51
|
Abstract
Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.
Collapse
|
52
|
Lim JW, Hummert P, Mills JC, Kroll KL. Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. Development 2011; 138:33-44. [PMID: 21098561 PMCID: PMC2998164 DOI: 10.1242/dev.059824] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2010] [Indexed: 01/06/2023]
Abstract
Transient maintenance of a pluripotent embryonic cell population followed by the onset of multi-lineage commitment is a fundamental aspect of development. However, molecular regulation of this transition is not well characterized in vivo. Here, we demonstrate that the nuclear protein Geminin is required to restrain commitment and spatially restrict mesoderm, endoderm and non-neural ectoderm to their proper locations in the Xenopus embryo. We used microarray analyses to demonstrate that Geminin overexpression represses many genes associated with cell commitment and differentiation, while elevating expression levels of genes that maintain pluripotent early and immature neurectodermal cell states. We characterized the relationship of Geminin to cell signaling and found that Geminin broadly represses Activin-, FGF- and BMP-mediated cell commitment. Conversely, Geminin knockdown enhances commitment responses to growth factor signaling and causes ectopic mesodermal, endodermal and epidermal fate commitment in the embryo. We also characterized the functional relationship of Geminin with transcription factors that had similar activities and found that Geminin represses commitment independent of Oct 4 ortholog (Oct25/60) activities, but depends upon intact Polycomb repressor function. Consistent with this, chromatin immunoprecipitation assays directed at mesodermal genes demonstrate that Geminin promotes Polycomb binding and Polycomb-mediated repressive histone modifications, while inhibiting modifications associated with gene activation. This work defines Geminin as an essential regulator of the embryonic transition from pluripotency through early multi-lineage commitment, and demonstrates that functional cooperativity between Geminin and Polycomb contributes to this process.
Collapse
Affiliation(s)
- Jong-Won Lim
- Departments of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Pamela Hummert
- Departments of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Jason C. Mills
- Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Kristen L. Kroll
- Departments of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| |
Collapse
|
53
|
Abstract
Satellite cells (SCs) are the main source of adult skeletal muscle stem cells responsible for muscle growth and regeneration. By interpreting extracellular cues, developmental regulators control quiescence, proliferation, and differentiation of SCs by influencing coordinate gene expression. The scope of this review is limited to the description and discussion of protein complexes that introduce and decode heritable histone and chromatin modifications and how these modifications are relevant for SC biology.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cell and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
54
|
EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116:5247-55. [PMID: 20736451 DOI: 10.1182/blood-2010-04-280149] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
EZH2 is the catalytic subunit of the PRC2 Polycomb complex and mediates transcriptional repression through its histone methyltransferase activity. EZH2 is up-regulated in normal germinal center (GC) B cells and is implicated in lymphomagenesis. To explore the transcriptional programs controlled by EZH2, we performed chromatin immunoprecipitation (ChIP-on-chip) in GC cells and found that it binds approximately 1800 promoters, often associated with DNA sequences similar to Droso-phila Polycomb response elements. While EZH2 targets overlapped extensively between GC B cells and embryonic stem cells, we also observed a large GC-specific EZH2 regulatory program. These genes are preferentially histone 3 lysine 27-trimethylated and repressed in GC B cells and include several key cell cycle-related tumor suppressor genes. Accordingly, siRNA-mediated down-regulation of EZH2 in diffuse large B-cell lymphoma (DLBCL) cells resulted in acute cell cycle arrest at the G(1)/S transition and up-regulation of its tumor suppressor target genes. At the DNA level, EZH2-bound promoters are hypomethylated in GC B cells, but many of them are aberrantly hypermethylated in DLBCL, suggesting disruption of normal epigenetic processes in these cells. EZH2 is thus involved in regulating a specific epigenetic program in normal GCs, including silencing of antiproliferative genes, which may contribute to the malignant transformation of GC B cells into DLBCLs.
Collapse
|
55
|
Liu Y, Shao Z, Yuan GC. Prediction of Polycomb target genes in mouse embryonic stem cells. Genomics 2010; 96:17-26. [DOI: 10.1016/j.ygeno.2010.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 12/21/2022]
|
56
|
Transcription factor YY1 interacts with retroviral integrases and facilitates integration of moloney murine leukemia virus cDNA into the host chromosomes. J Virol 2010; 84:8250-61. [PMID: 20519390 DOI: 10.1128/jvi.02681-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral integrases associate during the early viral life cycle with preintegration complexes that catalyze the integration of reverse-transcribed viral cDNA into the host chromosomes. Several cellular and viral proteins have been reported to be incorporated in the preintegration complex. This study demonstrates that transcription factor Yin Yang 1 binds to Moloney murine leukemia virus, human immunodeficiency virus type 1, and avian sarcoma virus integrases. The results of coimmunoprecipitation and in vitro pulldown assays revealed that Yin Yang 1 interacted with the catalytic core and C-terminal domains of Moloney murine leukemia virus and human immunodeficiency virus type 1 integrases, while the transcriptional repression and DNA-binding domains of the Yin Yang 1 molecule interacted with Moloney murine leukemia virus integrase. Immunoprecipitation of the cytoplasmic fraction of virus-infected cells followed by Southern blotting and chromatin immunoprecipitation demonstrated that Yin Yang 1 associated with Moloney murine leukemia virus cDNA in virus-infected cells. Yin Yang 1 enhanced the in vitro integrase activity of Moloney murine leukemia virus, human immunodeficiency virus type 1, and avian sarcoma virus integrases. Furthermore, knockdown of Yin Yang 1 in host cells by small interfering RNA reduced Moloney murine leukemia virus cDNA integration in vivo, although viral cDNA synthesis was increased, suggesting that Yin Yang 1 facilitates integration events in vivo. Taking these results together, Yin Yang 1 appears to be involved in integration events during the early viral life cycle, possibly as an enhancer of integration.
Collapse
|
57
|
Wilkinson F, Pratt H, Atchison ML. PcG recruitment by the YY1 REPO domain can be mediated by Yaf2. J Cell Biochem 2010; 109:478-86. [PMID: 19960508 DOI: 10.1002/jcb.22424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Polycomb Group (PcG) complex of transcriptional repressors is critical for the maintenance of stage-specific developmental gene expression, stem cell maintenance and for large-scale chromosomal dynamics. Functional deficiency of a single PcG gene can severely compromise PcG function, leading to developmental defects, embryonic lethality, or a number of malignancies. Despite the critical nature of PcG proteins, the mechanisms by which these complexes mediate their effects are relatively uncharacterized. Nearly all vertebrate PcG proteins lack inherent DNA binding capacity, making it unclear how they are targeted to Polycomb response element (PRE) sequences. Transcription factor YY1 is a functional ortholog of a Drosophila PcG protein, Pleiohomeotic (PHO), one of the few PcG proteins with specific DNA binding capability, and YY1 can recruit PcG proteins to specific DNA sequences. A small 25 amino acid YY1 domain (the REPO domain) is necessary and sufficient for recruitment of PcG proteins to DNA and for transcriptional repression. We show here that the YY1 REPO domain interacts with PcG protein Yaf2 and recruits Yaf2 to DNA. Interaction is lost when the YY1 REPO domain is deleted. In addition we show that Yaf2, when linked to a heterologous DNA binding domain, can recruit PcG proteins to DNA leading to transcriptional repression. When the Drosophila homolog of Yaf2 (dRYBP) is mutated, PcG recruitment to DNA is reduced. Taken together, our results suggest that Yaf2 serves as a molecular bridge between YY1 and other PcG complex proteins.
Collapse
Affiliation(s)
- Frank Wilkinson
- School of Science and Health, Philadelphia University, Schoolhouse Lane and Henry Avenue, Philadelphia, Pennsylvania 19144, USA.
| | | | | |
Collapse
|
58
|
Aldiri I, Vetter ML. Characterization of the expression pattern of the PRC2 core subunit Suz12 during embryonic development of Xenopus laevis. Dev Dyn 2010; 238:3185-92. [PMID: 19877271 DOI: 10.1002/dvdy.22120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Polycomb repressive complex 2 is a multimeric aggregate that mediates silencing of a broad range of genes, and is associated with important biological contexts such as stem cell maintenance and cancer progression. PRC2 mainly trimethylates lysine 27 of histone H3 and is composed of three essential core subunits: EZH2, EED, and SUZ12. The Xenopus orthologs of PRC2 subunits Ezh2 and Eed have been described but Suz12 remained unidentified. Here, we report the cloning of the Xenopus Suz12, and determine its spatiotemporal expression during development. Xsuz12 transcript is provided maternally and continues to be expressed throughout development, particularly in the anterior part of the developing central nervous system. Importantly, comparative analysis of the expression of the PRC2 subunits Xez, Xeed, and Xrbbp4 indicates that their expression largely coincides with Xsuz12 in the nervous system, suggesting that PRC2 may have unexplored functions in the development of the frog central nervous system.
Collapse
Affiliation(s)
- Issam Aldiri
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
59
|
Polycomb group complexes--many combinations, many functions. Trends Cell Biol 2009; 19:692-704. [PMID: 19889541 DOI: 10.1016/j.tcb.2009.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/21/2022]
Abstract
Polycomb Group (PcG) proteins are transcription regulatory proteins that control the expression of a variety of genes from early embryogenesis through birth to adulthood. PcG proteins form several complexes that are thought to collaborate to repress gene transcription. Individual PcG proteins have unique characteristics, and mutations in genes encoding different PcG proteins cause distinct phenotypes. Histone modifications have important roles in some PcG protein functions, but they are not universally required. The mechanisms of gene-specific recruitment, transcription repression, and selective derepression of genes by vertebrate PcG proteins are incompletely understood. Future studies of this enigmatic group of developmental regulators are certain to produce unanticipated discoveries.
Collapse
|
60
|
A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 2009; 17:425-34. [PMID: 19758566 DOI: 10.1016/j.devcel.2009.08.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/30/2009] [Accepted: 08/17/2009] [Indexed: 12/27/2022]
Abstract
Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryogenesis. Here, we report on the epigenetic and transcriptome genome-wide maps of gastrula-stage Xenopus tropicalis embryos using massive parallel sequencing of cDNA (RNA-seq) and DNA obtained by chromatin immunoprecipitation (ChIP-seq) of histone H3 K4 and K27 trimethylation and RNA Polymerase II (RNAPII). These maps identify promoters and transcribed regions. Strikingly, genomic regions featuring opposing histone modifications are mostly transcribed, reflecting spatially regulated expression rather than bivalency as determined by expression profile analyses, sequential ChIP, and ChIP-seq on dissected embryos. Spatial differences in H3K27me3 deposition are predictive of localized gene expression. Moreover, the appearance of H3K4me3 coincides with zygotic gene activation, whereas H3K27me3 is predominantly deposited upon subsequent spatial restriction or repression of transcriptional regulators. These results reveal a hierarchy in the spatial control of zygotic gene activation.
Collapse
|
61
|
Belak ZR, Ficzycz A, Ovsenek N. Biochemical characterization of Yin Yang 1-RNA complexes. Biochem Cell Biol 2009; 86:31-6. [PMID: 18364743 DOI: 10.1139/o07-155] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
YY1 (Yin Yang 1) is present in the Xenopus oocyte cytoplasm as a constituent of messenger ribonucleoprotein complexes (mRNPs). Association of YY1 with mRNPs requires direct RNA-binding activity. Previously, we have shown YY1 has a high affinity for U-rich RNA; however, potential interactions with plausible in vivo targets have not been investigated. Here we report a biochemical characterization of the YY1-RNA interaction including an investigation of the stability, potential 5'-methylguanosine affinity, and specificity for target RNAs. The formation of YY1-RNA complexes in vitro was highly resistant to thermal, ionic, and detergent disruption. The endogenous oocyte YY1-mRNA interactions were also found to be highly stable. Specific YY1-RNA interactions were observed with selected mRNA and 5S RNA probes. The affinity of YY1 for these substrates was within an order of magnitude of that for its cognate DNA element. Experiments aimed at determining the potential role of the 7-methylguanosine cap on RNA-binding reveal no significant difference in the affinity of YY1 for capped or uncapped mRNA. Taken together, the results show that the YY1-RNA interaction is highly stable, and that YY1 possesses the ability to interact with structurally divergent RNA substrates. These data are the first to specifically document the interaction between YY1 and potential in vivo targets.
Collapse
Affiliation(s)
- Zachery R Belak
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada
| | | | | |
Collapse
|
62
|
Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 2009; 18:1093-108. [PMID: 19480567 PMCID: PMC3135180 DOI: 10.1089/scd.2009.0113] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/29/2009] [Indexed: 01/06/2023] Open
Abstract
Coordinated transcription factor networks have emerged as the master regulatory mechanisms of stem cell pluripotency and differentiation. Many stem cell-specific transcription factors, including the pluripotency transcription factors, OCT4, NANOG, and SOX2 function in combinatorial complexes to regulate the expression of loci, which are involved in embryonic stem (ES) cell pluripotency and cellular differentiation. This review will address how these pathways form a reciprocal regulatory circuit whereby the equilibrium between stem cell self-renewal, proliferation, and differentiation is in perpetual balance. We will discuss how distinct epigenetic repressive pathways involving polycomb complexes, DNA methylation, and microRNAs cooperate to reduce transcriptional noise and to prevent stochastic and aberrant induction of differentiation. We will provide a brief overview of how these networks cooperate to modulate differentiation along hematopoietic and neuronal lineages. Finally, we will describe how aberrant functioning of components of the stem cell regulatory network may contribute to malignant transformation of adult stem cells and the establishment of a "cancer stem cell" phenotype and thereby underlie multiple types of human malignancies.
Collapse
Affiliation(s)
- Vasundhra Kashyap
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
- Pharmacology, Weill Cornell Medical College, New York, New York
| | - Naira C. Rezende
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
- Molecular and Cell Biology, Weill Cornell Medical College, New York, New York
| | - Kymora B. Scotland
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College, New York, New York
| | - Sebastian M. Shaffer
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
- Neuroscience, Weill Cornell Medical College, New York, New York
| | - Jenny Liao Persson
- Division of Experimental Cancer Research, Department of Laboratory Medicine, Clinical Research Center; Lund University, University Hospital, Malmö, Sweden
| | - Lorraine J. Gudas
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
| | - Nigel P. Mongan
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
| |
Collapse
|
63
|
Oktaba K, Gutiérrez L, Gagneur J, Girardot C, Sengupta AK, Furlong EEM, Müller J. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev Cell 2008; 15:877-89. [PMID: 18993116 DOI: 10.1016/j.devcel.2008.10.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
Polycomb group (PcG) proteins form conserved regulatory complexes that modify chromatin to repress transcription. Here, we report genome-wide binding profiles of PhoRC, the Drosophila PcG protein complex containing the DNA-binding factor Pho/dYY1 and dSfmbt. PhoRC constitutively occupies short Polycomb response elements (PREs) of a large set of developmental regulator genes in both embryos and larvae. The majority of these PREs are co-occupied by the PcG complexes PRC1 and PRC2. Analysis of PcG mutants shows that the PcG system represses genes required for anteroposterior, dorsoventral, and proximodistal patterning of imaginal discs and that it also represses cell cycle regulator genes. Many of these genes are regulated in a dynamic manner, and our results suggest that the PcG system restricts signaling-mediated activation of target genes to appropriate cells. Analysis of cell cycle regulators indicates that the PcG system also dynamically modulates the expression levels of certain genes, providing a possible explanation for the tumor phenotype of PcG mutants.
Collapse
|
64
|
Bowen AJ, Corcoran AE. How chromatin remodelling allows shuffling of immunoglobulin heavy chain genes. MOLECULAR BIOSYSTEMS 2008; 4:790-8. [PMID: 18633479 DOI: 10.1039/b719771n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular identity is determined by the switching on and off of lineage-specific genes. This dynamic process is regulated by a highly co-ordinated series of chromatin remodelling mechanisms that control DNA accessibility to facilitate transcription, replication and recombination. The identity of an individual B-lymphocyte is defined by the expression of a unique antibody protein, composed of two identical immunoglobulin heavy and two identical light chain polypeptides, which recognize a single foreign antigen with high specificity. However, the mammalian adaptive immune system requires an enormous variety of antibody-expressing B cells to combat the millions of foreign antigens it may encounter. This diversity is generated primarily at the multigene immunoglobulin loci by V(D)J recombination, a specialised form of DNA recombination in which numerous variable (V), diversity (D) and joining (J) genes are cut and pasted together in a strict order to allow shuffling of immunoglobulin genes. The mouse immunoglobulin heavy chain (Igh) locus is the largest known multigene locus. It spans approximately 3 Mb and comprises more than 200 genes. Its size and complexity pose an enormous logistic challenge to the chromatin remodelling machinery, but recent major advances in our understanding of how the 200 genes are shuffled have begun to reveal an exquisitely co-ordinated set of chromatin remodelling mechanisms which exploit every aspect of nuclear dynamics, and provide a global view of multigene regulation. This review will explore the numerous processes implicated in opening up and positioning of the locus to enable shuffling of the Igh locus genes, including non-coding RNA transcription, histone modifications, transcription factors, nuclear relocation and locus contraction.
Collapse
Affiliation(s)
- Adam J Bowen
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | |
Collapse
|
65
|
Lindroth AM, Park YJ, McLean CM, Dokshin GA, Persson JM, Herman H, Pasini D, Miró X, Donohoe ME, Lee JT, Helin K, Soloway PD. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet 2008; 4:e1000145. [PMID: 18670629 PMCID: PMC2475503 DOI: 10.1371/journal.pgen.1000145] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 06/30/2008] [Indexed: 12/18/2022] Open
Abstract
At the imprinted Rasgrf1 locus in mouse, a cis-acting sequence controls DNA methylation at a differentially methylated domain (DMD). While characterizing epigenetic marks over the DMD, we observed that DNA and H3K27 trimethylation are mutually exclusive, with DNA and H3K27 methylation limited to the paternal and maternal sequences, respectively. The mutual exclusion arises because one mark prevents placement of the other. We demonstrated this in five ways: using 5-azacytidine treatments and mutations at the endogenous locus that disrupt DNA methylation; using a transgenic model in which the maternal DMD inappropriately acquired DNA methylation; and by analyzing materials from cells and embryos lacking SUZ12 and YY1. SUZ12 is part of the PRC2 complex, which is needed for placing H3K27me3, and YY1 recruits PRC2 to sites of action. Results from each experimental system consistently demonstrated antagonism between H3K27me3 and DNA methylation. When DNA methylation was lost, H3K27me3 encroached into sites where it had not been before; inappropriate acquisition of DNA methylation excluded normal placement of H3K27me3, and loss of factors needed for H3K27 methylation enabled DNA methylation to appear where it had been excluded. These data reveal the previously unknown antagonism between H3K27 and DNA methylation and identify a means by which epigenetic states may change during disease and development. Methylation of DNA and histones exert profound and inherited effects on gene expression. These occur without changes to the underlying DNA sequence and are considered epigenetic effects. Disrupting epigenetic states can cause developmental abnormalities and cancer. Very little is known about how locations in the mammalian genome are chosen to receive these chemical modifications, or how their placement is regulated. We have identified a DNA sequence that acts as a methylation programmer at the Rasgrf1 locus in mice. It is required for methylation of nearby DNA sequences and can also influence the levels of local histone methylation. The methylation programmer has different effects on paternally and maternally derived chromosomes, directing DNA methylation on the paternal allele and histone H3 lysine 27 trimethylation on the maternal allele. These two methylation marks are not only mutually exclusive; they are also mutually antagonizing, whereby one blocks the placement of the other. Manipulations that cause aberrant changes in the levels of one of these marks had the opposite effect on the other mark. These observations identify novel mechanisms that specify epigenetic states in vivo and provide a framework for understanding how pathological epigenetic changes can arise, including those emerging at tumor suppressors during carcinogenesis.
Collapse
Affiliation(s)
- Anders M. Lindroth
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Yoon Jung Park
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Chelsea M. McLean
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Gregoriy A. Dokshin
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Jenna M. Persson
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Herry Herman
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Orthopaedic Surgery, School of Medicine, Padjadjaran State University–Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Diego Pasini
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Xavier Miró
- Department of Molecular Cell Biology, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Mary E. Donohoe
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeannie T. Lee
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Paul D. Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
66
|
Abstract
The transcription factor Yin Yang 1 (YY1) is a multifunctional protein that can activate or repress gene expression depending on the cellular context. YY1 is ubiquitously expressed and highly conserved between species. However, its role varies in diverse cell types and includes proliferation, differentiation, and apoptosis. This review will focus on the function of YY1 in the nervous system including its role in neural development, neuronal function, developmental myelination, and neurological disease. The multiple functions of YY1 in distinct cell types are reviewed and the possible mechanisms underlying the cell specificity for these functions are discussed.
Collapse
Affiliation(s)
- Ye He
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | - Patrizia Casaccia-Bonnefil
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
67
|
Jiang L, Yao M, Shi J, Shen P, Niu G, Fei J. Yin yang 1 directly regulates the transcription of RE-1 silencing transcription factor. J Neurosci Res 2008; 86:1209-16. [PMID: 18092359 DOI: 10.1002/jnr.21595] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The RE-1 silencing transcription factor (REST) is a master transcription factor that plays a critical role in embryo development, especially during the process of neurogenesis and neural plasticity. However, the mechanism of REST gene transcription regulation is still an open question. Here, by combining bioinformatics analysis and experimental studies, we report that the transcription factor Yin Yang 1 (YY1) bound to a conserved YY1 binding site in the promoter of the mouse REST gene and positively regulated activity of this promoter in SH-SY5Y cells. Furthermore, analysis of microarray data revealed a significant correlation between the expression of YY1 and REST genes. Overall, this study suggests that YY1 directly regulates expression of the REST gene.
Collapse
Affiliation(s)
- Lichun Jiang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
68
|
Tomilin NV. Regulation of mammalian gene expression by retroelements and non-coding tandem repeats. Bioessays 2008; 30:338-48. [PMID: 18348251 DOI: 10.1002/bies.20741] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Genomes of higher eukaryotes contain abundant non-coding repeated sequences whose overall biological impact is unclear. They comprise two categories. The first consists of retrotransposon-derived elements. These are three major families of retroelements (LINEs, SINEs and LTRs). SINEs are clustered in gene-rich regions and are found in promoters of genes while LINEs are concentrated in gene-poor regions and are depleted from promoters. The second class consists of non-coding tandem repeats (satellite DNAs and TTAGGG arrays), which are associated with mammalian centromeres, heterochromatin and telomeres. Terminal TTAGGG arrays are involved in telomere capping and satellite DNAs are located in heterochromatin, which is implicated in transcription silencing by gene repositioning (relocalization). It is unknown whether interstitial TTAGGG sequences, which are present in many vertebrates, have a function. Here, evidence will be presented that retroelements and TTAGGG arrays are involved in regulation of gene expression. Retroelements can provide binding sites for transcription factors and protect promoter CpG islands from repressive chromatin modifications, and may be also involved in nuclear compartmentalization of transcriptionally active and inactive domains. Interstitial telomere-like sequences can form dynamically maintained three-dimensional nuclear networks of transcriptionally inactive domains, which may be involved in transcription silencing like classic heterochromatin.
Collapse
Affiliation(s)
- Nikolai V Tomilin
- Institute of Cytology, Russian Academy of Sciences, 194064 St.Petersburg, Tikchoretskii Av. 4, Russia.
| |
Collapse
|
69
|
Franchina M, Woo AJ, Dods J, Karimi M, Ho D, Watanabe T, Spagnolo DV, Abraham LJ. The CD30 gene promoter microsatellite binds transcription factor Yin Yang 1 (YY1) and shows genetic instability in anaplastic large cell lymphoma. J Pathol 2008; 214:65-74. [PMID: 17973241 DOI: 10.1002/path.2258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD30 is a member of the TNF receptor family. Our interest lies in understanding the control of CD30 expression, particularly as its over-expression provides a diagnostic marker for a subset of non-Hodgkin's lymphomas, particularly anaplastic large cell lymphoma (ALCL), and because anti-CD30 treatment has been shown to be efficacious. We have identified a number of regulatory regions, including an Sp1 element in the minimal promoter, and a downstream promoter element that is required for start site selection. The discovery of both an activating AP1 site and an upstream microsatellite that represses transcriptional activity of CD30 suggests that this region is involved in dysregulation of CD30 expression. We have now identified the major microsatellite binding activity as transcription factor Yin Yang 1 by both one-hybrid cDNA library screening and peptide mass fingerprinting. Due to the strong repressive effect of the microsatellite, we also investigated whether microsatellite instability may induce changes in CD30 expression and hence explain the over-expression of CD30 in ALCL. Laser capture microdissection of ALCL biopsies and CD30 microsatellite typing indicated that the neoplastic cells show a high degree of variation, but this does not correlate with high CD30 expression seen in ALCL.
Collapse
Affiliation(s)
- M Franchina
- Western Australian Institute for Medical Research & Centre for Medical Research, The University of Western Australia, Crawley, Western Australia
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Liu H, Schmidt-Supprian M, Shi Y, Hobeika E, Barteneva N, Jumaa H, Pelanda R, Reth M, Skok J, Rajewsky K, Shi Y. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev 2008; 21:1179-89. [PMID: 17504937 PMCID: PMC1865490 DOI: 10.1101/gad.1529307] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of the transcription factor Yin Yang 1 (YY1) in development is largely unknown. Here we show that specific ablation of YY1 in mouse B cells caused a defect in somatic rearrangement in the immunoglobulin heavy-chain (IgH) locus and a block in the progenitor-B-to-precursor-B-cell transition, which was partially rescued by a prerearranged IgH transgene. Three-dimensional DNA fluorescence in situ hybridization analysis revealed an important function for YY1 in IgH locus contraction, a process indispensable for distal V(H) to D(H)J(H) recombination. We provide evidence that YY1 binds the intronic Ei mu enhancer within the IgH locus, consistent with a direct role for YY1 in V(H)D(H)J(H) recombination. These findings identified YY1 as a critical regulator of early B-cell development.
Collapse
Affiliation(s)
- Huifei Liu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marc Schmidt-Supprian
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- CBR Institute for Biomedical Research, Inc., Boston, Massachusetts 02115, USA
| | - Yujiang Shi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Elias Hobeika
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Natasha Barteneva
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Flow cytometry core facility, CBR Institute for Biomedical Research, Inc., Boston, Massachusetts 02115, USA
| | - Hassan Jumaa
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Roberta Pelanda
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Michael Reth
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany
| | - Jane Skok
- Department of Immunology and Molecular Pathology, Division of Infection and Immunity, University College London, London W1T 4JF, United Kingdom
| | - Klaus Rajewsky
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- CBR Institute for Biomedical Research, Inc., Boston, Massachusetts 02115, USA
| | - Yang Shi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Corresponding author.E-MAIL ; FAX (617) 432-6687
| |
Collapse
|
71
|
Tonini T, D'Andrilli G, Fucito A, Gaspa L, Bagella L. Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements. J Cell Physiol 2007; 214:295-300. [PMID: 17786943 DOI: 10.1002/jcp.21241] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An understanding of the mechanisms that uncover the dynamic changes in the distribution of the chromatin modifying enzymes and regulatory proteins on their target loci could provide further insight into the phenomenon of malignant transformation. Based on the current available data, it seems more and more clear that an abnormal expression of Ezh2, a member of the Polycomb group (PcG) protein, may be involved in the tumorigenesis process, in addition, different studies identify Ezh2 as a potential marker that distinguish aggressive prostate and breast cancer from indolent one. Recent investigation show that ectopic expression of Ezh2 provides proliferative advantage to primary cells through interaction with the pathways of key elements that control cell growth arrest and differentiation, like members of the retinoblastoma (Rb) family. Here, we outline how these pathways converge and we review the recent advances on the molecular mechanisms that promote cell cycle progression through deregulation of Ezh2 protein level, providing novel links between cancer progression and chromatin remodeling machineries.
Collapse
Affiliation(s)
- Tiziana Tonini
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
72
|
Bernard M, Voisin P. Photoreceptor-specific expression, light-dependent localization, and transcriptional targets of the zinc-finger protein Yin Yang 1 in the chicken retina. J Neurochem 2007; 105:595-604. [PMID: 18047560 DOI: 10.1111/j.1471-4159.2007.05150.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The zinc-finger transcription factor Yin Yang 1 (YY1) is a multifunctional protein that plays a critical role in embryonic development. Although it has been shown to play a role in eye development, its expression in the retina was not previously described. Here, we investigated YY1 expression in chicken tissues and we identified the neural retina as one of the tissues with highest YY1 protein levels. Immunohistochemical detection of YY1 in the retina revealed a clear-cut photoreceptor specificity and day/night differences in the cytoplasmic localization of the protein. YY1 was also present at high concentration in the nuclei of some photoreceptors. Gel-shift assays indicated YY1 bound to regulatory regions of several genes specifically expressed in photoreceptors. One of these genes, hydroxyindole-O-methyltransferase (EC 2.1.1.4), encodes the last enzyme of the melatonin synthesis pathway. Although over-expression of chicken YY1 was not sufficient to activate the chicken hydroxyindole-O-methyltransferase promoter in HEK293 cells, the YY1-binding site contained in this promoter was clearly required for full transcriptional activity in chicken embryonic retinal cells. These results suggest a role of YY1 in regulating the melatoninergic function of retinal photoreceptors.
Collapse
Affiliation(s)
- Marianne Bernard
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | |
Collapse
|
73
|
Silva J, García JM, Peña C, García V, Domínguez G, Suárez D, Camacho FI, Espinosa R, Provencio M, España P, Bonilla F. Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas. Clin Cancer Res 2007; 12:6929-36. [PMID: 17145810 DOI: 10.1158/1078-0432.ccr-06-0788] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Deregulation of mammalian Polycomb group (PcG) members may contribute to human carcinogenesis. p16INK4a and p14ARF tumor suppressors, human telomerase reverse transcriptase (h-TERT), and oncoprotein c-Myc have been implicated in the regulation of the cell cycle and proliferation mediated by PcG proteins, mainly Bmi-1, in mice and in cell culture experiments. Here, we examine whether these in vitro findings can be extrapolated to the in vivo situation. EXPERIMENTAL DESIGN We measure the expression of PcG members Bmi-1, Mel-18, and Hpc-2 and their potential targets by reverse transcription-PCR, immunostaining, and Western blotting in a series of 134 breast carcinomas and correlate the data with several clinical-pathologic variables of the tumors. RESULTS Expression of PcG genes was variably detected, but overexpression of Bmi-1 was the most frequent PcG alteration observed. In addition, statistical direct correlation in expression level of the three PcG members was detected. A correlation between c-Myc and Bmi-1 expression levels was observed; however, there was no correlation between expression of Bmi-1 and p16INK4a, p14ARF, or h-TERT. However, expression of the other PcG members Mel-18 and Hpc-2 correlated with the cell cycle regulators. Moreover, PcG mRNA-altered expression correlated significantly with certain clinical-pathologic variables associated with poor prognosis. CONCLUSIONS Our data suggest that the oncogenic role of Bmi-1 in human primary breast carcinomas is not determined by its capacity to inhibit INK4a/ARF proteins or to induce telomerase activity.
Collapse
Affiliation(s)
- Javier Silva
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Belak ZR, Ovsenek N. Assembly of the Yin Yang 1 transcription factor into messenger ribonucleoprotein particles requires direct RNA binding activity. J Biol Chem 2007; 282:37913-20. [PMID: 17974562 DOI: 10.1074/jbc.m708057200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The early stages of vertebrate development depend heavily on control of maternally transcribed mRNAs that are stored for long periods in complexes termed messenger ribonucleoprotein particles (mRNPs) and utilized selectively following maturation and fertilization. The transcription factor Yin Yang 1 (YY1) is associated with cytoplasmic mRNPs in vertebrate oocytes; however, the mechanism by which any of the mRNP proteins associate with mRNA in the oocyte is unknown. Here we demonstrate the mechanism by which YY1 associates with mRNPs depends on its direct RNA binding activity. High affinity binding for U-rich single-stranded RNA and A:U RNA duplexes was observed in the nanomolar range, similar to the affinity for the cognate double-stranded DNA-binding element. Similar RNA binding affinity was observed with endogenous YY1 isolated from native mRNP complexes. In vivo expression experiments reveal epitope-tagged YY1 assembled into high molecular mass mRNPs, and assembly was blocked by microinjection of high affinity RNA substrate competitor. These findings present the first clues to how mRNPs assemble during early development.
Collapse
Affiliation(s)
- Zachery R Belak
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
75
|
Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Viré E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S, Fuks F, Helin K, Di Croce L. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 2007; 11:513-25. [PMID: 17560333 DOI: 10.1016/j.ccr.2007.04.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/02/2006] [Accepted: 04/06/2007] [Indexed: 12/31/2022]
Abstract
Epigenetic changes are common alterations in cancer cells. Here, we have investigated the role of Polycomb group proteins in the establishment and maintenance of the aberrant silencing of tumor suppressor genes during transformation induced by the leukemia-associated PML-RARalpha fusion protein. We show that in leukemic cells knockdown of SUZ12, a key component of Polycomb repressive complex 2 (PRC2), reverts not only histone modification but also induces DNA demethylation of PML-RARalpha target genes. This results in promoter reactivation and granulocytic differentiation. Importantly, the epigenetic alterations caused by PML-RARalpha can be reverted by retinoic acid treatment of primary blasts from leukemic patients. Our results demonstrate that the direct targeting of Polycomb group proteins by an oncogene plays a key role during carcinogenesis.
Collapse
Affiliation(s)
- Raffaella Villa
- Centre de Regulacio Genomica, c/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Kim JD, Faulk C, Kim J. Retroposition and evolution of the DNA-binding motifs of YY1, YY2 and REX1. Nucleic Acids Res 2007; 35:3442-52. [PMID: 17478514 PMCID: PMC1904287 DOI: 10.1093/nar/gkm235] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
YY1 is a DNA-binding transcription factor found in both vertebrates and invertebrates. Database searches identified 62 YY1 related sequences from all the available genome sequences ranging from flying insects to human. These sequences are characterized by high levels of sequence conservation, ranging from 66% to 100% similarity, in the zinc finger DNA-binding domain of the predicted proteins. Phylogenetic analyses uncovered duplication events of YY1 in several different lineages, including flies, fish and mammals. Retroposition is responsible for generating one duplicate in flies, PHOL from PHO, and two duplicates in placental mammals, YY2 and Reduced Expression 1 (REX1) from YY1. DNA-binding motif studies have demonstrated that YY2 still binds to the same consensus sequence as YY1 but with much lower affinity. In contrast, REX1 binds to DNA motifs divergent from YY1, but the binding motifs of REX1 and YY1 share some similarity at their core regions (5′-CCAT-3′). This suggests that the two duplicates, YY2 and REX1, although generated through similar retroposition events have undergone different selection schemes to adapt to new roles in placental mammals. Overall, the conservation of YY2 and REX1 in all placental mammals predicts that each duplicate has co-evolved with some unique features of eutherian mammals.
Collapse
Affiliation(s)
- Jeong Do Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
77
|
Takasaki N, Kurokawa D, Nakayama R, Nakayama JI, Aizawa S. Acetylated YY1 regulates Otx2 expression in anterior neuroectoderm at two cis-sites 90 kb apart. EMBO J 2007; 26:1649-59. [PMID: 17332747 PMCID: PMC1829384 DOI: 10.1038/sj.emboj.7601619] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 01/23/2007] [Indexed: 11/09/2022] Open
Abstract
The mouse homeobox gene Otx2 plays essential roles at each step and in every tissue during head development. We have previously identified a series of enhancers that are responsible for driving the Otx2 expression in these contexts. Among them the AN enhancer, existing 92 kb 5' upstream, directs Otx2 expression in anterior neuroectoderm (AN) at the headfold stage. Analysis of the enhancer mutant Otx2(DeltaAN/-) indicated that Otx2 expression under the control of this enhancer is essential to the development of AN. This study demonstrates that the AN enhancer is promoter-dependent and regulated by acetylated YY1. YY1 binds to both the AN enhancer and promoter region. YY1 is acetylated in the anterior head, and only acetylated YY1 can bind to the sequence in the enhancer. Moreover, YY1 binding to both of these two sites is essential to Otx2 expression in AN. These YY1 binding sites are highly conserved in AN enhancers in tetrapods, coelacanth and skate, suggesting that establishment of the YY1 regulation coincides with that of OTX2 function in AN development in an ancestral gnathostome.
Collapse
Affiliation(s)
- Nobuyoshi Takasaki
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Rika Nakayama
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Jun-ichi Nakayama
- Laboratory for Chromatin Dynamics, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Shinichi Aizawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
- Laboratory for Vertebrate Body Plan, RIKEN Kobe, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. Tel.: +81783063149; Fax: +81783063148; E-mail:
| |
Collapse
|
78
|
Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 2007; 8:9-22. [PMID: 17173055 DOI: 10.1038/nrg1981] [Citation(s) in RCA: 664] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycomb group complexes, which are known to regulate homeotic genes, have now been found to control hundreds of other genes in mammals and insects. First believed to progressively assemble and package chromatin, they are now thought to be localized, but induce a methylation mark on histone H3 over a broad chromatin domain. Recent progress has changed our view of how these complexes are recruited, and how they affect chromatin and repress gene activity. Polycomb complexes function as global enforcers of epigenetically repressed states, balanced by an antagonistic state that is mediated by Trithorax. These epigenetic states must be reprogrammed when cells become committed to differentiation.
Collapse
Affiliation(s)
- Yuri B Schwartz
- Department of Molecular Biology and Biochemistry, Rutgers University, Nelson Laboratories, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
79
|
Breiling A, Sessa L, Orlando V. Biology of polycomb and trithorax group proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:83-136. [PMID: 17338920 DOI: 10.1016/s0074-7696(07)58002-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular phenotypes can be ascribed to different patterns of gene expression. Epigenetic mechanisms control the generation of different phenotypes from the same genotype. Thus differentiation is basically a process driven by changes in gene activity during development, often in response to transient factors or environmental stimuli. To keep the specific characteristics of cell types, tissue-specific gene expression patterns must be transmitted stably from one cell to the daughter cells, also in the absence of the early-acting determination factors. This heritability of patterns of active and inactive genes is enabled by epigenetic mechanisms that create a layer of information on top of the DNA sequence that ensures mitotic and sometimes also meiotic transmission of expression patterns. The proteins of the Polycomb and Trithorax group comprise such a cellular memory mechanism that preserves gene expression patterns through many rounds of cell division. This review provides an overview of the genetics and molecular biology of these maintenance proteins, concentrating mainly on mechanisms of Polycomb group-mediated repression.
Collapse
Affiliation(s)
- Achim Breiling
- Dulbecco Telethon Institute, Institute of Genetics and Biophysics, CNR, 80131 Naples, Italy
| | | | | |
Collapse
|
80
|
Kim SY, Paylor SW, Magnuson T, Schumacher A. Juxtaposed Polycomb complexes co-regulate vertebral identity. Development 2006; 133:4957-68. [PMID: 17107999 DOI: 10.1242/dev.02677] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Best known as epigenetic repressors of developmental Hox gene transcription, Polycomb complexes alter chromatin structure by means of post-translational modification of histone tails. Depending on the cellular context, Polycomb complexes of diverse composition and function exhibit cooperative interaction or hierarchical interdependency at target loci. The present study interrogated the genetic, biochemical and molecular interaction of BMI1 and EED, pivotal constituents of heterologous Polycomb complexes, in the regulation of vertebral identity during mouse development. Despite a significant overlap in dosage-sensitive homeotic phenotypes and co-repression of a similar set of Hox genes, genetic analysis implicated eed and Bmi1 in parallel pathways, which converge at the level of Hox gene regulation. Whereas EED and BMI1 formed separate biochemical entities with EzH2 and Ring1B, respectively, in mid-gestation embryos, YY1 engaged in both Polycomb complexes. Strikingly, methylated lysine 27 of histone H3 (H3-K27), a mediator of Polycomb complex recruitment to target genes, stably associated with the EED complex during the maintenance phase of Hox gene repression. Juxtaposed EED and BMI1 complexes, along with YY1 and methylated H3-K27, were detected in upstream regulatory regions of Hoxc8 and Hoxa5. The combined data suggest a model wherein epigenetic and genetic elements cooperatively recruit and retain juxtaposed Polycomb complexes in mammalian Hox gene clusters toward co-regulation of vertebral identity.
Collapse
Affiliation(s)
- Se Young Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
81
|
Wilkinson FH, Park K, Atchison ML. Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc Natl Acad Sci U S A 2006; 103:19296-301. [PMID: 17158804 PMCID: PMC1748220 DOI: 10.1073/pnas.0603564103] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) proteins are responsible for maintaining transcriptional repression of developmentally important genes. However, the mechanism of PcG recruitment to specific DNA sequences is poorly understood. Transcription factor YY1 is one of the few PcG proteins with sequence-specific DNA binding activity. We previously showed that YY1 can recruit other PcG proteins to DNA, leading to histone posttranslational modifications and stable transcriptional repression. Using Drosophila transgenic approaches, we identified YY1 sequences 201-226 as necessary and sufficient for PcG transcriptional repression in vivo. When fused to a heterologous DNA-binding domain, this short 26-aa motif was sufficient for transcriptional repression, recruitment of PcG proteins to DNA, and methylation of histone H3 lysine 27. Deletion of this short YY1 motif did not affect transient transcriptional repression but ablated PcG repression, PcG protein recruitment to DNA, and methylation of H3 lysine 27. We propose that this motif be named the REPO domain for its function in recruitment of Polycomb. The REPO domain is well conserved in YY1 orthologs and in related proteins.
Collapse
Affiliation(s)
- Frank H. Wilkinson
- *Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104; and
| | - Kyoungsook Park
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, 50, Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | - Michael L. Atchison
- *Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
82
|
Dutton A, Woodman CB, Chukwuma MB, Last JIK, Wei W, Vockerodt M, Baumforth KRN, Flavell JR, Rowe M, Taylor AMR, Young LS, Murray PG. Bmi-1 is induced by the Epstein-Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood 2006; 109:2597-603. [PMID: 17148591 DOI: 10.1182/blood-2006-05-020545] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Polycomb group (PcG) proteins are chromatin modifiers that are necessary for the maintenance and renewal of embryonic and adult stem cells. However, overexpression of the PcG protein, Bmi-1, causes lymphoma in transgenic mice. We show that Bmi-1 is up-regulated in Hodgkin lymphoma (HL) cells by the Epstein-Barr virus (EBV) oncogene latent membrane protein-1 (LMP1) and that this up-regulation is mediated by NF-κB signaling. We also show that Bmi-1 is up-regulated by NF-κB in EBV-negative HL cells. Down-regulation of LMP1 and Bmi-1 decreased the survival of HL cells, suggesting that Bmi-1 may mediate the prosurvival effects of LMP1-induced NF-κB signaling in HL cells. Transcriptional targets of Bmi-1 were identified after its knockdown in an HL cell line. We show here that Bmi-1 and LMP1 down-regulate the ataxia telangiectasia–mutated (ATM) tumor suppressor and conclude that Bmi-1 contributes to LMP1-induced oncogenesis in HL.
Collapse
Affiliation(s)
- Amanda Dutton
- Cancer Research UK Institute for Cancer Studies, The Medical School, University of Birmingham, Edgbaston, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Carr MS, Yevtodiyenko A, Schmidt CL, Schmidt JV. Allele-specific histone modifications regulate expression of the Dlk1-Gtl2 imprinted domain. Genomics 2006; 89:280-90. [PMID: 17126526 PMCID: PMC1802099 DOI: 10.1016/j.ygeno.2006.10.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/12/2006] [Accepted: 10/17/2006] [Indexed: 01/19/2023]
Abstract
Dlk1 and Gtl2 are reciprocally expressed imprinted genes located on mouse chromosome 12. The Dlk1-Gtl2 locus carries three differentially methylated regions (DMRs), which are methylated only on the paternal allele. Of these, the intergenic (IG) DMR, located 12 kb upstream of Gtl2, is required for proper imprinting of linked genes on the maternal chromosome, while the Gtl2 DMR, located across the promoter of the Gtl2 gene, is implicated in imprinting on both parental chromosomes. In addition to DNA methylation, modification of histone proteins is also an important regulator of imprinted gene expression. Chromatin immunoprecipitation was therefore used to examine the pattern of histone modifications across the IG and Gtl2 DMRs. The data show maternal-specific histone acetylation at the Gtl2 DMR, but not at the IG DMR. In contrast, only low levels of histone methylation were observed throughout the region, and there was no difference between the two parental alleles. An existing mouse line carrying a deletion/insertion upstream of Gtl2 is unable to imprint the Dlk1-Gtl2 locus properly and demonstrates loss of allele-specific methylation at the Gtl2 DMR. Further analysis of these animals now shows that the loss of allele-specific methylation is accompanied by increased paternal histone acetylation at the Gtl2 DMR, with the activated paternal allele adopting a maternal acetylation pattern. These data indicate that interactions between DNA methylation and histone acetylation are involved in regulating the imprinting of the Dlk1-Gtl2 locus.
Collapse
Affiliation(s)
- Michael S Carr
- Department of Biological Sciences, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
84
|
Luke MPS, Sui G, Liu H, Shi Y. Yin Yang 1 Physically Interacts with Hoxa11 and Represses Hoxa11-dependent Transcription. J Biol Chem 2006; 281:33226-32. [PMID: 16963455 DOI: 10.1074/jbc.m606584200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Yin Yang 1 (YY1) plays an indispensable role in embryonic development. YY1 contains an evolutionarily conserved, 22-amino acid segment, the PHO homology region (PHR), which is located within its central domain (spacer) and has been shown previously to participate in the recruitment of Polycomb group of proteins and in YY1-mediated transcription. In this report, we show that the PHR physically interacts with several Abd-B-type Hox proteins. Although ectopic expression of Hoxa11 enhanced target promoter activity, overexpression of YY1 repressed this effect, which was abrogated by YY1 siRNA and the histone deacetylase inhibitor trichostatin A. We have further demonstrated that this suppression effect was the result of YY1-dependent recruitment of HDAC2 to the Hoxa11 target promoter. Taken together, our findings show that YY1 represses Hoxa11-dependent transcription via interactions with the Hox proteins and HDAC recruitment, providing a link between an Abd-type Hox protein and a Polycomb group protein at the level of direct protein-protein interactions. These findings not only provide a novel insight into YY1 function but also identify a new regulation of homeotic protein-mediated transcriptional regulation in general.
Collapse
|
85
|
Kim JD, Hinz AK, Choo JH, Stubbs L, Kim J. YY1 as a controlling factor for the Peg3 and Gnas imprinted domains. Genomics 2006; 89:262-9. [PMID: 17067777 PMCID: PMC1828871 DOI: 10.1016/j.ygeno.2006.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/27/2022]
Abstract
Imprinting control regions (ICRs) often harbor tandem arrays of transcription factor binding sites, as demonstrated by the identification of multiple YY1 binding sites within the ICRs of Peg3, Nespas, and Xist/Tsix domains. In the current study, we have sought to characterize possible roles for YY1 in transcriptional control and epigenetic modification of these imprinted domains. RNA interference-based knockdown experiments in Neuro2A cells resulted in overall transcriptional up-regulation of most of the imprinted genes within the Peg3 domain and also, concomitantly, caused significant loss in the DNA methylation of the Peg3 differentially methylated region. A similar overall and coordinated expression change was also observed for the imprinted genes of the Gnas domain: up-regulation of Nespas and down-regulation of Nesp and Gnasxl. YY1 knockdown also resulted in changes in the expression levels of Xist and Snrpn. These results support the idea that YY1 plays a major role, as a trans factor, in the control of these imprinted domains.
Collapse
Affiliation(s)
- Jeong Do Kim
- Department of Biological Sciences, Center for BioModular Multi-Scale Systems, Louisiana State University, Baton Rouge, LA, 70803
| | - Angela K. Hinz
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94551
| | - Jung Ha Choo
- Department of Biological Sciences, Center for BioModular Multi-Scale Systems, Louisiana State University, Baton Rouge, LA, 70803
| | - Lisa Stubbs
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94551
| | - Joomyeong Kim
- Department of Biological Sciences, Center for BioModular Multi-Scale Systems, Louisiana State University, Baton Rouge, LA, 70803
- Correspondence should be forward to: , 225-578-7692(ph), or 225-578-2597(fax)
| |
Collapse
|
86
|
Abstract
Sponges are considered the oldest living animal group and provide important insights into the earliest evolutionary processes in the Metazoa. This paper reviews the evidence that sponge stem cells have essential roles in cellular specialization, embryogenesis and Bauplan formation. Data indicate that sponge archaeocytes not only represent germ cells but also totipotent stem cells. Marker genes have been identified which are expressed in totipotent stem cells and gemmule cells. Furthermore, genes are described for the three main cell lineages in sponge, which share a common origin from archaeocytes and result in the differentiation of skeletal, epithelial, and contractile cells.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
| |
Collapse
|
87
|
Yabuta Y, Kurimoto K, Ohinata Y, Seki Y, Saitou M. Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol Reprod 2006; 75:705-16. [PMID: 16870942 DOI: 10.1095/biolreprod.106.053686] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Germ cell fate in mice is induced in proximal epiblast cells at Embryonic Day (E) 6.5 by signaling molecules. Prdm1(also known as Blimp1)-positive lineage-restricted precursors of primordial germ cells (PGCs) initiate the formation of a cluster that differentiates into Dppa3 (also known as stella)-positive PGCs from around E7.0 onwards in the extra-embryonic mesoderm. Around E7.5, these PGCs begin migrating towards the definitive endoderm, with concomitant extensive epigenetic reprogramming. To gain a more precise insight into the mechanism of PGC specification and its subsequent development, we exploited quantitative, single-cell, gene expression profiling to explore gene expression dynamics during the 36 h of PGC differentiation from E6.75 to E8.25, in comparison with the corresponding profiles of somatic neighbors. This analysis revealed that the transitions from Prdm1-positive PGC precursors to Dppa3-positive PGCs and to more advanced migrating PGCs involve a highly dynamic, stage-dependent transcriptional orchestration that begins with the regaining of the pluripotency-associated gene network, followed by stepwise activation of PGC-specific genes, differential repression of the somatic mesodermal program, as well as potential modulations of signal transduction capacities and unique control of epigenetic regulators. The information presented here regarding the cascade of events involved in PGC development should serve as a basis for detailed functional analyses of the gene products associated with this process, as well as for appropriate reconstitution of PGCs and their descendant cells in culture.
Collapse
Affiliation(s)
- Yukihiro Yabuta
- Laboratory for Mammalian Germ Cell Biology, Center for Developmental Biology, RIKEN Kobe Institute, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
88
|
Kim JD, Hinz AK, Bergmann A, Huang JM, Ovcharenko I, Stubbs L, Kim J. Identification of clustered YY1 binding sites in imprinting control regions. Genome Res 2006; 16:901-11. [PMID: 16760423 PMCID: PMC1484457 DOI: 10.1101/gr.5091406] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian genomic imprinting is regulated by imprinting control regions (ICRs) that are usually associated with tandem arrays of transcription factor binding sites. In this study, the sequence features derived from a tandem array of YY1 binding sites of Peg3-DMR (differentially methylated region) led us to identify three additional clustered YY1 binding sites, which are also localized within the DMRs of Xist, Tsix, and Nespas. These regions have been shown to play a critical role as ICRs for the regulation of surrounding genes. These ICRs have maintained a tandem array of YY1 binding sites during mammalian evolution. The in vivo binding of YY1 to these regions is allele specific and only to the unmethylated active alleles. Promoter/enhancer assays suggest that a tandem array of YY1 binding sites function as a potential orientation-dependent enhancer. Insulator assays revealed that the enhancer-blocking activity is detected only in the YY1 binding sites of Peg3-DMR but not in the YY1 binding sites of other DMRs. Overall, our identification of three additional clustered YY1 binding sites in imprinted domains suggests a significant role for YY1 in mammalian genomic imprinting.
Collapse
Affiliation(s)
- Jeong Do Kim
- Department of Biological Sciences, Center for BioModular Multi-Scale Systems, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | | | | | |
Collapse
|
89
|
Affar EB, Gay F, Shi Y, Liu H, Huarte M, Wu S, Collins T, Li E, Shi Y. Essential dosage-dependent functions of the transcription factor yin yang 1 in late embryonic development and cell cycle progression. Mol Cell Biol 2006; 26:3565-81. [PMID: 16611997 PMCID: PMC1447422 DOI: 10.1128/mcb.26.9.3565-3581.2006] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Constitutive ablation of the Yin Yang 1 (YY1) transcription factor in mice results in peri-implantation lethality. In this study, we used homologous recombination to generate knockout mice carrying yy1 alleles expressing various amounts of YY1. Phenotypic analysis of yy1 mutant embryos expressing approximately 75%, approximately 50%, and approximately 25% of the normal complement of YY1 identified a dosage-dependent requirement for YY1 during late embryogenesis. Indeed, reduction of YY1 levels impairs embryonic growth and viability in a dose-dependent manner. Analysis of the corresponding mouse embryonic fibroblast cells also revealed a tight correlation between YY1 dosage and cell proliferation, with a complete ablation of YY1 inducing cytokinesis failure and cell cycle arrest. Consistently, RNA interference-mediated inhibition of YY1 in HeLa cells prevents cytokinesis, causes proliferative arrest, and increases cellular sensitivity to various apoptotic agents. Genome-wide expression profiling identified a plethora of YY1 target genes that have been implicated in cell growth, proliferation, cytokinesis, apoptosis, development, and differentiation, suggesting that YY1 coordinates multiple essential biological processes through a complex transcriptional network. These data not only shed new light on the molecular basis for YY1 developmental roles and cellular functions, but also provide insight into the general mechanisms controlling eukaryotic cell proliferation, apoptosis, and differentiation.
Collapse
Affiliation(s)
- El Bachir Affar
- Harvard Medical School, Department of Pathology, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Lorente M, Pérez C, Sánchez C, Donohoe M, Shi Y, Vidal M. Homeotic transformations of the axial skeleton of YY1 mutant mice and genetic interaction with the Polycomb group gene Ring1/Ring1A. Mech Dev 2006; 123:312-20. [PMID: 16624538 DOI: 10.1016/j.mod.2006.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 02/10/2006] [Accepted: 02/24/2006] [Indexed: 01/23/2023]
Abstract
Polycomb group (PcG) proteins participate in the maintenance of transcriptionally repressed state of genes relevant to cell differentiation. Here, we show anterior homeotic transformations of the axial skeleton of YY1(+/-) mice. We find that the penetrance of some of these alterations was reduced in mice that are deficient in the class II PcG gene Ring1/Ring1A, indicating a genetic interaction between those two genes. Further support for this interaction is an abnormal anterior eye formation in Ring1-deficient mice, which is enhanced in compound YY1(+/-)Ring1(-/-) mice. In addition, YY1 forms complexes with Ring1 and other class II PcG proteins such as Rnf2 and Bmi1 in GST pull down experiments in transfected cells. These findings provide evidence for a PcG function for YY1 in vertebrates.
Collapse
Affiliation(s)
- Mar Lorente
- Developmental and Cell Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
Advances in the past couple of years have brought important new knowledge on the mechanisms by which Polycomb-group proteins regulate gene expression and on the consequences of their actions. The discovery of histone methylation imprints specific for Polycomb and Trithorax complexes has provided mechanistic insight on how this ancient epigenetic memory system acts to repress and indicates that it may share mechanistic aspects with other silencing and genome-protective processes, such as RNA interference.
Collapse
Affiliation(s)
- Anders H Lund
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | |
Collapse
|
92
|
Krippner-Heidenreich A, Walsemann G, Beyrouthy MJ, Speckgens S, Kraft R, Thole H, Talanian RV, Hurt MM, Lüscher B. Caspase-dependent regulation and subcellular redistribution of the transcriptional modulator YY1 during apoptosis. Mol Cell Biol 2005; 25:3704-14. [PMID: 15831475 PMCID: PMC1084290 DOI: 10.1128/mcb.25.9.3704-3714.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulator Yin Yang 1 (YY1) controls many aspects of cell behavior and is essential for development. We analyzed the fate of YY1 during apoptosis and studied the functional consequences. We observed that this factor is rapidly translocated into the cell nucleus in response to various apoptotic stimuli, including activation of Fas, stimulation by tumor necrosis factor, and staurosporine and etoposide treatment. Furthermore, YY1 is cleaved by caspases in vitro and in vivo at two distinct sites, IATD(12)G and DDSD(119)G, resulting in the deletion of the first 119 amino acids early in the apoptotic process. This activity generates an N-terminally truncated YY1 fragment (YY1Delta119) that has lost its transactivation domain but retains its DNA binding domain. Indeed, YY1Delta119 is no longer able to stimulate gene transcription but interacts with DNA. YY1Delta119 but not the wild-type protein or the caspase-resistant mutant YY1D12A/D119A enhances Fas-induced apoptosis, suggesting that YY1 is involved in a positive feedback loop during apoptosis. Our findings provide evidence for a new mode of regulation of YY1 and define a novel aspect of the involvement of YY1 in the apoptotic process.
Collapse
Affiliation(s)
- Anja Krippner-Heidenreich
- Abteilung Biochemie und Molekularbiologie, Institut für Biochemie, Universitätsklinikum der RWTH, Pauwelsstrasse 30, 52057 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Arai S, Miyazaki T. Impaired maturation of myeloid progenitors in mice lacking novel Polycomb group protein MBT-1. EMBO J 2005; 24:1863-73. [PMID: 15889154 PMCID: PMC1142590 DOI: 10.1038/sj.emboj.7600654] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 03/31/2005] [Indexed: 11/08/2022] Open
Abstract
Polycomb group (PcG) proteins participate in DNA-binding complexes with gene-repressing activity, many of which have been highlighted for their involvement in hematopoiesis. We have identified a putative PcG protein, termed MBT-1, that is associated with Rnf2, an in vivo interactor of PcG proteins. MBT-1 structurally resembles the H-L(3)MBT protein, whose deletion is predicted to be responsible for myeloid hematopoietic malignancies. The human MBT-1 gene is located on chromosome 6q23, a region frequently deleted in leukemia cells, and shows a transient expression spike in response to maturation-inducing stimuli in myeloid leukemia cells. MBT-1(-/-) myeloid progenitor cells exhibit a maturational deficiency but maintain normal proliferative activities. This results in the accumulation of immature myeloid progenitors and hence, a marked decrease of mature myeloid blood cells, causing the MBT-1(-/-) mice to die of anemia during a late embryonic stage. Together, we conclude that MBT-1 specifically regulates the maturational advancement of myeloid progenitor cells during transitions between two developmental stages. We also show that MBT-1 appears to influence myelopoiesis by transiently enhancing p57(KIP2) expression levels.
Collapse
Affiliation(s)
- Satoko Arai
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Toru Miyazaki
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard NA7200, Dallas, TX 75390-9093, USA. Tel.: +1 214 648 7322; Fax: +1 214 648 7331; E-mail:
| |
Collapse
|
94
|
Okada A, Aoki Y, Kushima K, Kurihara H, Bialer M, Fujiwara M. Polycomb homologs are involved in teratogenicity of valproic acid in mice. ACTA ACUST UNITED AC 2005; 70:870-9. [PMID: 15523661 DOI: 10.1002/bdra.20085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Valproic acid (VPA) is widely used to treat epilepsy and bipolar disorder and is also a potent teratogen, but its teratogenic mechanisms are unknown. We have attempted to describe a fundamental role of the Polycomb group (Pc-G) in VPA-induced transformations of the axial skeleton. METHODS Pregnant NMRI mice were given a single subcutaneous injection of vehicle or VPA (800 mg/kg) on gestation day (GD) 8. The expression of genes encoding Polycomb and trithorax groups was measured by quantitative real-time RT-PCR using total RNA isolated from the embryos exposed to vehicle or VPA for 1, 3, and 6 hr. In addition, the use of two less teratogenic antiepileptic chemicals valpromide (VPD) and valnoctamide (VCD) provide reliable evidence to support the relationship between VPA teratogenicity and the Polycomb group. RESULTS At a teratogenic level, VPA inhibits the expression of the Polycomb group genes, including Eed, Ezh2, Zfp144, Bmi1, Cbx2, Rnf2, and YY1 in the mouse embryos. In contrast, neither VPD nor VCD have significant effects on the expression of those genes affected by VPA. The trithorax group (trx-G) gene MLL, which is known to be required to maintain homeobox gene expression such as the Polycomb gene, is not affected by a teratogenic dose of VPA. CONCLUSIONS We propose that, during embryonic development, VPA may affect the gene silencing pathway mediated by the Polycomb group complex. The epigenetic mechanism of VPA teratogenicity on anteroposterior patterning is suspected.
Collapse
Affiliation(s)
- Akinobu Okada
- Safety Research Laboratories, Yamanouchi Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
95
|
Breuer RHJ, Snijders PJF, Smit EF, Sutedja TG, Sewalt RGAB, Otte AP, van Kemenade FJ, Postmus PE, Meijer CJLM, Raaphorst FM. Increased expression of the EZH2 polycomb group gene in BMI-1-positive neoplastic cells during bronchial carcinogenesis. Neoplasia 2005; 6:736-43. [PMID: 15720799 PMCID: PMC1531677 DOI: 10.1593/neo.04160] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polycomb group (PcG) genes are responsible for maintenance of cellular identity and contribute to regulation of the cell cycle. Recent studies have identified several PcG genes as oncogenes, and a role for PcG proteins in human oncogenesis is suspected. We investigated the expression of BMI-1 and EZH2 PcG oncogenes in human bronchial squamous cell carcinomas (SCCs) and bronchial premalignant precursor lesions (PLs). Whereas normal bronchial epithelium was associated with widespread expression of BMI-1 in resting EZH2-negative cells, neoplastic cells in lung carcinomas displayed altered expression of both BMI-1 and EZH2. Two patterns of abnormal PcG expression were observed: increased expression of BMI-1 in dividing neoplastic cells of PLs and SCCs, and enhanced expression of EZH2 and Ki-67 in BMI-1-positive cells according to severity of the histopathologic stage. We propose that altered expression of BMI-1 and EZH2 is an early event that precedes high rates of proliferation in lung cancer. Because PcG complexes are normally involved in the maintenance of cell characteristics, abnormal PcG expression may contribute to loss of cell identity.
Collapse
|
96
|
Gil J, Bernard D, Peters G. Role of Polycomb Group Proteins in Stem Cell Self-Renewal and Cancer. DNA Cell Biol 2005; 24:117-25. [PMID: 15699631 DOI: 10.1089/dna.2005.24.117] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polycomb group proteins (PcG) form part of a gene regulatory mechanism that determines cell fate during normal and pathogenic development. The mechanism relies on epigenetic modifications on specific histone tails that are inherited through cell divisions, thus behaving de facto as a cellular memory. This cellular memory governs key events in organismal development as well as contributing to the control of normal cell growth and differentiation. Consequently, the dysregulation of PcG genes, such as Bmi1, Pc2, Cbx7, and EZH2 has been linked with the aberrant proliferation of cancer cells. Furthermore, at least three PcG genes, Bmi1, Rae28, and Mel18, appear to regulate self-renewal of specific stem cell types suggesting a link between the maintenance of cellular homeostasis and tumorigenesis. In this review, we will briefly summarize current views on PcG function and the evidence linking specific PcG proteins with the behavior of stem cells and cancer cells.
Collapse
Affiliation(s)
- Jesús Gil
- Molecular Oncology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
| | | | | |
Collapse
|
97
|
Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 2005; 18:2627-38. [PMID: 15520282 PMCID: PMC525543 DOI: 10.1101/gad.1241904] [Citation(s) in RCA: 503] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Ezh2 protein endows the Polycomb PRC2 and PRC3 complexes with histone lysine methyltransferase (HKMT) activity that is associated with transcriptional repression. We report that Ezh2 expression was developmentally regulated in the myotome compartment of mouse somites and that its down-regulation coincided with activation of muscle gene expression and differentiation of satellite-cell-derived myoblasts. Increased Ezh2 expression inhibited muscle differentiation, and this property was conferred by its SET domain, required for the HKMT activity. In undifferentiated myoblasts, endogenous Ezh2 was associated with the transcriptional regulator YY1. Both Ezh2 and YY1 were detected, with the deacetylase HDAC1, at genomic regions of silent muscle-specific genes. Their presence correlated with methylation of K27 of histone H3. YY1 was required for Ezh2 binding because RNA interference of YY1 abrogated chromatin recruitment of Ezh2 and prevented H3-K27 methylation. Upon gene activation, Ezh2, HDAC1, and YY1 dissociated from muscle loci, H3-K27 became hypomethylated and MyoD and SRF were recruited to the chromatin. These findings suggest the existence of a two-step activation mechanism whereby removal of H3-K27 methylation, conferred by an active Ezh2-containing protein complex, followed by recruitment of positive transcriptional regulators at discrete genomic loci are required to promote muscle gene expression and cell differentiation.
Collapse
Affiliation(s)
- Giuseppina Caretti
- Muscle Gene Expression Group, Laboratory of Muscle Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
98
|
Déjardin J, Cavalli G. Epigenetic inheritance of chromatin states mediated by Polycomb and trithorax group proteins in Drosophila. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:31-63. [PMID: 15881890 DOI: 10.1007/3-540-27310-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Proteins of the Polycomb group (PcG) and of the trithorax group (trxG) are involved in the regulation of key developmental genes, such as homeotic genes. PcG proteins maintain silent states of gene expression, while the trxG of genes counteracts silencing with a chromatin opening function. These factors form multimeric complexes that act on their target chromatin by regulating post-translational modifications of histones as well as ATP-dependent remodelling of nucleosome positions. In Drosophila, PcG and trxG complexes are recruited to specific DNA elements named as PcG and trxG response elements (PREs and TREs, respectively). Once recruited, these complexes seem to be able to establish silent or open chromatin states that can be inherited through multiple cell divisions even after decay of the primary silencing or activating signal. In recent years, many components of both groups of factors have been characterized, and the molecular mechanisms underlying their recruitment as well as their mechanism of action on their target genes have been partly elucidated. This chapter summarizes our current knowledge on these aspects and outlines crucial open questions in the field.
Collapse
Affiliation(s)
- Jérôme Déjardin
- Institute of Human Genetics, CNRS, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
99
|
Abstract
In development, cells pass on established gene expression patterns to daughter cells over multiple rounds of cell division. The cellular memory of the gene expression state is termed maintenance, and the proteins required for this process are termed maintenance proteins. The best characterized are proteins of the Polycomb and trithorax Groups that are required for silencing and maintenance of activation of target loci, respectively. These proteins act through DNA elements termed maintenance elements. Here, we re-examine the genetics and molecular biology of maintenance proteins. We discuss molecular models for the maintenance of activation and silencing, and the establishment of epigenetic marks, and suggest that maintenance proteins may play a role in propagating the mark through DNA synthesis.
Collapse
Affiliation(s)
- Hugh W Brock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
100
|
Attwooll C, Oddi S, Cartwright P, Prosperini E, Agger K, Steensgaard P, Wagener C, Sardet C, Moroni MC, Helin K. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J Biol Chem 2004; 280:1199-208. [PMID: 15536069 DOI: 10.1074/jbc.m412509200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional repressor E2F6 has been identified as a component of two distinct polycomb group protein (PcG)-containing complexes, suggesting a mechanism for the recruitment of repressive complexes to target sequences in DNA. Whereas one complex is involved in the repression of classic E2F target genes in G0, a role for E2F6 within the cell cycle has yet to be defined. We searched for novel E2F6-binding proteins using a yeast two-hybrid screen and identified the PcG protein, EPC1. We showed that, both in vitro and in vivo, E2F6, DP1, and EPC1 form a stable core complex with repressive activity. Furthermore, we identified the proliferation-specific PcG, EZH2, as an EPC1-interacting protein. Using affinity purification, we showed that E2F6, DP1, EPC1, EZH2, and Sin3B co-elute, suggesting the identification of a novel E2F6 complex that exists in vivo in both normal and transformed human cell lines. EZH2 is required for cellular proliferation and consistent with this, EZH2 elutes with the E2F6-EPC1 complex only in proliferating cells. Thus we have identified a novel E2F6-PcG complex (E2F6-EPC1) that interacts with EZH2 and may regulate genes required for cell cycle progression.
Collapse
Affiliation(s)
- Claire Attwooll
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, Milan, 20141, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|