrick
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Janice M. Bailey
- Research Centre on Reproduction and Intergenerational Health, Department of Animal Sciences, Université Laval, Quebec, Quebec, Canada
| | - Christiaan de Jager
- Environmental Chemical Pollution and Health Research Unit, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Jacquetta M. Trasler
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
75
|
Braun G, Krauss M, Escher BI. Recovery of 400 Chemicals with Three Extraction Methods for Low Volumes of Human Plasma Quantified by Instrumental Analysis and In Vitro Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19363-19373. [PMID: 37987701 DOI: 10.1021/acs.est.3c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Human biomonitoring studies are important for understanding adverse health outcomes caused by exposure to chemicals. Complex mixtures of chemicals detected in blood - the blood exposome - may serve as proxies for systemic exposure. Ideally, several analytical methods are combined with in vitro bioassays to capture chemical mixtures as diverse as possible. How many and which (bio)analyses can be performed is limited by the sample volume and compatibility of extraction and (bio)analytical methods. We compared the extraction efficacy of three extraction methods using pooled human plasma spiked with >400 organic chemicals. Passive equilibrium sampling (PES) with polydimethylsiloxane (PDMS) followed by solid phase extraction (PES + SPE), SPE alone (SPE), and solvent precipitation (SolvPrec) were compared for chemical recovery in LC-HRMS and GC-HRMS as well as effect recovery in four mammalian cell lines (AhR-CALUX, SH-SY5Y, AREc32, PPARγ-BLA). The mean chemical recoveries were 38% for PES + SPE, 27% for SPE, and 61% for SolvPrec. PES + SPE enhanced the mean chemical recovery compared to SPE, especially for neutral hydrophobic chemicals. PES + SPE and SolvPrec had effect recoveries of 100-200% in all four cell lines, outperforming SPE, which had 30-100% effect recovery. Although SolvPrec has the best chemical recoveries, it does not remove matrix like inorganics or lipids, which might pose problems for some (bio)analytical methods. PES + SPE is the most promising method for sample preparation in human biomonitoring as it combines good recoveries with cleanup, enrichment, and potential for high throughput.
Collapse
Affiliation(s)
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| |
Collapse
|
76
|
Zhang Q, Yang Y, Shang N, Xiao Y, Xiao Y, Liu Y, Jiang X, Sanganyado E, Liu S, Xia X. Identification and Coexposure of Neonicotinoid Insecticides and Their Transformation Products in Retail Cowpea ( Vigna unguiculata). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20182-20193. [PMID: 37931075 DOI: 10.1021/acs.est.3c05269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
There is growing evidence that the transformation products of emerging contaminants in foodstuffs may pose a health risk to humans. However, the exact identities, levels, and estimated dietary intake (EDI) of neonicotinoid transformation products in crops remain poorly understood. We established an extended suspect screening strategy to investigate neonicotinoid insecticides and their transformation products in retail cowpea from 11 cities in Hainan Province, China. Forty-nine transformation products were identified in retail cowpea, of which 22-36 were found in 98.6% of the samples. Notably, 31 new transformation products were derived from new processes or a combination of different transformation processes. The mean concentrations of neonicotinoids and nine of the transformation products (with authentic standards) were in the ranges of 0.0824-5.34 and 0.0636-1.50 ng/g, respectively. The cumulative EDIs of the quantified transformation products were lower than those of parent neonicotinoids with the exception of clothianidin desmethyl, which had a ratio of 1157%. However, the coexistence of the other 40 transformation products (without authentic standards) in cowpea suggested that the exposure risk from all of the transformation products might be higher. This study demonstrated that pesticide transformation products should be considered in food chain risk assessments and included in future regulatory management.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Nanxiu Shang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
77
|
Vinnars MT, Bixo M, Damdimopoulou P. Pregnancy-related maternal physiological adaptations and fetal chemical exposure. Mol Cell Endocrinol 2023; 578:112064. [PMID: 37683908 DOI: 10.1016/j.mce.2023.112064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Prenatal life represents a susceptible window of development during which chemical exposures can permanently alter fetal development, leading to an increased likelihood of disease later in life. Therefore, it is essential to assess exposure in the fetus. However, direct assessment in human fetuses is challenging, so most research measures maternal exposure. Pregnancy induces a range of significant physiological changes in women that may affect chemical metabolism and responses. Moreover, placental function, fetal sex, and pregnancy complications may further modify these exposures. The purpose of this narrative review is to give an overview of major pregnancy-related physiological changes, including placental function and impacts of pregnancy complications, to summarize existing studies assessing chemical exposure in human fetal organs, and to discuss possible interactions between physiological changes and exposures. Our review reveals major knowledge gaps in factors affecting fetal chemical exposure, highlighting the need to develop more sophisticated tools for chemical health risk assessment in fetuses.
Collapse
Affiliation(s)
- Marie-Therese Vinnars
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Marie Bixo
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
78
|
Rannaud-Bartaire P, Fini JB. [Disruptors of thyroid hormones: Which consequences for human health and environment?]. Biol Aujourdhui 2023; 217:219-231. [PMID: 38018950 DOI: 10.1051/jbio/2023036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 11/30/2023]
Abstract
Endocrine disruptors (EDs) of chemical origin are the subject of numerous studies, some of which have led to measures aimed at limiting their use and their impact on the environment and human health. Dozens of hormones have been described and are common to all vertebrates (some chemically related messengers have also been identified in invertebrates), with variable roles that are not always known. The effects of endocrine disruptors therefore potentially concern all animal species via all endocrine axes. These effects are added to the other parameters of the exposome, leading to strong, multiple and complex adaptive pressures. The effects of EDs on reproductive and thyroid pathways have been among the most extensively studied over the last 30 years, in a large number of species. The study of the effects of EDs on thyroid pathways and brain development goes hand in hand with increasing knowledge of 1) the different roles of thyroid hormones at cellular or tissue level (particularly developing brain tissue) in many species, 2) other hormonal pathways and 3) epigenetic interactions. If we want to understand how EDs affect living organisms, we need to integrate results from complementary scientific fields within an integrated, multi-model approach (the so-called translational approach). In the present review article, we aim at reporting recent discoveries and discuss prospects for action in the fields of medicine and research. We also want to highlight the need for an integrated, multi-disciplinary approach to studying impacts and taking appropriate action.
Collapse
Affiliation(s)
- Patricia Rannaud-Bartaire
- Laboratoire PHYMA, MNHN, UMR 7221, 7 rue Cuvier, 75005 Paris, France - Hôpital Saint-Vincent-De-Paul, GHICL, boulevard de Belfort, 59000 Lille, France
| | | |
Collapse
|
79
|
Seewoo BJ, Goodes LM, Mofflin L, Mulders YR, Wong EV, Toshniwal P, Brunner M, Alex J, Johnston B, Elagali A, Gozt A, Lyle G, Choudhury O, Solomons T, Symeonides C, Dunlop SA. The plastic health map: A systematic evidence map of human health studies on plastic-associated chemicals. ENVIRONMENT INTERNATIONAL 2023; 181:108225. [PMID: 37948868 DOI: 10.1016/j.envint.2023.108225] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The global production and use of plastic materials has increased dramatically since the 1960s and there is increasing evidence of human health impacts related to exposure to plastic-associated chemicals. There is, however, no comprehensive, regulatory, post-market monitoring for human health effects of plastic-associated chemicals or particles and it is unclear how many of these have been investigated for effects in humans, and therefore what the knowledge gaps are. OBJECTIVE To create a systematic evidence map of peer-reviewed human studies investigating the potential effects of exposure to plastic-associated particles/chemicals on health to identify research gaps and provide recommendations for future research and regulation policy. METHODS Medline and Embase databases were used to identify peer-reviewed primary human studies published in English from Jan 1960 - Jan 2022 that investigated relationships between exposures to included plastic-associated particles/chemicals measured and detected in bio-samples and human health outcomes. Plastic-associated particles/chemicals included are: micro and nanoplastics, due to their widespread occurrence and potential for human exposure; polymers, the main building blocks of plastic; plasticizers and flame retardants, the two most common types of plastic additives with the highest concentration ranges in plastic materials; and bisphenols and per- or polyfluoroalkyl substances, two chemical classes of known health concern that are common in plastics. We extracted metadata on the population and study characteristics (country, intergenerational, sex, age, general/special exposure risk status, study design), exposure (plastic-associated particle/chemical, multiple exposures), and health outcome measures (biochemical, physiological, and/or clinical), from which we produced the interactive database 'Plastic Health Map' and a narrative summary. RESULTS We identified 100,949 unique articles, of which 3,587 met our inclusion criteria and were used to create a systematic evidence map. The Plastic Health Map with extracted metadata from included studies are freely available at https://osf.io/fhw7d/ and summary tables, plots and overall observations are included in this report. CONCLUSIONS We present the first evidence map compiling human health research on a wide range of plastic-associated chemicals from several different chemical classes, in order to provide stakeholders, including researchers, regulators, and concerned individuals, with an efficient way to access published literature on the matter and determine knowledge gaps. We also provide examples of data clusters to facilitate systematic reviews and research gaps to help direct future research efforts. Extensive gaps are identified in the breadth of populations, exposures and outcomes addressed in studies of potential human health effects of plastic-associated chemicals. No studies of the human health effects of micro and/or nanoplastics were found, and no studies were found for 26/1,202 additives included in our search that are of known hazard concern and confirmed to be in active production. Few studies have addressed recent "substitution" chemicals for restricted additives such as organophosphate flame retardants, phthalate substitutes, and bisphenol analogues. We call for a paradigm shift in chemical regulation whereby new plastic chemicals are rigorously tested for safety before being introduced in consumer products, with ongoing post-introduction biomonitoring of their levels in humans and health effects throughout individuals' life span, including in old age and across generations.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M Goodes
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise Mofflin
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R Mulders
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch Vs Wong
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Priyanka Toshniwal
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Manuel Brunner
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jennifer Alex
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Brady Johnston
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Ahmed Elagali
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Aleksandra Gozt
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Greg Lyle
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Population Health, Curtin University, Kent St, Bentley WA 6102, Australia
| | - Omrik Choudhury
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Terena Solomons
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Health and Medical Sciences (Library), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A Dunlop
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
80
|
Xia Z, Lv C, Zhang Y, Shi R, Lu Q, Tian Y, Lei X, Gao Y. Associations of exposure to bisphenol A and its substitutes with neurodevelopmental outcomes among infants at 12 months of age: A cross-sectional study. CHEMOSPHERE 2023; 341:139973. [PMID: 37640215 DOI: 10.1016/j.chemosphere.2023.139973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to adverse childhood neurodevelopment, but little is known about whether BPA substitutes exposures are also related to childhood neurodevelopment. OBJECTIVES To investigate the associations of exposure to BPA and its substitutes with infant neurodevelopment at 12 months. METHODS A total of 420 infants at 12 months were included from the Laizhou Wan (Bay) Birth Cohort in Shandong, China. Urinary concentrations of BPA and its substitutes including bisphenol S (BPS), bisphenol B (BPB), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol P (BPP) and bisphenol Z (BPZ) were measured. Developmental quotient (DQ) scores based on the Gesell Development Schedules (GDS) were used to evaluate infant neurodevelopment. The multivariable linear regression and weighted quantile sum (WQS) regression were applied to estimate the associations of exposure to individual bisphenols and their mixtures with DQ scores, respectively. Sex-stratified analyses were also performed. RESULTS BPA was detected in most infants (89.05%) and had the highest median concentration (0.709 ng/mL) among all bisphenols. BPA substitutes except BPZ were ubiquitous in infants' urine samples (>70%), and BPS showed the highest median concentration (0.064 ng/mL) followed by BPAP (0.036 ng/mL), BPAF (0.028 ng/mL), BPP (0.015 ng/mL) and BPB (0.013 ng/mL). In multivariable linear regression, only BPAF exposure was inversely associated with social DQ scores among all infants (β = -0.334; 95% CI: -0.650, -0.019). After sex stratification, this inverse association was significant in girls (β = -0.605; 95% CI: -1.030, -0.180). Besides, BPA exposure was negatively related to gross motor DQ scores in boys (β = -1.061; 95% CI: -2.078, -0.045). WQS analyses confirmed these results. CONCLUSIONS Our study suggests that bisphenol exposure during infancy may be associated with poor infant neurodevelopment, and BPAF as a commonly used BPA substitute contributing the most to this adverse association deserves more attention.
Collapse
Affiliation(s)
- Zhuanning Xia
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Lv
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
81
|
Wu L, Zeeshan M, Dang Y, Zhang YT, Liang LX, Huang JW, Zhou JX, Guo LH, Fan YY, Sun MK, Yu T, Wen Y, Lin LZ, Liu RQ, Dong GH, Chu C. Maternal transfer of F-53B inhibited neurobehavior in zebrafish offspring larvae and potential mechanisms: Dopaminergic dysfunction, eye development defects and disrupted calcium homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164838. [PMID: 37353013 DOI: 10.1016/j.scitotenv.2023.164838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Maternal exposure to environment toxicants is an important risk factor for neurobehavioral health in their offspring. In our study, we investigated the impact of maternal exposure to chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs, commercial name: F-53B) on behavioral changes and the potential mechanism in the offspring larvae of zebrafish. Adult zebrafish exposed to Cl-PFESAs (0, 0.2, 2, 20 and 200 μg/L) for 21 days were subsequently mated their embryos were cultured for 5 days. Higher concentrations of Cl-PFESAs in zebrafish embryos were observed, along with, reduced swimming speed and distance travelled in the offspring larvae. Molecular docking analysis revealed that Cl-PFESAs can form hydrogen bonds with brain-derived neurotropic factor (BDNF), protein kinase C, alpha, (PKCα), Ca2+-ATPase and Na, K - ATPase. Molecular and biochemical studies evidenced Cl-PFESAs induce dopaminergic dysfunction, eye developmental defects and disrupted Ca2+ homeostasis. Together, our results showed that maternal exposure to Cl-PFESAs lead to behavioral alteration in offspring mediated by disruption in Ca2+ homeostasis, dopaminergic dysfunction and eye developmental defects.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Yuan Fan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Kun Sun
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Wen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
82
|
Liu W, Cao S, Shi D, Yu L, Qiu W, Chen W, Wang B. Single-chemical and mixture effects of multiple volatile organic compounds exposure on liver injury and risk of non-alcoholic fatty liver disease in a representative general adult population. CHEMOSPHERE 2023; 339:139753. [PMID: 37553041 DOI: 10.1016/j.chemosphere.2023.139753] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/10/2023]
Abstract
Evidence on liver injury and non-alcoholic fatty liver disease (NAFLD) from volatile organic compounds (VOCs) exposure is insufficient. A cross-sectional study including 3011 US adults from the National Health and Nutrition Examination Survey was conducted to explore the associations of urinary exposure biomarkers (EBs) for 13 VOCs (toluene, xylene, ethylbenzene, styrene, acrylamide, N,N-dimethylformamide, acrolein, crotonaldehyde, 1,3-butadiene, acrylonitrile, cyanide, propylene oxide, and 1-bromopropane) with liver injury biomarkers and the risk of NAFLD by performing single-chemical (survey weight regression) and mixture (Bayesian kernel machine regression [BKMR] and weighted quantile sum [WQS]) analyses. We found significant positive associations of EBs for toluene and 1-bromopropane with alanine aminotransferase (ALT), EBs for toluene, crotonaldehyde, and 1,3-butadiene with asparate aminotransferase (AST), EBs for 1,3-butadiene and cyanide with alkaline phosphatase (ALP), EBs for xylene and cyanide with hepamet fibrosis score (HFS), EBs for the total 13 VOCs (except propylene oxide) with United States fatty liver index (USFLI), and EBs for xylene, N,N-dimethylformamide, acrolein, crotonaldehyde, and acrylonitrile with NALFD; and significant inverse associations of EBs for ethylbenzene, styrene, acrylamide, acrolein, crotonaldehyde, 1,3-butadiene, acrylonitrile, cyanide, and propylene oxide with total bilirubin, EBs for ethylbenzene, styrene, acrylamide, acrolein, 1,3-butadiene, acrylonitrile, and cyanide with albumin (ALB), EBs for ethylbenzene, styrene, acrylamide, N,N-dimethylformamide, acrolein, crotonaldehyde, 1,3-butadiene, acrylonitrile, cyanide, and propylene oxide with total protein (TP), and EB for 1-bromopropane with AST/ALT (all P-FDR<0.05). In BKMR and WQS, the mixture of VOC-EBs was significantly positively associated with ALT, AST, ALP, HFS, USFLI, and the risk of NAFLD, while significantly inversely associated with TBIL, ALB, TP, and AST/ALT. VOCs exposure was associated with liver injury and increased risk of NAFLD in US adults. These findings highlight that great attention should be paid to the potential risk of liver health damage from VOCs exposure.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuting Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
83
|
You M, Li S, Yan S, Yao D, Wang T, Wang Y. Exposure to nonylphenol in early life causes behavioural deficits related with autism spectrum disorders in rats. ENVIRONMENT INTERNATIONAL 2023; 180:108228. [PMID: 37802007 DOI: 10.1016/j.envint.2023.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Early-life exposure to environmental endocrine disruptors (EDCs) is a potential risk factor for autism spectrum disorder (ASD). Exposure to nonylphenol (NP), a typical EDC, is known to cause some long-term behavioural abnormalities. Moreover, these abnormal behaviours are the most frequent psychiatric co-morbidities in ASD. However, the direct evidence for the link between NP exposure in early life and ASD-like behavioural phenotypes is still missing. In the present study, typical ASD-like behaviours induced by valproic acid treatment were considered as a positive behavioural control. We investigated impacts on social behaviours following early-life exposure to NP, and explored effects of this exposure on neuronal dendritic spines, mitochondria function, oxidative stress, and endoplasmic reticulum (ER) stress. Furthermore, primary cultured rat neurons were employed as in vitro model to evaluate changes in dendritic spine caused by exposure to NP, and oxidative stress and ER stress were specifically modulated to further explore their roles in these changes. Our results indicated rats exposed to NP in early life showed mild ASD-like behaviours. Moreover, we also found the activation of ER stress triggered by oxidative stress may contribute to dendritic spine decrease and synaptic dysfunction, which may underlie neurobehavioural abnormalities induced by early-life exposure to NP.
Collapse
Affiliation(s)
- Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; School of Public Heath, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Dianqi Yao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Tingyu Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
84
|
Muncke J, Andersson AM, Backhaus T, Belcher SM, Boucher JM, Carney Almroth B, Collins TJ, Geueke B, Groh KJ, Heindel JJ, von Hippel FA, Legler J, Maffini MV, Martin OV, Peterson Myers J, Nadal A, Nerin C, Soto AM, Trasande L, Vandenberg LN, Wagner M, Zimmermann L, Thomas Zoeller R, Scheringer M. A vision for safer food contact materials: Public health concerns as drivers for improved testing. ENVIRONMENT INTERNATIONAL 2023; 180:108161. [PMID: 37758599 DOI: 10.1016/j.envint.2023.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Dept. of Growth and Reproduction, Rigshospitalet and Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Backhaus
- Dept of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Scott M Belcher
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Durham, NC, USA
| | - Frank A von Hippel
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Juliette Legler
- Dept. of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, UK
| | - John Peterson Myers
- Dept. of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Environmental Health Sciences, Charlottesville, VA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain
| | - Cristina Nerin
- Dept. of Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Leonardo Trasande
- College of Global Public Health and Grossman School of Medicine and Wagner School of Public Service, New York University, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Dept. of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - R Thomas Zoeller
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- RECETOX, Masaryk University, Brno, Czech Republic; Department of Environmental Systems Science, ETH Zurich, Switzerland.
| |
Collapse
|
85
|
Butruille L, Jubin P, Martin E, Aigrot MS, Lhomme M, Fini JB, Demeneix B, Stankoff B, Lubetzki C, Zalc B, Remaud S. Deleterious functional consequences of perfluoroalkyl substances accumulation into the myelin sheath. ENVIRONMENT INTERNATIONAL 2023; 180:108211. [PMID: 37751662 DOI: 10.1016/j.envint.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Exposure to persistent organic pollutants during the perinatal period is of particular concern because of the potential increased risk of neurological disorders in adulthood. Here we questioned whether exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) could alter myelin formation and regeneration. First, we show that PFOS, and to a lesser extent PFOA, accumulated into the myelin sheath of postnatal day 21 (p21) mice, whose mothers were exposed to either PFOA or PFOS (20 mg/L) via drinking water during late gestation and lactation, suggesting that accumulation of PFOS into the myelin could interfere with myelin formation and function. In fact, PFOS, but not PFOA, disrupted the generation of oligodendrocytes, the myelin-forming cells of the central nervous system, derived from neural stem cells localised in the subventricular zone of p21 exposed animals. Then, cerebellar slices were transiently demyelinated using lysophosphatidylcholine and remyelination was quantified in the presence of either PFOA or PFOS. Only PFOS impaired remyelination, a deleterious effect rescued by adding thyroid hormone (TH). Similarly to our observation in the mouse, we also showed that PFOS altered remyelination in Xenopus laevis using the Tg(Mbp:GFP-ntr) model of conditional demyelination and measuring, then, the number of oligodendrocytes. The functional consequences of PFOS-impaired remyelination were shown by its effects using a battery of behavioural tests. In sum, our data demonstrate that perinatal PFOS exposure disrupts oligodendrogenesis and myelin function through modulation of TH action. PFOS exposure may exacerbate genetic and environmental susceptibilities underlying myelin disorders, the most frequent being multiple sclerosis.
Collapse
Affiliation(s)
- L Butruille
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - P Jubin
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - E Martin
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - M S Aigrot
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - M Lhomme
- IHU ICAN (ICAN OMICS Lipidomics) Foundation for Innovation in Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - J B Fini
- CNRS UMR 7221, Sorbonne University, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - B Demeneix
- CNRS UMR 7221, Sorbonne University, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - B Stankoff
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - C Lubetzki
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - B Zalc
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France.
| | - S Remaud
- CNRS UMR 7221, Sorbonne University, Muséum National d'Histoire Naturelle, F-75005 Paris France.
| |
Collapse
|
86
|
Wu J, Wei W, Ahmad W, Li S, Ouyang Q, Chen Q. Enhanced detection of endocrine disrupting chemicals in on-chip microfluidic biosensors using aptamer-mediated bridging flocculation and upconversion luminescence. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132025. [PMID: 37453351 DOI: 10.1016/j.jhazmat.2023.132025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) can lead to detrimental impacts on human health, making their detection a critical issue. A novel approach utilizing on-chip microfluidic biosensors was developed for the simultaneous detection of two EDCs, namely, bisphenol A (BPA) and diethylstilbestrol (DES), based on upconversion nanoparticles doped with thulium (Tm) and erbium (Er), respectively. From the perspective of single nanoparticles, the construction of an active core-inert shell structure enhanced the luminescence of nanoparticles by 2.28-fold (Tm) and 1.72-fold (Er). From the perspective of the nanoparticle population, the study exploited an aptamer-mediated bridging flocculation mechanism and effectively enhanced the upconversion luminescence of biosensors by 8.94-fold (Tm) and 7.10-fold (Er). A chip with 138 tangential semicircles or quarter-circles was designed and simulated to facilitate adequate mixing, reaction, magnetic separation, and detection conditions. The on-chip microfluidic biosensor demonstrated exceptional capabilities for the simultaneous detection of BPA and DES with ultrasensitive detection limits of 0.0076 µg L-1, and 0.0131 µg L-1, respectively. The first reported aptamer-mediated upconversion nanoparticle bridging flocculation provided enhanced luminescence and detection sensitivity for biosensors, as well as offering a new perspective to address the instability of nanobiosensors.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuhua Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
87
|
Dilger M, Armant O, Ramme L, Mülhopt S, Sapcariu SC, Schlager C, Dilger E, Reda A, Orasche J, Schnelle-Kreis J, Conlon TM, Yildirim AÖ, Hartwig A, Zimmermann R, Hiller K, Diabaté S, Paur HR, Weiss C. Systems toxicology of complex wood combustion aerosol reveals gaseous carbonyl compounds as critical constituents. ENVIRONMENT INTERNATIONAL 2023; 179:108169. [PMID: 37688811 DOI: 10.1016/j.envint.2023.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Epidemiological studies identified air pollution as one of the prime causes for human morbidity and mortality, due to harmful effects mainly on the cardiovascular and respiratory systems. Damage to the lung leads to several severe diseases such as fibrosis, chronic obstructive pulmonary disease and cancer. Noxious environmental aerosols are comprised of a gas and particulate phase representing highly complex chemical mixtures composed of myriads of compounds. Although some critical pollutants, foremost particulate matter (PM), could be linked to adverse health effects, a comprehensive understanding of relevant biological mechanisms and detrimental aerosol constituents is still lacking. Here, we employed a systems toxicology approach focusing on wood combustion, an important source for air pollution, and demonstrate a key role of the gas phase, specifically carbonyls, in driving adverse effects. Transcriptional profiling and biochemical analysis of human lung cells exposed at the air-liquid-interface determined DNA damage and stress response, as well as perturbation of cellular metabolism, as major key events. Connectivity mapping revealed a high similarity of gene expression signatures induced by wood smoke and agents prompting DNA-protein crosslinks (DPCs). Indeed, various gaseous aldehydes were detected in wood smoke, which promote DPCs, initiate similar genomic responses and are responsible for DNA damage provoked by wood smoke. Hence, systems toxicology enables the discovery of critical constituents of complex mixtures i.e. aerosols and highlights the role of carbonyls on top of particulate matter as an important health hazard.
Collapse
Affiliation(s)
- Marco Dilger
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Eggenstein-Leopoldshafen, Germany
| | - Olivier Armant
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Eggenstein-Leopoldshafen, Germany; Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Larissa Ramme
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Eggenstein-Leopoldshafen, Germany
| | - Sonja Mülhopt
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Institute for Technical Chemistry, Karlsruhe Institute of Technology, Campus North, Eggenstein-Leopoldshafen, Germany
| | - Sean C Sapcariu
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-Belval, Luxembourg
| | - Christoph Schlager
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Institute for Technical Chemistry, Karlsruhe Institute of Technology, Campus North, Eggenstein-Leopoldshafen, Germany
| | - Elena Dilger
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ahmed Reda
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Germany; Joint Mass Spectrometry Centre, CMA - Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Orasche
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Germany; Joint Mass Spectrometry Centre, CMA - Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Joint Mass Spectrometry Centre, CMA - Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas M Conlon
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Ali Önder Yildirim
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Andrea Hartwig
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ralf Zimmermann
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Germany; Joint Mass Spectrometry Centre, CMA - Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karsten Hiller
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-Belval, Luxembourg
| | - Silvia Diabaté
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Eggenstein-Leopoldshafen, Germany
| | - Hanns-Rudolf Paur
- HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health, Germany(1); Institute for Technical Chemistry, Karlsruhe Institute of Technology, Campus North, Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
88
|
Gao P. Exploring Single-Cell Exposomics by Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12201-12209. [PMID: 37561608 PMCID: PMC10448745 DOI: 10.1021/acs.est.3c04524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Single-cell exposomics, a revolutionary approach that investigates cell-environment interactions at cellular and subcellular levels, stands distinct from conventional bulk exposomics. Leveraging advancements in mass spectrometry, it provides a detailed perspective on cellular dynamics, interactions, and responses to environmental stimuli and their impacts on human health. This work delves into this innovative realm, highlighting the nuanced interplay between environmental stressors and biological responses at cellular and subcellular levels. The application of spatial mass spectrometry in single-cell exposomics is discussed, revealing the intricate spatial organization and molecular composition within individual cells. Cell-type-specific exposomics, shedding light on distinct susceptibilities and adaptive strategies of various cell types to environmental exposures, is also examined. The Perspective further emphasizes the integration with molecular and cellular biology approaches to validate hypotheses derived from single-cell exposomics in a comprehensive biological context. Looking toward the future, we anticipate continued technological advancements and convergence with other -omics approaches and discuss implications for environmental health research, disease progression studies, and precision medicine. The final emphasis is on the need for robust computational tools and interdisciplinary collaboration to fully leverage the potential of single-cell exposomics, acknowledging the complexities inherent to this paradigm.
Collapse
Affiliation(s)
- Peng Gao
- Department
of Environmental and Occupational Health and Department of Civil and
Environmental Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC
Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| |
Collapse
|
89
|
Zheng L, Wang Z, Yang R, Chen W, Zhang J, Li R, Lv W, Lin B, Luo J. The interference between effects of PFAS exposure on thyroid hormone disorders and cholesterol levels: an NHANES analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90949-90959. [PMID: 37468783 DOI: 10.1007/s11356-023-28739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Studies have documented that per- and polyfluoroalkyl substance (PFAS) exposures are associated with thyroid hormones (TH) and lipid levels. This study investigates whether these effects interfere with each other. We analyzed data on 3954 adults in the US National Health and Nutrition Examination Survey (NHANES; 2007-2012). TH disorder was defined using thyroid hormones. Serum high-density lipoprotein (HDL) cholesterol, total cholesterol, and six types of PFAS were included. Weighted quantile sum (WQS) regression was used to estimate the overall effect of PFAS mixture on TH disorder and cholesterols, respectively. Potential confounders, including age, race, gender, education, household poverty, smoking, and alcohol drinking, were adjusted. PFAS mixture was associated increased risk for TH disorder (odds ratio = 1.21, 95% confidence interval (CI): 1.02, 1.43), higher HDL cholesterol (linear coefficient = 1.31, 95% CI: 0.50, 2.11), and higher total cholesterol (linear coefficient = 5.30, 95% CI: 3.40, 7.21). TH disorder was associated with higher HDL cholesterol (linear coefficient = 2.30, 95% CI: 0.50, 2.11), but not total cholesterol. When adjusted for TH disorder, the effect estimates of PFAS mixture remain roughly unchanged on HDL cholesterol (linear coefficient = 1.13, 95% CI: 0.28, 1.98) and total cholesterol (linear coefficient = 5.61, 95% CI: 3.58, 7.63). Sex modified the effect of PFAS mixture on HDL cholesterol (P for interaction: 0.04) but did not change the interaction between PFAS and TH disorder on cholesterols. We corroborated the adverse health effects of PFAS exposure on TH and lipids; however, these two effects appear to be independent of and not interfere with each other.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhecun Wang
- Department of Vascular Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Rui Yang
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Wanna Chen
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jing Zhang
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ruixia Li
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Weiming Lv
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Bo Lin
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jiajun Luo
- Institute for Population and Precision Health, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
90
|
Mustieles V, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Muckle G, Guichardet K, Slama R, Philippat C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87006. [PMID: 37556305 PMCID: PMC10411634 DOI: 10.1289/ehp11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼ 21 samples/trimester) and at 2 months and 1-year of age (∼ 7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (Σ DEHP ), mono-ethyl phthalate (MEP), mono-n -butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (β = 0.78 ; 95% CI: 0.00, 1.55) and MEP (β = 0.92 ; 95% CI: - 0.11 , 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and Σ DEHP were associated with worse Social Awareness (β = 0.25 ; 95% CI: 0.01, 0.50) and Social Communication (β = 0.43 ; 95% CI: - 0.02 , 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1 = 1.38 ; 95% credible interval (CrI): - 0.18 , 2.97], Social Awareness (Beta 1 = 0.37 ; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1 = 0.91 ; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p = 0.07 ). DISCUSSION The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.
Collapse
Affiliation(s)
- Vicente Mustieles
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Isabelle Pin
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | | | | | | | - Gina Muckle
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, Canada
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
91
|
Özel F, Rüegg J. Exposure to endocrine-disrupting chemicals and implications for neurodevelopment. Dev Med Child Neurol 2023; 65:1005-1011. [PMID: 36808586 DOI: 10.1111/dmcn.15551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
Human brain development is a complex multistep process that is partly coordinated by the endocrine system. Any interference with the endocrine system might affect this process and result in deleterious outcomes. Endocrine-disrupting chemicals (EDCs) represent a large group of exogenous chemicals with the capacity of interfering with endocrine functions. In different population-based settings, associations between exposure to EDCs, particularly in prenatal life, and adverse neurodevelopmental outcomes have been demonstrated. These findings are strengthened by numerous experimental studies. Although mechanisms underlying these associations are not entirely delineated, disruption of thyroid hormone and, to a lesser extent, sex hormone signalling have been shown to be involved. Humans are constantly exposed to mixtures of EDCs, and further research combining epidemiological and experimental settings is required to improve our understanding of the link between real-life exposures to these chemicals and their impact on neurodevelopment.
Collapse
Affiliation(s)
- Fatih Özel
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Centre for Women's Mental Health during the Reproductive Lifespan-WOMHER, Uppsala University, Uppsala, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
92
|
Khalfallah O, Barbosa S, Phillippat C, Slama R, Galera C, Heude B, Glaichenhaus N, Davidovic L. Cytokines as mediators of the associations of prenatal exposure to phenols, parabens, and phthalates with internalizing behaviours at age 3 in boys: A mixture exposure and mediation approach. ENVIRONMENTAL RESEARCH 2023; 229:115865. [PMID: 37062478 DOI: 10.1016/j.envres.2023.115865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/21/2023]
Abstract
Childhood internalizing disorders refer to inwardly focused negative behaviours such as anxiety, depression, and somatic complains. Interactions between psychosocial, genetic, and environmental risk factors adversely impact neurodevelopment and can contribute to internalizing disorders. While prenatal exposure to single endocrine disruptors (EDs) is associated with internalizing behaviours in infants, the associations with prenatal exposure to EDs in mixture remain poorly addressed. In addition, the biological mediators of EDs in mixture effects on internalizing behaviours remain unexplored. EDs do not only interfere with endocrine function, but also with immune function and inflammatory processes. Based on this body of evidence, we hypothetised that inflammation at birth is a plausible biological pathway through which prenatal exposure to EDs in mixture could operate to influence offspring internalizing behaviours. Based on the EDEN birth cohort, we investigated whether exposure to a mixture of EDs increased the odds of internalizing disorders in 459 boy infants at age 3, and whether the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α measured at birth were mediators of this effect. To determine both the joint and individual associations of prenatal exposure to EDs with infant internalizing behaviours and the possible mediating role of cytokines, we used the counterfactual hierarchical Bayesian Kernel Machine Regression (BKMR) regression-causal mediation analysis. We show that prenatal exposure to a complex mixture of EDs has limited effects on internalizing behaviours in boys at age 3. We also show that IL-1β, IL-6, and TNF-α are unlikely mediators or suppressors of ED mixture effects on internalizing behaviours in boys at age 3. Further studies on larger cohorts are warranted to refine the deleterious effects of EDs in mixtures on internalizing behaviours and identify possible mediating pathways.
Collapse
Affiliation(s)
- Olfa Khalfallah
- Centre National de La Recherche Scientifique, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| | - Susana Barbosa
- Centre National de La Recherche Scientifique, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Claire Phillippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences 38000 Grenoble, France
| | - Remy Slama
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences 38000 Grenoble, France
| | - Cédric Galera
- Institut National de La Santé et de La Recherche Médicale UMR 1219, Bordeaux Population Health Centre, Université de Bordeaux, Hôpital Charles Perrens, Bordeaux, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Nicolas Glaichenhaus
- Centre National de La Recherche Scientifique, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France; Fondation FondaMental, Créteil, France
| | - Laetitia Davidovic
- Centre National de La Recherche Scientifique, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France; Fondation FondaMental, Créteil, France.
| |
Collapse
|
93
|
Arora A, Becker M, Marques C, Oksanen M, Li D, Mastropasqua F, Watts ME, Arora M, Falk A, Daub CO, Lanekoff I, Tammimies K. Screening autism-associated environmental factors in differentiating human neural progenitors with fractional factorial design-based transcriptomics. Sci Rep 2023; 13:10519. [PMID: 37386098 PMCID: PMC10310850 DOI: 10.1038/s41598-023-37488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
Research continues to identify genetic variation, environmental exposures, and their mixtures underlying different diseases and conditions. There is a need for screening methods to understand the molecular outcomes of such factors. Here, we investigate a highly efficient and multiplexable, fractional factorial experimental design (FFED) to study six environmental factors (lead, valproic acid, bisphenol A, ethanol, fluoxetine hydrochloride and zinc deficiency) and four human induced pluripotent stem cell line derived differentiating human neural progenitors. We showcase the FFED coupled with RNA-sequencing to identify the effects of low-grade exposures to these environmental factors and analyse the results in the context of autism spectrum disorder (ASD). We performed this after 5-day exposures on differentiating human neural progenitors accompanied by a layered analytical approach and detected several convergent and divergent, gene and pathway level responses. We revealed significant upregulation of pathways related to synaptic function and lipid metabolism following lead and fluoxetine exposure, respectively. Moreover, fluoxetine exposure elevated several fatty acids when validated using mass spectrometry-based metabolomics. Our study demonstrates that the FFED can be used for multiplexed transcriptomic analyses to detect relevant pathway-level changes in human neural development caused by low-grade environmental risk factors. Future studies will require multiple cell lines with different genetic backgrounds for characterising the effects of environmental exposures in ASD.
Collapse
Affiliation(s)
- Abishek Arora
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Cátia Marques
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Marika Oksanen
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Francesca Mastropasqua
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Michelle Evelyn Watts
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Lund Stem Cell Center, Division of Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Carsten Oliver Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
94
|
Tian YX, Wang Y, Chen HY, Ma J, Liu QY, Qu YJ, Sun HW, Wu LN, Li XL. Organophosphate esters in soils of Beijing urban parks: Occurrence, potential sources, and probabilistic health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162855. [PMID: 36931520 DOI: 10.1016/j.scitotenv.2023.162855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Organophosphate esters (OPEs) are an emerging contaminant widely distributed in the soil. OPEs have drawn increasing attention for their biological toxicity and possible threat to human health. This research investigated the pollution characteristics of two typical OPEs, organophosphate triesters (tri-OPEs) and organophosphate diesters (di-OPEs), in soils of 104 urban parks in Beijing. The median concentrations of Σ11tri-OPEs and Σ8di-OPEs were 157 and 17.9 ng/g dw, respectively. Tris(2-chloroisopropyl) phosphate and bis(2-ethylhexyl) phosphate were the dominant tri-OPE and di-OPE, respectively. Consumer materials (such as building insulation and decorative materials), traffic emissions, and reclaimed water irrigation may be critical sources of tri-OPEs in urban park soils. Di-OPEs mainly originated from the degradation of parent compounds and industrial applications. Machine learning models were employed to determine the influencing factors of OPEs and predict changes in their concentrations. The predicted OPEs concentrations in Beijing urban park soils in 2025 and 2030 are three times and five times those in 2018, respectively. According to probabilistic health risk assessment, non-carcinogenic and carcinogenic risks of OPEs can be negligible for children and adults. Our results could inform measures for preventing and controlling OPEs pollution in urban park soils.
Collapse
Affiliation(s)
- Y X Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Y Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - H Y Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - J Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Q Y Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Y J Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - H W Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - L N Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - X L Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
95
|
Guo F, Tian Y, Ji S, Min H, Ding W, Yu H, Li Y, Ji L. Environmental biotransformation mechanisms by flavin-dependent monooxygenase: A computational study. CHEMOSPHERE 2023; 325:138403. [PMID: 36921778 DOI: 10.1016/j.chemosphere.2023.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The enzyme-catalyzed metabolic biotransformation of xenobiotics plays a significant role in toxicology evolution and subsequently environmental health risk assessment. Recent studies noted that the phase I human flavin-dependent monooxygenase (e.g., FMO3) can catalyze xenobiotics into more toxic metabolites. However, details of the metabolic mechanisms are insufficient. To fill the mechanism in the gaps, the systemic density functional theory calculations were performed to elucidate diverse FMO-catalyzed oxidation reactions toward environmental pollutants, including denitrification (e.g., nitrophenol), N-oxidation (e.g., nicotine), desulfurization (e.g., fonofos), and dehalogenation (e.g., pentachlorophenol). Similar to the active center compound 0 of cytochrome P450, FMO mainly catalyzed reactions with the structure of the tricyclic isoalloxazine C-4a-hydroperoxide (FADHOOH). As will be shown, FMO-catalyzed pathways are more favorable with a concerted than stepwise mechanism; Deprotonation is necessary to initiate the oxidation reactions for phenolic substrates; The regioselectivity of nicotine by FMO prefers the N-oxidation other than N-demethylation pathway; Formation of the P-S-O triangle ring is the key step for desulfurization of fonofos by FMO. We envision that these fundamental mechanisms catalyzed by FMO with a computational method can be extended to other xenobiotics of similar structures, which may aid the high-throughput screening and provide theoretical predictions in the future.
Collapse
Affiliation(s)
- Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yilin Tian
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hao Min
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingqi Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining 314400, China
| | - Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.
| |
Collapse
|
96
|
Petricca S, Carnicelli V, Luzi C, Cinque B, Celenza G, Iorio R. Oxidative Stress, Cytotoxic and Inflammatory Effects of Azoles Combinatorial Mixtures in Sertoli TM4 Cells. Antioxidants (Basel) 2023; 12:1142. [PMID: 37371872 DOI: 10.3390/antiox12061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Triazole and imidazole fungicides are an emerging class of contaminants with an increasing and ubiquitous presence in the environment. In mammals, their reproductive toxicity has been reported. Concerning male reproduction, a combinatorial activity of tebuconazole (TEB; triazole fungicide) and econazole (ECO; imidazole compound) in inducing mitochondrial impairment, energy depletion, cell cycle arrest, and the sequential activation of autophagy and apoptosis in Sertoli TM4 cells (SCs) has recently been demonstrated. Given the strict relationship between mitochondrial activity and reactive oxygen species (ROS), and the causative role of oxidative stress (OS) in male reproductive dysfunction, the individual and combined potential of TEB and ECO in inducing redox status alterations and OS was investigated. Furthermore, considering the impact of cyclooxygenase (COX)-2 and tumor necrosis factor-alpha (TNF-α) in modulating male fertility, protein expression levels were assessed. In the present study, we demonstrate that azoles-induced cytotoxicity is associated with a significant increase in ROS production, a drastic reduction in superoxide dismutase (SOD) and GSH-S-transferase activity levels, and a marked increase in the levels of oxidized (GSSG) glutathione. Exposure to azoles also induced COX-2 expression and increased TNF-α production. Furthermore, pre-treatment with N-acetylcysteine (NAC) mitigates ROS accumulation, attenuates COX-2 expression and TNF-α production, and rescues SCs from azole-induced apoptosis, suggesting a ROS-dependent molecular mechanism underlying the azole-induced cytotoxicity.
Collapse
Affiliation(s)
- Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Carla Luzi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| |
Collapse
|
97
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
98
|
Kasprzyk-Hordern B, Béen F, Bijlsma L, Brack W, Castiglioni S, Covaci A, Martincigh BS, Mueller JF, van Nuijs ALN, Oluseyi T, Thomas KV. Wastewater-based epidemiology for the assessment of population exposure to chemicals: The need for integration with human biomonitoring for global One Health actions. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131009. [PMID: 36863100 PMCID: PMC9927796 DOI: 10.1016/j.jhazmat.2023.131009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
WBE has now become a complimentary tool in SARS-CoV-2 surveillance. This was preceded by the established application of WBE to assess the consumption of illicit drugs in communities. It is now timely to build on this and take the opportunity to expand WBE to enable comprehensive assessment of community exposure to chemical stressors and their mixtures. The goal of WBE is to quantify community exposure, discover exposure-outcome associations, and trigger policy, technological or societal intervention strategies with the overarching aim of exposure prevention and public health promotion. To achieve WBE's full potential, the following key aspects require further action: (1) Integration of WBE-HBM (human biomonitoring) initiatives that provide comprehensive community-individual multichemical exposure assessment. (2) Global WBE monitoring campaigns to provide much needed data on exposure in low- and middle-income countries (LMICs) and fill in the gaps in knowledge especially in the underrepresented highly urbanised as well as rural settings in LMICs. (3) Combining WBE with One Health actions to enable effective interventions. (4) Advancements in new analytical tools and methodologies for WBE progression to enable biomarker selection for exposure studies, and to provide sensitive and selective multiresidue analysis for trace multi-biomarker quantification in a complex wastewater matrix. Most of all, further developments of WBE needs to be undertaken by co-design with key stakeholder groups: government organisations, health authorities and private sector.
Collapse
Affiliation(s)
| | - Frederic Béen
- Chemistry for Environment & Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, the Netherlands; KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, E-12071 Castellón, Spain
| | - Werner Brack
- Helmholtz Centre for Environmental Research GmbH - UFZ, Department of Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt, Germany
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Science, Via Mario Negri 2, 20156 Milan, Italy
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | | | - Temilola Oluseyi
- Analytical and Environmental Chemistry Research Group, Department of Chemistry, University of Lagos, Nigeria
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| |
Collapse
|
99
|
Wang T, Desmet J, Pérez-Albaladejo E, Porte C. Development of fish liver PLHC-1 spheroids and its applicability to investigate the toxicity of plastic additives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115016. [PMID: 37196525 DOI: 10.1016/j.ecoenv.2023.115016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Fish liver cell lines are valuable tools to understand the toxicity of chemicals in aquatic vertebrates. While conventional 2D cell cultures grown in monolayers are well established, they fail to emulate toxic gradients and cellular functions as in in-vivo conditions. To overcome these limitations, this work focuses on the development of Poeciliopsis lucida (PLHC-1) spheroids as a testing platform to evaluate the toxicity of a mixture of plastic additives. The growth of spheroids was monitored over a period of 30 days, and spheroids 2-8 days old and sized between 150 and 250 µm were considered optimal for conducting toxicity tests due to their excellent viability and metabolic activity. Eight-day-old spheroids were selected for lipidomic characterization. Compared to 2D-cells, the lipidome of spheroids was relatively enriched in highly unsaturated phosphatidylcholines (PCs), sphingosines (SPBs), sphingomyelins (SMs) and cholesterol esters (CEs). When exposed to a mixture of plastic additives, spheroids were less responsive in terms of decreased cell viability and generation of reactive oxygen species (ROS), but were more sensitive than cells growing in monolayers for lipidomic responses. The lipid profile of 3D-spheroids was similar to a liver-like phenotype and it was strongly modulated by exposure to plastic additives. The development of PLHC-1 spheroids represents an important step towards the application of more realistic in-vitro methods in aquatic toxicity studies.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Judith Desmet
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | | | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
100
|
Mahfouz M, Harmouche-Karaki M, Matta J, Mahfouz Y, Salameh P, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, Moussa G, Chahrour N, Osseiran C, Skaiki F, Narbonne JF. Maternal Serum, Cord and Human Milk Levels of Per- and Polyfluoroalkyl Substances (PFAS), Association with Predictors and Effect on Newborn Anthropometry. TOXICS 2023; 11:toxics11050455. [PMID: 37235269 DOI: 10.3390/toxics11050455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND The understanding of per- and polyfluoroalkyl substances (PFAS) health effects is rapidly advancing among critical populations. Therefore, the objective of this study was to assess PFAS serum levels among Lebanese pregnant women, cord serum and human milk levels, their determinants, and effects on newborn anthropometry. METHODS We measured concentrations of six PFAS (PFHpA, PFOA, PFHxS, PFOS, PFNA and PFDA) using liquid chromatography MS/MS for 419 participants, of which 269 had sociodemographic, anthropometric, environmental and dietary information. RESULTS The percentage of detection for PFHpA, PFOA, PFHxS and PFOS was 36.3-37.7%. PFOA and PFOS levels (95th percentile) were higher than HBM-I and HBM-II values. While PFAS were not detected in cord serum, five compounds were detected in human milk. Multivariate regression showed that fish/shellfish consumption, vicinity to illegal incineration and higher educational level were associated with an almost twice higher risk of elevated PFHpA, PFOA, PFHxS and PFOS serum levels. Higher PFAS levels in human milk were observed with higher eggs and dairy products consumption, in addition to tap water (preliminary findings). Higher PFHpA was significantly associated with lower newborn weight-for-length Z-score at birth. CONCLUSIONS Findings establish the need for further studies, and urgent action to reduce exposure among subgroups with higher PFAS levels.
Collapse
Affiliation(s)
- Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Joseph Matta
- Industrial Research Institute, Lebanese University Campus, Hadath Baabda P.O. Box 112806, Lebanon
| | - Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Pascale Salameh
- School of Medicine, Lebanese American University, Byblos 1102 2801, Lebanon
| | - Hassan Younes
- Institut Polytechnique UniLaSalle, Collège Santé, Equipe PANASH, Membre de l'ULR 7519, Université d'Artois, 19 Rue Pierre Waguet, 60026 Beauvais, France
| | - Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Ramzi Finan
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut P.O. Box 166830, Lebanon
| | - Georges Abi-Tayeh
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut P.O. Box 166830, Lebanon
| | | | - Ghada Moussa
- Department of Obstetrics and Gynecology, Chtoura Hospital, Beqaa, Lebanon
| | - Nada Chahrour
- Department of Obstetrics and Gynecology, SRH University Hospital, Nabatieh, Lebanon
| | - Camille Osseiran
- Department of Obstetrics and Gynecology, Kassab Hospital, Saida, Lebanon
| | - Farouk Skaiki
- Department of Molecular Biology, General Management, Al Karim Medical Laboratories, Saida, Lebanon
| | - Jean-François Narbonne
- Laboratoire de Physico-Toxico Chimie des Systèmes Naturels, University of Bordeaux, CEDEX, 33405 Talence France
| |
Collapse
|