51
|
Wier AM, Nyholm SV, Mandel MJ, Massengo-Tiassé RP, Schaefer AL, Koroleva I, Splinter-BonDurant S, Brown B, Manzella L, Snir E, Almabrazi H, Scheetz TE, de Fatima Bonaldo M, Casavant TL, Soares MB, Cronan JE, Reed JL, Ruby EG, McFall-Ngai MJ. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc Natl Acad Sci U S A 2010; 107:2259-64. [PMID: 20133870 PMCID: PMC2836665 DOI: 10.1073/pnas.0909712107] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mechanisms for controlling symbiont populations are critical for maintaining the associations that exist between a host and its microbial partners. We describe here the transcriptional, metabolic, and ultrastructural characteristics of a diel rhythm that occurs in the symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri. The rhythm is driven by the host's expulsion from its light-emitting organ of most of the symbiont population each day at dawn. The transcriptomes of both the host epithelium that supports the symbionts and the symbiont population itself were characterized and compared at four times over this daily cycle. The greatest fluctuation in gene expression of both partners occurred as the day began. Most notable was an up-regulation in the host of >50 cytoskeleton-related genes just before dawn and their subsequent down-regulation within 6 h. Examination of the epithelium by TEM revealed a corresponding restructuring, characterized by effacement and blebbing of its apical surface. After the dawn expulsion, the epithelium reestablished its polarity, and the residual symbionts began growing, repopulating the light organ. Analysis of the symbiont transcriptome suggested that the bacteria respond to the effacement by up-regulating genes associated with anaerobic respiration of glycerol; supporting this finding, lipid analysis of the symbionts' membranes indicated a direct incorporation of host-derived fatty acids. After 12 h, the metabolic signature of the symbiont population shifted to one characteristic of chitin fermentation, which continued until the following dawn. Thus, the persistent maintenance of the squid-vibrio symbiosis is tied to a dynamic diel rhythm that involves both partners.
Collapse
Affiliation(s)
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | | | | | | | | | | | | | | | | | | | - Todd E. Scheetz
- Ophthalmology and Visual Science, University of Iowa, Iowa City, IA 52242
| | | | | | | | - John E. Cronan
- Department of Microbiology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
| | | | | | | |
Collapse
|
52
|
Windle HJ, Brown PA, Kelleher DP. Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 2010; 4:215-27. [PMID: 21137045 DOI: 10.1002/prca.200900145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 01/04/2023]
Abstract
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.
Collapse
Affiliation(s)
- Henry J Windle
- Institute of Molecular Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
53
|
Morin CE, Kaper JB. Use of stabilized luciferase-expressing plasmids to examine in vivo-induced promoters in the Vibrio cholerae vaccine strain CVD 103-HgR. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 57:69-79. [PMID: 19678844 PMCID: PMC2906245 DOI: 10.1111/j.1574-695x.2009.00580.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Live, attenuated Vibrio cholerae vaccines can induce potent immune responses after only a single oral dose. The strategy of harnessing these strains to present antigens from heterologous pathogens to the mucosal immune system shows great promise. To fully realize this possibility, V. cholerae strains must be created that stably express antigens in vivo in sufficient quantity to generate an immune response. In vivo-induced promoters have been shown to increase the stability and immunogenicity of foreign antigens expressed from multicopy plasmids. We report the construction of a series of genetically stabilized plasmids expressing luciferase as a heterologous protein from the following in vivo-induced promoters: V. cholerae P(argC), P(fhuC) and P(vca1008), and Salmonella enterica serovar Typhi P(ompC). We demonstrate that several of these expression plasmids meet two critical criteria for V. cholerae live vector vaccine studies. First, the plasmids are highly stable in the V. cholerae vaccine strain CVD 103-HgR at low copy number, in the absence of selective pressure. Second, real-time bioluminescent imaging (BLI) demonstrates inducible in vivo expression of the promoters in the suckling mouse model of V. cholerae colonization. Moreover, the use of BLI allows for direct quantitative comparison of in vivo expression from four different promoters at various time points.
Collapse
Affiliation(s)
- Cara E Morin
- Department of Microbiology & Immunology, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
54
|
Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 2009; 7:693-702. [PMID: 19756008 PMCID: PMC3842031 DOI: 10.1038/nrmicro2204] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zimbabwe offers the most recent example of the tragedy that befalls a country and its people when cholera strikes. The 2008-2009 outbreak rapidly spread across every province and brought rates of mortality similar to those witnessed as a consequence of cholera infections a hundred years ago. In this Review we highlight the advances that will help to unravel how interactions between the host, the bacterial pathogen and the lytic bacteriophage might propel and quench cholera outbreaks in endemic settings and in emergent epidemic regions such as Zimbabwe.
Collapse
Affiliation(s)
- Eric J Nelson
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
55
|
Charles RC, Harris JB, Chase MR, Lebrun LM, Sheikh A, LaRocque RC, Logvinenko T, Rollins SM, Tarique A, Hohmann EL, Rosenberg I, Krastins B, Sarracino DA, Qadri F, Calderwood SB, Ryan ET. Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS One 2009; 4:e6994. [PMID: 19746165 PMCID: PMC2736619 DOI: 10.1371/journal.pone.0006994] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 07/24/2009] [Indexed: 12/20/2022] Open
Abstract
Background S. Typhi, a human-restricted Salmonella
enterica serovar, causes a systemic intracellular infection in
humans (typhoid fever). In comparison, S. Typhimurium
causes gastroenteritis in humans, but causes a systemic typhoidal illness in
mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately
regulated network of genes whose expression is required for intracellular
survival of S. enterica. Methodology/Principal Findings Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS),
we examined the protein expression profiles of three sequenced S.
enterica strains: S. Typhimurium LT2,
S. Typhi CT18, and S. Typhi Ty2 in
PhoP-inducing and non-inducing conditions in vitro and
compared these results to profiles of
phoP−/Q−
mutants derived from S. Typhimurium LT2 and
S. Typhi Ty2. Our analysis identified 53 proteins in
S. Typhimurium LT2 and 56 proteins in
S. Typhi that were regulated in a PhoP-dependent manner. As
expected, many proteins identified in S. Typhi demonstrated
concordant differential expression with a homologous protein in
S. Typhimurium. However, three proteins (HlyE, STY1499, and
CdtB) had no homolog in S. Typhimurium. HlyE is a
pore-forming toxin. STY1499 encodes a stably expressed protein of unknown
function transcribed in the same operon as HlyE. CdtB is a cytolethal
distending toxin associated with DNA damage, cell cycle arrest, and cellular
distension. Gene expression studies confirmed up-regulation of mRNA of HlyE,
STY1499, and CdtB in S. Typhi in PhoP-inducing
conditions. Conclusions/Significance This study is the first protein expression study of the PhoP virulence
associated regulon using strains of Salmonella mutant in
PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499)
that are not present in the genome of the wide host-range Typhimurium, and
includes the first protein expression profiling of a live attenuated
bacterial vaccine studied in humans (Ty800).
Collapse
Affiliation(s)
- Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Janzon A, Bhuiyan T, Lundgren A, Qadri F, Svennerholm AM, Sjöling A. Presence of high numbers of transcriptionally active Helicobacter pylori in vomitus from Bangladeshi patients suffering from acute gastroenteritis. Helicobacter 2009; 14:237-47. [PMID: 19674127 DOI: 10.1111/j.1523-5378.2009.00692.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Helicobacter pylori is one of the most prevalent human bacterial pathogens; however, its transmission pathways remain unknown. New infections of H. pylori during outbreaks of gastroenteritis have been suggested previously, and to explore this transmission route further H. pylori was quantified in vomitus and diarrheal stool of patients suffering from acute gastroenteritis in Dhaka, Bangladesh. MATERIALS AND METHODS Vomitus and stool samples from 28 patients seeking care at the International Centre for Diarrhoeal Disease Research hospital were analyzed for presence of H. pylori and other pathogens using quantitative culturing, real-time polymerase chain reaction (PCR), and H. pylori stool antigen test. Bacterial gene expression was analyzed using reverse transcriptase real-time PCR. RESULTS The results of real-time PCR show that 23 (88%) of the 26 vomitus samples and 17 (74%) of the 23 stool samples were H. pylori positive, while stool antigen test show that 14 (67%) of the 21 stool samples were H. pylori positive. H. pylori could not be isolated by culture. Analysis using quantitative culture and real-time PCR to detect Vibrio cholerae showed strong correlation between these methods, and validating real-time PCR. Analysis of H. pylori virulence gene transcription in vomitus, diarrheal stool, antral and duodenal biopsy specimens, and in vitro cultures showed that cagA, flaA, and ureA were highly transcribed in vomitus, biopsy specimens, and cultures, whereas hpaA and vacA were expressed at lower levels. No H. pylori gene expression was detected in diarrheal stool. CONCLUSIONS We conclude that high numbers of transcriptionally active H. pylori are shed in vomitus, which indicates that new infections may be disseminated through vomiting.
Collapse
Affiliation(s)
- Anders Janzon
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
57
|
Gu J, Neary J, Cai H, Moshfeghian A, Rodriguez SA, Lilburn TG, Wang Y. Genomic and systems evolution in Vibrionaceae species. BMC Genomics 2009; 10 Suppl 1:S11. [PMID: 19594870 PMCID: PMC2709254 DOI: 10.1186/1471-2164-10-s1-s11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has facilitated the exploration of the mechanisms underlying genome plasticity. The family Vibrionaceae is found in the Gammaproteobacteria and is abundant in aquatic environments. Taxa from the family Vibrionaceae are diversified in their life styles; some species are free living, others are symbiotic, and others are human pathogens. This diversity makes this family a useful set of model organisms for studying bacterial evolution. This evolution is driven by several forces, among them gene duplication and lateral gene transfer, which are believed to provide raw material for functional redundancy and novelty. The resultant gene copy increase in one genome is then detected as lineage-specific expansion (LSE). RESULTS Here we present the results of a detailed comparison of the genomes of eleven Vibrionaceae strains that have distinct life styles and distinct phenotypes. The core genome shared by all eleven strains is composed of 1,882 genes, which make up about 31%-50% of the genome repertoire. We further investigated the distribution and features of genes that have been specifically expanded in one unique lineage of the eleven strains. Abundant duplicate genes have been identified in the eleven Vibrionaceae strains, with 1-11% of the whole genomes composed lineage specific radiations. These LSEs occurred in two distinct patterns: the first type yields one or more copies of a single gene; we call this a single gene expansion. The second pattern has a high evolutionary impact, as the expansion involves two or more gene copies in a block, with the duplicated block located next to the original block (a contiguous block expansion) or at some distance from the original block (a discontiguous block expansion). We showed that LSEs involve genes that are tied to defense and pathogenesis mechanisms as well as in the fundamental life cycle of Vibrionaceae species. CONCLUSION Our results provide evidence of genome plasticity and rapid evolution within the family Vibrionaceae. The comparisons point to sources of genomic variation and candidates for lineage-specific adaptations of each Vibrionaceae pathogen or nonpathogen strain. Such lineage specific expansions could reveal components in bacterial systems that, by their enhanced genetic variability, can be tied to responses to environmental challenges, interesting phenotypes, or adaptive pathogenic responses to host challenges.
Collapse
Affiliation(s)
- Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Jennifer Neary
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Audrey Moshfeghian
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Stephen A Rodriguez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Timothy G Lilburn
- Department of Bacteriology, American Type Culture Collection, Manassas, VA 20110, USA
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
58
|
Molecular diversification in the quorum-sensing system of Vibrio cholerae: Role of natural selection in the emergence of pandemic strains. Appl Environ Microbiol 2009; 75:3808-12. [PMID: 19346342 DOI: 10.1128/aem.02496-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two haplotypes of the Vibrio cholerae quorum-sensing system regulator hapR are described: hapR1, common among nonpandemic, non-O1, non-O139 strains, and hapR2, associated with pandemic O1 and O139 and epidemic O37 V. cholerae strains. The hapR2 has evolved under strong natural selection, implying that its fixation was influenced by conditions that led to cholera pandemics.
Collapse
|
59
|
Hsiao A, Zhu J. Genetic tools to study gene expression during bacterial pathogen infection. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:297-314. [PMID: 19245943 DOI: 10.1016/s0065-2164(08)01009-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study of bacterial pathogenesis is in many ways the study of the regulatory mechanisms at work in the microbe during infection. The astonishing flexibility and adaptability of the bacterial cell has enabled many pathogenic species to freely transition between dramatically different environmental conditions. The transcriptional changes that underlie this ability can determine the success of the pathogen in the host. Many techniques have been devised to examine the transcriptional repertoire of bacteria in vivo during infection. Here, we review a class of technologies known as in vivo expression technology (IVET), which use promoter-trapping with a variety of different reporter constructs to allow researchers to probe the transcriptional changes taking place in bacteria under various environmental conditions. Using IVET techniques, researchers have been able to catalogue a wide variety of virulence factors in the host for several important human pathogens, as well as examining the timing of virulence gene regulation. Most recently, IVET techniques have also been used to identify transcriptional repression events in vivo, such as the suppression of anti-colonization factors deleterious to infection. As the array of IVET reporters and promoter-trapping strategies grow, researchers are increasingly able to illuminate the myriad transcriptional activities that allow bacteria to survive and cause disease in the host.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
60
|
Vibrio cholerae Interactions with the Gastrointestinal Tract: Lessons from Animal Studies. Curr Top Microbiol Immunol 2009; 337:37-59. [DOI: 10.1007/978-3-642-01846-6_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
61
|
Anaerobic growth promotes synthesis of colonization factors encoded at the Vibrio pathogenicity island in Vibrio cholerae El Tor. Res Microbiol 2008; 160:48-56. [PMID: 19015025 DOI: 10.1016/j.resmic.2008.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 09/24/2008] [Accepted: 10/02/2008] [Indexed: 12/30/2022]
Abstract
Pathogenesis of the facultative anaerobe Vibrio cholerae takes place at the gut under low oxygen concentrations. To identify proteins which change their expression level in response to oxygen availability, proteomes of V. cholerae El Tor C7258 grown in aerobiosis, microaerobiosis and anaerobiosis were compared by two-dimensional electrophoresis. Twenty-six differentially expressed proteins were identified which are involved in several processes including iron acquisition, alanine metabolism, purine synthesis, energy metabolism and stress response. Moreover, two proteins implicated in exopolysaccharide synthesis and biofilm formation were produced at higher levels under microaerobiosis and anaerobiosis, which suggests a role of oxygen deprivation in biofilm development in V. cholerae. In addition, six proteins encoded at the Vibrio pathogenicity island attained the highest expression levels under anaerobiosis, and five of them are required for colonization: three correspond to toxin-coregulated pilus biogenesis components, one to soluble colonization factor TcpF and one to accessory colonization factor A. Thus, anaerobiosis promotes synthesis of colonization factors in V. cholerae El Tor, suggesting that it may be a key in vivo signal for early stages of the pathogenic process of V. cholerae.
Collapse
|
62
|
Nelson EJ, Chowdhury A, Flynn J, Schild S, Bourassa L, Shao Y, LaRocque RC, Calderwood SB, Qadri F, Camilli A. Transmission of Vibrio cholerae is antagonized by lytic phage and entry into the aquatic environment. PLoS Pathog 2008; 4:e1000187. [PMID: 18949027 PMCID: PMC2563029 DOI: 10.1371/journal.ppat.1000187] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/24/2008] [Indexed: 11/21/2022] Open
Abstract
Cholera outbreaks are proposed to propagate in explosive cycles powered by hyperinfectious Vibrio cholerae and quenched by lytic vibriophage. However, studies to elucidate how these factors affect transmission are lacking because the field experiments are almost intractable. One reason for this is that V. cholerae loses the ability to culture upon transfer to pond water. This phenotype is called the active but non-culturable state (ABNC; an alternative term is viable but non-culturable) because these cells maintain the capacity for metabolic activity. ABNC bacteria may serve as the environmental reservoir for outbreaks but rigorous animal studies to test this hypothesis have not been conducted. In this project, we wanted to determine the relevance of ABNC cells to transmission as well as the impact lytic phage have on V. cholerae as the bacteria enter the ABNC state. Rice-water stool that naturally harbored lytic phage or in vitro derived V. cholerae were incubated in a pond microcosm, and the culturability, infectious dose, and transcriptome were assayed over 24 h. The data show that the major contributors to infection are culturable V. cholerae and not ABNC cells. Phage did not affect colonization immediately after shedding from the patients because the phage titer was too low. However, V. cholerae failed to colonize the small intestine after 24 h of incubation in pond water—the point when the phage and ABNC cell titers were highest. The transcriptional analysis traced the transformation into the non-infectious ABNC state and supports models for the adaptation to nutrient poor aquatic environments. Phage had an undetectable impact on this adaptation. Taken together, the rise of ABNC cells and lytic phage blocked transmission. Thus, there is a fitness advantage if V. cholerae can make a rapid transfer to the next host before these negative selective pressures compound in the aquatic environment. The biological factors that control the transmission of water-borne pathogens like Vibrio cholerae during outbreaks are ill defined. In this study, a molecular analysis of the active but non-culturable (ABNC) state of V. cholerae provides insights into the physiology of environmental adaptation. The ABNC state, lytic phage, and hyperinfectivity were concurrently followed as V. cholerae passaged from cholera patients to an aquatic reservoir. The relevance to transmission of each factor was weighed against the others. As the bacteria transitioned from the patient to pond water, there was a rapid decay into the ABNC state and a rise of lytic phage that compounded to block transmission in a mouse model. These two factors give reason for V. cholerae to make a quick transit through the environment and onto the next human host. Thus, in over-crowded locations with failed water infrastructure, the opportunity for fast transmission coupled with the increased infectivity and culturability of recently shed V. cholerae creates a charged setting for explosive cholera outbreaks.
Collapse
Affiliation(s)
- Eric J. Nelson
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | | | - James Flynn
- Tufts Expression Array Core (TEAC) Facility, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stefan Schild
- Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Graz, Austria
| | - Lori Bourassa
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yue Shao
- Tufts Expression Array Core (TEAC) Facility, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Andrew Camilli
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
63
|
Abstract
An effective vaccine for Vibrio cholerae is not yet available for use in the developing world, where the burden of cholera disease is highest. Characterizing the proteins that are expressed by V. cholerae in the human host environment may provide insight into the pathogenesis of cholera and assist with the development of an improved vaccine. We analyzed the V. cholerae proteins present in the stools of 32 patients with clinical cholera. The V. cholerae outer membrane porin, OmpU, was identified in all of the human stool samples, and many V. cholerae proteins were repeatedly identified in separate patient samples. The majority of V. cholerae proteins identified in human stool are involved in protein synthesis and energy metabolism. A number of proteins involved in the pathogenesis of cholera, including the A and B subunits of cholera toxin and the toxin-coregulated pilus, were identified in human stool. In a subset of stool specimens, we also assessed which in vivo expressed V. cholerae proteins were recognized uniquely by convalescent-phase as opposed to acute-phase serum from cholera patients. We identified a number of these in vivo expressed proteins as immunogenic during human infection. To our knowledge, this is the first characterization of the proteome of a pathogenic bacteria recovered from a natural host.
Collapse
|
64
|
Harris JB, LaRocque RC, Chowdhury F, Khan AI, Logvinenko T, Faruque ASG, Ryan ET, Qadri F, Calderwood SB. Susceptibility to Vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl Trop Dis 2008; 2:e221. [PMID: 18398491 PMCID: PMC2271133 DOI: 10.1371/journal.pntd.0000221] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 03/06/2008] [Indexed: 11/29/2022] Open
Abstract
Background Despite recent progress in understanding the molecular basis of Vibrio cholerae pathogenesis, there is relatively little knowledge of the factors that determine the variability in human susceptibility to V. cholerae infection. Methods and Findings We performed an observational study of a cohort of household contacts of cholera patients in Bangladesh, and compared the baseline characteristics of household members who went on to develop culture-positive V. cholerae infection with individuals who did not develop infection. Although the vibriocidal antibody is the only previously described immunologic marker associated with protection from V. cholerae infection, we found that levels of serum IgA specific to three V. cholerae antigens—the B subunit of cholera toxin, lipopolysaccharide, and TcpA, the major component of the toxin–co-regulated pilus—also predicted protection in household contacts of patients infected with V. cholerae O1, the current predominant cause of cholera. Circulating IgA antibodies to TcpA were also associated with protection from V. cholerae O139 infection. In contrast, there was no association between serum IgG antibodies specific to these three antigens and protection from infection with either serogroup. We also found evidence that host genetic characteristics and serum retinol levels modify susceptibility to V. cholerae infection. Conclusions Our observation that levels of serum IgA (but not serum IgG) directed at certain V. cholerae antigens are associated with protection from infection underscores the need to better understand anti–V. cholerae immunity at the mucosal surface. Furthermore, our data suggest that susceptibility to V. cholerae infection is determined by a combination of immunologic, nutritional, and genetic characteristics; additional factors that influence susceptibility to cholera remain unidentified. Vibrio cholerae is the bacterium that causes cholera, a severe form of diarrhea that leads to rapid and potentially fatal dehydration when the infection is not treated promptly. Cholera remains an important cause of diarrhea globally, and V. cholerae continues to cause major epidemics in the most vulnerable populations. Although there have been recent discoveries about how the bacterium adapts to the human intestine and causes diarrhea, there is little understanding of why some people are protected from infection with V. cholerae. This article describes several factors that are associated with the risk of developing V. cholerae infection among people living in the same household with a patient with severe cholera who are at high risk of contracting the infection. One of the findings is that IgA antibodies, a type of antibody associated with immunity at mucosal surfaces such as the intestine, that target several components of the bacteria are associated with immunity to V. cholerae infection. This article also describes genetic and nutritional factors that additionally influence susceptibility to V. cholerae infection.
Collapse
Affiliation(s)
- Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Rollins SM, Peppercorn A, Young JS, Drysdale M, Baresch A, Bikowski MV, Ashford DA, Quinn CP, Handfield M, Hillman JD, Lyons CR, Koehler TM, Calderwood SB, Ryan ET. Application of in vivo induced antigen technology (IVIAT) to Bacillus anthracis. PLoS One 2008; 3:e1824. [PMID: 18350160 PMCID: PMC2265799 DOI: 10.1371/journal.pone.0001824] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/05/2008] [Indexed: 01/23/2023] Open
Abstract
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.
Collapse
Affiliation(s)
- Sean M Rollins
- Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Sharma MK, Singh NK, Jani D, Sisodia R, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK. Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). PLANT CELL REPORTS 2008; 27:307-318. [PMID: 17962948 DOI: 10.1007/s00299-007-0464-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/30/2007] [Indexed: 05/25/2023]
Abstract
For protection against cholera, it is important to develop efficient vaccine capable of inducing anti-toxin as well as anti-colonizing immunity against Vibrio cholerae infections. Earlier, expression of cholera toxin B subunit (CTB) in tomato was reported by us. In the present investigation, toxin co-regulated pilus subunit A (TCPA), earlier reported to be an antigen capable of providing anti-colonization immunity, has been expressed in tomato. Further, to generate more potent combinatorial antigens, nucleotides encoding P4 or P6 epitope of TCPA were fused to cholera toxin B subunit gene (ctxB) and expressed in tomato. Presence of transgenes in the tomato genome was confirmed by PCR and expression of genes was confirmed at transcript and protein level. TCPA, chimeric CTB-P4 and CTB-P6 proteins were also expressed in E. coli. TCPA protein expressed in E. coli was purified to generate anti-TCPA antibodies in rabbit. Immunoblot and G(M1)-ELISA verified the synthesis and assembly of pentameric chimeric proteins in fruit tissue of transgenic tomato plants. The chimeric protein CTB-P4 and CTB-P6 accumulated up to 0.17 and 0.096% of total soluble protein (TSP), respectively, in tomato fruits. Whereas expression of TCPA, CTB-P4 and CTB-P6 in E. coli can be utilized for development of conventional vaccine, expression of these antigens which can provide both anti-toxin as well as anti-colonization immunity, has been demonstrated in plants, in a form which is potentially capable of inducing immune response against cholera infection.
Collapse
Affiliation(s)
- Manoj Kumar Sharma
- Department of Plant Molecular biology, University of Delhi South Campus, New Delhi 110021, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci U S A 2008; 105:1698-703. [PMID: 18230719 DOI: 10.1073/pnas.0711767105] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although central to pathogenesis, the molecular mechanisms used by microbes to regulate virulence factor production in specific environments during host-pathogen interaction are poorly defined. Several recent ex vivo and in vivo studies have found that the level of group A Streptococcus (GAS) virulence factor gene transcripts is temporally related to altered expression of genes encoding carbohydrate utilization proteins. These findings stimulated us to analyze the role in pathogenesis of catabolite control protein A (CcpA), a GAS ortholog of a key global regulator of carbohydrate metabolism in Bacillus subtilis. Inasmuch as the genomewide effects of CcpA in a human pathogen are unknown, we analyzed the transcriptome of a DeltaccpA isogenic mutant strain grown in nutrient-rich medium. CcpA influences the transcript levels of many carbohydrate utilization genes and several well characterized GAS virulence factors, including the potent cytolysin streptolysin S. Compared with the wild-type parental strain, the DeltaccpA isogenic mutant strain was significantly less virulent in a mouse model of invasive infection. Moreover, the isogenic mutant strain was significantly impaired in ability to colonize the mouse oropharynx. When grown in human saliva, a nutrient-limited environment, CcpA influenced production of several key virulence factors not influenced during growth in nutrient-rich medium. Purified recombinant CcpA bound to the promoter region of the gene encoding streptolysin S. Our discovery that GAS virulence and complex carbohydrate utilization are directly linked through CcpA provides enhanced understanding of a mechanism used by a Gram-positive pathogen to modulate virulence factor production in specific environments.
Collapse
|
68
|
Role of cyclic Di-GMP during el tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA. Infect Immun 2008; 76:1617-27. [PMID: 18227161 DOI: 10.1128/iai.01337-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In Vibrio cholerae, the second messenger cyclic di-GMP (c-di-GMP) positively regulates biofilm formation and negatively regulates virulence and is proposed to play an important role in the transition from persistence in the environment to survival in the host. Herein we describe a characterization of the infection-induced gene cdpA, which encodes both GGDEF and EAL domains, which are known to mediate diguanylate cyclase and c-di-GMP phosphodiesterase (PDE) activities, respectively. CdpA is shown to possess PDE activity, and this activity is regulated by its inactive degenerate GGDEF domain. CdpA inhibits biofilm formation but has no effect on colonization of the infant mouse small intestine. Consistent with these observations, cdpA is expressed during in vitro growth in a biofilm but is not expressed in vivo until the late stage of infection, after colonization has occurred. To test for a role of c-di-GMP in the early stages of infection, we artificially increased c-di-GMP and observed reduced colonization. This was attributed to a significant reduction in toxT transcription during infection. Cumulatively, these results support a model of the V. cholerae life cycle in which c-di-GMP must be down-regulated early after entering the small intestine and maintained at a low level to allow virulence gene expression, colonization, and motility at appropriate stages of infection.
Collapse
|
69
|
|
70
|
Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol Lett 2007; 30:777-90. [PMID: 18158583 DOI: 10.1007/s10529-007-9620-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is a key opportunistic pathogen causing severe acute and chronic nosocomial infections in immunocompromised or catheterized patients. It is prevalent in burn wound infections and it is generally multi-drug resistant. Understanding the genetic programs underlying infection is essential to develop highly needed new strategies for prevention and therapy. This work reviews expression profiling efforts conducted worldwide towards gaining insights into pathogenesis by P. aeruginosa, in particular in burn wounds. Work on various infection models, including the burned mouse model, has identified several direct virulence factors and elucidated their mode of action. In vivo gene expression experiments using In vivo Expression Technology (IVET) ascertained distinct regulatory circuits and traits that have helped explain P. aeruginosa s success as a general pathogen. The sequencing of the whole genome from a number of P. aeruginosa strains and the construction of genome-wide microarrays have paved the road to the several insightful studies on the (interacting) traits underlying infection. A series of in vitro and initial in vivo gene expression studies revealed specific traits pivotal for infection, such as quorum sensing systems, iron acquisition and oxidative stress responses, and toxin production among others. The data sets obtained from global transcriptional profiling provide insights that will be essential for the development of new targets and options for prevention and intervention.
Collapse
|
71
|
Lombardo MJ, Michalski J, Martinez-Wilson H, Morin C, Hilton T, Osorio CG, Nataro JP, Tacket CO, Camilli A, Kaper JB. An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci U S A 2007; 104:18229-34. [PMID: 17986616 PMCID: PMC2084325 DOI: 10.1073/pnas.0705636104] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Indexed: 12/19/2022] Open
Abstract
In vivo expression technology (IVET) has been widely used to study gene expression of human bacterial pathogens in animal models, but has heretofore not been used in humans to our knowledge. As part of ongoing efforts to understand Vibrio cholerae pathogenesis and develop improved V. cholerae vaccines, we have performed an IVET screen in humans for genes that are preferentially expressed by V. cholerae during infection. A library of 8,734 nontoxigenic V. cholerae strains carrying transcriptional fusions of genomic DNA to a resolvase gene was ingested by five healthy adult volunteers. Transcription of the fusion leads to resolvase-dependent excision of a sacB-containing cassette and thus the selectable phenotype of sucrose resistance (Suc(R)). A total of approximately 20,000 Suc(R) isolates, those carrying putative in vivo-induced fusions, were recovered from volunteer stool samples. Analysis of the fusion junctions from >7,000 Suc(R) isolates from multiple samples from multiple volunteers identified 217 candidate genes for preferential expression during human infection. Of genes or operons induced in three or more volunteers, the majority of those tested (65%) were induced in an infant mouse model. VC0201 (fhuC), which encodes the ATPase of a ferrichrome ABC transporter, is one of the identified in vivo-induced genes and is required for virulence in the mouse model.
Collapse
Affiliation(s)
- Mary-Jane Lombardo
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jane Michalski
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Hector Martinez-Wilson
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA 02111; and
| | - Cara Morin
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tamara Hilton
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Carlos G. Osorio
- Programa de Microbiología y Micología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James P. Nataro
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Carol O. Tacket
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA 02111; and
| | - James B. Kaper
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
72
|
Wu CW, Schmoller SK, Shin SJ, Talaat AM. Defining the stressome of Mycobacterium avium subsp. paratuberculosis in vitro and in naturally infected cows. J Bacteriol 2007; 189:7877-86. [PMID: 17693514 PMCID: PMC2168719 DOI: 10.1128/jb.00780-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 08/01/2007] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis causes an enteric infection in cattle, with a great impact on the dairy industry in the United States and worldwide. Characterizing the gene expression profile of M. avium subsp. paratuberculosis exposed to different stress conditions, or shed in cow feces, could improve our understanding of the pathogenesis of M. avium subsp. paratuberculosis. In this report, the stress response of M. avium subsp. paratuberculosis on a genome-wide level (stressome) was defined for the first time using DNA microarrays. Expression data analysis revealed unique gene groups of M. avium subsp. paratuberculosis that were regulated under in vitro stressors while additional groups were regulated in the cow samples. Interestingly, acidic pH induced the regulation of a large number of genes (n=597), suggesting the high sensitivity of M. avium subsp. paratuberculosis to acidic environments. Generally, responses to heat shock, acidity, and oxidative stress were similar in M. avium subsp. paratuberculosis and Mycobacterium tuberculosis, suggesting common pathways for mycobacterial defense against stressors. Several sigma factors (e.g., sigH and sigE) were differentially coregulated with a large number of genes depending on the type of each stressor. Subsequently, we analyzed the virulence of six M. avium subsp. paratuberculosis mutants with inactivation of differentially regulated genes using a murine model of paratuberculosis. Both bacterial and histopathological examinations indicated the attenuation of all gene mutants, especially those selected based on their expression in the cow samples (e.g., lipN). Overall, the employed approach profiled mycobacterial genetic networks triggered by variable stressors and identified a novel set of putative virulence genes. A similar approach could be applied to analyze other intracellular pathogens.
Collapse
Affiliation(s)
- Chia-wei Wu
- Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA
| | | | | | | |
Collapse
|
73
|
Zakikhany K, Naglik JR, Schmidt-Westhausen A, Holland G, Schaller M, Hube B. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 2007; 9:2938-54. [PMID: 17645752 DOI: 10.1111/j.1462-5822.2007.01009.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Candida albicans is the most common oral fungal pathogen of humans, but the mechanisms by which C. albicans invades and persists within mucosal epithelium are not clear. To understand oral pathogenesis, we characterized the cellular and molecular mechanisms of epithelial-fungus interactions using reconstituted human oral epithelium (RHE). We observed that hyphal formation facilitates epithelial invasion via both active (physical penetration) and passive (induced endocytosis) processes. Genome wide transcript profiling of C. albicans experimental RHE infection was compared with that from 11 patient samples with pseudomembranous candidiasis to identify genes associated with disease development in vivo. Expression profiles reflected the morphological switch and an adaptive response to neutral pH, non-glucose carbon sources and nitrosative stress. We identified several novel infection-associated genes with unknown function. One gene, upregulated in both RHE infection and patients, named EED1, was essential for maintenance of hyphal elongation. Mutants lacking EED1 showed transient cell elongation on epithelial tissue, which enabled only superficial invasion of epithelial cells. Once inside an epithelial cell, Deltaeed1 cells could proliferate as yeasts or pseudohyphae but remained trapped intracellularly. Our results suggest that the adaptive response and morphology of C. albicans play specific roles for host-fungal interactions during mucosal infections.
Collapse
|
74
|
Waddell SJ, Butcher PD, Stoker NG. RNA profiling in host-pathogen interactions. Curr Opin Microbiol 2007; 10:297-302. [PMID: 17574903 PMCID: PMC3128493 DOI: 10.1016/j.mib.2007.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 05/29/2007] [Indexed: 12/21/2022]
Abstract
The development of novel anti-bacterial treatment strategies will be aided by an increased understanding of the interactions that take place between bacteria and host cells during infection. Global expression profiling using microarray technologies can help to describe and define the mechanisms required by bacterial pathogens to cause disease and the host responses required to defeat bacterial infection.
Collapse
Affiliation(s)
- Simon J Waddell
- Medical Microbiology, Division of Cellular & Molecular Medicine, St George's University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | | | | |
Collapse
|
75
|
Pang B, Yan M, Cui Z, Ye X, Diao B, Ren Y, Gao S, Zhang L, Kan B. Genetic diversity of toxigenic and nontoxigenic Vibrio cholerae serogroups O1 and O139 revealed by array-based comparative genomic hybridization. J Bacteriol 2007; 189:4837-49. [PMID: 17468246 PMCID: PMC1913441 DOI: 10.1128/jb.01959-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Toxigenic serogroups O1 and O139 of Vibrio cholerae may cause cholera epidemics or pandemics. Nontoxigenic strains within these serogroups also exist in the environment, and also some may cause sporadic cases of disease. Herein, we investigate the genomic diversity among toxigenic and nontoxigenic O1 and O139 strains by comparative genomic microarray hybridization with the genome of El Tor strain N16961 as a base. Conservation of the toxigenic O1 El Tor and O139 strains is found as previously reported, whereas accumulation of genome changes was documented in toxigenic El Tor strains isolated within the 40 years of the seventh pandemic. High phylogenetic diversity in nontoxigenic O1 and O139 strains is observed, and most of the genes absent from nontoxigenic strains are clustered together in the N16961 genome. By comparing these toxigenic and nontoxigenic strains, we observed that the small chromosome of V. cholerae is quite conservative and stable, outside of the superintegron region. In contrast to the general stability of the genome, the superintegron demonstrates pronounced divergence among toxigenic and nontoxigenic strains. Additionally, sequence variation in virulence-related genes is found in nontoxigenic El Tor strains, and we speculate that these intermediate strains may have pathogenic potential should they acquire CTX prophage alleles and other gene clusters. This genome-wide comparison of toxigenic and nontoxigenic V. cholerae strains may promote understanding of clonal differentiation of V. cholerae and contribute to an understanding of the origins and clonal selection of epidemic strains.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, P.O. Box 5, Changping, Beijing 102206, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Cyclic diguanylate (c-di-GMP) is a bacterial second messenger of growing recognition involved in the regulation of a number of complex physiological processes. This review describes the biosynthesis and hydrolysis of c-di-GMP and several mechanisms of regulation of c-di-GMP metabolism. The contribution of c-di-GMP to regulating biofilm formation and motility, processes that affect pathogenesis of many bacteria, is described, as is c-di-GMP regulation of virulence gene expression. Finally, ways in which c-di-GMP may mediate these regulatory effects are proposed.
Collapse
Affiliation(s)
- Rita Tamayo
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
77
|
Schnappinger D. Genomics of host-pathogen interactions. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:311, 313-43. [PMID: 17195480 DOI: 10.1007/978-3-7643-7567-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The complete sequences of hundreds of microbial genomes have provided drug discovery pipelines with thousands of new potential drug targets. Their availability has also stimulated the development of a variety of innovative approaches that allow functional studies to be performed on the entire genome of an organism. This chapter describes how these approaches have been applied to the analysis of host-pathogen interactions and discusses how such studies might facilitate the development of new antibiotics.
Collapse
Affiliation(s)
- Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
78
|
Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY, Schoolnik GK. RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2006; 2:e109. [PMID: 17054394 PMCID: PMC1617127 DOI: 10.1371/journal.ppat.0020109] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 09/06/2006] [Indexed: 11/22/2022] Open
Abstract
Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of V. cholerae O1-infected rabbit ileal loops captured a distinctive stage in the infectious process: 12 h post-inoculation, bacteria detach from the epithelial surface and move into the fluid-filled lumen. Designated the “mucosal escape response,” this phenomenon requires RpoS, the stationary phase alternative sigma factor. Quantitative in vivo localization assays corroborated the rpoS phenotype and showed that it also requires HapR. Expression profiling of bacteria isolated from ileal loop fluid and mucus demonstrated a significant RpoS-dependent upregulation of many chemotaxis and motility genes coincident with the emigration of bacteria from the epithelial surface. In stationary phase cultures, RpoS was also required for upregulation of chemotaxis and motility genes, for production of flagella, and for movement of bacteria across low nutrient swarm plates. The hapR mutant produced near-normal numbers of flagellated cells, but was significantly less motile than the wild-type parent. During in vitro growth under virulence-inducing conditions, the rpoS mutant produced 10- to 100-fold more cholera toxin than the wild-type parent. Although the rpoS mutant caused only a small over-expression of the genes encoding cholera toxin in the ileal loop, it resulted in a 30% increase in fluid accumulation compared to the wild-type. Together, these results show that the mucosal escape response is orchestrated by an RpoS-dependent genetic program that activates chemotaxis and motility functions. This may furthermore coincide with reduced virulence gene expression, thus preparing the organism for the next stage in its life cycle. Vibrio cholerae, a pathogenic microbe, causes a severe diarrhoeal disease mainly in Third World countries. Although the pathogenicity of this organism has been intensively studied for more than a century, most research has focused on the initial stages of the infection, especially colonization of the intestine and virulence gene expression. However, the last stages of the infectious process have received very little attention. In the present manuscript, the authors use the rabbit ileal loop model of cholera to show how this organism, late in the infection, detaches from the epithelial surface and migrates into the luminal fluid, a process the authors termed the “mucosal escape response.” This study identifies, for the first time, how the alternative starvation sigma factor RpoS regulates this process. Features of this genetic program include the dramatic induction of genes involved in motility and chemotaxis functions. This study furthermore identifies RpoS as an important regulator of virulence gene expression and shows that the mucosal escape response may coincide with diminished virulence gene expression. This work is essential for understanding a key and under-appreciated step in the life cycle of this important human pathogen: its exit from the intestine and how this serves to prepare it for transmission into environmental reservoirs or to new human hosts.
Collapse
Affiliation(s)
- Alex Toftgaard Nielsen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nadia A Dolganov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Glen Otto
- Department of Comparative Medicine, Stanford University, Stanford, California, United States of America
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Michael C Miller
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cheng Yen Wu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gary K Schoolnik
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
79
|
Rollenhagen JE, Kalsy A, Cerda F, John M, Harris JB, Larocque RC, Qadri F, Calderwood SB, Taylor RK, Ryan ET. Transcutaneous immunization with toxin-coregulated pilin A induces protective immunity against Vibrio cholerae O1 El Tor challenge in mice. Infect Immun 2006; 74:5834-9. [PMID: 16988262 PMCID: PMC1594919 DOI: 10.1128/iai.00438-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-coregulated pilin A (TcpA) is the main structural subunit of a type IV bundle-forming pilus of Vibrio cholerae, the cause of cholera. Toxin-coregulated pilus is involved in formation of microcolonies of V. cholerae at the intestinal surface, and strains of V. cholerae deficient in TcpA are attenuated and unable to colonize intestinal surfaces. Anti-TcpA immunity is common in humans recovering from cholera in Bangladesh, and immunization against TcpA is protective in murine V. cholerae models. To evaluate whether transcutaneously applied TcpA is immunogenic, we transcutaneously immunized mice with 100 mug of TcpA or TcpA with an immunoadjuvant (cholera toxin [CT], 50 mug) on days 0, 19, and 40. Mice immunized with TcpA alone did not develop anti-TcpA responses. Mice that received transcutaneously applied TcpA and CT developed prominent anti-TcpA immunoglobulin G (IgG) serum responses but minimal anti-TcpA IgA. Transcutaneous immunization with CT induced prominent IgG and IgA anti-CT serum responses. In an infant mouse model, offspring born to dams transcutaneously immunized either with TcpA and CT or with CT alone were challenged with 10(6) CFU (one 50% lethal dose) wild-type V. cholerae O1 El Tor strain N16961. At 48 h, mice born to females transcutaneously immunized with CT alone had 36% +/- 10% (mean +/- standard error of the mean) survival, while mice born to females transcutaneously immunized with TcpA and CT had 69% +/- 6% survival (P < 0.001). Our results suggest that transcutaneous immunization with TcpA and an immunoadjuvant induces protective anti-TcpA immune responses. Anti-TcpA responses may contribute to an optimal cholera vaccine.
Collapse
Affiliation(s)
- Julianne E Rollenhagen
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Hsiao A, Liu Z, Joelsson A, Zhu J. Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci U S A 2006; 103:14542-7. [PMID: 16983078 PMCID: PMC1599996 DOI: 10.1073/pnas.0604650103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To successfully propagate and cause disease, pathogenic bacteria must modulate their transcriptional activities in response to pressures exerted by the host immune system, including secreted immunoglobulins such as secretory IgA (S-IgA), which can bind and agglutinate bacteria. Here, we present a previously undescribed flow cytometry-based screening method to identify bacterial genes expressed in vitro and repressed during infections of Vibrio cholerae, an aquatic Gram-negative bacterium responsible for the severe diarrheal disease cholera. We identified a type IV mannose-sensitive hemagglutinin (MSHA) pilus that is repressed specifically in vivo. We showed that bacteria that failed to turn off MSHA biosynthesis were unable to colonize the intestines of infant mice in the presence of S-IgA. We also found that V. cholerae bound S-IgA in an MSHA-dependent and mannose-sensitive fashion and that binding of S-IgA prevented bacteria from penetrating mucus barriers and attaching to the surface of epithelial cells. The ability of V. cholerae to evade the non-antigen-specific binding of S-IgA by down-regulating a surface adhesin represents a previously undescribed mechanism of immune evasion in pathogenic bacteria. In addition, we found that repression of MSHA was mediated by the key virulence transcription factor ToxT, indicating that V. cholerae is able to coordinate both virulence gene activation and repression to evade host defenses and successfully colonize intestines.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Zhi Liu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Adam Joelsson
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jun Zhu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
81
|
Marra A. Targeting virulence for antibacterial chemotherapy: identifying and characterising virulence factors for lead discovery. Drugs R D 2006; 7:1-16. [PMID: 16620133 DOI: 10.2165/00126839-200607010-00001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The antibacterial drug discovery industry is fast losing participants; at the same time it is facing the challenge of developing new antibiotics that are effective against frequently occurring and multiply resistant organisms. One intriguing approach is to target bacterial virulence, and the last decade or so has seen a focus on bacterial pathogenesis along with the development of reagents and strategies that could make this possible. Several processes utilised by a range of bacteria to cause infection may be conserved enough to make attractive targets; indeed it is known that mammalian cells can affect bacterial gene expression and vice versa. Interesting targets involving virulence include type III secretion systems, two-component signal transduction systems, quorum sensing, and biofilm formation. In order to better understand these systems and strategies, investigators have developed novel strategies of their own, involving negative selections, surrogate models of infection, and screens for gene induction and antigenicity. Inhibitors of such targets would be unlikely to adversely affect patients, be cross-resistant to existing therapies, or cause resistance themselves. It might be the case that virulence target-based therapies would not be powerful enough to clear an existing infection alone, but if they are instead considered as adjunct therapy to existing antibiotics, or potentiators of the host immune response, they may show efficacy in a non-traditional way.
Collapse
|
82
|
Rashid RA, Tabata TA, Oatley MJ, Besser TE, Tarr PI, Moseley SL. Expression of putative virulence factors of Escherichia coli O157:H7 differs in bovine and human infections. Infect Immun 2006; 74:4142-8. [PMID: 16790788 PMCID: PMC1489682 DOI: 10.1128/iai.00299-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Escherichia coli O157:H7 is a commensal organism in cattle, but it is a pathogen in humans. This differential expression of virulence suggests that specific virulence factors are regulated differently in human and bovine hosts. To test this hypothesis, relative real-time reverse transcription-PCR was used to relate the expression of several putative virulence genes (eae, espA, stx(2), rfbE, ehxA, and iha) to that of the "housekeeping" gene gnd during natural human and experimental bovine infection with E. coli O157:H7. We examined these genes in fecal samples from eight humans and four calves. iha and espA were significantly more expressed in bovine infections. rfbE and ehxA appeared to be more highly expressed in human infections, though these differences did not achieve statistical significance. Our results support the hypothesis that some virulence-associated genes of O157:H7 are differentially expressed in a host-specific manner.
Collapse
Affiliation(s)
- Rebecca A Rashid
- Department of Microbiology, University of Washington, 1959 N.E. Pacific St., Mail Stop 357242, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
83
|
Roos V, Klemm P. Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect Immun 2006; 74:3565-75. [PMID: 16714589 PMCID: PMC1479258 DOI: 10.1128/iai.01959-05] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/30/2006] [Accepted: 03/15/2006] [Indexed: 11/20/2022] Open
Abstract
Urinary tract infections (UTIs) are an important health problem worldwide, with many million cases each year. Escherichia coli is the most common organism causing UTIs in humans. The asymptomatic bacteriuria E. coli strain 83972 is an excellent colonizer of the human urinary tract, where it causes long-term bladder colonization. The strain has been used for prophylactic purposes in patients prone to more severe and recurrent UTIs. For this study, we used DNA microarrays to monitor the expression profile of strain 83972 in the human urinary tract. Significant differences in expression levels were seen between the in vivo expression profiles of strain 83972 in three patients and the corresponding in vitro expression profiles in lab medium and human urine. The data revealed an in vivo lifestyle of microaerobic growth with respiration of nitrate coupled to degradation of sugar acids and amino acids, with no signs of attachment to host tissues. Interestingly, genes involved in NO protection and metabolism showed significant up-regulation in the patients. This is one of the first studies to address bacterial whole-genome expression in humans and the first study to investigate global gene expression of an E. coli strain in the human urinary tract.
Collapse
Affiliation(s)
- Viktoria Roos
- Microbial Adhesion Group, Center for Biomedical Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
84
|
Abstract
The availability of hundreds of bacterial genome sequences has altered the study of bacterial pathogenesis, affecting both design of experiments and analysis of results. Comparative genomics and genomic tools have been used to identify virulence factors and genes involved in environmental persistence of pathogens. However, a major stumbling block in the genomics revolution has been the large number of genes with unknown function that have been identified in every organism sequenced to date.
Collapse
Affiliation(s)
- David M Raskin
- Department of Microbiology & Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
85
|
Alam A, Larocque RC, Harris JB, Vanderspurt C, Ryan ET, Qadri F, Calderwood SB. Hyperinfectivity of human-passaged Vibrio cholerae can be modeled by growth in the infant mouse. Infect Immun 2005; 73:6674-9. [PMID: 16177344 PMCID: PMC1230955 DOI: 10.1128/iai.73.10.6674-6679.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been shown that passage of Vibrio cholerae through the human intestine imparts a transient hyperinfectious phenotype that may contribute to the epidemic spread of cholera. The mechanism underlying this human-passaged hyperinfectivity is incompletely understood, in part due to inherent difficulties in recovering and studying organisms that are freshly passed in human stool. Here, we demonstrate that passage of V. cholerae through the infant mouse intestine leads to an equivalent degree of hyperinfectivity as passage through the human host. We have used this infant mouse model of host-passaged hyperinfectivity to characterize the timing and the anatomic location of the competitive advantage of mouse-passaged V. cholerae as well as the contribution of three type IV pili to the phenotype.
Collapse
Affiliation(s)
- Ashfaqul Alam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | | | | | | | | |
Collapse
|