51
|
Giuliani C, Bucci I, Napolitano G. Phenylmethimazole is a candidate drug for the treatment of severe forms of coronavirus disease 2019 (COVID-19) as well as other virus-induced "cytokines storm". Med Hypotheses 2020; 146:110473. [PMID: 33385879 PMCID: PMC7759336 DOI: 10.1016/j.mehy.2020.110473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Severe forms of the Coronavirus disease 2019 (COVID-19) are characterized by an enhanced inflammatory syndrome called “cytokine storm” that produces an aberrant release of high amounts of cytokines, chemokines, and other proinflammatory mediators. The pathogenetic role of the “cytokine storm” has been confirmed by the efficacy of immunosuppressive drugs such as corticosteroids along with antiviral drugs in the treatment of the severe forms of this disease. Phenylmethimazole (C10) is a derivative of methimazole with anti-inflammatory properties. Studies performed both in vitro and in vivo have shown that C10 is able to block the production of multiple cytokines, chemokines, and other proinflammatory molecules involved in the pathogenesis of inflammation. Particularly, C10 is effective in reducing the increased secretion of cytokines in animal models of endotoxic shock. We hypothesize that these effects are not limited to the endotoxic shock, but can also be applied to any disease characterized by the presence of a “cytokine storm”. Therefore, C10 may be a potential drug to be used alternatively or in association with the corticosteroids or other immunosuppressive agents in the severe forms of COVID-19 as well as other viral diseases that induce a “cytokine storm”. Preclinical and clinical studies have to be performed to confirm this hypothesis.
Collapse
Affiliation(s)
- Cesidio Giuliani
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, and Center for Advanced Science and Technology (CAST), University of Chieti-Pescara, Chieti, Italy.
| | - Ines Bucci
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, and Center for Advanced Science and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Giorgio Napolitano
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, and Center for Advanced Science and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
52
|
Adetunji AE, Ayenale M, Akhigbe I, Akerele LO, Isibor E, Idialu J, Aideloje FO, Emuebonam E, Aire C, Adomeh DI, Odia I, Atafo RO, Okonofua MO, Owobu A, Ogbaini-Emovon E, Tobin EA, Asogun DA, Okogbenin SA, Sabeti P, Happi CT, Günther S, Azubuike CO, Rafiu M, Odike A, Olomu SC, Ibadin MO, Okokhere PO, Akpede GO. Acute kidney injury and mortality in pediatric Lassa fever versus question of access to dialysis. Int J Infect Dis 2020; 103:124-131. [PMID: 33176203 DOI: 10.1016/j.ijid.2020.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES To assess the prevalence of acute kidney injury (AKI), and its impact on outcome in hospitalized pediatric patients with Lassa fever (LF). METHODS We reviewed the presenting clinical and laboratory features and outcomes of 40 successive hospitalized children with PCR-confirmed LF. The diagnosis and staging of AKI was based on KDIGO criteria. We compared groups of patients using t- or χ2 tests as necessary, and took p-values <0.05 as indicative of the presence of significant differences. RESULTS Sixteen (40%) children had AKI. Case fatality rate (CFR) was 9/16 (56%) in children with and 1/24 (4%) in those without AKI (OR [95% CI] of CFR associated with AKI = 29.57 [3.17, 275.7]). Presentation with abnormal bleeding (p = 0.008), encephalopathy (p = 0.004), hematuria plus proteinuria (p = 0.013), and elevated serum transaminase levels (p <0.02) were significantly associated with an increased prevalence of AKI. CONCLUSION AKI prevalence in hospitalized pediatric patients with Lassa fever is high, and correlated with illness severity/CFR. The high prevalence underscores the need for access to hemodialysis, and clinical presentation and/or presence of hematuria plus proteinuria could serve as a ready prompt for referral for such specialized care.
Collapse
Affiliation(s)
- Adewale E Adetunji
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Magdalene Ayenale
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Irene Akhigbe
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Lilian O Akerele
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Efosa Isibor
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Juliet Idialu
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Florence O Aideloje
- Department of Nursing Services, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ekene Emuebonam
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Chris Aire
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Donatus I Adomeh
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ikponmwosa Odia
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Rebecca O Atafo
- Nursing Services Unit, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Martha O Okonofua
- Nursing Services Unit, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Adaugo Owobu
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ephraim Ogbaini-Emovon
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ekaete A Tobin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Danny A Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Sylvanus A Okogbenin
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Pardis Sabeti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Christian T Happi
- Department of Biological Sciences and African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, and German Center for Infection Research (DZIF), Partner site Hamburg - Lübeck - Borstel - Riems, Germany
| | | | - Mojeed Rafiu
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Angela Odike
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Sylvia C Olomu
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Michael O Ibadin
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Peter O Okokhere
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - George O Akpede
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria.
| |
Collapse
|
53
|
Li XK, Dai K, Yang ZD, Yuan C, Cui N, Zhang SF, Hu YY, Wang ZB, Miao D, Zhang PH, Li H, Zhang XA, Huang YQ, Chen WW, Zhang JS, Lu QB, Liu W. Correlation between thrombocytopenia and host response in severe fever with thrombocytopenia syndrome. PLoS Negl Trop Dis 2020; 14:e0008801. [PMID: 33119592 PMCID: PMC7595704 DOI: 10.1371/journal.pntd.0008801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS) is an emerging infectious disease caused by a novel bunyavirus, SFTS virus (SFTSV), with fatal outcome developed in approximately 17% of the cases. Thrombocytopenia is a hallmark feature of SFTS, and associated with a higher risk of fatal outcome, however, the pathophysiological involvement of platelet in the clinical outcome of SFTS remained under-investigated. In the current study, by retrospectively analyzing 1538 confirmed SFTS patients, we observed that thrombocytopenia was associated with enhanced activation of the cytokine network and the vascular endothelium, also with a disturbed coagulation response. The platelet phenotypes were also extensively altered in the process of thrombocytopenia development of SFTS patients. More importantly, all these disturbed host responses were related to the severity of thrombocytopenia, thus were considered to play in a synergistic way to influence the disease outcome. Moreover, the clinical effect of platelet transfusion was assessed by comparing two groups of patients with or without receiving this therapy. As a result, we observed no therapy effect in altering frequencies of fatal outcome, clinical bleeding development, or dynamic change of platelet count during the hospitalization. It’s suggested that platelet supplementation alone acted a minor role in improving disease outcome, therefore new therapeutic intervention to regulate host response should be proposed. The current results revealed some evidence of interrelationship between platelet count and clinical outcome of SFTS disease from the perspective of activation of the cytokine network, the vascular endothelium, and the coagulation/fibrinolysis system. These evaluations might help to attain a better understanding of the pathogenesis and therapy choice in SFTS. Thrombocytopenia in SFTSV is a multifactor-process involving a combination of platelet size or morphology alterations, fibrinolysis activation and coagulation abnormalities, increased inflammatory response and endothelial injury. Platelet supplementation alone shows minor role in improving disease, therefore new therapeutic intervention to regulate host response should be proposed.
Collapse
Affiliation(s)
- Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ke Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Zhen-Dong Yang
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Shihe District, Xinyang, P. R. China
| | - Chun Yuan
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Shihe District, Xinyang, P. R. China
| | - Ning Cui
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Shihe District, Xinyang, P. R. China
| | - Shao-Fei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yuan-Yuan Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Zhi-Bo Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Dong Miao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yan-Qin Huang
- The Shangcheng Center for Disease Control and Prevention, Shangcheng County, Xinyang, P. R. China
| | - Wei-Wei Chen
- Treatment and Research Center for Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, Fengtai District, Beijing, P. R. China
| | - Jiu-Song Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Haidian District, Beijing, P. R. China
- * E-mail: (Q-BL); , (WL)
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
- Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing, People’s Republic of China
- * E-mail: (Q-BL); , (WL)
| |
Collapse
|
54
|
Beauclair G, Streicher F, Chazal M, Bruni D, Lesage S, Gracias S, Bourgeau S, Sinigaglia L, Fujita T, Meurs EF, Tangy F, Jouvenet N. Retinoic Acid Inducible Gene I and Protein Kinase R, but Not Stress Granules, Mediate the Proinflammatory Response to Yellow Fever Virus. J Virol 2020; 94:e00403-20. [PMID: 32878892 PMCID: PMC7592215 DOI: 10.1128/jvi.00403-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Yellow fever virus (YFV) is an RNA virus primarily targeting the liver. Severe YF cases are responsible for hemorrhagic fever, plausibly precipitated by excessive proinflammatory cytokine response. Pathogen recognition receptors (PRRs), such as the cytoplasmic retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), and the viral RNA sensor protein kinase R (PKR), are known to initiate a proinflammatory response upon recognition of viral genomes. Here, we sought to reveal the main determinants responsible for the acute cytokine expression occurring in human hepatocytes following YFV infection. Using a RIG-I-defective human hepatoma cell line, we found that RIG-I largely contributes to cytokine secretion upon YFV infection. In infected RIG-I-proficient hepatoma cells, RIG-I was localized in stress granules. These granules are large aggregates of stalled translation preinitiation complexes known to concentrate RLRs and PKR and are so far recognized as hubs orchestrating RNA virus sensing. Stable knockdown of PKR in hepatoma cells revealed that PKR contributes to both stress granule formation and cytokine induction upon YFV infection. However, stress granule disruption did not affect the cytokine response to YFV infection, as assessed by small interfering RNA (siRNA)-knockdown-mediated inhibition of stress granule assembly. Finally, no viral RNA was detected in stress granules using a fluorescence in situ hybridization approach coupled with immunofluorescence. Our findings suggest that both RIG-I and PKR mediate proinflammatory cytokine induction in YFV-infected hepatocytes, in a stress granule-independent manner. Therefore, by showing the uncoupling of the cytokine response from the stress granule formation, our model challenges the current view in which stress granules are required for the mounting of the acute antiviral response.IMPORTANCE Yellow fever is a mosquito-borne acute hemorrhagic disease caused by yellow fever virus (YFV). The mechanisms responsible for its pathogenesis remain largely unknown, although increased inflammation has been linked to worsened outcome. YFV targets the liver, where it primarily infects hepatocytes. We found that two RNA-sensing proteins, RIG-I and PKR, participate in the induction of proinflammatory mediators in human hepatocytes infected with YFV. We show that YFV infection promotes the formation of cytoplasmic structures, termed stress granules, in a PKR- but not RIG-I-dependent manner. While stress granules were previously postulated to be essential platforms for immune activation, we found that they are not required for the production of proinflammatory mediators upon YFV infection. Collectively, our work uncovered molecular events triggered by the replication of YFV, which could prove instrumental in clarifying the pathogenesis of the disease, with possible repercussions for disease management.
Collapse
Affiliation(s)
| | - Felix Streicher
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Maxime Chazal
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Daniela Bruni
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Sarah Lesage
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
- Université de Paris, Paris, France
| | - Ségolène Gracias
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Salomé Bourgeau
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Laura Sinigaglia
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Takashi Fujita
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Eliane F Meurs
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Frédéric Tangy
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Nolwenn Jouvenet
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| |
Collapse
|
55
|
Jain S, Khaiboullina SF, Baranwal M. Immunological Perspective for Ebola Virus Infection and Various Treatment Measures Taken to Fight the Disease. Pathogens 2020; 9:E850. [PMID: 33080902 PMCID: PMC7603231 DOI: 10.3390/pathogens9100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ebolaviruses, discovered in 1976, belongs to the Filoviridae family, which also includes Marburg and Lloviu viruses. They are negative-stranded RNA viruses with six known species identified to date. Ebola virus (EBOV) is a member of Zaire ebolavirus species and can cause the Ebola virus disease (EVD), an emerging zoonotic disease that results in homeostatic imbalance and multi-organ failure. There are three EBOV outbreaks documented in the last six years resulting in significant morbidity (> 32,000 cases) and mortality (> 13,500 deaths). The potential factors contributing to the high infectivity of this virus include multiple entry mechanisms, susceptibility of the host cells, employment of multiple immune evasion mechanisms and rapid person-to-person transmission. EBOV infection leads to cytokine storm, disseminated intravascular coagulation, host T cell apoptosis as well as cell mediated and humoral immune response. In this review, a concise recap of cell types targeted by EBOV and EVD symptoms followed by detailed run-through of host innate and adaptive immune responses, virus-driven regulation and their combined effects contributing to the disease pathogenesis has been presented. At last, the vaccine and drug development initiatives as well as challenges related to the management of infection have been discussed.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| | - Svetlana F. Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| |
Collapse
|
56
|
Kuo YT, Liu CH, Li JW, Lin CJ, Jassey A, Wu HN, Perng GC, Yen MH, Lin LT. Identification of the phytobioactive Polygonum cuspidatum as an antiviral source for restricting dengue virus entry. Sci Rep 2020; 10:16378. [PMID: 33009425 PMCID: PMC7532532 DOI: 10.1038/s41598-020-71849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 11/09/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne pathogen that is becoming a serious global threat, owing to its rising incidence in inter-tropical regions that yield over 50 million annual infections. There are currently no approved antiviral agents for the management of dengue, and recent shortcomings in its immunization called for immediate action to develop effective drugs with prophylactic ability to better manage its infection. In an attempt to discover novel antiviral sources, we identified the medicinal herb Polygonum cuspidatum (PC) as a bioactive botanical material against DENV infectivity. Specifically, the methanolic extract from PC rhizomes (PCME) potently inhibited DENV infection without causing significant cytotoxicity. Further examination on the viral life cycle demonstrated that PCME particularly targeted the initial stages of DENV infection, while pre- and post-infection treatments had no effect. More importantly, the PCME could efficiently inactivate DENV free virus particles and block the viral attachment and entry/fusion events without apparently influencing viral replication, egress, and cell-to-cell spread. The antiviral effect of PCME was also recapitulated in infection analysis using DENV pseudoparticles displaying viral structural proteins that mediate DENV particle entry. Besides, PCME treatment also inhibited direct DENV entry into several cell types relevant to its infection and reduced viral infectivity of other members of the Flaviviridae family, including the hepatitis C virus (HCV) and Zika virus (ZIKV). Due to its potency against DENV entry, we suggest that the phytobioactive extract from PC is an excellent starting point as an antiviral source material for further development of therapeutic strategies in the prophylactic management of DENV infection.
Collapse
Affiliation(s)
- Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jin-Wei Li
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alagie Jassey
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huey-Nan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Guey Chuen Perng
- Department of Microbiology and Immunology & Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
57
|
Suzuki T, Sato Y, Sano K, Arashiro T, Katano H, Nakajima N, Shimojima M, Kataoka M, Takahashi K, Wada Y, Morikawa S, Fukushi S, Yoshikawa T, Saijo M, Hasegawa H. Severe fever with thrombocytopenia syndrome virus targets B cells in lethal human infections. J Clin Invest 2020; 130:799-812. [PMID: 31904586 DOI: 10.1172/jci129171] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by a tick-borne banyangvirus and is associated with high fatality. Despite increasing incidence of SFTS and serious public health concerns in East Asia, the pathogenesis of lethal SFTS virus (SFTSV) infection in humans is not fully understood. Numbers of postmortem examinations to determine target cells of the viral infection have so far been limited. Here we showed that B cells differentiating into plasmablasts and macrophages in secondary lymphoid organs were targets for SFTSV at the end stage of lethal infection, and the majority of SFTSV-infected cells were B cell-lineage lymphocytes. In affected individuals, B cell-lineage lymphocytes with SFTSV infection were widely distributed in both lymphoid and nonlymphoid organs, and infiltration of these cells into the capillaries of the organs could be observed occasionally. Moreover, a human plasmablastic lymphoma cell line, PBL-1, was susceptible to SFTSV propagation and had a similar immunophenotype to that of target cells of SFTSV in fatal SFTS. PBL-1 can therefore provide a potential in vitro model for human SFTSV infection. These results extend our understanding of the pathogenesis of human lethal SFTSV infection and can facilitate the development of SFTSV countermeasures.
Collapse
Affiliation(s)
- Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.,Division of Infectious Diseases Pathology, Department of Global Infectious Diseases, Tohoku Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeshi Arashiro
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yuji Wada
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.,Division of Infectious Diseases Pathology, Department of Global Infectious Diseases, Tohoku Graduate School of Medicine, Sendai, Miyagi, Japan.,Global Virus Network, Baltimore, Maryland, USA
| |
Collapse
|
58
|
Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost 2020; 18:2103-2109. [PMID: 32558075 PMCID: PMC7323352 DOI: 10.1111/jth.14975] [Citation(s) in RCA: 387] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has become an urgent issue in every country. Based on recent reports, the most severely ill patients present with coagulopathy, and disseminated intravascular coagulation (DIC)-like massive intravascular clot formation is frequently seen in this cohort. Therefore, coagulation tests may be considered useful to discriminate severe cases of COVID-19. The clinical presentation of COVID-19-associated coagulopathy is organ dysfunction primarily, whereas hemorrhagic events are less frequent. Changes in hemostatic biomarkers represented by increase in D-dimer and fibrin/fibrinogen degradation products indicate the essence of coagulopathy is massive fibrin formation. In comparison with bacterial-sepsis-associated coagulopathy/DIC, prolongation of prothrombin time, and activated partial thromboplastin time, and decrease in antithrombin activity is less frequent and thrombocytopenia is relatively uncommon in COVID-19. The mechanisms of the coagulopathy are not fully elucidated, however. It is speculated that the dysregulated immune responses orchestrated by inflammatory cytokines, lymphocyte cell death, hypoxia, and endothelial damage are involved. Bleeding tendency is uncommon, but the incidence of thrombosis in COVID-19 and the adequacy of current recommendations regarding standard venous thromboembolic dosing are uncertain.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Marcel Levi
- Department of Medicine, and Cardio-metabolic Programme-NIHR UCLH/UCL BRC, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
59
|
Ahmed S, Zimba O, Gasparyan AY. Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow's triad. Clin Rheumatol 2020; 39:2529-2543. [PMID: 32654082 PMCID: PMC7353835 DOI: 10.1007/s10067-020-05275-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Coronavirus disease 2019 (COVID-19) is gradually being comprehended. A high number of thrombotic episodes are reported, along with the mortality benefits of heparin. COVID-19 can be viewed as a prothrombotic disease. We overviewed the available evidence to explore this possibility. We identified various histopathology reports and clinical case series reporting thromboses in COVID-19. Also, multiple coagulation markers support this. COVID-19 can be regarded as a risk factor for thrombosis. Applying the principles of Virchow's triad, we described abnormalities in the vascular endothelium, altered blood flow, and platelet function abnormalities that lead to venous and arterial thromboses in COVID-19. Endothelial dysfunction, activation of the renin-angiotensin-aldosterone system (RAAS) with the release of procoagulant plasminogen activator inhibitor (PAI-1), and hyperimmune response with activated platelets seem to be significant contributors to thrombogenesis in COVID-19. Stratifying risk of COVID-19 thromboses should be based on age, presence of comorbidities, D-dimer, CT scoring, and various blood cell ratios. Isolated heparin therapy may not be sufficient to combat thrombosis in this disease. There is an urgent need to explore newer avenues like activated protein C, PAI-1 antagonists, and tissue plasminogen activators (tPA). These should be augmented with therapies targeting RAAS, antiplatelet drugs, repurposed antiinflammatory, and antirheumatic drugs. Key Points • Venous and arterial thromboses in COVID-19 can be viewed through the prism of Virchow's triad. • Endothelial dysfunction, platelet activation, hyperviscosity, and blood flow abnormalities due to hypoxia, immune reactions, and hypercoagulability lead to thrombogenesis in COVID-19. • There is an urgent need to stratify COVID-19 patients at risk for thrombosis using age, comorbidities, D-dimer, and CT scoring. • Patients with COVID-19 at high risk for thrombosis should be put on high dose heparin therapy.
Collapse
Affiliation(s)
- Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar, India
| | - Olena Zimba
- Department of Internal Medicine No. 2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Armen Yuri Gasparyan
- Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK) Russells Hall Hospital, Pensnett Road, Dudley, West Midlands DY1 2HQ UK
| |
Collapse
|
60
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
61
|
Hickerson BT, Sefing EJ, Bailey KW, Van Wettere AJ, Penichet ML, Gowen BB. Type I interferon underlies severe disease associated with Junín virus infection in mice. eLife 2020; 9:55352. [PMID: 32452770 PMCID: PMC7297529 DOI: 10.7554/elife.55352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Junín virus (JUNV) is one of five New World mammarenaviruses (NWMs) that causes fatal hemorrhagic disease in humans and is the etiological agent of Argentine hemorrhagic fever (AHF). The pathogenesis underlying AHF is poorly understood; however, a prolonged, elevated interferon-α (IFN-α) response is associated with a negative disease outcome. A feature of all NWMs that cause viral hemorrhagic fever is the use of human transferrin receptor 1 (hTfR1) for cellular entry. Here, we show that mice expressing hTfR1 develop a lethal disease course marked by an increase in serum IFN-α concentration when challenged with JUNV. Further, we provide evidence that the type I IFN response is central to the development of severe JUNV disease in hTfR1 mice. Our findings identify hTfR1-mediated entry and the type I IFN response as key factors in the pathogenesis of JUNV infection in mice.
Collapse
Affiliation(s)
- Brady T Hickerson
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| | - Eric J Sefing
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| | - Kevin W Bailey
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| | - Arnaud J Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
- Utah Veterinary Diagnostic Laboratory, Utah State UniversityLoganUnited States
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA)Los AngelesUnited States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLALos AngelesUnited States
- UCLA Molecular Biology InstituteLos AngelesUnited States
- UCLA Jonsson Comprehensive Cancer CenterLos AngelesUnited States
- UCLA AIDS InstituteLos AngelesUnited States
| | - Brian B Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| |
Collapse
|
62
|
Abstract
People with Down syndrome show signs of chronic immune dysregulation, including a higher prevalence of autoimmune disorders, increased rates of hospitalization during respiratory viral infections, and higher mortality rates from pneumonia and sepsis. At the molecular and cellular levels, they show markers of chronic autoinflammation, including interferon hyperactivity, elevated levels of many inflammatory cytokines and chemokines, and changes in diverse immune cell types reminiscent of inflammatory conditions observed in the general population. However, the impact of this immune dysregulation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and CoV disease of 2019 (COVID-19) remains unknown. This Perspective outlines why individuals with Down syndrome should be considered an at-risk population for severe COVID-19. Specifically, the immune dysregulation caused by trisomy 21 may result in an exacerbated cytokine release syndrome relative to that observed in the euploid population, thus justifying additional monitoring and specialized care for this vulnerable population.
Collapse
Affiliation(s)
- Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
63
|
Differences in Tissue and Species Tropism of Reptarenavirus Species Studied by Vesicular Stomatitis Virus Pseudotypes. Viruses 2020; 12:v12040395. [PMID: 32252443 PMCID: PMC7232232 DOI: 10.3390/v12040395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
Reptarenaviruses cause Boid Inclusion Body Disease (BIBD), and co-infections by several reptarenaviruses are common in affected snakes. Reptarenaviruses have only been found in captive snakes, and their reservoir hosts remain unknown. In affected animals, reptarenaviruses appear to replicate in most cell types, but their complete host range, as well as tissue and cell tropism are unknown. As with other enveloped viruses, the glycoproteins (GPs) present on the virion's surface mediate reptarenavirus cell entry, and therefore, the GPs play a critical role in the virus cell and tissue tropism. Herein, we employed single cycle replication, GP deficient, recombinant vesicular stomatitis virus (VSV) expressing the enhanced green fluorescent protein (scrVSV∆G-eGFP) pseudotyped with different reptarenavirus GPs to study the virus cell tropism. We found that scrVSV∆G-eGFPs pseudotyped with reptarenavirus GPs readily entered mammalian cell lines, and some mammalian cell lines exhibited higher, compared to snake cell lines, susceptibility to reptarenavirus GP-mediated infection. Mammarenavirus GPs used as controls also mediated efficient entry into several snake cell lines. Our results confirm an important role of the virus surface GP in reptarenavirus cell tropism and that mamma-and reptarenaviruses exhibit high cross-species transmission potential.
Collapse
|
64
|
Iannetta M, Di Caro A, Nicastri E, Vairo F, Masanja H, Kobinger G, Mirazimi A, Ntoumi F, Zumla A, Ippolito G. Viral Hemorrhagic Fevers Other than Ebola and Lassa. Infect Dis Clin North Am 2020; 33:977-1002. [PMID: 31668201 DOI: 10.1016/j.idc.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral hemorrhagic fevers represent a group of diseases caused by enveloped RNA viruses. The epidemiology is broadly variable, ranging from geographically localized to more diffuse infections. Viral hemorrhagic fevers are classified as category A bioweapon agents by the Centers for Disease Control and Prevention. Viral hemorrhagic fevers are severe febrile illnesses with hemorrhagic phenomena. Laboratory diagnosis takes place in highly specialized reference laboratories. Treatment is essentially supportive. In this article, we focus the attention on yellow fever and viral hemorrhagic fevers other than Ebola and Lassa virus diseases that have been described elsewhere in this issue.
Collapse
Affiliation(s)
- Marco Iannetta
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy
| | - Antonino Di Caro
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy
| | - Francesco Vairo
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy
| | - Honorati Masanja
- Ifakara Health Institute, Ifakara Health Research and Development Centre, Kiko Avenue, Plot N 463, Mikocheni, Dar es Salaam, Tanzania
| | - Gary Kobinger
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, 2325 Rue de l'Université, Quebec City, Quebec G1V 0A6, Canada
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Alle 8 Plan 7, Stockholm 14183, Sweden
| | - Francine Ntoumi
- Université Marien NGouabi, Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS//AFRO Djoué, Brazzaville, Congo; Institute for Tropical Medicine, University of Tübingen, Germany
| | - Alimuddin Zumla
- Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Via Portuense 292, Rome 00149, Italy.
| |
Collapse
|
65
|
Asogun DA, Günther S, Akpede GO, Ihekweazu C, Zumla A. Lassa Fever: Epidemiology, Clinical Features, Diagnosis, Management and Prevention. Infect Dis Clin North Am 2020; 33:933-951. [PMID: 31668199 DOI: 10.1016/j.idc.2019.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lassa fever outbreaks West Africa have caused up to 10,000 deaths annually. Primary infection occurs from contact with Lassa virus-infected rodents and exposure to their excreta, blood, or meat. Incubation takes 2 to 21 days. Symptoms are difficult to distinguish from malaria, typhoid, dengue, yellow fever, and other viral hemorrhagic fevers. Clinical manifestations range from asymptomatic, to mild, to severe fulminant disease. Ribavirin can improve outcomes. Overall mortality is between 1% and 15%. Lassa fever should be considered in the differential diagnosis with travel to West Africa. There is an urgent need for rapid field-friendly diagnostics and preventive vaccine.
Collapse
Affiliation(s)
- Danny A Asogun
- Department of Public Health, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria; Department of Public Health, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, P.M.B 008, Kilometre 87, Benin City-Auchi Road, Irrua, Nigeria.
| | - Stephan Günther
- Bernhard-Nocht Institute for Tropical Medicine, Strab 74, Hamburg 20359, Germany; German Centre for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - George O Akpede
- Department of Paediatrics, Faculty of Clinical Sciences, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Chikwe Ihekweazu
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Alimuddin Zumla
- Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
66
|
Rational design of universal immunotherapy for TfR1-tropic arenaviruses. Nat Commun 2020; 11:67. [PMID: 31900422 PMCID: PMC6941993 DOI: 10.1038/s41467-019-13924-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
Certain arenaviruses that circulate in rodent populations can cause life-threatening hemorrhagic fevers when they infect humans. Due to their efficient transmission, arenaviruses pose a severe risk for outbreaks and might be exploited as biological weapons. Effective countermeasures against these viruses are highly desired. Ideally, a single remedy would be effective against many or even all the pathogenic viruses in this family. However, despite the fact that all pathogenic arenaviruses from South America utilize transferrin receptor 1 (TfR1) as a cellular receptor, their viral glycoproteins are highly diversified, impeding efforts to isolate cross-neutralizing antibodies. Here we address this problem using a rational design approach to target TfR1-tropic arenaviruses with high potency and breadth. The pan-reactive molecule is highly effective against all arenaviruses that were tested, offering a universal therapeutic approach. Our design scheme avoids the shortcomings of previous immunoadhesins and can be used to combat other zoonotic pathogens.
Collapse
|
67
|
Cross RW, Xu R, Matassov D, Hamm S, Latham TE, Gerardi CS, Nowak RM, Geisbert JB, Ota-Setlik A, Agans KN, Luckay A, Witko SE, Soukieh L, Deer DJ, Mire CE, Feldmann H, Happi C, Fenton KA, Eldridge JH, Geisbert TW. Quadrivalent VesiculoVax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death. J Clin Invest 2020; 130:539-551. [PMID: 31820871 PMCID: PMC6934204 DOI: 10.1172/jci131958] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/10/2019] [Indexed: 02/04/2023] Open
Abstract
Recent occurrences of filoviruses and the arenavirus Lassa virus (LASV) in overlapping endemic areas of Africa highlight the need for a prophylactic vaccine that would confer protection against all of these viruses that cause lethal hemorrhagic fever (HF). We developed a quadrivalent formulation of VesiculoVax that contains recombinant vesicular stomatitis virus (rVSV) vectors expressing filovirus glycoproteins and that also contains a rVSV vector expressing the glycoprotein of a lineage IV strain of LASV. Cynomolgus macaques were vaccinated twice with the quadrivalent formulation, followed by challenge 28 days after the boost vaccination with each of the 3 corresponding filoviruses (Ebola, Sudan, Marburg) or a heterologous contemporary lineage II strain of LASV. Serum IgG and neutralizing antibody responses specific for all 4 glycoproteins were detected in all vaccinated animals. A modest and balanced cell-mediated immune response specific for the glycoproteins was also detected in most of the vaccinated macaques. Regardless of the level of total glycoprotein-specific immune response detected after vaccination, all immunized animals were protected from disease and death following lethal challenges. These findings indicate that vaccination with attenuated rVSV vectors each expressing a single HF virus glycoprotein may provide protection against those filoviruses and LASV most commonly responsible for outbreaks of severe HF in Africa.
Collapse
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Stefan Hamm
- Department of Viral Vaccine Discovery, Profectus BioSciences Inc., Pearl River, New York, USA
| | | | | | - Rebecca M. Nowak
- Department of Viral Vaccine Discovery, Profectus BioSciences Inc., Pearl River, New York, USA
| | - Joan B. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Krystle N. Agans
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | - Daniel J. Deer
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad E. Mire
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Christian Happi
- Department of Biological Sciences and African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Edo, Nigeria
| | - Karla A. Fenton
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John H. Eldridge
- Department of Immunology
- Department of Viral Vaccine Development, and
- Department of Viral Vaccine Discovery, Profectus BioSciences Inc., Pearl River, New York, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
68
|
Poddighe D, Aljofan M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond. Antivir Chem Chemother 2020; 28:2040206620961712. [PMID: 32972196 PMCID: PMC7522830 DOI: 10.1177/2040206620961712] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Macrolides are a large group of antibiotics characterised by the presence of a macro-lactone ring of variable size. The prototype of macrolide antibiotics, erythromycin was first produced by Streptomyces and associated species more than half a century ago; other related drugs were developed. These drugs have been shown to have several pharmacological properties: in addition to their antibiotic activity, they possess some anti-inflammatory properties and have been also considered against non-bacterial infections. In this review, we analysed the available clinical evidences regarding the potential anti-viral activity of macrolides, by focusing on erythromycin, clarithromycin and azithromycin. Overall, there is no significant evidences so far that macrolides might have a direct benefit on most of viral infections considered in this review (RSV, Influenza, coronaviruses, Ebola and Zika viruses). However, their clinical benefit cannot be ruled out without further and focused clinical studies. Macrolides may improve the clinical course of viral respiratory infections somehow, at least through indirect mechanisms relying on some and variable anti-inflammatory and/or immunomodulatory effects, in addition to their well-known antibacterial activity.
Collapse
Affiliation(s)
- Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan City, Kazakhstan
| | - Mohamad Aljofan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nur-Sultan City, Kazakhstan
| |
Collapse
|
69
|
Pan X, Wu Y, Wang W, Zhang L, Xiao G. Development of horse neutralizing immunoglobulin and immunoglobulin fragments against Junín virus. Antiviral Res 2019; 174:104666. [PMID: 31760108 PMCID: PMC7114285 DOI: 10.1016/j.antiviral.2019.104666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
Argentine haemorrhagic fever (AHF) is a rodent-borne disease with a lethality as high as ~30%, which is caused by the New World arenavirus, Junín virus (JUNV). It was once a major epidemic in South America and puts millions of people in Argentina at risk. Here, we aimed to develop horse antibodies or antibody fragments against JUNV. Before preparing the horse antibodies, a strategy to efficiently generate horse antisera was established based on comparisons among immunogens and immunization methods in both mice and horses. Antisera against JUNV were finally obtained by vaccinating horses with vesicular stomatitis virus pseudotypes bearing JUNV GP. The horse antibodies IgG and F(ab’)2 were subsequently demonstrated to effectively neutralize vesicular stomatitis virus pseudotypes bearing JUNV GP and to show some cross-neutralization against pathogenic New World arenaviruses. Further research revealed that Asp123 on GP1 is an important site for the binding of antibodies targeting mainly JUNV GP1 for neutralization. Collectively, this study presents an efficient strategy to develop horse antisera against JUNV and provides GP1-specific horse antibodies as potential therapeutics for AHF. Junín pseudo-typed virus efficiently stimulates neutralizing antibodies in mice and horses. Horse immunoglobulin and immunoglobulin fragments potentially neutralize Junín virus. Horse antibodies show some cross-neutralization against the pathogenic New World arenaviruses. Asp123 is an important site on glycoprotein 1 for the binding of horse neutralizing antibodies.
Collapse
Affiliation(s)
- Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
70
|
Schönrich G, Raftery MJ. Dendritic Cells (DCs) as "Fire Accelerants" of Hantaviral Pathogenesis. Viruses 2019; 11:v11090849. [PMID: 31540199 PMCID: PMC6783833 DOI: 10.3390/v11090849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Hantaviruses are widespread zoonotic pathogens found around the globe. Depending on their geographical location, hantaviruses can cause two human syndromes, haemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). HPS and HFRS have many commonalities amongst which excessive activation of immune cells is a prominent feature. Hantaviruses replicate in endothelial cells (ECs), the major battlefield of hantavirus-induced pathogenesis, without causing cytopathic effects. This indicates that a misdirected response of human immune cells to hantaviruses is causing damage. As dendritic cells (DCs) orchestrate antiviral immune responses, they are in the focus of research analysing hantavirus-induced immunopathogenesis. In this review, we discuss the interplay between hantaviruses and DCs and the immunological consequences thereof.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
71
|
Happi AN, Happi CT, Schoepp RJ. Lassa fever diagnostics: past, present, and future. Curr Opin Virol 2019; 37:132-138. [PMID: 31518896 DOI: 10.1016/j.coviro.2019.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Lassa fever is a unique viral hemorrhagic fever that is endemic in parts of West Africa, primarily Sierra Leone, Guinea, Liberia, and Nigeria. The disease is caused by the Lassa virus, an Old World arenavirus that has as primary reservoir host the multimammate rodent Mastomys nataliensis, which lives in association with humans. Recent estimates suggest LF causes two million cases and 5000-10000 deaths annually, mainly in West Africa. Clinical diagnosis and laboratory confirmation have always been major challenges for effective management and control of the disease in afflicted areas of West Africa. Recent advancements in molecular biology, recombinant DNA technology, and genomics sequencing has facilitated major advancement in development of better diagnostic and surveillance tools for Lassa fever virus. These include, the multiplex, magnetic bead-based immunodiagnostics for both Lassa virus antigens and antibodies; molecular probe-based quantitative real-time PCR for genomic signatures; rapid diagnostics tests that detects the most prevalent West African lineages; and the successful utilization of next-generation sequencing technology to diagnose and characterize Lassa virus in West Africa. These advances will continue to improve disease treatment, control, and prevention. In this review we will discuss progression of Lassa virus diagnostics from the past and into the future.
Collapse
Affiliation(s)
- Anise N Happi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Christian T Happi
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria; African center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Randal J Schoepp
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA.
| |
Collapse
|
72
|
Lalle E, Biava M, Nicastri E, Colavita F, Di Caro A, Vairo F, Lanini S, Castilletti C, Langer M, Zumla A, Kobinger G, Capobianchi MR, Ippolito G. Pulmonary Involvement during the Ebola Virus Disease. Viruses 2019; 11:E780. [PMID: 31450596 PMCID: PMC6784166 DOI: 10.3390/v11090780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Filoviruses have become a worldwide public health concern, especially during the 2013-2016 Western Africa Ebola virus disease (EVD) outbreak-the largest outbreak, both by number of cases and geographical extension, recorded so far in medical history. EVD is associated with pathologies in several organs, including the liver, kidney, and lung. During the 2013-2016 Western Africa outbreak, Ebola virus (EBOV) was detected in the lung of infected patients suggesting a role in lung pathogenesis. However, little is known about lung pathogenesis and the controversial issue of aerosol transmission in EVD. This review highlights the pulmonary involvement in EVD, with a special focus on the new data emerging from the 2013-2016 Ebola outbreak.
Collapse
Affiliation(s)
- Eleonora Lalle
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Mirella Biava
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Francesca Colavita
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Antonino Di Caro
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
- International Public Health Crisis Group, 00149 Rome, Italy
| | - Francesco Vairo
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
- International Public Health Crisis Group, 00149 Rome, Italy
| | - Simone Lanini
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Concetta Castilletti
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Martin Langer
- EMERGENCY Onlus NGO, Via Santa Croce 19, 20122 Milan, Italy
| | - Alimuddin Zumla
- International Public Health Crisis Group, London WC1E 6BT, UK
- Division of Infection and Immunity, National Institute for Health Research Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London WC1E 6BT, UK
| | - Gary Kobinger
- International Public Health Crisis Group, Quebec City, PQ G1V 0A6, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, PQ G1V 0A6, Canada
| | - Maria R Capobianchi
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy.
- International Public Health Crisis Group, 00149 Rome, Italy.
| |
Collapse
|
73
|
Jácome R, Carrasco-Hernández R, Campillo-Balderas JA, López-Vidal Y, Lazcano A, Wenzel RP, Ponce de León S. A yellow flag on the horizon: The looming threat of yellow fever to North America. Int J Infect Dis 2019; 87:143-150. [PMID: 31382047 DOI: 10.1016/j.ijid.2019.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Yellow fever virus historically was a frequent threat to American and European coasts. Medical milestones such as the discovery of mosquitoes as vectors and subsequently an effective vaccine significantly reduced its incidence, in spite of which, thousands of cases of this deathly disease still occur regularly in Sub-Saharan Africa and the Amazonian basin in South America, which are usually not reported. An urban outbreak in Angola, consecutive years of increasing incidence near major Brazilian cities, and imported cases in China, South America and Europe, have brought this virus back to the global spotlight. The aim of this article is to underline that the preventive YFV measures, such as vaccination, need to be carefully revised in order to minimize the risks of new YFV outbreaks, especially in urban or immunologically vulnerable places. Furthermore, this article highlights the diverse factors that have favored the spread of other Aedes spp.-associated arboviral diseases like Dengue, Chikungunya and Zika, to northern latitudes causing epidemics in the United States and Europe, emphasizing the possibility that YFV might follow the path of these viruses unless enhanced surveillance and efficient control systems are urgently initiated.
Collapse
Affiliation(s)
- Rodrigo Jácome
- Laboratorio de Origen de la Vida, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - R Carrasco-Hernández
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - José Alberto Campillo-Balderas
- Laboratorio de Origen de la Vida, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - Antonio Lazcano
- Laboratorio de Origen de la Vida, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico; Miembro de El Colegio Nacional, Mexico
| | | | - Samuel Ponce de León
- Programa Universitario de Investigación en Salud, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
74
|
Wendt L, Bostedt L, Hoenen T, Groseth A. High-throughput screening for negative-stranded hemorrhagic fever viruses using reverse genetics. Antiviral Res 2019; 170:104569. [PMID: 31356830 DOI: 10.1016/j.antiviral.2019.104569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Viral hemorrhagic fevers (VHFs) cause thousands of fatalities every year, but the treatment options for their management remain very limited. In particular, the development of therapeutic interventions is restricted by the lack of commercial viability of drugs targeting individual VHF agents. This makes approaches like drug repurposing and/or the identification of broad range therapies (i.e. those directed at host responses or common proviral factors) highly attractive. However, the identification of candidates for such antiviral repurposing or of host factors/pathways important for the virus life cycle is reliant on high-throughput screening (HTS). Recently, such screening work has been increasingly facilitated by the availability of reverse genetics-based approaches, including tools such as full-length clone (FLC) systems to generate reporter-expressing viruses or various life cycle modelling (LCM) systems, many of which have been developed and/or greatly improved during the last years. In particular, since LCM systems are capable of modelling specific steps in the life cycle, they are a valuable tool for both targeted screening (i.e. for inhibitors of a specific pathway) and mechanism of action studies. This review seeks to summarize the currently available reverse genetics systems for negative-sense VHF causing viruses (i.e. arenaviruses, bunyaviruses and filoviruses), and to highlight the recent advancements made in applying these systems for HTS to identify either antivirals or new virus-host interactions that might hold promise for the development of future treatments for the infections caused by these deadly but neglected virus groups.
Collapse
Affiliation(s)
- Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Linus Bostedt
- Junior Research Group - Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany.
| | - Allison Groseth
- Junior Research Group - Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany.
| |
Collapse
|
75
|
Brunton B, Rogers K, Phillips EK, Brouillette RB, Bouls R, Butler NS, Maury W. TIM-1 serves as a receptor for Ebola virus in vivo, enhancing viremia and pathogenesis. PLoS Negl Trop Dis 2019; 13:e0006983. [PMID: 31242184 PMCID: PMC6615641 DOI: 10.1371/journal.pntd.0006983] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/09/2019] [Accepted: 05/17/2019] [Indexed: 01/11/2023] Open
Abstract
Background T cell immunoglobulin mucin domain-1 (TIM-1) is a phosphatidylserine (PS) receptor, mediating filovirus entry into cells through interactions with PS on virions. TIM-1 expression has been implicated in Ebola virus (EBOV) pathogenesis; however, it remains unclear whether this is due to TIM-1 serving as a filovirus receptor in vivo or, as others have suggested, TIM-1 induces a cytokine storm elicited by T cell/virion interactions. Here, we use a BSL2 model virus that expresses EBOV glycoprotein to demonstrate the importance of TIM-1 as a virus receptor late during in vivo infection. Methodology/Principal findings Infectious, GFP-expressing recombinant vesicular stomatitis virus encoding either full length EBOV glycoprotein (EBOV GP/rVSV) or mucin domain deleted EBOV glycoprotein (EBOV GPΔO/rVSV) was used to assess the role of TIM-1 during in vivo infection. GFP-expressing rVSV encoding its native glycoprotein G (G/rVSV) served as a control. TIM-1-sufficient or TIM-1-deficient BALB/c interferon α/β receptor-/- mice were challenged with these viruses. While G/rVSV caused profound morbidity and mortality in both mouse strains, TIM-1-deficient mice had significantly better survival than TIM-1-expressing mice following EBOV GP/rVSV or EBOV GPΔO/rVSV challenge. EBOV GP/rVSV or EBOV GPΔO/rVSV in spleen of infected animals was high and unaffected by expression of TIM-1. However, infectious virus in serum, liver, kidney and adrenal gland was reduced late in infection in the TIM-1-deficient mice, suggesting that virus entry via this receptor contributes to virus load. Consistent with higher virus loads, proinflammatory chemokines trended higher in organs from infected TIM-1-sufficient mice compared to the TIM-1-deficient mice, but proinflammatory cytokines were more modestly affected. To assess the role of T cells in EBOV GP/rVSV pathogenesis, T cells were depleted in TIM-1-sufficient and -deficient mice and the mice were challenged with virus. Depletion of T cells did not alter the pathogenic consequences of virus infection. Conclusions Our studies provide evidence that at late times during EBOV GP/rVSV infection, TIM-1 increased virus load and associated mortality, consistent with an important role of this receptor in virus entry. This work suggests that inhibitors which block TIM-1/virus interaction may serve as effective antivirals, reducing virus load at late times during EBOV infection. T cell immunoglobulin mucin domain-1 (TIM-1) is one of a number of phosphatidylserine (PS) receptors that mediate clearance of apoptotic bodies by binding PS on the surface of dead or dying cells. Enveloped viruses mimic apoptotic bodies by exposing PS on the outer leaflet of the viral membrane. While TIM-1 has been shown to serve as an adherence factor/receptor for filoviruses in tissue culture, limited studies have investigated the role of TIM-1 as a receptor in vivo. Here, we sought to determine if TIM-1 was critical for Ebola virus glycoprotein-mediated infection using a BSL2 model virus. We demonstrate that loss of TIM-1 expression results in decreased virus load late during infection and significantly reduced virus-elicited mortality. These findings provide evidence that TIM-1 serves as an important receptor for Ebola virus in vivo. Blocking TIM-1/EBOV interactions may be effective antiviral strategy to reduce viral load and pathogenicity at late times of EBOV infection.
Collapse
Affiliation(s)
- Bethany Brunton
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kai Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Elisabeth K. Phillips
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rachel B. Brouillette
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ruayda Bouls
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Noah S. Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
76
|
Akpede GO, Asogun DA, Okogbenin SA, Dawodu SO, Momoh MO, Dongo AE, Ike C, Tobin E, Akpede N, Ogbaini-Emovon E, Adewale AE, Ochei O, Onyeke F, Okonofua MO, Atafo RO, Odia I, Adomeh DI, Odigie G, Ogbeifun C, Muebonam E, Ihekweazu C, Ramharter M, Colubri A, Sarbeti PC, Happi CT, Günther S, Agbonlahor DE. Caseload and Case Fatality of Lassa Fever in Nigeria, 2001-2018: A Specialist Center's Experience and Its Implications. Front Public Health 2019; 7:170. [PMID: 31294014 PMCID: PMC6603170 DOI: 10.3389/fpubh.2019.00170] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/06/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The general lack of comprehensive data on the trends of Lassa fever (LF) outbreaks contrasts with its widespread occurrence in West Africa and is an important constraint in the design of effective control measures. We reviewed the contribution of LF to admissions and mortality among hospitalized patients from 2001 to 2018 in the bid to address this gap. Methods: Observational study of LF caseload and mortality from 2001 to 18 in terms of the contribution of confirmed LF to admissions and deaths, and case fatality (CF) among patients with confirmed LF at a specialist center in Nigeria. The diagnosis of LF was confirmed using reverse transcription polymerase chain reaction (RT-PCR) test, and medians and frequencies were compared using Kruskal-Wallis, Mann-Whitney and χ2 tests, with p-values <0.05 taken as significant. Results: The contribution of confirmed LF to deaths (362/9057, 4.0%) was significantly higher than to admissions (1,298/185,707, 0.7%; OR [95% CI] = 5.9 [5.3, 6.7], p < 0.001). The average CF among patients with confirmed LF declined from 154/355 (43%) in 2001–09 to 183/867 (21.1%) (OR [95% CI] = 2.9 [2.2, 3.7], p < 0.001) in 2011–18. The annual CF declined from 94% in 2001 to 15% in 2018 whereas the caseload increased from 0.3 to 3.4%. The outbreaks were characterized by irregular cycles of high caseload in 2005–2007, 2012–2014, and 2016–2018, and progressive blurring of the seasonality. Conclusion: LF outbreaks in Nigeria have upgraded spatially and temporally, with the potential for cycles of increasing severity. The strategic establishment of LF surveillance and clinical case management centers could be a pragmatic and cost-effective approach to mitigating the outbreaks, particularly in reducing the associated CF. Urgent efforts are needed in reinvigorating extant control measures while the search for sustainable solutions continues.
Collapse
Affiliation(s)
- George O Akpede
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria.,Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Danny A Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria.,Department of Community Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Sylvanus A Okogbenin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria.,Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Simeon O Dawodu
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Mojeed O Momoh
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Andrew E Dongo
- Department of Surgery, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Chiedozie Ike
- Department of Community Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Ekaete Tobin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Nosa Akpede
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Ephraim Ogbaini-Emovon
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Adetunji E Adewale
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Oboratare Ochei
- Department of Community Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Frank Onyeke
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Martha O Okonofua
- Department of Nursing Services, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Rebecca O Atafo
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria.,Department of Nursing Services, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Ikponmwosa Odia
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Donatus I Adomeh
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - George Odigie
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Caroline Ogbeifun
- Department of Medical Records, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Ekene Muebonam
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Michael Ramharter
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andres Colubri
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Pardis C Sarbeti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Christian T Happi
- Department of Biological Sciences and African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | |
Collapse
|
77
|
Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front Cell Infect Microbiol 2019; 9:207. [PMID: 31263684 PMCID: PMC6584848 DOI: 10.3389/fcimb.2019.00207] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death protein (PD-1) and its ligands play a fundamental role in the evasion of tumor cells from antitumor immunity. Less well appreciated is the fact that the PD-1/PD-L1 axis also regulates antiviral immune responses and is therefore modulated by a number of viruses. Upregulation of PD-1 and its ligands PD-L1 and PD-L2 is observed during acute virus infection and after infection with persistent viruses including important human pathogens such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV). Experimental evidence suggests that insufficient signaling through the PD-1 pathway promotes immunopathology during acute infection by exaggerating primary T cell responses. If chronic infection is established, however, high levels of PD-1 expression can have unfavorable immunological consequences. Exhaustion and suppression of antiviral immune responses can result in viral immune evasion. The role of the PD-1/PD-L1 axis during viral infections is further complicated by evidence that PD-L1 also mediates inflammatory effects in the acute phase of an immune response. In this review, we discuss the intricate interplay between viruses and the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Günther Schönrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | | |
Collapse
|
78
|
Novak JE. Warning: Kidney Virus Detected. Adv Chronic Kidney Dis 2019; 26:162-163. [PMID: 31202387 DOI: 10.1053/j.ackd.2019.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/25/2019] [Indexed: 11/11/2022]
|
79
|
Prasad N, Novak JE, Patel MR. Kidney Diseases Associated With Parvovirus B19, Hanta, Ebola, and Dengue Virus Infection: A Brief Review. Adv Chronic Kidney Dis 2019; 26:207-219. [PMID: 31202393 DOI: 10.1053/j.ackd.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 01/06/2023]
Abstract
Viral infection-associated kidney diseases are an emerging public health issue in both developing and developed countries. Many new viruses have emerged with new paradigms of kidney injury, either directly through their cytopathic effect or indirectly through immune-mediated glomerulopathy, tubulointerstitial disease, and acute kidney injury as part of multiorgan failure. Herein, we will discuss Parvovirus, which causes glomerulopathy, and Hanta, Ebola, and Dengue viruses, which cause viral hemorrhagic fever and acute kidney injury. Clinical manifestations also depend on extrarenal organ systems involved. Diagnosis of these viral infections is mainly based on a high index of suspicion, serologic testing, and isolation of viral DNA/RNA. Management is largely conservative, as specific antiviral agents are unavailable.
Collapse
|
80
|
Liu C, Wang H, Zhou L, Xie H, Yang H, Yu Y, Sha H, Yang Y, Zhang X. Sources and symptoms of stress among nurses in the first Chinese anti-Ebola medical team during the Sierra Leone aid mission: A qualitative study. Int J Nurs Sci 2019; 6:187-191. [PMID: 31406890 PMCID: PMC6608674 DOI: 10.1016/j.ijnss.2019.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/26/2018] [Accepted: 03/05/2019] [Indexed: 11/29/2022] Open
Abstract
Objective This study investigated the sources of stress, corresponding symptoms, and stress relief among nurses of the first Chinese anti-Ebola medical team during the Sierra Leone aid mission. Method A purposive sampling method was used and 10 nurses were selected from the first Chinese anti-Ebola medical team that was dispatched to Sierra Leone. Data were collected via phone and semi-structured interviews, then analyzed using Colaizzi's seven-step method. Results The data showed three major themes: (1) The causes of stress during the Sierra Leone aid mission mainly related to unsafety, responsibility, and unfamiliarity; (2) Physical, cognitive, emotional, and behavioral symptoms were documented; (3) Nurses experienced relief from stress after the mission. Conclusion Targeted measures, proper responses and good community support can effectively lower stress among nurses on anti-Ebola missions.
Collapse
Affiliation(s)
- Chunzi Liu
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huaming Wang
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lin Zhou
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Xie
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huiyin Yang
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanbo Yu
- Department of Health Management, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huayan Sha
- Department of Nursing, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ying Yang
- Department of Nursing, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xin Zhang
- Department of Nursing, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
81
|
de Freitas CS, Higa LM, Sacramento CQ, Ferreira AC, Reis PA, Delvecchio R, Monteiro FL, Barbosa-Lima G, James Westgarth H, Vieira YR, Mattos M, Rocha N, Hoelz LVB, Leme RPP, Bastos MM, L. Rodrigues GO, M. Lopes CE, Queiroz-Junior CM, Lima CX, Costa VV, Teixeira MM, Bozza FA, Bozza PT, Boechat N, Tanuri A, Souza TML. Yellow fever virus is susceptible to sofosbuvir both in vitro and in vivo. PLoS Negl Trop Dis 2019; 13:e0007072. [PMID: 30699122 PMCID: PMC6375661 DOI: 10.1371/journal.pntd.0007072] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 02/14/2019] [Accepted: 12/12/2018] [Indexed: 02/05/2023] Open
Abstract
Yellow fever virus (YFV) is a member of the Flaviviridae family. In Brazil, yellow fever (YF) cases have increased dramatically in sylvatic areas neighboring urban zones in the last few years. Because of the high lethality rates associated with infection and absence of any antiviral treatments, it is essential to identify therapeutic options to respond to YFV outbreaks. Repurposing of clinically approved drugs represents the fastest alternative to discover antivirals for public health emergencies. Other Flaviviruses, such as Zika (ZIKV) and dengue (DENV) viruses, are susceptible to sofosbuvir, a clinically approved drug against hepatitis C virus (HCV). Our data showed that sofosbuvir docks onto YFV RNA polymerase using conserved amino acid residues for nucleotide binding. This drug inhibited the replication of both vaccine and wild-type strains of YFV on human hepatoma cells, with EC50 values around 5 μM. Sofosbuvir protected YFV-infected neonatal Swiss mice and adult type I interferon receptor knockout mice (A129-/-) from mortality and weight loss. Because of its safety profile in humans and significant antiviral effects in vitro and in mice, Sofosbuvir may represent a novel therapeutic option for the treatment of YF. Key-words: Yellow fever virus; Yellow fever, antiviral; sofosbuvir Yellow fever virus is transmitted by mosquitoes and its infection may be asymptomatic or lead to a wide clinical spectrum ranging from a mild febrile illness to a potentially lethal viral hemorrhagic fever characterized by liver damage. Although a yellow fever vaccine is available, low coverage allows 80,000–200,000 cases and 30,000–60,000 deaths annually worldwide. There are no specific therapy and treatment relies on supportive care, reinforcing an urgent need for antiviral repourposing. Here, we showed that sofosbuvir, clinically approved against hepatitis C, inhibits yellow fever virus replication in liver cell lines and animal models. In vitro, sofosbuvir inhibits viral RNA replication, decreases the number of infected cells and the production of infectious virus particles. These data is particularly relevante since the liver is the main target of yellow fever infection. Sofosbuvir also protected infected animals from mortality, weight loss and liver injury, especially prophylatically. Our pre-clinical results supports a second use of sofosbuvir against yellow fever.
Collapse
Affiliation(s)
- Caroline S. de Freitas
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Luiza M. Higa
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carolina Q. Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - André C. Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Patrícia A. Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Rodrigo Delvecchio
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fabio L. Monteiro
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Harrison James Westgarth
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Yasmine Rangel Vieira
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Infectologia (INI), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Mayara Mattos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Natasha Rocha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Mônica M. Bastos
- Instituto de Tecnologia de Fármacos (Farmanguinhos), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Gisele Olinto L. Rodrigues
- Center for Research and Development of Pharmaceuticals, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Carla Elizabeth M. Lopes
- Center for Research and Development of Pharmaceuticals, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Celso Martins Queiroz-Junior
- Cardiac Lab, Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Cristiano X. Lima
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vivian V. Costa
- Center for Research and Development of Pharmaceuticals, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Mauro M. Teixeira
- Center for Research and Development of Pharmaceuticals, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
- Immunopharmacology Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Fernando A. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Infectologia (INI), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Instituto de Tecnologia de Fármacos (Farmanguinhos), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Thiago Moreno L. Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Infectologia (INI), Fiocruz, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
82
|
Clinical Characterization of Host Response to Simian Hemorrhagic Fever Virus Infection in Permissive and Refractory Hosts: A Model for Determining Mechanisms of VHF Pathogenesis. Viruses 2019; 11:v11010067. [PMID: 30650570 PMCID: PMC6356329 DOI: 10.3390/v11010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/27/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Simian hemorrhagic fever virus (SHFV) causes a fulminant and typically lethal viral hemorrhagic fever (VHF) in macaques (Cercopithecinae: Macaca spp.) but causes subclinical infections in patas monkeys (Cercopithecinae: Erythrocebus patas). This difference in disease course offers a unique opportunity to compare host responses to infection by a VHF-causing virus in biologically similar susceptible and refractory animals. Patas and rhesus monkeys were inoculated side-by-side with SHFV. Unlike the severe disease observed in rhesus monkeys, patas monkeys developed a limited clinical disease characterized by changes in complete blood counts, serum chemistries, and development of lymphadenopathy. Viral RNA was measurable in circulating blood 2 days after exposure, and its duration varied by species. Infectious virus was detected in terminal tissues of both patas and rhesus monkeys. Varying degrees of overlap in changes in serum concentrations of interferon (IFN)-γ, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 were observed between patas and rhesus monkeys, suggesting the presence of common and species-specific cytokine responses to infection. Similarly, quantitative immunohistochemistry of livers from terminal monkeys and whole blood flow cytometry revealed varying degrees of overlap in changes in macrophages, natural killer cells, and T-cells. The unexpected degree of overlap in host response suggests that relatively small subsets of a host's response to infection may be responsible for driving hemorrhagic fever pathogenesis. Furthermore, comparative SHFV infection in patas and rhesus monkeys offers an experimental model to characterize host⁻response mechanisms associated with viral hemorrhagic fever and evaluate pan-viral hemorrhagic fever countermeasures.
Collapse
|
83
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
84
|
Raftery MJ, Abdelaziz MO, Hofmann J, Schönrich G. Hantavirus-Driven PD-L1/PD-L2 Upregulation: An Imperfect Viral Immune Evasion Mechanism. Front Immunol 2018; 9:2560. [PMID: 30559738 PMCID: PMC6287426 DOI: 10.3389/fimmu.2018.02560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Viruses often subvert antiviral immune responses by taking advantage of inhibitory immune signaling. We investigated if hantaviruses use this strategy. Hantaviruses cause viral hemorrhagic fever (VHF) which is associated with strong immune activation resulting in vigorous CD8+ T cell responses. Surprisingly, we observed that hantaviruses strongly upregulate PD-L1 and PD-L2, the ligands of checkpoint inhibitor programmed death-1 (PD-1). We detected high amounts of soluble PD-L1 (sPD-L1) and soluble PD-L2 (sPD-L2) in sera from hantavirus-infected patients. In addition, we observed hantavirus-induced PD-L1 upregulation in mice with a humanized immune system. The two major target cells of hantaviruses, endothelial cells and monocyte-derived dendritic cells, strongly increased PD-L1 and PD-L2 surface expression upon hantavirus infection in vitro. As an underlying mechanism, we found increased transcript levels whereas membrane trafficking of PD-L1 was not affected. Further analysis revealed that hantavirus-associated inflammatory signals and hantaviral nucleocapsid (N) protein enhance PD-L1 and PD-L2 expression. Cell numbers were strongly reduced when hantavirus-infected endothelial cells were mixed with T cells in the presence of an exogenous proliferation signal compared to uninfected cells. This is compatible with the concept that virus-induced PD-L1 and PD-L2 upregulation contributes to viral immune escape. Intriguingly, however, we observed hantavirus-induced CD8+ T cell bystander activation despite strongly upregulated PD-L1 and PD-L2. This result indicates that hantavirus-induced CD8+ T cell bystander activation bypasses checkpoint inhibition allowing an early antiviral immune response upon virus infection.
Collapse
Affiliation(s)
- Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mohammed O Abdelaziz
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jörg Hofmann
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
85
|
Odendaal L, Clift SJ, Fosgate GT, Davis AS. Lesions and Cellular Tropism of Natural Rift Valley Fever Virus Infection in Adult Sheep. Vet Pathol 2018; 56:61-77. [DOI: 10.1177/0300985818806049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne disease that affects both ruminants and humans, with epidemics occurring more frequently in recent years in Africa and the Middle East, probably as a result of climate change and intensified livestock trade. Sheep necropsied during the 2010 RVF outbreak in South Africa were examined by histopathology and immunohistochemistry (IHC). A total of 124 sheep were available for study, of which 99 cases were positive for RVF. Multifocal-random, necrotizing hepatitis was confirmed as the most distinctive lesion of RVF cases in adult sheep. Of cases where liver, spleen, and kidney tissues were available, 45 of 70 had foci of acute renal tubular epithelial injury in addition to necrosis in both the liver and spleen. In some cases, acute renal injury was the most significant RVF lesion. Immunolabeling for RVFV was most consistent and unequivocal in liver, followed by spleen, kidney, lung, and skin. RVFV antigen-positive cells included hepatocytes, adrenocortical epithelial cells, renal tubular epithelial cells, macrophages, neutrophils, epidermal keratinocytes, microvascular endothelial cells, and vascular smooth muscle. The minimum set of specimens to be submitted for histopathology and IHC to confirm or exclude a diagnosis of RVFV are liver, spleen, and kidney. Skin from areas with visible crusts and lung could be useful additional samples. In endemic areas, cases of acute renal tubular injury should be investigated further if other more common causes of renal lesions have already been excluded. RVFV can also cause an acute infection in the testis, which requires further investigation.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
| | - Sarah J. Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
| | - Geoffrey T. Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
| | - A. Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
86
|
Abreu-Mota T, Hagen KR, Cooper K, Jahrling PB, Tan G, Wirblich C, Johnson RF, Schnell MJ. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun 2018; 9:4223. [PMID: 30310067 PMCID: PMC6181965 DOI: 10.1038/s41467-018-06741-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Lassa fever (LF), caused by Lassa virus (LASV), is a viral hemorrhagic fever for which no approved vaccine or potent antiviral treatment is available. LF is a WHO priority disease and, together with rabies, a major health burden in West Africa. Here we present the development and characterization of an inactivated recombinant LASV and rabies vaccine candidate (LASSARAB) that expresses a codon-optimized LASV glycoprotein (coGPC) and is adjuvanted by a TLR-4 agonist (GLA-SE). LASSARAB elicits lasting humoral response against LASV and RABV in both mouse and guinea pig models, and it protects both guinea pigs and mice against LF. We also demonstrate a previously unexplored role for non-neutralizing LASV GPC-specific antibodies as a major mechanism of protection by LASSARAB against LF through antibody-dependent cellular functions. Overall, these findings demonstrate an effective inactivated LF vaccine and elucidate a novel humoral correlate of protection for LF.
Collapse
Affiliation(s)
- Tiago Abreu-Mota
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, 4710-057, Portugal
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702, USA
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702, USA
| | - Peter B Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892, USA
| | - Gene Tan
- Infectious Disease, The J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla CA, 92037, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
87
|
Acetylation of lysine residues in the recombinant nucleoprotein and VP40 matrix protein of Zaire Ebolavirus by eukaryotic histone acetyltransferases. Biochem Biophys Res Commun 2018; 504:635-640. [DOI: 10.1016/j.bbrc.2018.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 11/19/2022]
|
88
|
Pirofski LA, Casadevall A. The Damage-Response Framework as a Tool for the Physician-Scientist to Understand the Pathogenesis of Infectious Diseases. J Infect Dis 2018; 218:S7-S11. [PMID: 30124977 PMCID: PMC6093430 DOI: 10.1093/infdis/jiy083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Damage-Response Framework (DRF) is a powerful tool to inform research in infectious diseases. It can integrate clinical observation with microbiology and immunology to incorporate the role of the host response into the outcome of microbial pathogenesis. Although the role that microbial factors may play in the pathogenesis of infectious diseases is well recognized, the DRF brings the indispensable role of the host response to the fore. For example, inflammation may induce microbial control, but it can also produce host damage. On the other hand, insufficient inflammation may fail to induce sufficient microbial control. Each scenario may lead to the diagnosis of an infectious disease. Given the central role that the host response plays in the pathogenesis of infectious diseases, new strategies for treatment need to consider the nature of the host response as well as microbial factors.
Collapse
Affiliation(s)
- Liise-anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York,Correspondence: L.-a. Pirofski, MD, Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461 ()
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland
| |
Collapse
|
89
|
Abstract
As successive epidemics have swept the world, the scientific community has quickly learned from them about the emergence and transmission of communicable diseases. Epidemics usually occur when health systems are unprepared. During an unexpected epidemic, health authorities engage in damage control, fear drives action, and the desire to understand the threat is greatest. As humanity recovers, policy-makers seek scientific expertise to improve their "preparedness" to face future events.Global spread of disease is exemplified by the spread of yellow fever from Africa to the Americas, by the spread of dengue fever through transcontinental migration of mosquitos, by the relentless influenza virus pandemics, and, most recently, by the unexpected emergence of Ebola virus, spread by motorbike and long haul carriers. Other pathogens that are remarkable for their epidemic expansions include the arenavirus hemorrhagic fevers and hantavirus diseases carried by rodents over great geographic distances and the arthropod-borne viruses (West Nile, chikungunya and Zika) enabled by ecology and vector adaptations. Did we learn from the past epidemics? Are we prepared for the worst?The ultimate goal is to develop a resilient global health infrastructure. Besides acquiring treatments, vaccines, and other preventive medicine, bio-surveillance is critical to preventing disease emergence and to counteracting its spread. So far, only the western hemisphere has a large and established monitoring system; however, diseases continue to emerge sporadically, in particular in Southeast Asia and South America, illuminating the imperfections of our surveillance. Epidemics destabilize fragile governments, ravage the most vulnerable populations, and threaten the global community.Pandemic risk calculations employ new technologies like computerized maintenance of geographical and historical datasets, Geographic Information Systems (GIS), Next Generation sequencing, and Metagenomics to trace the molecular changes in pathogens during their emergence, and mathematical models to assess risk. Predictions help to pinpoint the hot spots of emergence, the populations at risk, and the pathogens under genetic evolution. Preparedness anticipates the risks, the needs of the population, the capacities of infrastructure, the sources of emergency funding, and finally, the international partnerships needed to manage a disaster before it occurs. At present, the world is in an intermediate phase of trying to reduce health disparities despite exponential population growth, political conflicts, migration, global trade, urbanization, and major environmental changes due to global warming. For the sake of humanity, we must focus on developing the necessary capacities for health surveillance, epidemic preparedness, and pandemic response.
Collapse
|
90
|
Lai JH, Wang MY, Huang CY, Wu CH, Hung LF, Yang CY, Ke PY, Luo SF, Liu SJ, Ho LJ. Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO Rep 2018; 19:embr.201846182. [PMID: 29880709 DOI: 10.15252/embr.201846182] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/03/2023] Open
Abstract
Toll-like receptors (TLRs) are important sensors that recognize pathogen-associated molecular patterns. Generally, TLR9 is known to recognize bacterial or viral DNA but not viral RNA and initiate an immune response. Herein, we demonstrate that infection with dengue virus (DENV), an RNA virus, activates TLR9 in human dendritic cells (DCs). DENV infection induces release of mitochondrial DNA (mtDNA) into the cytosol and activates TLR9 signaling pathways, leading to production of interferons (IFNs). The DENV-induced mtDNA release involves reactive oxygen species generation and inflammasome activation. DENV infection disrupts the association between transcription factor A mitochondria (TFAM) and mtDNA and activates the mitochondrial permeability transition pores. The side-by-side comparison of TLR9 and cyclic GMP-AMP synthase (cGAS) knockdown reveals that both cGAS and TLR9 comparably contribute to DENV-induced immune activation. The significance of TLR9 in DENV-induced immune response is also confirmed in examination with the bone marrow-derived DCs prepared from Tlr9-knockout mice. Our study unravels a previously unrecognized phenomenon in which infection with an RNA virus, DENV, activates TLR9 signaling by inducing mtDNA release in human DCs.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan .,Graduate Institute of Clinical Research, National Defense Medical Center, Taipei, Taiwan
| | - Mei-Yi Wang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
| | - Chien-Hsiang Wu
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
| | - Chia-Ying Yang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
| |
Collapse
|
91
|
Abstract
From the standpoint of the surgical pathologist "hepatitis" is defined as the set of histologic patterns of lesions found in livers infected by hepatotropic viruses, by non-hepatotrophic viruses leading to liver inflammation in the context of systemic infection, or due to an autoimmune disease, drug, or toxin involving the liver. This article is centered on the histologic patterns of injury in acute viral hepatitis, encompassing the hepatotropic viruses A, B, C, D, and E and the "icteric hemorrhagic fevers" (dengue, hantavirus, yellow fever). A brief mention of viruses causing hepatitis in immunosuppressed patients also is presented.
Collapse
|
92
|
Wang Z, Li J, Fu Y, Zhao Z, Zhang C, Li N, Li J, Cheng H, Jin X, Lu B, Guo Z, Qian J, Liu L. A Rapid Screen for Host-Encoded miRNAs with Inhibitory Effects against Ebola Virus Using a Transcription- and Replication-Competent Virus-Like Particle System. Int J Mol Sci 2018; 19:ijms19051488. [PMID: 29772717 PMCID: PMC5983748 DOI: 10.3390/ijms19051488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) may become efficient antiviral agents against the Ebola virus (EBOV) targeting viral genomic RNAs or transcripts. We previously conducted a genome-wide search for differentially expressed miRNAs during viral replication and transcription. In this study, we established a rapid screen for miRNAs with inhibitory effects against EBOV using a tetracistronic transcription- and replication-competent virus-like particle (trVLP) system. This system uses a minigenome comprising an EBOV leader region, luciferase reporter, VP40, GP, VP24, EBOV trailer region, and three noncoding regions from the EBOV genome and can be used to model the life cycle of EBOV under biosafety level (BSL) 2 conditions. Informatic analysis was performed to select up-regulated miRNAs targeting the coding regions of the minigenome with the highest binding energy to perform inhibitory effect screening. Among these miRNAs, miR-150-3p had the most significant inhibitory effect. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and double fluorescence reporter experiments demonstrated that miR-150-3p inhibited the reproduction of trVLPs via the regulation of GP and VP40 expression by directly targeting the coding regions of GP and VP40. This novel, rapid, and convenient screening method will efficiently facilitate the exploration of miRNAs against EBOV under BSL-2 conditions.
Collapse
Affiliation(s)
- Zhongyi Wang
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Jiaming Li
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Yingying Fu
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Zongzheng Zhao
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Chunmao Zhang
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Nan Li
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Jingjing Li
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Hongliang Cheng
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Xiaojun Jin
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Bing Lu
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Zhendong Guo
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Jun Qian
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Linna Liu
- Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
93
|
Clark LE, Mahmutovic S, Raymond DD, Dilanyan T, Koma T, Manning JT, Shankar S, Levis SC, Briggiler AM, Enria DA, Wucherpfennig KW, Paessler S, Abraham J. Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses. Nat Commun 2018; 9:1884. [PMID: 29760382 PMCID: PMC5951886 DOI: 10.1038/s41467-018-04271-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/16/2018] [Indexed: 01/26/2023] Open
Abstract
While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1-Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/chemistry
- Antibodies, Viral/isolation & purification
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Arenaviruses, New World/genetics
- Arenaviruses, New World/immunology
- Binding Sites, Antibody
- Cross Reactions
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- HEK293 Cells
- Hemorrhagic Fever, American/immunology
- Hemorrhagic Fever, American/prevention & control
- Hemorrhagic Fever, American/virology
- Humans
- Immune Sera/chemistry
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/isolation & purification
- Junin virus/genetics
- Junin virus/immunology
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Protein Subunits/immunology
- Receptors, Transferrin/chemistry
- Receptors, Transferrin/genetics
- Receptors, Transferrin/immunology
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/administration & dosage
Collapse
Affiliation(s)
- Lars E Clark
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Selma Mahmutovic
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald D Raymond
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Taleen Dilanyan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Takaaki Koma
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - John T Manning
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Sundaresh Shankar
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Silvana C Levis
- Instituto Nacional de Enfermedades Virales Humanas "Dr. Julio I. Maiztegui", Monteagudo 251 Pergamino, Buenos Aires, 2700, Argentina
| | - Ana M Briggiler
- Instituto Nacional de Enfermedades Virales Humanas "Dr. Julio I. Maiztegui", Monteagudo 251 Pergamino, Buenos Aires, 2700, Argentina
| | - Delia A Enria
- Instituto Nacional de Enfermedades Virales Humanas "Dr. Julio I. Maiztegui", Monteagudo 251 Pergamino, Buenos Aires, 2700, Argentina
| | - Kai W Wucherpfennig
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Program in Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Jonathan Abraham
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
94
|
Mateer EJ, Huang C, Shehu NY, Paessler S. Lassa fever-induced sensorineural hearing loss: A neglected public health and social burden. PLoS Negl Trop Dis 2018; 12:e0006187. [PMID: 29470486 PMCID: PMC5823363 DOI: 10.1371/journal.pntd.0006187] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although an association between Lassa fever (LF) and sudden-onset sensorineural hearing loss (SNHL) was confirmed clinically in 1990, the prevalence of LF-induced SNHL in endemic countries is still underestimated. LF, a viral hemorrhagic fever disease caused by Lassa virus (LASV), is endemic in West Africa, causing an estimated 500,000 cases and 5,000 deaths per year. Sudden-onset SNHL, one complication of LF, occurs in approximately one-third of survivors and constitutes a neglected public health and social burden. In the endemic countries, where access to hearing aids is limited, SNHL results in a decline of the quality of life for those affected. In addition, hearing loss costs Nigeria approximately 43 million dollars per year. The epidemiology of LF-induced SNHL has not been characterized well. The complication of LF induced by SNHL is also an important consideration for vaccine development and treatments. However, research into the mechanism has been hindered by the lack of autopsy samples and relevant small animal models. Recently, the first animal model that mimics the symptoms of SNHL associated with LF was developed. Preliminary data from the new animal model as well as the clinical case studies support the mechanism of immune-mediated injury that causes SNHL in LF patients. This article summarizes clinical findings of hearing loss in LF patients highlighting the association between LASV infection and SNHL as well as the potential mechanism(s) for LF-induced SNHL. Further research is necessary to identify the mechanism and the epidemiology of LF-induced SNHL.
Collapse
Affiliation(s)
- Elizabeth J. Mateer
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nathan Y. Shehu
- Department of Medicine, Infectious Disease Unit, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Slobodan Paessler
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
95
|
Mobula LM, Nathalie MacDermott, Clive Hoggart, Brantly K, Plyler W, Brown J, Kauffeldt B, Eisenhut D, Cooper LA, Fankhauser J. Clinical Manifestations and Modes of Death among Patients with Ebola Virus Disease, Monrovia, Liberia, 2014. Am J Trop Med Hyg 2018; 98:1186-1193. [PMID: 29405115 PMCID: PMC5928808 DOI: 10.4269/ajtmh.17-0090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although the high case fatality rate (CFR) associated with Ebola virus disease (EVD) is well documented, there are limited data on the actual modes of death. We conducted a retrospective, observational cohort study among patients with laboratory-confirmed EVD. The patients were all seen at the Eternal Love Winning Africa Ebola Treatment Unit in Monrovia, Liberia, from June to August 2014. Our primary objective was to describe the modes of death of our patients and to determine predictors of mortality. Data were available for 53 patients with laboratory-confirmed EVD, with a median age of 35 years. The most frequent presenting symptoms were weakness (91%), fever (81%), and diarrhea (78%). Visible hemorrhage was noted in 25% of the cases. The CFR was 79%. Odds of death were higher in patients with diarrhea (odds ratio = 26.1, P < 0.01). All patients with hemorrhagic signs died (P < 0.01). Among the 18 fatal cases for which clinical information was available, three distinct modes of death were observed: sudden death after a moderate disease process (44%), profuse hemorrhage (33%), and encephalopathy (22%). We found that these modes of death varied by age (P = 0.04), maximum temperature (P = 0.43), heart rate on admission (P = 0.04), time to death from symptom onset (P = 0.13), and duration of hospitalization (P = 0.04). Although further study is required, our findings provide a foundation for developing treatment strategies that factor in patients with specific disease phenotypes (which often require the use of aggressive hydration). These findings provide insights into underlying pathogenic mechanisms resulting in severe EVD and suggest direction for future research and development of effective treatment options.
Collapse
Affiliation(s)
- Linda M Mobula
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.,Disaster Response Unit, Samaritan's Purse, Boone, North Carolina.,Division of General Internal Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nathalie MacDermott
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom.,Disaster Response Unit, Samaritan's Purse, Boone, North Carolina
| | - Clive Hoggart
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Kent Brantly
- Disaster Response Unit, Samaritan's Purse, Boone, North Carolina
| | - William Plyler
- Disaster Response Unit, Samaritan's Purse, Boone, North Carolina
| | - Jerry Brown
- Eternal Love Winning Africa (ELWA) Hospital, Monrovia, Liberia
| | - Bev Kauffeldt
- Disaster Response Unit, Samaritan's Purse, Boone, North Carolina
| | | | - Lisa A Cooper
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.,Division of General Internal Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - John Fankhauser
- SIM, Monrovia, Liberia.,Disaster Response Unit, Samaritan's Purse, Boone, North Carolina
| |
Collapse
|
96
|
Gonzalez-Quintial R, Baccala R. Murine Models for Viral Hemorrhagic Fever. Methods Mol Biol 2018; 1604:257-267. [PMID: 28986841 DOI: 10.1007/978-1-4939-6981-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hemorrhagic fever (HF) viruses, such as Lassa, Ebola, and dengue viruses, represent major human health risks due to their highly contagious nature, the severity of the clinical manifestations induced, the lack of vaccines, and the very limited therapeutic options currently available. Appropriate animal models are obviously critical to study disease pathogenesis and develop efficient therapies. We recently reported that the clone 13 (Cl13) variant of the lymphocytic choriomeningitis virus (LCMV-Cl13), a prototype arenavirus closely related to Lassa virus, causes in some mouse strains endothelial damage, vascular leakage, platelet loss, and death, mimicking pathological aspects typically observed in Lassa and other HF syndromes. This model has the advantage that the mice used are fully immunocompetent, allowing studies on the contribution of the immune response to disease progression. Moreover, LCMV is very well characterized and exhibits limited pathogenicity in humans, allowing handling in convenient BSL-2 facilities. In this chapter we outline protocols for the induction and analysis of arenavirus-mediated pathogenesis in the NZB/LCMV model, including mouse infection, virus titer determination, platelet counting, phenotypic analysis of virus-specific T cells, and assessment of vascular permeability.
Collapse
Affiliation(s)
- Rosana Gonzalez-Quintial
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roberto Baccala
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
97
|
Tursiella ML, Taylor SL, Schmaljohn CS. Protocols to Assess Coagulation Following In Vitro Infection with Hemorrhagic Fever Viruses. Methods Mol Biol 2018; 1604:405-417. [PMID: 28986851 DOI: 10.1007/978-1-4939-6981-4_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the course of infection with a hemorrhagic fever virus (HFV), the checks and balances associated with normal coagulation are perturbed resulting in hemorrhage in severe cases and, in some patients, disseminated intravascular coagulopathy (DIC). While many HFVs have animal models that permit the analyses of systemic coagulopathy, animal infection models do not exist for all HFVs and moreover do not always recapitulate the pathology observed in human tissues. Furthermore, molecular analyses of how coagulation is affected are not always straightforward or practical when using ex-vivo animal-derived samples, thus reinforcing the importance of cell culture studies. This chapter highlights procedures utilizing human umbilical vein endothelial cells (HUVECs) as a model system to evaluate components of the intrinsic (prekallikrein (PK), factor XII (FXII), kininogen, and bradykinin (BK)) and extrinsic (Tissue Factor (TF)) systems. Specifically, protocols are included for the generation of a coculture blood vessel model, plating and infection of HUVEC monolayers and assays designed to measure activation of PK and FXII, cleavage of kininogen, and to measure the expression of TF mRNA and protein.
Collapse
Affiliation(s)
- Melissa L Tursiella
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter St., Fort Detrick, Fort Detrick, Frederick, MD, 21702, USA
| | - Shannon L Taylor
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter St., Fort Detrick, Fort Detrick, Frederick, MD, 21702, USA
| | - Connie S Schmaljohn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter St., Fort Detrick, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
98
|
Martinez-Gil L, Goff PH, Tan GS. The Role of Self-Assembling Lipid Molecules in Vaccination. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2018. [PMCID: PMC7147077 DOI: 10.1016/bs.abl.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The advent of vaccines represents one of the most significant advances in medical history. The protection provided by vaccines has greatly contributed in reducing the number of cases of infections and most notably to the eradication of small pox. A large number of new technologies and approaches in vaccine development are currently being investigated with the goal of providing the basis for the next generation of prophylactics against an ever-expanding list of emerging and reemerging pathogens. In this chapter, we will focus on the role of lipids and lipid self-assembling vesicles in new and promising vaccination approaches. We will start by describing how lipids can induce activation of the innate immune system and focus on some lipid-derived vaccine adjuvants. Next, we will review current lipid-based self-assembling particles used as vaccine platforms, specifically liposomes and virus-like particles, and how virus-like particles have facilitated research of highly pathogenic viruses such as Ebola.
Collapse
|
99
|
Ferreira Alves VA. Acute Viral Hepatitis. PRACTICAL HEPATIC PATHOLOGY: A DIAGNOSTIC APPROACH 2018:191-209. [DOI: 10.1016/b978-0-323-42873-6.00013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
100
|
Peña Cárcamo JR, Morell ML, Vázquez CA, Vatansever S, Upadhyay AS, Överby AK, Cordo SM, García CC. The interplay between viperin antiviral activity, lipid droplets and Junín mammarenavirus multiplication. Virology 2018; 514:216-229. [DOI: 10.1016/j.virol.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/09/2023]
|