51
|
Ray AS, Cihlar T, Robinson KL, Tong L, Vela JE, Fuller MD, Wieman LM, Eisenberg EJ, Rhodes GR. Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother 2006; 50:3297-304. [PMID: 17005808 PMCID: PMC1610069 DOI: 10.1128/aac.00251-06] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tenofovir (TFV) undergoes renal elimination by a combination of glomerular filtration and active tubular secretion. While transporter-mediated uptake of TFV from the blood into proximal-tubule cells has been well characterized, comparatively little is known about the efflux system responsible for transporting TFV into the lumen during active tubular secretion. Therefore, members of the ATP-binding cassette family of efflux pumps expressed at the apical side of proximal-tubule cells were studied for the ability to transport TFV. Studies in multiple independent in vitro systems show TFV not to be a substrate for P glycoprotein (Pgp) or multidrug resistance protein type 2 (MRP2). In contrast to Pgp and MRP2, TFV was observed to be a substrate for MRP4. TFV accumulated to fivefold lower levels in MRP4-overexpressing cells, and its accumulation could be increased by an MRP inhibitor. Furthermore, MRP4-overexpressing cells were found to be 2.0- to 2.5-fold less susceptible to cytotoxicity caused by TFV. ATP-dependent uptake of TFV was observed in membrane vesicles containing MRP4 but not in vesicles lacking the transporter. On the basis of these and previous results, the molecular transport pathway for the active tubular secretion of TFV through renal proximal-tubule cells involves uptake from the blood mediated by human organic anion transporters 1 and 3 and efflux into urine by MRP4. A detailed understanding of the molecular mechanism of TFV active tubular secretion will facilitate the assessment of potential renal drug-drug interactions with coadministered agents.
Collapse
Affiliation(s)
- Adrian S Ray
- Department of Drug Metabolism, Gilead Sciences, Inc, Foster City, CA 94404, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Nagai K, Nagasawa K, Kihara Y, Okuda H, Fujimoto S. Anticancer nucleobase analogues 6-mercaptopurine and 6-thioguanine are novel substrates for equilibrative nucleoside transporter 2. Int J Pharm 2006; 333:56-61. [PMID: 17088032 DOI: 10.1016/j.ijpharm.2006.09.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/17/2006] [Accepted: 09/26/2006] [Indexed: 01/11/2023]
Abstract
Various antimetabolites of nucleobase analogues, such as 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and 5-fluorouracil (5-FU), are used for cancer treatments. The first step in nucleobase analogue drug therapy is entry of these compounds into tumor cells. Equilibrative nucleoside transporter 2 (ENT2) was previously reported to have the dual ability of transporting both nucleosides and nucleobases. In the present study, we investigated whether or not these nucleobase analogues are transported via ENT2, using mouse ENT2-overexpressing Cos-7 cells. The hypoxanthine uptake mediated by ENT2 was significantly reduced by the addition of 6-MP and 6-TG, and the inhibition of the hypoxanthine uptake by the 6-thiopurines was competitive. Transfection of ENT2 cDNA into Cos-7 cells resulted in an increase in 6-MP uptake. The 6-MP uptake via ENT2 showed clear time- and substrate concentration-dependent profiles, and was inhibited by 6-TG in an inhibitor concentration-dependent fashion. On the other hand, uracil was not a substrate for ENT2, and 5-FU had no effect on the hypoxanthine uptake via ENT2. Therefore, we concluded that 6-MP and 6-TG, but not 5-FU, are transported mediated by the same recognition site on ENT2 with hypoxanthine.
Collapse
Affiliation(s)
- Katsuhito Nagai
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | |
Collapse
|
53
|
Cai C, Omwancha J, Hsieh CL, Shemshedini L. Androgen induces expression of the multidrug resistance protein gene MRP4 in prostate cancer cells. Prostate Cancer Prostatic Dis 2006; 10:39-45. [PMID: 17003774 DOI: 10.1038/sj.pcan.4500912] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multidrug resistance-associated proteins (MRPs) may mediate multidrug resistance in tumor cells. Using a gene array analysis, we have identified MRP4 as an androgen receptor (AR)-regulated gene. Dihydrotestosterone induced MRP4 expression in both androgen-dependent and -independent LNCaP cells, whereas there was little detectable expression in PC-3 or normal prostate epithelial cells. Disruption of MRP4 expression renders LNCaP cells more sensitive to the cytotoxic effects of methotrexate but not etoposide. Analysis of human tissues showed detectable MRP4 expression only in metastatic prostate cancer. These results suggest that AR induction of MRP4 mediates resistance of PC cells to nucleotide-based chemotherapeutic drugs.
Collapse
Affiliation(s)
- C Cai
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | | | | |
Collapse
|
54
|
Johnson BM, Zhang P, Schuetz JD, Brouwer KLR. Characterization of transport protein expression in multidrug resistance-associated protein (Mrp) 2-deficient rats. Drug Metab Dispos 2006; 34:556-62. [PMID: 16204465 DOI: 10.1124/dmd.105.005793] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance-associated protein (Mrp) 2-deficient transport-deficient (TR(-)) rats, together with their transport-competent Wistar counterparts (wild type), have been used to examine the contribution of Mrp2 to drug disposition. However, little is known about potential variation in expression of other transport proteins between TR(-) and wild-type rats or whether these differences are tissue-specific. Sections of liver, kidney, brain, duodenum, jejunum, ileum, and colon were obtained from male TR(-) and wild-type Wistar rats. Samples were homogenized in protease inhibitor cocktail and ultracentrifuged at 100,000g for 30 min to obtain membrane fractions. Mrp2, Mrp3, Mrp4, P-glycoprotein, sodium-dependent taurocholate cotransporting polypeptide, organic anion transporting polypeptides 1a1 and 1a4, bile salt export pump, breast cancer resistance protein, ileal bile acid transporter, UDP-glucuronosyl transferase (UGT1a), glyceraldehyde-3-phosphate dehydrogenase, and beta-actin protein expression were determined by Western blot. Mrp3 was significantly up-regulated in the liver ( approximately 6-fold) and kidney ( approximately 3.5-fold) of TR(-) rats compared with wild-type controls. Likewise, the expression of UGT1a enzymes was increased in the liver and kidney of TR(-) rats by approximately 3.5- and approximately 5.5-fold, respectively. Interestingly, Mrp3 expression was down-regulated in the small intestine of TR(-) rats, but expression was similar to wild type in the colon. Mrp4 was expressed to varying extents along the intestine. Expression of some transport proteins and UGT1a enzymes differ significantly between TR(-) and wild-type rats. Therefore, altered drug disposition in TR(-) rats must be interpreted cautiously because up- or down-regulation of other transport proteins may play compensatory roles in the presence of Mrp2 deficiency.
Collapse
Affiliation(s)
- Brendan M Johnson
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
55
|
Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa KI, Tallman MN, Brouwer KLR. Integration of hepatic drug transporters and phase II metabolizing enzymes: Mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci 2006; 27:447-86. [PMID: 16472997 DOI: 10.1016/j.ejps.2005.12.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 12/06/2005] [Indexed: 12/12/2022]
Abstract
The liver is the primary site of drug metabolism in the body. Typically, metabolic conversion of a drug results in inactivation, detoxification, and enhanced likelihood for excretion in urine or feces. Sulfation, glucuronidation, and glutathione conjugation represent the three most prevalent classes of phase II metabolism, which may occur directly on the parent compounds that contain appropriate structural motifs, or, as is usually the case, on functional groups added or exposed by phase I oxidation. These three conjugation reactions increase the molecular weight and water solubility of the compound, in addition to adding a negative charge to the molecule. As a result of these changes in the physicochemical properties, phase II conjugates tend to have very poor membrane permeability, and necessitate carrier-mediated transport for biliary or hepatic basolateral excretion into sinusoidal blood for eventual excretion into urine. This review summarizes sulfation, glucuronidation, and glutathione conjugation reactions, as well as recent progress in elucidating the hepatic transport mechanisms responsible for the excretion of these conjugates from the liver. The discussion focuses on alterations of metabolism and transport by chemical modulators, and disease states, as well as pharmacodynamic and toxicological implications of hepatic metabolism and/or transport modulation for certain active phase II conjugates. A brief discussion of issues that must be considered in the design and interpretation of phase II metabolite transport studies follows.
Collapse
|
56
|
Gaur M, Choudhury D, Prasad R. Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans. J Mol Microbiol Biotechnol 2006; 9:3-15. [PMID: 16254441 DOI: 10.1159/000088141] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recent completion of the sequencing project of the opportunistic human pathogenic yeast, Candida albicans (http://www.ncbi.nlm.nih.gov/), led us to analyze and classify its ATP-binding cassette (ABC) proteins, which constitute one of the largest superfamilies of proteins. Some of its members are multidrug transporters responsible for the commonly encountered problem of antifungal resistance. TBLASTN searches together with domain analysis identified 81 nucleotide-binding domains, which belong to 51 different putative open reading frames. Considering that each allelic pair represents a single ABC protein of the Candida genome, the total number of putative members of this superfamily is 28. Domain organization, sequence-based analysis and self-organizing map-based clustering led to the classification of Candida ABC proteins into 6 distinct subfamilies. Each subfamily from C. albicans has an equivalent in Saccharomyces cerevisiae suggesting a close evolutionary relationship between the two yeasts. Our searches also led to the identification of a new motif to each subfamily in Candida that could be used to identify sequences from the corresponding subfamily in other organisms. It is hoped that the inventory of Candida ABC transporters thus created will provide new insights into the role of ABC proteins in antifungal resistance as well as help in the functional characterization of the superfamily of these proteins.
Collapse
Affiliation(s)
- Manisha Gaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
57
|
Influenza Neuraminidase Inhibitors as Antiviral Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2006. [DOI: 10.1016/s0065-7743(06)41019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
58
|
Phatarpekar PV, Durdan SF, Copeland CM, Crittenden EL, Neece JD, García DM. Molecular and pharmacological characterization of muscarinic receptors in retinal pigment epithelium: role in light-adaptive pigment movements. J Neurochem 2005; 95:1504-20. [PMID: 16269010 DOI: 10.1111/j.1471-4159.2005.03512.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscarinic receptors are the predominant cholinergic receptors in the central and peripheral nervous systems. Recently, activation of muscarinic receptors was found to elicit pigment granule dispersion in retinal pigment epithelium isolated from bluegill fish. Pigment granule movement in retinal pigment epithelium is a light-adaptive mechanism in fish. In the present study, we used pharmacological and molecular approaches to identify the muscarinic receptor subtype and the intracellular signaling pathway involved in the pigment granule dispersion in retinal pigment epithelium. Of the muscarinic receptor subtype-specific antagonists used, only antagonists specific for M1 and M3 muscarinic receptors were found to block carbamyl choline (carbachol)-induced pigment granule dispersion. A phospholipase C inhibitor also blocked carbachol-induced pigment granule dispersion, and a similar result was obtained when retinal pigment epithelium was incubated with an inositol trisphosphate receptor inhibitor. We isolated M2 and M5 receptor genes from bluegill and studied their expression. Only M5 was found to be expressed in retinal pigment epithelium. Taken together, pharmacological and molecular evidence suggest that activation of an odd subtype of muscarinic receptor, possibly M5, on fish retinal pigment epithelium induces pigment granule dispersion.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adaptation, Ocular
- Alkaloids
- Animals
- Behavior, Animal
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Cholinesterase Inhibitors/pharmacology
- Cloning, Molecular/methods
- Colforsin/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Enzyme Inhibitors/pharmacology
- Perciformes
- Phylogeny
- Pigment Epithelium of Eye/drug effects
- Pigment Epithelium of Eye/metabolism
- Pigment Epithelium of Eye/radiation effects
- Pigments, Biological/physiology
- RNA, Messenger/biosynthesis
- Receptors, Muscarinic/classification
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sequence Analysis, DNA/methods
- Sequence Analysis, Protein/methods
- Sesquiterpenes/pharmacology
Collapse
Affiliation(s)
- Prasad V Phatarpekar
- Department of Biology, Texas State University-San Marcos, San Marcos, Texas 78666, USA
| | | | | | | | | | | |
Collapse
|
59
|
Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WG. In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos 2005; 33:1729-39. [PMID: 16118329 DOI: 10.1124/dmd.105.005447] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several human immunodeficiency virus (HIV) protease inhibitors, including atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir, were tested for their potential to inhibit uridine 5'-diphospho-glucuronosyltransferase (UGT) activity. Experiments were performed with human cDNA-expressed enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) as well as human liver microsomes. All of the protease inhibitors tested were inhibitors of UGT1A1, UGT1A3, and UGT1A4 with IC(50) values that ranged from 2 to 87 microM. The IC50 values found for all compounds for UGT1A6, 1A9, and 2B7 were >100 microM. The inhibition (IC50) of UGT1A1 was similar when tested against the human cDNA-expressed enzyme or human liver microsomes for atazanavir, indinavir, and saquinavir (2.4, 87, and 7.3 microM versus 2.5, 68, and 5.0 microM, respectively). By analysis of the double-reciprocal plots of bilirubin glucuronidation activities at different bilirubin concentrations in the presence of fixed concentrations of inhibitors, the UGT1A1 inhibition by atazanavir and indinavir was demonstrated to follow a linear mixed-type inhibition mechanism (Ki = 1.9 and 47.9 microM, respectively). These results suggest that a direct inhibition of UGT1A1-mediated bilirubin glucuronidation may provide a mechanism for the reversible hyperbilirubinemia associated with administration of atazanavir as well as indinavir. In vitro-in vivo scaling with [I]/Ki predicts that atazanavir and indinavir are more likely to induce hyperbilirubinemia than other HIV protease inhibitors studied when a free Cmax drug concentration was used. Our current study provides a unique example of in vitro-in vivo correlation for an endogenous UGT-mediated metabolic pathway.
Collapse
Affiliation(s)
- Donglu Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, P.O. Box 4000, Princeton, NJ 08543, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Perry WL, Shepard RL, Sampath J, Yaden B, Chin WW, Iversen PW, Jin S, Lesoon A, O'Brien KA, Peek VL, Rolfe M, Shyjan A, Tighe M, Williamson M, Krishnan V, Moore RE, Dantzig AH. Human splicing factor SPF45 (RBM17) confers broad multidrug resistance to anticancer drugs when overexpressed--a phenotype partially reversed by selective estrogen receptor modulators. Cancer Res 2005; 65:6593-600. [PMID: 16061639 DOI: 10.1158/0008-5472.can-03-3675] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The splicing factor SPF45 (RBM17) is frequently overexpressed in many solid tumors, and stable expression in HeLa cells confers resistance to doxorubicin and vincristine. In this study, we characterized stable transfectants of A2780 ovarian carcinoma cells. In a 3-day cytotoxicity assay, human SPF45 overexpression conferred 3- to 21-fold resistance to carboplatin, vinorelbine, doxorubicin, etoposide, mitoxantrone, and vincristine. In addition, resistance to gemcitabine and pemetrexed was observed at the highest drug concentrations tested. Knockdown of SPF45 in parental A2780 cells using a hammerhead ribozyme sensitized A2780 cells to etoposide by approximately 5-fold relative to a catalytically inactive ribozyme control and untransfected cells, suggesting a role for SPF45 in intrinsic resistance to some drugs. A2780-SPF45 cells accumulated similar levels of doxorubicin as vector-transfected and parental A2780 cells, indicating that drug resistance is not due to differences in drug accumulation. Efforts to identify small molecules that could block SPF45-mediated drug resistance revealed that the selective estrogen receptor (ER) modulators tamoxifen and LY117018 (a raloxifene analogue) partially reversed SPF45-mediated drug resistance to mitoxantrone in A2780-SPF45 cells from 21-fold to 8- and 5-fold, respectively, but did not significantly affect the mitoxantrone sensitivity of vector control cells. Quantitative PCR showed that ERbeta but not ERalpha was expressed in A2780 transfectants. Coimmunoprecipitation experiments suggest that SPF45 and ERbeta physically interact in vivo. Thus, SPF45-mediated drug resistance in A2780 cells may result in part from effects of SPF45 on the transcription or alternate splicing of ERbeta-regulated genes.
Collapse
Affiliation(s)
- William L Perry
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hirrlinger J, Moeller H, Kirchhoff F, Dringen R. Expression of Multidrug Resistance Proteins (Mrps) in Astrocytes of the Mouse Brain: A Single Cell RT-PCR Study. Neurochem Res 2005; 30:1237-44. [PMID: 16341585 DOI: 10.1007/s11064-005-8795-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2005] [Indexed: 12/30/2022]
Abstract
Multidrug resistance proteins (Mrps) are ATP-driven export pumps which mediate the export of organic anions such as glutathione conjugates and glucuronides from eukaryotic cells. Within the central nervous system astrocytes have important functions in metabolism and detoxification. In such processes Mrps play essential roles. To identify the Mrp repertoire of mouse brain and of astrocytes in particular, the expression of six mouse Mrps was investigated by reverse-transcription polymerase-chain reaction (RT-PCR). Using mouse brain mRNA as source, amplification products were obtained for Mrp1, Mrp3, Mrp4, Mrp5 and Mrp6. In contrast, mRNA of Mrp2 could not be detected in mouse brain. To investigate whether individual astrocytes express different Mrps in brain, single-cell RT-PCRs were performed from the cytosol harvested from single astrocytes in acutely isolated brain slices from cortex and cerebellum of TgN(GFAP-EGFP) mice. In these mice astrocytes can readily be identified by glial fibrillary acidic protein promoter-controlled green fluorescent protein expression. Investigation of individual cortical astrocytes and Bergmann glial cells revealed that these cells express Mrp1, Mrp4 and Mrp5 and that individual astrocytes can contain mRNA of one, two or three of these Mrps simultaneously.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Str. 3, D-37075, Göttingen, Germany
| | | | | | | |
Collapse
|
62
|
Klement JF, Matsuzaki Y, Jiang QJ, Terlizzi J, Choi HY, Fujimoto N, Li K, Pulkkinen L, Birk DE, Sundberg JP, Uitto J. Targeted ablation of the abcc6 gene results in ectopic mineralization of connective tissues. Mol Cell Biol 2005; 25:8299-310. [PMID: 16135817 PMCID: PMC1234326 DOI: 10.1128/mcb.25.18.8299-8310.2005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/01/2005] [Accepted: 06/17/2005] [Indexed: 12/19/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE), characterized by connective tissue mineralization of the skin, eyes, and cardiovascular system, is caused by mutations in the ABCC6 gene. ABCC6 encodes multidrug resistance-associated protein 6 (MRP6), which is expressed primarily in the liver and kidneys. Mechanisms producing ectopic mineralization as a result of these mutations remain unclear. To elucidate this complex disease, a transgenic mouse was generated by targeted ablation of the mouse Abcc6 gene. Abcc6 null mice were negative for Mrp6 expression in the liver, and complete necropsies revealed profound mineralization of several tissues, including skin, arterial blood vessels, and retina, while heterozygous animals were indistinguishable from the wild-type mice. Particularly striking was the mineralization of vibrissae, as confirmed by von Kossa and alizarin red stains. Electron microscopy revealed mineralization affecting both elastic structures and collagen fibers. Mineralization of vibrissae was noted as early as 5 weeks of age and was progressive with age in Abcc6(-/-) mice but was not observed in Abcc6(+/-) or Abcc6(+/+) mice up to 2 years of age. A total body computerized tomography scan of Abcc6(-/-) mice revealed mineralization in skin and subcutaneous tissue as well as in the kidneys. These data demonstrate aberrant mineralization of soft tissues in PXE-affected organs, and, consequently, these mice recapitulate features of this complex disease.
Collapse
Affiliation(s)
- John F Klement
- Department of Dermatology, Jefferson Medical College, 233 S. 10th Street, Suite 322 BLSB, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx 2005; 2:73-85. [PMID: 15717059 PMCID: PMC539323 DOI: 10.1602/neurorx.2.1.73] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The brain uptake of xenobiotics is restricted by the blood-brain brain barrier formed by brain capillary endothelial cells. Active efflux transport systems in the blood-brain barrier work as a detoxification system in the brain by facilitating removal of xenobiotic compounds from the brain. Drugs, acting in the brain, have to overcome such efflux mechanisms to achieve clinically significant concentration in the brain. Multiple transporters are involved in this efflux transport in the brain capillaries. In the past few years, considerable progress has been made in the cloning of these transporters and their functional characterization after heterologous expression. Members of the solute carrier family (SLC) play an important role in the efflux transport, especially for organic anions, which include organic anion transporting polypeptides (OATP/SLCO) and organic anion transporters (OAT/SLC22A). It is believed that coordination of the members of SLC family, and ABC transporters, such as P-glycoprotein, multidrug resistance protein, and breast cancer-resistant protein (BCRP/ABCG2), allows an efficient vectorial transport across the endothelial cells to remove xenobiotics from the brain. In this review, we shall summarize our current knowledge about their localization, molecular and functional characteristics, and substrate and inhibitor specificity.
Collapse
Affiliation(s)
- Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
64
|
Pfeiffer JK, Kirkegaard K. Ribavirin resistance in hepatitis C virus replicon-containing cell lines conferred by changes in the cell line or mutations in the replicon RNA. J Virol 2005; 79:2346-55. [PMID: 15681435 PMCID: PMC546591 DOI: 10.1128/jvi.79.4.2346-2355.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ribavirin (RBV), used in combination with alpha interferon to treat hepatitis C virus (HCV) infections, is a guanosine nucleotide analog that can increase the error rate of viral RNA-dependent RNA polymerases, imbalance intracellular nucleotide pools, and cause toxicity in many cell types. To determine potential mechanisms of RBV resistance during HCV RNA replication, we passaged HCV replicon-containing cell lines in the presence of increasing concentrations of RBV. RBV-resistant, HCV replicon-containing cell lines were generated, and the majority of RBV resistance was found to be conferred by changes in the cell lines. The resistant cell lines were defective in RBV import, as measured by [(3)H]RBV uptake experiments. These cell lines displayed reduced RBV toxicity and reduced error accumulation during infection with poliovirus, whose replication is known to be sensitive to RBV-induced error. For one RBV-resistant isolate, two mutations in the replicon RNA contributed to the observed phenotype. Two responsible mutations resided in the C-terminal region of NS5A, G404S, and E442G and were each sufficient for low-level RBV resistance. Therefore, RBV resistance in HCV replicon cell lines can be conferred by changes in the cell line or by mutations in the HCV replicon.
Collapse
Affiliation(s)
- Julie K Pfeiffer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
65
|
Pratt S, Shepard RL, Kandasamy RA, Johnston PA, Perry W, Dantzig AH. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 2005; 4:855-63. [PMID: 15897250 DOI: 10.1158/1535-7163.mct-04-0291] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
5'-Fluorouracil (5-FU), used in the treatment of colon and breast cancers, is converted intracellularly to 5'-fluoro-2'-deoxyuridine (5-FUdR) by thymidine phosphorylase and is subsequently phosphorylated by thymidine kinase to 5'-fluoro-2'-dUMP (5-FdUMP). This active metabolite, along with the reduced folate cofactor, 5,10-methylenetetrahydrofolate, forms a stable inhibitory complex with thymidylate synthase that blocks cellular growth. The present study shows that the ATP-dependent multidrug resistance protein-5 (MRP5, ABCC5) confers resistance to 5-FU by transporting the monophosphate metabolites. MRP5- and vector-transfected human embryonic kidney (HEK) cells were employed in these studies. In 3-day cytotoxicity assays, MRP5-transfected cells were approximately 9-fold resistant to 5-FU and 6-thioguanine. Studies with inside-out membrane vesicles prepared from transfected cells showed that MRP5 mediates ATP-dependent transport of 5 micromol/L [(3)H]5-FdUMP, [(3)H]5-FUMP, [(3)H]dUMP, and not [(3)H]5-FUdR, or [(3)H]5-FU. The ATP-dependent transport of 5-FdUMP showed saturation with increasing concentrations and had a K(m) of 1.1 mmol/L and V(max) of 439 pmol/min/mg protein. Uptake of 250 micromol/L 5-FdUMP was inhibited by dUMP, cyclic nucleotide, cyclic guanosine 3',5'-monophosphate, amphiphilic anions such as probenecid, MK571, the phosphodiesterase inhibitors, trequinsin, zaprinast, and sildenafil, and by the chloride channel blockers, 5-nitro-2-(3-phenylpropylamino)-benzoic acid and glybenclamide. Furthermore, the 5-FU drug sensitivity of HEK-MRP5 cells was partially modulated to that of the HEK-vector by the presence of 40 micromol/L 5-nitro-2-(3-phenylpropylamino)-benzoic acid but not by 2 mmol/L probenecid. Thus, MRP5 transports the monophosphorylated metabolite of this nucleoside and when MRP5 is overexpressed in colorectal and breast tumors, it may contribute to 5-FU drug resistance.
Collapse
Affiliation(s)
- Susan Pratt
- Cancer Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
66
|
Strazielle N, Ghersi-Egea JF. Factors affecting delivery of antiviral drugs to the brain. Rev Med Virol 2005; 15:105-33. [PMID: 15546130 DOI: 10.1002/rmv.454] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the CNS is in part protected from peripheral insults by the blood-brain barrier and the blood-cerebrospinal fluid barrier, a number of human viruses gain access to the brain, replicate within this organ, or sustain latent infection. The efficacy of antiviral drugs towards the cerebral viral load is often limited as both blood-brain interfaces impede their cerebral distribution. For polar compounds, the major factor restricting their entry lies in the tight junctions that occlude the paracellular pathway across these barriers. For compounds with more favourable lipid solubility properties, CNS penetration will be function of a number of physicochemical factors that include the degree of lipophilicity, size and ability to bind to protein or red blood cells, as well as other factors inherent to the vascular and choroidal systems, such as the local cerebral blood flow and the surface area available for exchange. In addition, influx and efflux transport systems, or metabolic processes active in both capillary endothelial cells and choroid plexus epithelial cells, can greatly change the bioavailability of a drug in one or several compartments of the CNS. The relative importance of these various factors with respect to the CNS delivery of the different classes of antiviral drugs is illustrated and discussed.
Collapse
|
67
|
Abstract
Systemic disposition of antiviral drugs partly depends on renal handling of these compounds. There are some known, functionally characterized anionic and cationic transporters with varying substrate specificities for those drugs: human organic anion transporter (OAT) family (hOAT1-3) and human organic cation transporter (OCT) family (hOCT1-3), which mediate the intracellular flux, and adenosine 5'-triphosphate (ATP) binding cassette transporter family (P-glycoprotein, MRP2-5), which mediate the cellular efflux of antiviral drugs. The peptide transporter (PEPT1-2) mediate bi-directional facilitated diffusion of valacyclovir. All these transporters are expressed in the kidney. Organic anion and cation transporters primarily localize to the basolateral membrane of renal epithelial cells while ATP-binding cassette transporters primarily localize to the apical membrane. These transporters work in concert to mediate renal intracellular concentration of occurring antiviral drugs. Along with drug-metabolizing enzymes, these transporters are important determinants of drug effectiveness and toxicity. This review examines the role that these transporters play in renal disposition of antiviral drugs.
Collapse
|
68
|
Tian Q, Zhang J, Chan E, Duan W, Zhou S. Multidrug resistance proteins (MRPs) and implication in drug development. Drug Dev Res 2005. [DOI: 10.1002/ddr.10427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
69
|
Aleksunes LM, Slitt AM, Cherrington NJ, Thibodeau MS, Klaassen CD, Manautou JE. Differential Expression of Mouse Hepatic Transporter Genes in Response to Acetaminophen and Carbon Tetrachloride. Toxicol Sci 2004; 83:44-52. [PMID: 15496496 DOI: 10.1093/toxsci/kfi013] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drug-metabolizing enzymes and membrane transporters are responsible for the detoxication and elimination of xenobiotics from the body. The goal of this study was to identify alterations in mRNA expression of various transport and detoxication proteins in mouse liver after administration of the hepatotoxicants, acetaminophen or carbon tetrachloride. Therefore, male C57BL/6 J mice received acetaminophen (APAP, 200, 300, or 400 mg/kg, ip) or carbon tetrachloride (CCl4, 10 or 25 microl/kg, ip). Plasma and liver samples were collected at 6, 24, and 48 h for assessment of alanine aminotransferase (ALT) activity, total RNA isolation, and histopathological analysis of injury. Heme oxygenase-1 (Ho-1), NAD(P)H quinone oxidoreductase-1 (Nqo1), organic anion-transporting polypeptides (Oatp1a1, 1a4 and 1b2), sodium/taurocholate-cotransporting polypeptide (Ntcp), and multidrug resistance-associated protein (Mrp 1-6) mRNA levels in liver were determined using the branched DNA signal amplification assay. Hepatotoxic doses of APAP and CCl4 increased Ho-1 and Nqo1 mRNA levels by 22- and 2.5-fold, respectively, and reduced Oatp1a1, 1a4, and Ntcp mRNA levels in liver. By contrast, expression of Mrps 1-4 was increased after treatment with APAP and CCl4. Notably, a marked elevation of Mrp4 mRNA expression was observed 24 h after APAP 400 mg/kg (5-fold) and CCl4 25 microl/kg (37-fold). Collectively, these expression patterns suggest a coordinated regulation of both transport and detoxification genes during liver injury. This reduction in expression of uptake transporters, as well as enhanced transcription of detoxication enzymes and export transporters may limit the accumulation of potentially toxic products in hepatocytes.
Collapse
Affiliation(s)
- Lauren M Aleksunes
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Wang Q, Bhardwaj RK, Herrera-Ruiz D, Hanna NN, Hanna IT, Gudmundsson OS, Buranachokpaisan T, Hidalgo IJ, Knipp GT. Expression of Multiple Drug Resistance Conferring Proteins in Normal Chinese and Caucasian Small and Large Intestinal Tissue Samples. Mol Pharm 2004; 1:447-54. [PMID: 16028356 DOI: 10.1021/mp049942r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug resistance conferring proteins (MDRCP) are ATP-binding cassette (ABC) transporters known to significantly influence the absorption, distribution, metabolism, and elimination (ADME) and toxic behavior of many therapeutic agents. Research in the pharmacogenomics area has suggested that mutations and variable expression patterns of these MDCRPs may exist in tissue samples from different ethnic groups. The goal of this study was to examine the expression of P-glycoprotein (PGP), sister of PGP (S-PGP), multidrug resistance protein 3 (Mdr3), multidrug resistance like proteins 1-5 (MRP 1-5), and lung resistance associated protein (LRP) in tissue slides and protein lysates derived from normal adult small or large intestines of Caucasian or Chinese origin. Our results demonstrated ubiquitous expression of PGP, MRP 1, MRP 4, and LRP in the small and large intestinal epitheliums originating from both Caucasian and Chinese origin. S-PGP, Mdr3, MRP 2, and MRP 3 exhibited variable expression in the tissue slides and protein lysates derived from the Chinese and Caucasian small and large intestines. MRP 5 was not observed in any of the samples studied. The results suggest that MDCRPs may have distinct expression profiles in the small and large intestines that potentially vary with genetic background. These studies provide a foundation for further investigations to verify these findings across a wider number of patients of different ethnic backgrounds.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/analysis
- ATP Binding Cassette Transporter, Subfamily B/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 11
- ATP-Binding Cassette Transporters/analysis
- ATP-Binding Cassette Transporters/biosynthesis
- Adult
- Asian People
- China
- Drug Resistance, Multiple
- Humans
- Immunoblotting
- Immunohistochemistry
- Intestine, Large/chemistry
- Intestine, Large/cytology
- Intestine, Large/metabolism
- Intestine, Small/chemistry
- Intestine, Small/cytology
- Intestine, Small/metabolism
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/analysis
- Multidrug Resistance-Associated Proteins/biosynthesis
- Reference Values
- White People
Collapse
Affiliation(s)
- Qing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854-8022, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tarnay JN, Szeri F, Iliás A, Annilo T, Sung C, Le Saux O, Váradi A, Dean M, Boyd CD, Robinow S. The dMRP/CG6214 gene of Drosophila is evolutionarily and functionally related to the human multidrug resistance-associated protein family. INSECT MOLECULAR BIOLOGY 2004; 13:539-548. [PMID: 15373810 DOI: 10.1111/j.0962-1075.2004.00512.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ATP-binding cassette (ABC) transporters are involved in the transport of substrates across biological membranes and are essential for many cellular processes. Of the fifty-six Drosophila ABC transporter genes only white, brown, scarlet, E23 and Atet have been studied in detail. Phylogenetic analyses identify the Drosophila gene dMRP/CG6214 as an orthologue to the human multidrug-resistance associated proteins MRP1, MRP2, MRP3 and MRP6. To study evolutionarily conserved roles of MRPs we have initiated a characterization of dMRP. In situ hybridization and Northern analysis indicate that dMRP is expressed throughout development and appears to be head enriched in adults. Functional studies indicate that DMRP is capable of transporting a known MRP1 substrate and establishes DMRP as a high capacity ATP-dependent, vanadate-sensitive organic anion transporter.
Collapse
Affiliation(s)
- J N Tarnay
- Cell and Molecular Biology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G, Mercer KE, Zhuang Y, Panetta JC, Johnston B, Scheper RJ, Stewart CF, Schuetz JD. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 2004; 24:7612-21. [PMID: 15314169 PMCID: PMC506999 DOI: 10.1128/mcb.24.17.7612-7621.2004] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the multidrug resistance protein MRP4/ABCC4 in vivo remains undefined. To explore this role, we generated Mrp4-deficient mice. Unexpectedly, these mice showed enhanced accumulation of the anticancer agent topotecan in brain tissue and cerebrospinal fluid (CSF). Further studies demonstrated that topotecan was an Mrp4 substrate and that cells overexpressing Mrp4 were resistant to its cytotoxic effects. We then used new antibodies to discover that Mrp4 is unique among the anionic ATP-dependent transporters in its dual localization at the basolateral membrane of the choroid plexus epithelium and in the apical membrane of the endothelial cells of the brain capillaries. Microdialysis sampling of ventricular CSF demonstrated that localization of Mrp4 at the choroid epithelium is integral to its function in limiting drug penetration into the CSF. The topotecan resistance of cells overexpressing Mrp4 and the polarized expression of Mrp4 in the choroid plexus and brain capillary endothelial cells indicate that Mrp4 has a dual role in protecting the brain from cytotoxins and suggest that the therapeutic efficacy of central nervous system-directed drugs that are Mrp4 substrates may be improved by developing Mrp4 inhibitors.
Collapse
Affiliation(s)
- Markos Leggas
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Jorajuria S, Dereuddre-Bosquet N, Naissant-Storck K, Dormont D, Clayette P. Differential expression levels of MRP1, MRP4, and MRP5 in response to human immunodeficiency virus infection in human macrophages. Antimicrob Agents Chemother 2004; 48:1889-91. [PMID: 15105153 PMCID: PMC400539 DOI: 10.1128/aac.48.5.1889-1891.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance proteins (MRPs) have been reported to be involved in the efflux of some anti-human immunodeficiency virus (HIV) drugs. We show here that MRP1, MRP4, and MRP5 are expressed at the mRNA level in human monocyte-derived macrophages. HIV infection caused increased transcription of these MRPs; however, temporal differences in stimulation are reported.
Collapse
Affiliation(s)
- Sylvie Jorajuria
- CEA, Service de Neurovirologie, Université Paris XI, CRSSA, EPHE, IPS, Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
74
|
Jorajuria S, Dereuddre-Bosquet N, Becher F, Martin S, Porcheray F, Garrigues A, Mabondzo A, Benech H, Grassi J, Orlowski S, Dormont D, Clayette P. Atp Binding Cassette Multidrug Transporters Limit the Anti-HIV Activity of Zidovudine and Indinavir in Infected Human Macrophages. Antivir Ther 2004. [DOI: 10.1177/135965350400900403] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives To investigate whether P-glycoprotein (P-gp) and multidrug resistance proteins (MRPs), which limit the bioavailability of HIV protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs), modulate the anti-HIV activity of NRTIs, non-NRTIs and PIs in vitro. Design: We used primary cultures of major HIV target cells: human monocyte-derived macrophages (MDMs) and lymphocytes. Methods P-gp and MRP expression in response to long-term zidovudine (3′-azido-3′-deoxythymidine; AZT) or indinavir treatment was quantified by RT-PCR. MDM and lymphocytes were infected in vitro with HIV-1/Ba-L and HIV-1-LAI, respectively, and treated with antiretroviral drugs. We evaluated the activity of these drugs in combination with PSC833, a P-gp inhibitor, and/or probenecid, an MRP1 inhibitor. Intracellular AZT triphosphate derivative (AZT-TP) was quantified by HPLC-MSMS. P-gp ATPase activity was measured with inside-out native membrane vesicles enriched in P-gp. Results Levels of MDR1, mrp4 and mrp5 mRNA were high following AZT treatment. In infected MDM, PSC833 and probenecid increased the anti-HIV activity of AZT and indinavir. AZT (5 nM) decreased HIV replication by 34% alone and by 72% in combination with P-gp/MRP inhibitors. Indinavir (10 nM) gave 14% inhibition alone and 81% in combination. The increase in anti-HIV activity of AZT was correlated with an increase in intracellular AZT-TP concentration. However, unlike PIs, neither AZT nor its metabolites interacted with P-gp. Conclusion AZT increases the expression of multidrug transporters, thereby decreasing its pharmacological activity. The cellular efflux of AZT probably involves MRP4 or MRP5. In contrast, increases in indinavir anti-HIV activity require the inhibition of both P-gp and MRP1.
Collapse
Affiliation(s)
- Sylvie Jorajuria
- CEA, Service de Neurovirologie, Université Paris XI, CRSSA, EPHE, IPSC, Fontenay-aux-Roses, France
| | | | | | | | - Fabrice Porcheray
- CEA, Service de Neurovirologie, Université Paris XI, CRSSA, EPHE, IPSC, Fontenay-aux-Roses, France
| | | | | | - Henri Benech
- SPI, DRM/DSV, CEA-Saclay, Gif-sur-Yvette, France
| | | | | | - Dominique Dormont
- CEA, Service de Neurovirologie, Université Paris XI, CRSSA, EPHE, IPSC, Fontenay-aux-Roses, France
| | - Pascal Clayette
- SPI-BIO, c/o Service de Neurovirologie, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
75
|
Dantzig AH, Shepard RL, Pratt SE, Tabas LB, Lander PA, Ma L, Paul DC, Williams DC, Peng SB, Slapak CA, Godinot N, Perry WL. Evaluation of the binding of the tricyclic isoxazole photoaffinity label LY475776 to multidrug resistance associated protein 1 (MRP1) orthologs and several ATP-binding cassette (ABC) drug transporters. Biochem Pharmacol 2004; 67:1111-21. [PMID: 15006547 DOI: 10.1016/j.bcp.2003.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 11/04/2003] [Indexed: 11/17/2022]
Abstract
Several of the ATP-binding cassette (ABC) transporters confer resistance to anticancer agents and/or antiviral agents when overexpressed in drug-sensitive cells. Recently a MRP1 (ABCC1) tricyclic isoxazole inhibitor, LY475776 was shown to be a glutathione-dependent photoaffinity label of human MRP1 and showed poor labeling of murine mrp1, an ortholog that does not confer anthracycline resistance. In the present study, the specificity of LY475776 was examined for its ability to modulate or photolabel orthologs of MRP1 and several other drug efflux transporters of the ABC transporter family. LY475776 modulated MRP1 and Pgp-mediated resistance (MDR, ABCB1) in, respectively, HeLa-T5 and CEM/VLB(100) cells to both vincristine and doxorubicin. LY475776 photolabeled 170kDa Pgp and was inhibited by the potent Pgp inhibitor LY335979 (Zosuquidar.3HCl). The labeling of the 190kDa MRP1 protein in membranes of HeLa-T5 cells was inhibited by substrates of MRP1 such as leukotriene C(4), vincrisine, and doxorubicin and by the inhibitor, MK571. LY475776 did not photolabel human MRP2 (ABCC2), MRP3 (ABCC3), MRP5 (ABCC5) or breast cancer resistance protein (ABCG2). Because LY475776 photolabels murine mrp1 less well than human MRP1 and binds to a region believed important for anthracycline binding, studies were conducted with monkey and canine MRP1 which also show a reduced ability to confer resistance to anthracyclines. Unlike murine mrp1, both orthologs were photolabeled well by LY475776. These studies indicate that the specificity of LY475776 is fairly limited to Pgp and MRP1 and further studies will help to define the binding regions.
Collapse
Affiliation(s)
- Anne H Dantzig
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Dazert P, Meissner K, Vogelgesang S, Heydrich B, Eckel L, Böhm M, Warzok R, Kerb R, Brinkmann U, Schaeffeler E, Schwab M, Cascorbi I, Jedlitschky G, Kroemer HK. Expression and localization of the multidrug resistance protein 5 (MRP5/ABCC5), a cellular export pump for cyclic nucleotides, in human heart. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1567-77. [PMID: 14507663 PMCID: PMC1868287 DOI: 10.1016/s0002-9440(10)63513-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The multidrug resistance protein 5 (MRP5/ABCC5) has been recently identified as cellular export pump for cyclic nucleotides with 3',5'-cyclic GMP (cGMP) as a high-affinity substrate. In view of the important role of cGMP for cardiovascular function, expression of this transport protein in human heart is of relevance. We analyzed the expression and localization of MRP5 in human heart [21 auricular (AS) and 15 left ventricular samples (LV) including 5 samples of dilated and ischemic cardiomyopathy]. Quantitative real-time polymerase chain reaction normalized to beta-actin revealed expression of the MRP5 gene in all samples (LV, 38.5 +/- 12.9; AS, 12.7 +/- 5.6; P < 0.001). An MRP5-specific polyclonal antibody detected a glycoprotein of approximately 190 kd in crude cell membrane fractions from these samples. Immunohistochemistry with the affinity-purified antibody revealed localization of MRP5 in cardiomyocytes as well as in cardiovascular endothelial and smooth muscle cells. Furthermore, we could detect MRP5 and ATP-dependent transport of [(3)H]cGMP in sarcolemma vesicles of human heart. Quantitative analysis of the immunoblots indicated an interindividual variability with a higher expression of MRP5 in the ischemic (104 +/- 38% of recombinant MRP5 standard) compared to normal ventricular samples (53 +/- 36%, P < 0.05). In addition, we screened genomic DNA from our samples for 20 single-nucleotide polymorphisms in the MRP5 gene. These results indicate that MRP5 is localized in cardiac and cardiovascular myocytes as well as endothelial cells with increased expression in ischemic cardiomyopathy. Therefore, MRP5-mediated cellular export may represent a novel, disease-dependent pathway for cGMP removal from cardiac cells.
Collapse
Affiliation(s)
- Peter Dazert
- Department of Pharmacology, Peter Holtz Research Center of Pharmacology and Experimental Therapeutics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Wagner M, Fickert P, Zollner G, Fuchsbichler A, Silbert D, Tsybrovskyy O, Zatloukal K, Guo GL, Schuetz JD, Gonzalez FJ, Marschall HU, Denk H, Trauner M. Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 2003; 125:825-38. [PMID: 12949728 DOI: 10.1016/s0016-5085(03)01068-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Cholestasis induces changes in hepatic adenosine triphosphate-binding cassette (ABC) transporter expression. We aimed to investigate the role of the nuclear bile acid receptor (farnesoid X receptor [FXR]) in mediating changes in ABC transporter expression and in determining liver injury. METHODS Hepatic ABC transporter (multidrug resistance-associated proteins [Mrp] 2-4 and bile salt export pump [Bsep]) expression and localization were studied in common bile duct-ligated (CBDL) FXR knockout (FXR(-/-)), wild-type (FXR(+/+)), and sham-operated mice. Serum alanine aminotransferase, alkaline phosphatase, bilirubin and bile acid levels, hepatic bile acid composition, and liver histology were investigated. Cholangiomanometry and bile duct morphometry were performed. RESULTS CBDL induced expression of Mrp 3 and Mrp 4 in FXR(+/+) and even more in FXR(-/-), whereas Mrp 2 expression remained unchanged. Bsep expression was maintained in CBDL FXR(+/+) but remained undetectable in CBDL FXR(-/-). Alanine aminotransferase levels and mortality rates did not differ between CBDL FXR(+/+) and FXR(-/-). CBDL increased biliary pressure and induced bile ductular proliferation and bile infarcts in FXR(+/+), whereas FXR(-/-) had lower biliary pressures, less ductular proliferation, and developed disseminated liver cell necroses. CONCLUSIONS Overexpression of Mrp 3 and Mrp 4 in CBDL mice is FXR independent and could play an important role in the adaptive hepatic ABC transporter response to cholestasis. Maintenance of Bsep expression strictly depends on FXR and is a critical determinant of the cholestatic phenotype. Lack of bile infarcts in CBDL FXR(-/-) suggests that development of bile infarcts is related to bile acid-dependent bile flow and biliary pressure. This information is relevant for the potential use of FXR modulators in the treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Martin Wagner
- Department of Medicine, Karl-Franzens University, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
DeFeudis FV, Papadopoulos V, Drieu K. Ginkgo biloba extracts and cancer: a research area in its infancy. Fundam Clin Pharmacol 2003; 17:405-17. [PMID: 12914542 DOI: 10.1046/j.1472-8206.2003.00156.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent studies conducted with various molecular, cellular and whole animal models have revealed that leaf extracts of Ginkgo biloba may have anticancer (chemopreventive) properties that are related to their antioxidant, anti-angiogenic and gene-regulatory actions. The antioxidant and associated anti-lipoperoxidative effects of Ginkgo extracts appear to involve both their flavonoid and terpenoid constituents. The anti-angiogenic activity of the extracts may involve their antioxidant activity and their ability to inhibit both inducible and endothelial forms of nitric oxide synthase. With regard to gene expression, a Ginkgo extract and one of its terpenoid constituents, ginkgolide B, inhibited the proliferation of a highly aggressive human breast cancer cell line and xenografts of this cell line in nude mice. cDNA microarray analyses have shown that exposure of human breast cancer cells to a Ginkgo extract altered the expression of genes that are involved in the regulation of cell proliferation, cell differentiation or apoptosis, and that exposure of human bladder cancer cells to a Ginkgo extract produced an adaptive transcriptional response that augments antioxidant status and inhibits DNA damage. In humans, Ginkgo extracts inhibit the formation of radiation-induced (chromosome-damaging) clastogenic factors and ultraviolet light-induced oxidative stress - effects that may also be associated with anticancer activity. Flavonoid and terpenoid constituents of Ginkgo extracts may act in a complementary manner to inhibit several carcinogenesis-related processes, and therefore the total extracts may be required for producing optimal effects.
Collapse
|
79
|
Adachi M, Reid G, Schuetz JD. Therapeutic and biological importance of getting nucleotides out of cells: a case for the ABC transporters, MRP4 and 5. Adv Drug Deliv Rev 2002; 54:1333-42. [PMID: 12406648 DOI: 10.1016/s0169-409x(02)00166-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The energy dependent transport of drugs contributes to cellular resistance and is undoubtedly a prime suspect in chemotherapeutic failure of a variety of disease processes. Early studies focused on a single gene, the multidrug resistance gene, MDR1, as a main contributor to chemotherapeutic failure. However, the multifaceted nature of cellular resistance lead to the discovery of the MRP gene. This pivotal finding and the concurrent rapid development of gene databases lead to the expansion of the MRP gene family. The purpose of this review is to discuss two of the recently described MRP family members that were orphans until their role in drug resistance was discovered. This review will provide an overview of the current state of our understanding of MRP4 and 5.
Collapse
Affiliation(s)
- Masashi Adachi
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, 332 N Lauderdale Avenue, Memphis, TN 38105, USA
| | | | | |
Collapse
|