51
|
Hedbacker K, Lu YH, Dallner O, Li Z, Fayzikhodjaeva G, Birsoy K, Han C, Yang C, Friedman JM. Limitation of adipose tissue by the number of embryonic progenitor cells. eLife 2020; 9:e53074. [PMID: 32452759 PMCID: PMC7253174 DOI: 10.7554/elife.53074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Adipogenesis in adulthood replaces fat cells that turn over and can contribute to the development of obesity. However, the proliferative potential of adipocyte progenitors in vivo is unknown (Faust et al., 1976; Faust et al., 1977; Hirsch and Han, 1969; Johnson and Hirsch, 1972). We addressed this by injecting labeled wild-type embryonic stem cells into blastocysts derived from lipodystrophic A-ZIP transgenic mice, which have a genetic block in adipogenesis. In the resulting chimeric animals, wild-type ES cells are the only source of mature adipocytes. We found that when chimeric animals were fed a high-fat-diet, animals with low levels of chimerism showed a significantly lower adipose tissue mass than animals with high levels of chimerism. The difference in adipose tissue mass was attributed to variability in the amount of subcutaneous adipose tissue as the amount of visceral fat was independent of the level of chimerism. Our findings thus suggest that proliferative potential of adipocyte precursors is limited and can restrain the development of obesity.
Collapse
Affiliation(s)
- Kristina Hedbacker
- Laboratory of Molecular Genetics, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Yi-Hsueh Lu
- Laboratory of Molecular Genetics, The Rockefeller UniversityNew YorkUnited States
| | - Olof Dallner
- Laboratory of Molecular Genetics, The Rockefeller UniversityNew YorkUnited States
| | - Zhiying Li
- Laboratory of Molecular Genetics, The Rockefeller UniversityNew YorkUnited States
| | - Gulya Fayzikhodjaeva
- Laboratory of Molecular Genetics, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Kıvanç Birsoy
- Laboratory of Molecular Genetics, The Rockefeller UniversityNew YorkUnited States
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller UniversityNew YorkUnited States
| | - Chiayun Han
- Gene Targeting Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Chingwen Yang
- Gene Targeting Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
52
|
Lee D, Shin Y, Jang J, Park Y, Ahn J, Jeong S, Shin SS, Yoon M. The herbal extract ALS-L1023 from Melissa officinalis alleviates visceral obesity and insulin resistance in obese female C57BL/6J mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112646. [PMID: 32027997 DOI: 10.1016/j.jep.2020.112646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/13/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melissa officinalis L. (Labiatae; lemon balm) has traditionally been used as a medicinal herb to treat stress, anxiety, and insomnia. Current reports suggest that not only chronic stress stimulates angiogenesis, but angiogenesis also regulates adipogenesis and obesity. Because the herbal extract ALS-L1023 from Melissa officinalis inhibits angiogenesis, we hypothesized that ALS-L1023 could suppress visceral obesity and insulin resistance in obese female C57BL/6J mice, a mouse model of obese premenopausal women. MATERIALS AND METHODS The mice were grouped and fed for 16 weeks as follows: 1) low-fat diet (LFD), 2) high-fat diet (HFD), or 3) HFD supplemented with 0.4 or 0.8% ALS-L1023. Variables and determinants of visceral obesity, insulin resistance, and pancreatic dysfunction were then assessed via blood analysis, histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS ALS-L1023 decreased weight gain, visceral adipocyte size, and serum lipid levels in HFD-fed obese mice. ALS-L1023 also normalized hyperglycemia and hyperinsulinemia and concomitantly reduced blood glucose levels during oral glucose tolerance tests. The pancreatic islet size and insulin-positive β-cell area were significantly reduced in ALS-L1023-treated mice compared with untreated obese controls, reaching a level similar to that of LFD-fed lean mice. ALS-L1023 suppressed pancreatic lipid accumulation, infiltration of inflammatory cells, and collagen levels. ALS-L1023 treatment altered the pancreatic expression of genes involved in steatosis, inflammation, and fibrosis. CONCLUSIONS Our findings indicate that the herbal extract ALS-L1023 from Melissa officinalis not only inhibits visceral obesity, but also attenuates the increased fasting blood glucose, impaired glucose tolerance, and pancreatic dysfunction seen in female obese mice. These results suggest that ALS-L1023 may be effective in the prevention of visceral obesity and insulin resistance in obese premenopausal women.
Collapse
Affiliation(s)
- Dongju Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, South Korea
| | - Yujin Shin
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, South Korea
| | - Joonseong Jang
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, South Korea
| | - Yonghyun Park
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, South Korea
| | - Jiwon Ahn
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Sunhyo Jeong
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, South Korea
| | - Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan, 47340, South Korea.
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, South Korea.
| |
Collapse
|
53
|
Yeh YT, Lu TJ, Lian GT, Lung MC, Lee YL, Chiang AN, Hsieh SC. Chinese olive (Canarium album L.) fruit regulates glucose utilization by activating AMP-activated protein kinase. FASEB J 2020; 34:7866-7884. [PMID: 32333610 DOI: 10.1096/fj.201902494rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 11/11/2022]
Abstract
A growing body of evidence demonstrates obesity-induced insulin resistance is associated with the development of metabolic diseases. This study was designed to investigate ethyl acetate fraction of Chinese olive fruit extract (CO-EtOAc)-mediated attenuation of obesity and hyperglycemia in a mouse model. About 60% HFD-fed mice were treated intragastrically with CO-EtOAc for last 6 weeks, and body weight, blood biochemical parameters as well as hepatic inflammation response were investigated. Our results showed that CO-EtOAc treatment significantly reduced the formation of hepatic lipid droplets, body weight gain, blood glucose, and improved serum biochemical parameters in HFD-induced obese and insulin resistant mice. We further explored the molecular mechanism underlying the blood glucose modulating effect of CO-EtOAc using L6 myotubes model. We conclude that CO-EtOAc effectively increases the glycogen content and glucose uptake by stimulating the membrane translocation of glucose transporter 4. In addition, CO-EtOAc depolarizes the mitochondrial membrane and decreases the mitochondrial oxygen consumption, which may result in AMPK activation and the consequent mitochondrial fission. This study shows that CO-EtOAc prevents the development of obesity in mice fed with HFD and is also capable of stimulating glucose uptake. The possible mechanism might be due to the effects of CO-EtOAc on activation of AMPK and promotion of mitochondrial fission.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, FL, USA
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ting Lian
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Meng-Chuan Lung
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Lee
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
54
|
Wang Y, Koh WP, Sim X, Yuan JM, Pan A. Multiple Biomarkers Improved Prediction for the Risk of Type 2 Diabetes Mellitus in Singapore Chinese Men and Women. Diabetes Metab J 2020; 44:295-306. [PMID: 31769241 PMCID: PMC7188981 DOI: 10.4093/dmj.2019.0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Multiple biomarkers have performed well in predicting type 2 diabetes mellitus (T2DM) risk in Western populations. However, evidence is scarce among Asian populations. METHODS Plasma triglyceride-to-high density lipoprotein (TG-to-HDL) ratio, alanine transaminase (ALT), high-sensitivity C-reactive protein (hs-CRP), ferritin, adiponectin, fetuin-A, and retinol-binding protein 4 were measured in 485 T2DM cases and 485 age-and-sex matched controls nested within the prospective Singapore Chinese Health Study cohort. Participants were free of T2DM at blood collection (1999 to 2004), and T2DM cases were identified at the subsequent follow-up interviews (2006 to 2010). A weighted biomarker score was created based on the strengths of associations between these biomarkers and T2DM risks. The predictive utility of the biomarker score was assessed by the area under receiver operating characteristics curve (AUC). RESULTS The biomarker score that comprised of four biomarkers (TG-to-HDL ratio, ALT, ferritin, and adiponectin) was positively associated with T2DM risk (P trend <0.001). Compared to the lowest quartile of the score, the odds ratio was 12.0 (95% confidence interval [CI], 5.43 to 26.6) for those in the highest quartile. Adding the biomarker score to a base model that included smoking, history of hypertension, body mass index, and levels of random glucose and insulin improved AUC significantly from 0.81 (95% CI, 0.78 to 0.83) to 0.83 (95% CI, 0.81 to 0.86; P=0.002). When substituting the random glucose levels with glycosylated hemoglobin in the base model, adding the biomarker score improved AUC from 0.85 (95% CI, 0.83 to 0.88) to 0.86 (95% CI, 0.84 to 0.89; P=0.032). CONCLUSION A composite score of blood biomarkers improved T2DM risk prediction among Chinese.
Collapse
Affiliation(s)
- Yeli Wang
- Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
55
|
Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients 2020; 12:nu12040892. [PMID: 32218248 PMCID: PMC7230722 DOI: 10.3390/nu12040892] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The growing worldwide epidemic of obesity and associated metabolic health comorbidities has resulted in an urgent need for safe and efficient nutritional solutions. The research linking obesity with gut microbiota dysbiosis has led to a hypothesis that certain bacterial strains could serve as probiotics helping in weight management and metabolic health. In the search for such strains, the effect of Bifidobacterium animalis subsp. lactis 420 (B420) on gut microbiota and metabolic health, and the mechanisms of actions, has been investigated in a variety of in vitro, pre-clinical, and clinical studies. In this review, we aim to highlight the research on B420 related to obesity, metabolic health, and the microbiota. Current research supports the hypothesis that gut dysbiosis leads to an imbalance in the inflammatory processes and loss of epithelial integrity. Bacterial components, like endotoxins, that leak out of the gut can invoke low-grade, chronic, and systemic inflammation. This imbalanced state is often referred to as metabolic endotoxemia. Scientific evidence indicates that B420 can slow down many of these detrimental processes via multiple signaling pathways, as supported by mechanistic in vitro and in vivo studies. We discuss the connection of these mechanisms to clinical evidence on the effect of B420 in controlling weight gain in overweight and obese subjects. The research further indicates that B420 may improve the epithelial integrity by rebalancing a dysbiotic state induced by an obesogenic diet, for example by increasing the prevalence of lean phenotype microbes such as Akkermansia muciniphila. We further discuss, in the context of delivering the health benefits of B420: the safety and technological aspects of the strain including genomic characterization, antibiotic resistance profiling, stability in the product, and survival of the live probiotic in the intestine. In summary, we conclude that the clinical and preclinical studies on metabolic health suggest that B420 may be a potential candidate in combating obesity; however, further clinical studies are needed.
Collapse
|
56
|
Miklishanskaya SV, Solomasova LV, Mazur MA. Obesity and Mechanisms of its Negative Impact on the Cardiovascular System. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2020. [DOI: 10.20996/1819-6446-2020-02-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Currently, the number of obese people in the world is constantly increasing. Obesity has a direct negative impact on the heart and blood vessels, which can be considered not only as an appropriate response to an increase in the volume of circulating blood due to an increase in body weight, but also as a side tissue reaction of the myocardium to hormonal and metabolic changes inherent in obesity. Our review is devoted to the description of the mechanisms of influence of obesity on the structural and functional parameters of the heart, which create prerequisites for the development of cardiovascular diseases, as well as the existing contradictions. Currently, the accumulated data suggest that an excessive amount of adipose tissue, in addition to metabolic disorders, including insulin resistance, imbalance of adipokines and inflammation markers, leading to the development of lipotoxicity, can directly penetrate the myocardium and cause violations of its contractile properties, as well as affect the conduction of excitation pulses and provoke the development of rhythm and conduction disorders. The development of endothelial dysfunction in obesity ultimately leads to the development of atherosclerosis and coronary heart disease. In addition, obesity contributes to the emergence of risk factors for hypertension, diabetes, atrial fibrillation, chronic heart failure, obstructive sleep apnea syndrome. Given the differences in the literature on the effect of obesity on long-term outcomes in patients with cardiovascular diseases, it is important to conduct prospective studies on the role of individual factors and their combinations that affect the mortality of patients with cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - M. A. Mazur
- Russian Medical Academy of Continuous Professional Education
| |
Collapse
|
57
|
Li J, Li L, Guo D, Li S, Zeng Y, Liu C, Fu R, Huang M, Xie W. Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin Chim Acta 2020; 503:19-34. [PMID: 31923423 DOI: 10.1016/j.cca.2019.12.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
Hypertriglyceridemia is a risk factor for a series of diseases, such as cardiovascular disease (CVD), diabetes and nonalcoholic fatty liver disease (NAFLD). Angiopoietin-like proteins (ANGPTLs) family, especially ANGPTL3, ANGPTL4 and ANGPTL8, which regulate lipoprotein lipase (LPL) activity, play pivotal roles in triglyceride (TG) metabolism and related diseases/complications. There are many transcriptional and post-transcriptional factors that participate in physiological and pathological regulation of ANGPTLs to affect triglyceride metabolism. This review is intended to focus on the similarity and difference in the expression, structural features, regulation profile of the three ANGPTLs and inhibitory models for LPL. Description of the regulatory factors of ANGPTLs and the properties in regulating the lipid metabolism involved in the underlying mechanisms in pathological effects on diseases will provide potential therapeutic approaches for the treatment of dyslipidemia related diseases.
Collapse
Affiliation(s)
- Jing Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - DongMing Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - SuYun Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - YuXin Zeng
- 2018 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - ChuHao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ru Fu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - MengQian Huang
- 2015 Class of Clinical Medicine, Fuxing Hospital, Capital Medical University, Beijing 100038, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
58
|
Ardid-Ruiz A, Ibars M, Mena P, Del Rio D, Muguerza B, Arola L, Aragonès G, Suárez M. Resveratrol Treatment Enhances the Cellular Response to Leptin by Increasing OBRb Content in Palmitate-Induced Steatotic HepG2 Cells. Int J Mol Sci 2019; 20:ijms20246282. [PMID: 31842467 PMCID: PMC6941089 DOI: 10.3390/ijms20246282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
The interaction of leptin with its hepatic longest receptor (OBRb) promotes the phosphorylation of signal transducer and activator of transcription-3 (STAT3), protecting the liver from lipid accumulation. However, leptin signalling is disrupted in hepatic steatosis, causing leptin resistance. One promising strategy to combat this problem is the use of bioactive compounds such as polyphenols. Since resveratrol (RSV) is a modulator of lipid homeostasis in the liver, we investigated whether treatment with different doses of RSV restores appropriate leptin action and fat accumulation in palmitate-induced steatotic human hepatoma (HepG2) cells. Both RSV metabolism and the expression of molecules implicated in leptin signalling were analysed. RSV at a 10 μM concentration was entirely metabolized to resveratrol-3-sulfate after 24 and counteracted leptin resistance by increasing the protein levels of OBRb. In addition, RSV downregulated the expression of lipogenic genes including fatty acid synthase (Fas) and stearoyl-CoA desaturase-1 (Scd1) without any significant change in Sirtuin-1 (SIRT1) enzymatic activity. These results demonstrate that RSV restored leptin sensitivity in a cellular model of hepatic steatosis in a SIRT1-independent manner.
Collapse
Affiliation(s)
- Andrea Ardid-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Maria Ibars
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Veterinary Medicine, University of Parma, 43125 Parma, Italy
- School of Advanced Studies on Food and Nutrition, University of Parma, 43215 Parma, Italy
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Eurecat, Centre Tecnològic de Catalunya, Biotechnological Area, 43204 Reus, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-558-188
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
59
|
Xu H, Gajda AM, Zhou YX, Panetta C, Sifnakis Z, Fatima A, Henderson GC, Storch J. Muscle metabolic reprogramming underlies the resistance of liver fatty acid-binding protein (LFABP)-null mice to high-fat feeding-induced decline in exercise capacity. J Biol Chem 2019; 294:15358-15372. [PMID: 31451493 DOI: 10.1074/jbc.ra118.006684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/21/2019] [Indexed: 11/06/2022] Open
Abstract
Liver fatty acid-binding protein (LFABP) binds long-chain fatty acids with high affinity and is abundantly expressed in the liver and small intestine. Although LFABP is thought to function in intracellular lipid trafficking, studies of LFABP-null (LFABP-/-) mice have also indicated a role in regulating systemic energy homeostasis. We and others have reported that LFABP-/- mice become more obese than wildtype (WT) mice upon high-fat feeding. Here, we show that despite increased body weight and fat mass, LFABP-/- mice are protected from a high-fat feeding-induced decline in exercise capacity, displaying an approximate doubling of running distance compared with WT mice. To understand this surprising exercise phenotype, we focused on metabolic alterations in the skeletal muscle due to LFABP ablation. Compared with WT mice, resting skeletal muscle of LFABP-/- mice had higher glycogen and intramuscular triglyceride levels as well as an increased fatty acid oxidation rate and greater mitochondrial enzyme activities, suggesting higher substrate availability and substrate utilization capacity. Dynamic changes in the respiratory exchange ratio during exercise indicated that LFABP-/- mice use more carbohydrate in the beginning of an exercise period and then switch to using lipids preferentially in the later stage. Consistently, LFABP-/- mice exhibited a greater decrease in muscle glycogen stores during exercise and elevated circulating free fatty acid levels postexercise. We conclude that, because LFABP is not expressed in muscle, its ablation appears to promote interorgan signaling that alters muscle substrate levels and metabolism, thereby contributing to the prevention of high-fat feeding-induced skeletal muscle impairment.
Collapse
Affiliation(s)
- Heli Xu
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Angela M Gajda
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Yin Xiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Cristina Panetta
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Zoe Sifnakis
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Anam Fatima
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Gregory C Henderson
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901.,Department of Exercise Science, Rutgers University, New Brunswick, New Jersey 08901
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901 .,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
60
|
O’Donovan SD, Lenz M, Vink RG, Roumans NJT, de Kok TMCM, Mariman ECM, Peeters RLM, van Riel NAW, van Baak MA, Arts ICW. A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data. PLoS Comput Biol 2019; 15:e1007400. [PMID: 31581241 PMCID: PMC6890259 DOI: 10.1371/journal.pcbi.1007400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/03/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes. We then applied our refined model to human adipose tissue flux data collected before and after a diet intervention as part of the Yoyo study, to quantify the effects of caloric restriction on postprandial adipose tissue metabolism. Significant increases were observed in the model parameters describing the rate of uptake and release of both glycerol and NEFA. Additionally, decreases in the model's delay in insulin signalling parameters indicates there is an improvement in adipose tissue insulin sensitivity following caloric restriction.
Collapse
Affiliation(s)
- Shauna D. O’Donovan
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Division of Human Health and Nurtrition, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| | - Michael Lenz
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- Preventive Cardiology and Preventative Medicine - Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Roel G. Vink
- Dept. Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Nadia J. T. Roumans
- Dept. Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Theo M. C. M. de Kok
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Edwin C. M. Mariman
- Dept. Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ralf L. M. Peeters
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Natal A. W. van Riel
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marleen A. van Baak
- Dept. Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ilja C. W. Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. Epidemiology, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
61
|
Zhu Y, Zhang X, Zhang L, Zhang M, Li L, Luo D, Zhong Y. Perilipin5 protects against lipotoxicity and alleviates endoplasmic reticulum stress in pancreatic β-cells. Nutr Metab (Lond) 2019; 16:50. [PMID: 31384284 PMCID: PMC6668071 DOI: 10.1186/s12986-019-0375-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Background Chronic exposure of pancreatic β-cells to excess free fatty acids is thought to contribute to type 2 diabetes pathogenesis in obesity by impairing β-cell function and even leading to apoptosis. In β-cells, lipid droplet-associated protein perilipin 5 (PLIN5) has been shown to enhance insulin secretion by regulating intracellular lipid metabolism; the roles of PLIN5 in response to lipotoxicity remain poorly understood. Methods INS-1 β-cells were transfected with PLIN5-overexpression adenovirus (Ad-PLIN5) and treated with palmitate. C57BL/6 J male mice were fed with high fat diet and tail intravenous injected with adeno-associated virus overexpressing PLIN5 (AAV-PLIN5) in β-cells. Results Our data showed that palmitate and PPAR agonists including WY14643 (PPARα), GW501516 (PPARβ/δ), rosiglitazone (PPARγ) in vitro all induced PLIN5 expression in INS-1 cells. Under palmitate overload, although upregulating PLIN5 promoted lipid droplet storage, it alleviated lipotoxicity in INS-1 β-cells with improved cell viability, cell apoptosis and β-cell function. The protection role of PLIN5 in β-cell function observed in cell experiments were further verified in in vivo study indicated by mitigated glucose intolerance in high fat diet fed mice with β-cell-specific overexpression of PLIN5. Mechanistic experiments revealed that enhanced FAO induced by elevation of PLIN5, followed by decreased ER stress may be a major mechanism responsible for alleviation of lipotoxicity observed in the present study. Conclusions Our finding substantiated the important role of PLIN5 in protection against lipotoxicity in β-cells. Electronic supplementary material The online version of this article (10.1186/s12986-019-0375-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunxia Zhu
- 1Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233 China
| | - Xiaoyan Zhang
- 1Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233 China
| | - Li Zhang
- 1Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233 China
| | - Mingliang Zhang
- 2Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Ling Li
- 3Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Deng Luo
- 4Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Yuan Zhong
- 1Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233 China
| |
Collapse
|
62
|
Plaza A, Antonazzi M, Blanco-Urgoiti J, Del Olmo N, Ruiz-Gayo M. Potential Role of Leptin in Cardiac Steatosis Induced by Highly Saturated Fat Intake during Adolescence. Mol Nutr Food Res 2019; 63:e1900110. [PMID: 31298470 DOI: 10.1002/mnfr.201900110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/16/2019] [Indexed: 01/06/2023]
Abstract
SCOPE To identify the age-dependent effect of diets containing elevated amounts of either saturated or unsaturated fatty acids on cardiac steatosis in mice. METHODS AND RESULTS Five- and eight-week-old C57BL/6J mice cohorts are given free access to either a saturated or an unsaturated fatty-acid-enriched diet during 8 weeks. Body weight (BW) and food intake are monitored during this period. Cardiac lipid content, carnitine palmitoyltransferase-I (CPT-I) activity, and the amount of uncoupling proteins 2 and 3 (UCP2 and UCP3) are analyzed and correlated with blood leptin concentration. Leptin and PPARγ gene expression is quantified in white adipose tissue (WAT). Both diets have a similar effect on food intake, BW, and adiposity, independently of the age. Nevertheless, cardiac steatosis is specifically identified in adolescent mice consuming the saturated diet. These animals also display lower activity of cardiac CPT-I, a down-regulation of cardiac UCP2, together with lower concentration of plasma leptin. Accordingly, leptin gene expression is reduced in the visceral WAT. CONCLUSION Consumption of diets containing elevated amounts of saturated fat during adolescence and early adult life promotes cardiac steatosis in mice. An insufficient endocrine activity of WAT, in terms of leptin production, may account for such an effect.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Marco Antonazzi
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | | | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| |
Collapse
|
63
|
Ethnic distinctions in the pathophysiology of type 2 diabetes: a focus on black African-Caribbean populations. Proc Nutr Soc 2019; 79:184-193. [PMID: 31307560 DOI: 10.1017/s0029665119001034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes (T2D) is a global public health priority, particularly for populations of black African-Caribbean ethnicity, who suffer disproportionately high rates of the disease. While the mechanisms underlying the development of T2D are well documented, there is growing evidence describing distinctions among black African-Caribbean populations. In the present paper, we review the evidence describing the impact of black African-Caribbean ethnicity on T2D pathophysiology. Ethnic differences were first recognised through evidence that metabolic syndrome diagnostic criteria fail to detect T2D risk in black populations due to less central obesity and dyslipidaemia. Subsequently more detailed investigations have recognised other mechanistic differences, particularly lower visceral and hepatic fat accumulation and a distinctly hyperinsulinaemic response to glucose stimulation. While epidemiological studies have reported exaggerated insulin resistance in black populations, more detailed and direct measures of insulin sensitivity have provided evidence that insulin sensitivity is not markedly different to other ethnic groups and does not explain the hyperinsulinaemia that is exhibited. These findings lead us to hypothesise that ectopic fat does not play a pivotal role in driving insulin resistance in black populations. Furthermore, we hypothesise that hyperinsulinaemia is driven by lower rates of hepatic insulin clearance rather than heightened insulin resistance and is a primary defect rather than occurring in compensation for insulin resistance. These hypotheses are being investigated in our ongoing South London Diabetes and Ethnicity Phenotyping study, which will enable a more detailed understanding of ethnic distinctions in the pathophysiology of T2D between men of black African and white European ethnicity.
Collapse
|
64
|
Hristov I, Mocanu V, Zugun-Eloae F, Labusca L, Cretu-Silivestru I, Oboroceanu T, Tiron C, Tiron A, Burlacu A, Pinzariu AC, Armasu I, Neagoe RM, Covic A, Scripcariu V, Timofte DV. Association of intracellular lipid accumulation in subcutaneous adipocyte precursors and plasma adipokines in bariatric surgery candidates. Lipids Health Dis 2019; 18:141. [PMID: 31189474 PMCID: PMC6563373 DOI: 10.1186/s12944-019-1081-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The adipocyte expansion is a critical process with implications in the pathogenesis of obesity associated metabolic syndrome. Impaired adipogenesis leads to dysfunctional, hypertrophic adipocytes, local inflammation and peripheric insulin resistance. METHODS We assessed the relationship between the adipogenic differentiation capacity of the subcutaneous adipose derived stem cells (ASCs), evaluated by total lipid accumulation, and the metabolic and hormonal profile in a group of obese female patients proposed for bariatric surgery (N = 20) versus normal weight female controls (N = 7). RESULTS The lipid accumulation (measured as optical density at 492 nm) of ASCs during their differentiation to adipocytes was significantly lower in ASCs isolated from obese patients as compared to ASCs isolated from normal weight patients (0.49 ± 0.1 vs. 0.71 ± 0.1, p < 0.001). Significant negative correlations between lipid accumulation in adipogenic differentiated ASCs and plasma concentrations of triglycerides (p < 0.01), insulin (p < 0.001), HOMA-IR (p < 0.01), adiponectin (p < 0.05) and leptin/adiponectin ratio (p < 0.05) were found in obese group. CONCLUSIONS In severely obese female patients, the abnormal adipogenesis is related to insulin resistance and leptin/adiponectin ratio. The abnormal lipid accumulation in the mature adipocyte derived from obese ASCs could possible predict the further development of type 2 diabetes mellitus in severely obese patients and influence the selection of patients for bariatric surgery.
Collapse
Affiliation(s)
- Ioana Hristov
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
| | - Veronica Mocanu
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania.
| | - Florin Zugun-Eloae
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
- TRANSCEND Research Center, Regional Institute of Oncology, Iasi, Romania
| | - Luminita Labusca
- Stem Cell Laboratory, National Institute of Research and Development for Technical Physics (NIRDTP), Iasi, Romania
| | - Iustina Cretu-Silivestru
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
| | - Teodor Oboroceanu
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
| | - Crina Tiron
- TRANSCEND Research Center, Regional Institute of Oncology, Iasi, Romania
| | - Adrian Tiron
- TRANSCEND Research Center, Regional Institute of Oncology, Iasi, Romania
| | - Alexandrina Burlacu
- "Nicolae Simionescu" Institute of Cellular Biology and Pathology of the Romanian Academy, Bucharest, Romania
| | - Alin Constantin Pinzariu
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
| | - Ioana Armasu
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
| | - Radu Mircea Neagoe
- University of Medicine, Pharmacy, Sciences and Technology, Tg Mures, Romania
| | - Adrian Covic
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
- Academy of Medical Sciences, Bucharest, Romania
| | - Viorel Scripcariu
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
| | - Daniel Vasile Timofte
- "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
| |
Collapse
|
65
|
Sharma AX, Quittner-Strom EB, Lee Y, Johnson JA, Martin SA, Yu X, Li J, Lu J, Cai Z, Chen S, Wang MY, Zhang Y, Pearson MJ, Dorn AC, McDonald JG, Gordillo R, Yan H, Thai D, Wang ZV, Unger RH, Holland WL. Glucagon Receptor Antagonism Improves Glucose Metabolism and Cardiac Function by Promoting AMP-Mediated Protein Kinase in Diabetic Mice. Cell Rep 2019; 22:1760-1773. [PMID: 29444429 PMCID: PMC5978750 DOI: 10.1016/j.celrep.2018.01.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
The antidiabetic potential of glucagon receptor antagonism presents an opportunity for use in an insulin-centric clinical environment. To investigate the metabolic effects of glucagon receptor antagonism in type 2 diabetes, we treated Leprdb/db and Lepob/ob mice with REMD 2.59, a human monoclonal antibody and competitive antagonist of the glucagon receptor. As expected, REMD 2.59 suppresses hepatic glucose production and improves glycemia. Surprisingly, it also enhances insulin action in both liver and skeletal muscle, coinciding with an increase in AMP-activated protein kinase (AMPK)-mediated lipid oxidation. Furthermore, weekly REMD 2.59 treatment over a period of months protects against diabetic cardiomyopathy. These functional improvements are not derived simply from correcting the systemic milieu; nondiabetic mice with cardiac-specific overexpression of lipoprotein lipase also show improvements in contractile function after REMD 2.59 treatment. These observations suggest that hyperglucagonemia enables lipotoxic conditions, allowing the development of insulin resistance and cardiac dysfunction during disease progression.
Collapse
Affiliation(s)
- Ankit X Sharma
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Ezekiel B Quittner-Strom
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - Joshua A Johnson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Sarah A Martin
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Xinxin Yu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - Jianping Li
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - John Lu
- REMD Biotherapeutics Inc., Camarillo, CA 93012, USA
| | | | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - May-Yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - Yiyi Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Mackenzie J Pearson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Andie C Dorn
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Hai Yan
- REMD Biotherapeutics Inc., Camarillo, CA 93012, USA
| | - Dung Thai
- REMD Biotherapeutics Inc., Camarillo, CA 93012, USA
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
66
|
Combined exercise and calorie restriction therapies restore contractile and mitochondrial functions in skeletal muscle of obese–insulin resistant rats. Nutrition 2019; 62:74-84. [DOI: 10.1016/j.nut.2018.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023]
|
67
|
Imai Y, Cousins RS, Liu S, Phelps BM, Promes JA. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes. Ann N Y Acad Sci 2019; 1461:53-72. [PMID: 30937918 DOI: 10.1111/nyas.14037] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
Obesity is the major contributing factor for the increased prevalence of type 2 diabetes (T2D) in recent years. Sustained positive influx of lipids is considered to be a precipitating factor for beta cell dysfunction and serves as a connection between obesity and T2D. Importantly, fatty acids (FA), a key building block of lipids, are a double-edged sword for beta cells. FA acutely increase glucose-stimulated insulin secretion through cell-surface receptor and intracellular pathways. However, chronic exposure to FA, combined with elevated glucose, impair the viability and function of beta cells in vitro and in animal models of obesity (glucolipotoxicity), providing an experimental basis for the propensity of beta cell demise under obesity in humans. To better understand the two-sided relationship between lipids and beta cells, we present a current view of acute and chronic handling of lipids by beta cells and implications for beta cell function and health. We also discuss an emerging role for lipid droplets (LD) in the dynamic regulation of lipid metabolism in beta cells and insulin secretion, along with a potential role for LD under nutritional stress in beta cells, and incorporate recent advancement in the field of lipid droplet biology.
Collapse
Affiliation(s)
- Yumi Imai
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Ryan S Cousins
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Siming Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Brian M Phelps
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Joseph A Promes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
68
|
Dinh TC, Thi Phuong TN, Minh LB, Minh Thuc VT, Bac ND, Van Tien N, Pham VH, Show PL, Tao Y, Nhu Ngoc VT, Bich Ngoc NT, Jurgoński A, Thimiri Govinda Raj DB, Van Tu P, Ha VN, Czarzasta J, Chu DT. The effects of green tea on lipid metabolism and its potential applications for obesity and related metabolic disorders - An existing update. Diabetes Metab Syndr 2019; 13:1667-1673. [PMID: 31336539 DOI: 10.1016/j.dsx.2019.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Obesity is one of the top global issues, which induces several serious health consequences both physically and mentally, such as type 2 diabetes, cardiovascular diseases, dyslipidemia, eating disorders, depression and stress. However, the effective therapy to prevent and treat obesity and overweight, up to now, cannot be found nowadays. Several methods/medicines namely diet control, energy balance, environmental changes, genetic and stem cell therapies, new drugs/chemicals have been extensively studied to enhance the ability to control bodyweight and prevent obesity. Of all the aforementioned methods, green tea, used as a daily beverage, has shown beneficial impacts for the health, especially its anti-obesity effects. Available evidence shows that green tea can interrupt lipid emulsification, reduce adipocyte differentiation, increase thermogenesis, and reduce food intake, thus green tea improves the systemic metabolism and decreases fat mass. Here, we highlight and sum up the update investigations of anti-obesity effect of green tea as well as discuss the potential application of them for preventing obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Thien Chu Dinh
- Institute for Research and Development, Duy Tan University, Danang, Viet Nam
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, South Korea
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City, Viet Nam
| | | | | | - Nguyen Van Tien
- 103 Military Central Hospital, Vietnam Military Medical University Hanoi, Viet Nam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 8, 210095, China
| | | | | | - Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Poland
| | | | - Pham Van Tu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam
| | - Vu Ngoc Ha
- Vietnam Academy of Social Sciences, Hanoi, Viet Nam
| | - Joanna Czarzasta
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Dinh-Toi Chu
- School of Odonto Stomatology, Hanoi Medical University, Hanoi, Viet Nam; Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam.
| |
Collapse
|
69
|
Grattagliano I, Montezinho LP, Oliveira PJ, Frühbeck G, Gómez-Ambrosi J, Montecucco F, Carbone F, Wieckowski MR, Wang DQH, Portincasa P. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem Pharmacol 2019; 160:34-45. [PMID: 30508523 DOI: 10.1016/j.bcp.2018.11.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition characterized by the excessive accumulation of triglycerides in hepatocytes. NAFLD is the most frequent chronic liver disease in developed countries, and is often associated with metabolic disorders such as obesity and type 2 diabetes. NAFLD definition encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL), to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD, therefore, represents a global public health issue. Mitochondrial dysfunction occurs in NAFLD, and contributes to the progression to the necro-inflammatory and fibrotic form (NASH). Disrupted mitochondrial function is associated with a decrease in the energy levels and impaired redox balance, and negatively affects cell survival by altering overall metabolism and subcellular trafficking. Such events reduce the tolerance of hepatocytes towards damaging hits, and favour the injurious effects of extra-cellular factors. Here, we discuss the role of mitochondria in NAFLD and focus on potential therapeutic approaches aimed at preserving mitochondrial function.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy; Italian College of General Practitioners and Primary Care, Bari, Italy
| | - Liliana P Montezinho
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Medicine, Escola Universitária Vasco da Gama, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 Viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | | | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
70
|
Abstract
Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep-wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light-dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.
Collapse
Affiliation(s)
- Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
- Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.
| |
Collapse
|
71
|
Esteban-Cornejo I, Mora-Gonzalez J, Cadenas-Sanchez C, Contreras-Rodriguez O, Verdejo-Román J, Henriksson P, Migueles JH, Rodriguez-Ayllon M, Molina-García P, Suo C, Hillman CH, Kramer AF, Erickson KI, Catena A, Verdejo-García A, Ortega FB. Fitness, cortical thickness and surface area in overweight/obese children: The mediating role of body composition and relationship with intelligence. Neuroimage 2019; 186:771-781. [DOI: 10.1016/j.neuroimage.2018.11.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
|
72
|
Naseri R, Farzaei F, Haratipour P, Nabavi SF, Habtemariam S, Farzaei MH, Khodarahmi R, Tewari D, Momtaz S. Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Pharmacol 2018; 9:1310. [PMID: 30564116 PMCID: PMC6288909 DOI: 10.3389/fphar.2018.01310] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
The term "metabolic syndrome" (MetS) refers to a combination of diabetes, high blood pressure, and obesity. The origin of MetS includes a combination of multiple factors, such as sedentary lifestyle, unhealthy diet choice, and genetic factors. MetS is highly prevalent and adversely affects the general population by elevating risk of cardiovascular complications, organ failure, and much other pathology associated with late-stage diabetes. Anthocyanins (ANTs) are health-promoting bioactive compounds belonging to the flavonoids subclass of polyphenols. Numerous studies have reported the potential therapeutic benefits on MetS syndrome and diabetes from fruits rich in ANTs. This review summarizes the role of several dietary ANTs on preventing and managing MetS as well as the pharmacological mechanisms and biopharmaceutical features of their action. We also discuss potential nanoformulation and encapsulation approaches that may enhance the bioefficacy of ANTs in MetS. Experiments have demonstrated that ANTs may attenuate the symptoms of MetS via improving insulin resistance, impaired glucose tolerance, dyslipidaemia, cholesterol levels, hypertension, blood glucose, protecting β cells, and preventing free radical production. In brief, the intake of ANT-rich supplements should be considered due to their plausible ability for prevention and management of MetS. Additionally, randomized double-blind clinical trials are obligatory for evaluating the bioefficacy and pharmacological mechanisms of ANTs and their pharmaceutical formulations in patients with MetS.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
- Phyto Pharmacology Interest Group, Universal Scientific Education and Research Network, Los Angeles, CA, United States
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, United Kingdom
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Zeinvand-Lorestani M, Kalantari H, Khodayar MJ, Teimoori A, Saki N, Ahangarpour A, Rahim F, Khorsandi L. Dysregulation of Sqstm1, mitophagy, and apoptotic genes in chronic exposure to arsenic and high-fat diet (HFD). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34351-34359. [PMID: 30302732 DOI: 10.1007/s11356-018-3349-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Arsenic (As) is a toxic and hazardous metalloid. Unfortunately, its presence in drinking water together with wrong nutritional patterns is associated with an increase in the occurrence of metabolic disorders in young people. Degradation of mitochondria is presented by a specific form of autophagy called mitophagy which is an important landmark leading to apoptosis during lipotoxicity. Lipotoxicity and cellular toxicity due to arsenic intake can lead to changes in mitophagy and apoptosis. The protein derived from SQSTM1 gene, also called p62, plays an important role in energy homeostasis in the liver, and it can contribute to the regulation of autophagic responses given its effect on signaling of mTOR, MAPK, and NF-KB. Consequently, changes in Sqstm1, mitophagy (BNIP3), and apoptotic (caspase 3) genes in the livers of NMRI mice were examined with the use of real-time RT-PCR Array followed by exposure to an environmentally relevant and negligible cytotoxic concentration of arsenite (50 ppm) in drinking water while being fed with a high-fat diet (HFD) or low-fat diet (LFD) for 20 weeks (LFD-As and HFD-As groups). While LFD-As and HFD groups showed a decrease in BNIP3 expression, a significant increase was observed in the HFD-As group. P62 gene showed downregulation in LFD-As and HFD groups, and upregeneration was observed in the HFD-As group. Caspase 3 showed increased expression as the key factor associated with apoptotic liver cell death in the three groups, with the highest value in HFD-As group. Overall, the changes observed in the expression of Sqstm1, BNIP3, and caspase 3 in this study can be related to the level of liver damage caused by exposure to arsenic and HFD and probably, BNIP3 pro-apoptotic protein is associated with an increased cell death due to HFD and As.
Collapse
Affiliation(s)
- Marzieh Zeinvand-Lorestani
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Health Research Institute, Diabetes Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
74
|
Insights into leptin signaling and male reproductive health: the missing link between overweight and subfertility? Biochem J 2018; 475:3535-3560. [DOI: 10.1042/bcj20180631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
Obesity stands as one of the greatest healthcare challenges of the 21st century. Obesity in reproductive-age men is ever more frequent and is reaching upsetting levels. At the same time, fertility has taken an inverse direction and is decreasing, leading to an increased demand for fertility treatments. In half of infertile couples, there is a male factor alone or combined with a female factor. Furthermore, male fertility parameters such as sperm count and concentration went on a downward spiral during the last few decades and are now approaching the minimum levels established to achieve successful fertilization. Hence, the hypothesis that obesity and deleterious effects in male reproductive health, as reflected in deterioration of sperm parameters, are somehow related is tempting. Most often, overweight and obese individuals present leptin levels directly proportional to the increased fat mass. Leptin, besides the well-described central hypothalamic effects, also acts in several peripheral organs, including the testes, thus highlighting a possible regulatory role in male reproductive function. In the last years, research focusing on leptin effects in male reproductive function has unveiled additional roles and molecular mechanisms of action for this hormone at the testicular level. Herein, we summarize the novel molecular signals linking metabolism and male reproductive function with a focus on leptin signaling, mitochondria and relevant pathways for the nutritional support of spermatogenesis.
Collapse
|
75
|
Hayakawa J, Wang M, Wang C, Han RH, Jiang ZY, Han X. Lipidomic analysis reveals significant lipogenesis and accumulation of lipotoxic components in ob/ob mouse organs. Prostaglandins Leukot Essent Fatty Acids 2018; 136:161-169. [PMID: 28110829 PMCID: PMC6203299 DOI: 10.1016/j.plefa.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/03/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
To further understand the role of lipogenesis and lipotoxicity in the development of obesity and diabetes, lipidomes of various organs from ob/ob mice and their wild type controls were analyzed by shotgun lipidomics at 10, 12, and 16 weeks of age. We observed that the amounts of fatty acyl (FA) chains corresponding to those from de novo synthesis (e.g., 16:0, 16:1, and 18:1 FA) were substantially elevated in ob/ob mice, consistent with increased expression of genes and proteins involved in biosynthesis. Polyunsaturated fatty acid species were moderately increased in the examined tissues of ob/ob mice, since they can only be absorbed from diets or elongated from the ingested n-3 or n-6 FA. Different profiles of FA chains between ob/ob mouse liver and skeletal muscle reflect diverging lipogenesis pathways in these organs. Amounts of vaccenic acids (i.e., 18:1(n-7) FA) in 12- and 16-week ob/ob mouse liver were significantly increased compared to their controls, indicating enhanced de novo synthesis of this acid through 16:1(n-7) FA in the liver starting at 12 weeks of age. Coincidentally, synthesis of triacylglycerol from monoacylglycerol in the liver was also increased in ob/ob mice starting at 12 weeks of age, as revealed by simulation of triacylglycerol synthesis. Moreover, levels of lipotoxic lipid classes were significantly higher in ob/ob mice than their age-matched controls, supporting the notion that elevated lipotoxic components are tightly associated with insulin resistance in ob/ob mice. Taken together, the current study revealed that lipogenesis and lipotoxicity in ob/ob mice likely contribute to insulin resistance and provides great insights into the underlying mechanisms of diabetes and obesity.
Collapse
Affiliation(s)
- Jun Hayakawa
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Miao Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Chunyan Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Rowland H Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Zhen Y Jiang
- Department of Pharmacology & Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
76
|
Šimják P, Cinkajzlová A, Anderlová K, Pařízek A, Mráz M, Kršek M, Haluzík M. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J Endocrinol 2018; 238:R63-R77. [PMID: 29743342 DOI: 10.1530/joe-18-0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Gestational diabetes mellitus is defined as diabetes diagnosed in the second or third trimester of pregnancy in patients with no history of diabetes prior to gestation. It is the most common complication of pregnancy. The underlying pathophysiology shares some common features with type 2 diabetes mellitus (T2DM) combining relatively insufficient insulin secretion with increased peripheral insulin resistance. While a certain degree of insulin resistance is the physiological characteristics of the second half of pregnancy, it is significantly more pronounced in patients with gestational diabetes. Adipose tissue dysfunction and subclinical inflammation in obesity are well-described causes of increased insulin resistance in non-pregnant subjects and are often observed in individuals with T2DM. Emerging evidence of altered adipokine expression and local inflammation in adipose tissue in patients with gestational diabetes suggests an important involvement of adipose tissue in its etiopathogenesis. This review aims to summarize current knowledge of adipose tissue dysfunction and its role in the development of gestational diabetes. We specifically focus on the significance of alterations of adipokines and immunocompetent cells number and phenotype in fat. Detailed understanding of the role of adipose tissue in gestational diabetes may provide new insights into its pathophysiology and open new possibilities of its prevention and treatment.
Collapse
Affiliation(s)
- Patrik Šimják
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anna Cinkajzlová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kateřina Anderlová
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Antonín Pařízek
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miloš Mráz
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Kršek
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 2nd Internal Department, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
77
|
Expression analysis of a cholecystokinin system in human and rat white adipose tissue. Life Sci 2018; 206:98-105. [PMID: 29800537 DOI: 10.1016/j.lfs.2018.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/13/2018] [Accepted: 05/21/2018] [Indexed: 01/22/2023]
Abstract
AIM Cholecystokinin (CCK) participates in the storage of dietary triglycerides in white adipose tissue (WAT). Our goal was to characterize, both in subcutaneous (Sc-WAT) and visceral WAT (Vis-WAT), the functional expression of the two known CCK receptors, CCK-1 (CCK-1R) and CCK-2 (CCK-2R), as well as of CCK. MAIN METHODS Gene and protein expression was assessed in different cell types of rat and human WAT by means of RT-PCR and western-blot, respectively. The functionality of CCK-Rs was tested by quantifying protein kinase B (Akt) phosphorylation after treatment of pre-adipocytes with the bioactive fragment of CCK, CCK-8. The CCK receptor subtype involved in Akt phosphorylation was investigated by using selective CCK-1R (SR-27,897) and CCK-2R antagonists (L-365,260). KEY FINDINGS In rats, CCK-1R (Cckar) and CCK-2R (Cckbr) gene expression was detected in the two types of WAT analyzed as well as in isolated adipocytes, mesenchymal stem cells and pre-adipocytes. CCK-1R and CCK-2R proteins were identified in adipocytes and, to a minor extent, in pre-adipocytes. In addition, CCK-2R were detected in subcutaneous mesenchymal stem cells. Gene expression of the CCK precursor preproCCK as well as CCK immunoreactivity were also found in Sc-WAT and Vis-WAT. In human WAT, CCK gene expression as well as CCK-2Rs and CCK were also identified. CCK-8 evoked Akt phosphorylation in rat pre-adipocytes, and this effect was antagonized by SR-27,897 and L-365,260. SIGNIFICANCE Our data show that both human and rat WAT express a complete CCK system, and suggest that CCK may have an autocrine/paracrine role in regulating adipose tissue biology.
Collapse
|
78
|
Sergi D, Morris AC, Kahn DE, McLean FH, Hay EA, Kubitz P, MacKenzie A, Martinoli MG, Drew JE, Williams LM. Palmitic acid triggers inflammatory responses in N42 cultured hypothalamic cells partially via ceramide synthesis but not via TLR4. Nutr Neurosci 2018; 23:321-334. [PMID: 30032721 DOI: 10.1080/1028415x.2018.1501533] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A high-fat diet induces hypothalamic inflammation in rodents which, in turn, contributes to the development of obesity by eliciting both insulin and leptin resistance. However, the mechanism by which long-chain saturated fatty acids trigger inflammation is still contentious. To elucidate this mechanism, the effect of fatty acids on the expression of the pro-inflammatory cytokines IL-6 and TNFα was investigated in the mHypoE-N42 hypothalamic cell line (N42). N42 cells were treated with lauric acid (LA) and palmitic acid (PA). PA challenge was carried out in the presence of either a TLR4 inhibitor, a ceramide synthesis inhibitor (L-cycloserine), oleic acid (OA) or eicosapentaenoic acid (EPA). Intracellular ceramide accumulation was quantified using LC-ESI-MS/MS. PA but not LA upregulated IL-6 and TNFα. L-cycloserine, OA and EPA all counteracted PA-induced intracellular ceramide accumulation leading to a downregulation of IL-6 and TNFα. However, a TLR4 inhibitor failed to inhibit PA-induced upregulation of pro-inflammatory cytokines.In conclusion, PA induced the expression of IL-6 and TNFα in N42 neuronal cells independently of TLR4 but, partially, via ceramide synthesis with OA and EPA being anti-inflammatory by decreasing PA-induced intracellular ceramide build-up. Thus, ceramide accumulation represents one on the mechanisms by which PA induces inflammation in neurons.
Collapse
Affiliation(s)
- Domenico Sergi
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Amanda C Morris
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Darcy E Kahn
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Fiona H McLean
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Elizabeth A Hay
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Phil Kubitz
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alasdair MacKenzie
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Maria G Martinoli
- Cellular Neurobiology Group, Université du Québec, Trois-Rivières, Québec, G9A 5H7 Canada
| | - Janice E Drew
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
79
|
Montgomery MK, Mokhtar R, Bayliss J, Parkington HC, Suturin VM, Bruce CR, Watt MJ. Perilipin 5 Deletion Unmasks an Endoplasmic Reticulum Stress-Fibroblast Growth Factor 21 Axis in Skeletal Muscle. Diabetes 2018; 67:594-606. [PMID: 29378767 DOI: 10.2337/db17-0923] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022]
Abstract
Lipid droplets (LDs) are critical for the regulation of lipid metabolism, and dysregulated lipid metabolism contributes to the pathogenesis of several diseases, including type 2 diabetes. We generated mice with muscle-specific deletion of the LD-associated protein perilipin 5 (PLIN5, Plin5MKO ) and investigated PLIN5's role in regulating skeletal muscle lipid metabolism, intracellular signaling, and whole-body metabolic homeostasis. High-fat feeding induced changes in muscle lipid metabolism of Plin5MKO mice, which included increased fatty acid oxidation and oxidative stress but, surprisingly, a reduction in inflammation and endoplasmic reticulum (ER) stress. These muscle-specific effects were accompanied by whole-body glucose intolerance, adipose tissue insulin resistance, and reduced circulating insulin and C-peptide levels in Plin5MKO mice. This coincided with reduced secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle and liver, resulting in reduced circulating FGF21. Intriguingly, muscle-secreted factors from Plin5MKO , but not wild-type mice, reduced hepatocyte FGF21 secretion. Exogenous correction of FGF21 levels restored glycemic control and insulin secretion in Plin5MKO mice. These results show that changes in lipid metabolism resulting from PLIN5 deletion reduce ER stress in muscle, decrease FGF21 production by muscle and liver, and impair glycemic control. Further, these studies highlight the importance for muscle-liver cross talk in metabolic regulation.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Ruzaidi Mokhtar
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jacqueline Bayliss
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Helena C Parkington
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Victor M Suturin
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Matthew J Watt
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
80
|
Chou H, Pathmasiri W, Deese-spruill J, Sumner SJ, Jima DD, Funk DH, Jackson JK, Sweeney BW, Buchwalter DB. The Good, the Bad, and the Lethal: Gene Expression and Metabolomics Reveal Physiological Mechanisms Underlying Chronic Thermal Effects in Mayfly Larvae (Neocloeon triangulifer). Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
81
|
Marthandam Asokan S, Hung TH, Chiang WD, Lin WT. Lipolysis-Stimulating Peptide from Soybean Protects Against High Fat Diet-Induced Apoptosis in Skeletal Muscles. J Med Food 2018; 21:225-232. [DOI: 10.1089/jmf.2017.3941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Shibu Marthandam Asokan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Tsu-Han Hung
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan, Republic of China
| | - Wen-Dee Chiang
- Department of Food Science, College of Agriculture, Tunghai University, Taichung, Taiwan, Republic of China
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan, Republic of China
| |
Collapse
|
82
|
Obesity does not promote tumorigenesis of localized patient-derived prostate cancer xenografts. Oncotarget 2018; 7:47650-47662. [PMID: 27351281 PMCID: PMC5216968 DOI: 10.18632/oncotarget.10258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
There are established epidemiological links between obesity and the severity of prostate cancer. We directly tested this relationship by assessing tumorigenicity of patient-derived xenografts (PDXs) of moderate-grade localized prostate cancer in lean and obese severe combined immunodeficiency (SCID) mice. Mice were rendered obese and insulin resistant by high-fat feeding for 6 weeks prior to transplantation, and PDXs were assessed 10 weeks thereafter. Histological analysis of PDX grafts showed no differences in tumor pathology, prostate-specific antigen, androgen receptor and homeobox protein Nkx-3.1 expression, or proliferation index in lean versus obese mice. Whilst systemic obesity per se did not promote prostate tumorigenicity, we next asked whether the peri-prostatic adipose tissue (PPAT), which covers the prostate anteriorly, plays a role in prostate tumorigenesis. In vitro studies in a cellularized co-culture model of stromal and epithelial cells demonstrated that factors secreted from human PPAT are pro-tumorigenic. Accordingly, we recapitulated the prostate-PPAT spatial relationship by co-grafting human PPAT with prostate cancer in PDX grafts. PDX tissues were harvested 10 weeks after grafting, and histological analysis revealed no evidence of enhanced tumorigenesis with PPAT compared to prostate cancer grafts alone. Altogether, these data demonstrate that prostate cancer tumorigenicity is not accelerated in the setting of diet-induced obesity or in the presence of human PPAT, prompting the need for further work to define the at-risk populations of obesity-driven tumorigenesis and the biological factors linking obesity, adipose tissue and prostate cancer pathogenesis.
Collapse
|
83
|
Zhu Q, Yang J, Zhu R, Jiang X, Li W, He S, Jin J. Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis. Apoptosis 2018; 21:1033-44. [PMID: 27364952 DOI: 10.1007/s10495-016-1267-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, results showed that the inhibition of PA-induced HepG2 cell growth takes place in a time- and concentration-dependent manner, that activation of caspase 9 is necessary for PA-induced HepG2 cell apoptosis, that dihydroceramide desaturase 1 (DES1) plays a key role in PA-mediated caspase 9 and caspase 3 activation, and that palmitoleic acid (POA), an omega-7 monounsaturated fatty acid, reverses PA-induced apoptosis through DES1 → Ceramide → Caspase 9 → Caspase 3 signaling.
Collapse
Affiliation(s)
- Qun Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, Jiangsu, People's Republic of China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Jianjun Yang
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Rongping Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Xin Jiang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Wanlian Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Songqing He
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
| |
Collapse
|
84
|
Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response. J Immunol Res 2018; 2018:2835761. [PMID: 29484304 PMCID: PMC5816850 DOI: 10.1155/2018/2835761] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.
Collapse
|
85
|
Papaioannou O, Karampitsakos T, Barbayianni I, Chrysikos S, Xylourgidis N, Tzilas V, Bouros D, Aidinis V, Tzouvelekis A. Metabolic Disorders in Chronic Lung Diseases. Front Med (Lausanne) 2018; 4:246. [PMID: 29404325 PMCID: PMC5778140 DOI: 10.3389/fmed.2017.00246] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Chronic lung diseases represent complex diseases with gradually increasing incidence, characterized by significant medical and financial burden for both patients and relatives. Their increasing incidence and complexity render a comprehensive, multidisciplinary, and personalized approach critically important. This approach includes the assessment of comorbid conditions including metabolic dysfunctions. Several lines of evidence show that metabolic comorbidities, including diabetes mellitus, dyslipidemia, osteoporosis, vitamin D deficiency, and thyroid dysfunction have a significant impact on symptoms, quality of life, management, economic burden, and disease mortality. Most recently, novel pathogenetic pathways and potential therapeutic targets have been identified through large-scale studies of metabolites, called metabolomics. This review article aims to summarize the current state of knowledge on the prevalence of metabolic comorbidities in chronic lung diseases, highlight their impact on disease clinical course, delineate mechanistic links, and report future perspectives on the role of metabolites as disease modifiers and therapeutic targets.
Collapse
Affiliation(s)
- Ourania Papaioannou
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Karampitsakos
- 5th Department of Respiratory Medicine, Hospital for Diseases of the Chest "Sotiria", Athens, Greece
| | - Ilianna Barbayianni
- Department of Internal Medicine, Section of Pulmonary Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Serafeim Chrysikos
- 5th Department of Respiratory Medicine, Hospital for Diseases of the Chest "Sotiria", Athens, Greece
| | - Nikos Xylourgidis
- Department of Internal Medicine, Section of Pulmonary Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Vasilis Tzilas
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyrios Tzouvelekis
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
86
|
Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8018197. [PMID: 29375734 PMCID: PMC5742498 DOI: 10.1155/2017/8018197] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Abstract
Cancer cachexia, a wasting syndrome characterized by skeletal muscle depletion, contributes to increased patient morbidity and mortality. While the intricate balance between protein synthesis and breakdown regulates skeletal muscle mass, the suppression of basal protein synthesis may not account for the severe wasting induced by cancer. Therefore, recent research has shifted to the regulation of “anabolic resistance,” which is the impaired ability of nutrition and exercise to stimulate protein synthesis. Emerging evidence suggests that oxidative metabolism can regulate both basal and induced muscle protein synthesis. While disrupted protein turnover and oxidative metabolism in cachectic muscle have been examined independently, evidence suggests a linkage between these processes for the regulation of cancer-induced wasting. The primary objective of this review is to highlight the connection between dysfunctional oxidative metabolism and cancer-induced anabolic resistance in skeletal muscle. First, we review oxidative metabolism regulation of muscle protein synthesis. Second, we describe cancer-induced alterations in the response to an anabolic stimulus. Finally, we review a role for exercise to inhibit cancer-induced anabolic suppression and mitochondrial dysfunction.
Collapse
|
87
|
Wang Y, Koh WP, Yuan JM, Pan A. Sex-specific association between fibroblast growth factor 21 and type 2 diabetes: a nested case-control study in Singapore Chinese men and women. Nutr Metab (Lond) 2017; 14:63. [PMID: 29021814 PMCID: PMC5622539 DOI: 10.1186/s12986-017-0216-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
Background Fibroblast growth factor 21 (FGF-21) is mainly secreted by liver and has been reported to be involved in the pathogenesis of type 2 diabetes. Some prospective studies have shown a positive association between FGF-21 and diabetes risk. However, no study has examined whether the association differed by sex, which has been reported between FGF-21 and atherosclerosis. Therefore, we prospectively evaluated the sex-specific association between FGF-21 and diabetes in a Chinese population. Methods Serum FGF-21 concentration was measured in a case-control study comprising of 251 incident diabetes cases and 251 age-sex-matched controls nested within a prospective population-based cohort, the Singapore Chinese Health Study. At blood collection between 1999 and 2004, participants were free of diagnosed diabetes, cardiovascular disease, and cancer. Incident self-reported diabetes cases were identified at follow-up II interview (2006–2010). Odds ratio (OR) and 95% confidence interval (CI) were calculated using multivariable logistic regression models. Results After adjustment for risk biomarkers of diabetes including lipids, liver enzymes and inflammatory marker, the OR of type 2 diabetes with per one unit increment in log FGF-21 concentration was 1.16 (95% CI 0.90–1.50). Significant interaction was found with sex (P-interaction = 0.029): the OR (95% CI) was 1.50 (1.00-2.25) in women and 0.89 (0.52–1.53) in men. Conclusions Higher serum FGF-21 level was associated with an increased risk of diabetes in Chinese women but not in men. The sex difference in the association between FGF-21 and diabetes risk deserves further investigation and replication in other populations. Electronic supplementary material The online version of this article (10.1186/s12986-017-0216-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yeli Wang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549 Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549 Singapore.,Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232 USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China
| |
Collapse
|
88
|
Yoon NA, Park J, Lee J, Jeong JY, Kim HK, Lee HS, Hwang IG, Roh GS, Kim HJ, Cho GJ, Choi WS, Lee DH, Kang SS. Anti-diabetic Effects of Ethanol Extract from Bitter Melon in Mice Fed a High-fat Diet. Dev Reprod 2017; 21:259-267. [PMID: 29082341 PMCID: PMC5651692 DOI: 10.12717/dr.2017.21.3.259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 12/02/2022]
Abstract
Present study aimed to determine the effect of ‘bitter melon’, a popularly used
fruit in Bangladesh and several other Asian countries, on high-fat-diet-induced
type 2 diabetes. To investigate the effect, ethanol extract from bitter melon
(BME) as a dietary supplement with mouse chow was used. BME was found to
significantly attenuate the high-fat diet (HFD) -induced body weight and total
fat mass. BME also effectively reduced the insulin resistance induced by the
HFD. Furthermore, dietary supplementation of BME was highly effective in
increasing insulin sensitivity and reducing hepatic fat and obesity. These
results indicate that BME could be effective in attenuating type 2 diabetes and
could therefore be a preventive measure against type 2 diabetes.
Collapse
Affiliation(s)
- Nal Ae Yoon
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Juyeong Park
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jiyeon Lee
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Joo Yeon Jeong
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyun-Kyu Kim
- Nutraceutical Food R&D Center, KolmarBNH Co., Ltd., Sejong 30003, Korea
| | - Hak Sung Lee
- Nutraceutical Food R&D Center, KolmarBNH Co., Ltd., Sejong 30003, Korea
| | - In Guk Hwang
- Dept. of Agrofood Resources, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365, Korea
| | - Gu Seob Roh
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyun Joon Kim
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Gyeong Jae Cho
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Wan Sung Choi
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Dong Hoon Lee
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Sang Soo Kang
- Dept. of Anatomy & Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
89
|
Dias CB, Moughan PJ, Wood LG, Singh H, Garg ML. Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness. Lipids Health Dis 2017; 16:178. [PMID: 28923057 PMCID: PMC5604516 DOI: 10.1186/s12944-017-0568-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
One of the limitations for ranking foods and meals for healthiness on the basis of the glycaemic index (GI) is that the GI is subject to manipulation by addition of fat. Postprandial lipemia, defined as a rise in circulating triglyceride containing lipoproteins following consumption of a meal, has been recognised as a risk factor for the development of cardiovascular disease and other chronic diseases. Many non-modifiable factors (pathological conditions, genetic background, age, sex and menopausal status) and life-style factors (physical activity, smoking, alcohol and medication use, dietary choices) may modulate postprandial lipemia. The structure and the composition of a food or a meal consumed also plays an important role in the rate of postprandial appearance and clearance of triglycerides in the blood. However, a major difficulty in grading foods, meals and diets according to their potential to elevate postprandial triglyceride levels has been the lack of a standardised marker that takes into consideration both the general characteristics of the food and the food’s fat composition and quantity. The release rate of lipids from the food matrix during digestion also has an important role in determining the postprandial lipemic effects of a food product. This article reviews the factors that have been shown to influence postprandial lipemia with a view to develop a novel index for ranking foods according to their healthiness. This index should take into consideration not only the glycaemic but also lipemic responses.
Collapse
Affiliation(s)
- Cintia Botelho Dias
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Priority Research Centre in Physical Activity & Nutrition, University of Newcastle, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lisa G Wood
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences & Pharmacy, University of Newcastle, New Lambton, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia. .,Riddet Institute, Massey University, Palmerston North, New Zealand. .,Priority Research Centre in Physical Activity & Nutrition, University of Newcastle, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
90
|
Abstract
Enlarged fat cells in obese adipose tissue diminish capacity to store fat and are resistant to the anti-lipolytic effect of insulin. Insulin resistance (IR)-associated S-nitrosylation of insulin-signaling proteins increases in obesity. In accordance with the inhibition of insulin-mediated anti-lipolytic action, plasma free fatty acid (FFA) levels increase. Additionally, endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate/Protein kinase A (cAMP/PKA) and extracellular signal-regulated kinase ½ (ERK1/2) signaling in adipocytes. Failure of packaging of excess lipid into lipid droplets causes chronic elevation of circulating fatty acids, which can reach to toxic levels within non-adipose tissues. Deleterious effects of lipid accumulation in non-adipose tissues are known as lipotoxicity. In fact, triglycerides may also serve a storage function for long-chain non-esterified fatty acids and their products such as ceramides and diacylglycerols (DAGs). Thus, excess DAG, ceramide and saturated fatty acids in obesity can induce chronic inflammation and have harmful effect on multiple organs and systems. In this context, chronic adipose tissue inflammation, mitochondrial dysfunction and IR have been discussed within the scope of lipotoxicity.
Collapse
|
91
|
Abstract
Hepatic steatosis is an underlying feature of nonalcoholic fatty liver disease (NAFLD), which is the most common form of liver disease and is present in up to ∼70% of individuals who are overweight. NAFLD is also associated with hypertriglyceridaemia and low levels of HDL, glucose intolerance, insulin resistance and type 2 diabetes mellitus. Hepatic steatosis is a strong predictor of the development of insulin resistance and often precedes the onset of other known mediators of insulin resistance. This sequence of events suggests that hepatic steatosis has a causal role in the development of insulin resistance in other tissues, such as skeletal muscle. Hepatokines are proteins that are secreted by hepatocytes, and many hepatokines have been linked to the induction of metabolic dysfunction, including fetuin A, fetuin B, retinol-binding protein 4 (RBP4) and selenoprotein P. In this Review, we describe the factors that influence the development of hepatic steatosis, provide evidence of strong links between hepatic steatosis and insulin resistance in non-hepatic tissues, and discuss recent advances in our understanding of how steatosis alters hepatokine secretion to influence metabolic phenotypes through inter-organ communication.
Collapse
Affiliation(s)
- Ruth C R Meex
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
92
|
Anthropometric Indices in the Prediction of Hypertension in Female Adolescents. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017. [DOI: 10.5812/ircmj.14591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
93
|
Kurek K, Garbowska M, Ziembicka DM, Łukaszuk B, Rogowski J, Chabowski A, Górski J, Żendzian-Piotrowska M. Myriocin treatment affects lipid metabolism in skeletal muscles of rats with streptozotocin-induced type 1 diabetes. Adv Med Sci 2017; 62:65-73. [PMID: 28189121 DOI: 10.1016/j.advms.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/18/2016] [Accepted: 04/29/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE The aim of this work was to assess the effect(s) of de novo ceramide synthesis inhibition on lipid metabolism in skeletal muscle tissue of type 1 diabetic rats. The latter seems to be of vital importance, since previous works have shown its positive influence on lipid metabolism and glucose homeostasis in the case of its counterpart - type 2 diabetes. MATERIALS/METHODS The animals were randomly assigned to one of the following groups: C - control, M - myriocin (ceramide de novo synthesis inhibitor), D - diabetes (induced by streptozotocin injections); D+M - diabetes+myriocin. We have evaluated intracellular concentration of key sphingolipid species, via chromatography (GC and HPLC), and the activity of their most important enzymes, using radiometric approach. The aforementioned assessments were evaluated in respect to the three different types of muscle tissue representing different spectra of muscle metabolism (soleus - oxidative, red gastrocnemious - oxidative-glycolytic, white gastrocnemious - glycolytic). RESULTS Interestingly, our therapeutic intervention not only lowered the level of ceramide, its precursors (sphinganine) and derivatives (sphingosine and sphingosine-1-phosphate), but also reduced other lipid species (triacylglycerols, diacylglycerols and free fatty acids) content, thus improving glucose homeostasis in type 1 diabetic animals. CONCLUSIONS In the light of the results ensuing from this study, it seems conceivable that the reduction of intramuscular ceramide production and accumulation could bestow an insulin-sensitizing effect. If so, then SPT inhibition could find potential future applications as a therapeutic intervention aimed to mitigate the effects of insulin resistance.
Collapse
|
94
|
van Zyl S, van der Merwe LJ, van Rooyen FC, Joubert G, Walsh CM. The relationship between obesity, leptin, adiponectin and the components of metabolic syndrome in urban African women, Free State, South Africa. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2017. [DOI: 10.1080/16070658.2017.1267380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sanet van Zyl
- Faculty of Health Sciences, Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Lynette J van der Merwe
- Faculty of Health Sciences, Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Francois C van Rooyen
- Faculty of Health Sciences, Department of Biostatistics, University of the Free State, Bloemfontein, South Africa
| | - Gina Joubert
- Faculty of Health Sciences, Department of Biostatistics, University of the Free State, Bloemfontein, South Africa
| | - Corinna M Walsh
- Faculty of Health Sciences, Department of Nutrition and Dietetics, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
95
|
Tung YC, Hsieh PH, Pan MH, Ho CT. Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs. J Food Drug Anal 2017; 25:100-110. [PMID: 28911527 PMCID: PMC9333434 DOI: 10.1016/j.jfda.2016.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
Dietary phytochemicals from food and herbs have been studied for their health benefits for a long time. The incidence of obesity has seen an incredible increase worldwide. Although dieting, along with increased physical activity, seems an easy method in theory to manage obesity, it is hard to apply in real life. Obesity treatment drugs and surgery are not successful or targeted for everyone and can have significant side effects. This low rate of success is the major reason that the overweight as well as the pharmaceutical industry seek alternative methods, including phytochemicals. Therefore, more and more research has focused on the role of phytochemicals to alleviate lipid accumulation or enhance energy expenditure in adipocytes. This review discusses selected phytochemicals from food and herbs and their effects on adipogenesis, lipogenesis, lipolysis, oxidation of fatty acids, and browning in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Yen-Chen Tung
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 106,
Taiwan
| | - Pei-Hsuan Hsieh
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901,
USA
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 106,
Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402,
Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354,
Taiwan
- Corresponding authors: Institute of Food Science and Technology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (M.-H. Pan); Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA (C.-T. Ho). E-mail addresses: (M.-H. Pan), (C.-T. Ho)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901,
USA
- Corresponding authors: Institute of Food Science and Technology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (M.-H. Pan); Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA (C.-T. Ho). E-mail addresses: (M.-H. Pan), (C.-T. Ho)
| |
Collapse
|
96
|
Boini KM, Xia M, Koka S, Gehr TWB, Li PL. Sphingolipids in obesity and related complications. FRONT BIOSCI-LANDMRK 2017; 22:96-116. [PMID: 27814604 PMCID: PMC5844360 DOI: 10.2741/4474] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sphingolipids are biologically active lipids ubiquitously produced in all vertebrate cells. Asides from structural components of cell membrane, sphingolipids also function as intracellular and extracellular mediators that regulate many important physiological cellular processes including cell survival, proliferation, apoptosis, differentiation, migration and immune processes. Recent studies have also indicated that disruption of sphingolipid metabolism is strongly associated with different diseases that exhibit diverse neurological and metabolic consequences. Here, we briefly summarize current evidence for understanding of sphingolipid pathways in obesity and associated complications. The regulation of sphingolipids and their enzymes may have a great impact in the development of novel therapeutic modalities for a variety of metabolic diseases.
Collapse
Affiliation(s)
- Krishna M Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA and Department of Nephrology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Min Xia
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298
| | - Saisudha Koka
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Todd W B Gehr
- Department of Nephrology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, 410 N, 12th Street, Richmond, VA, 23298,
| |
Collapse
|
97
|
Botha J, Velling Magnussen L, Nielsen MH, Nielsen TB, Højlund K, Andersen MS, Handberg A. Microvesicles Correlated with Components of Metabolic Syndrome in Men with Type 2 Diabetes Mellitus and Lowered Testosterone Levels But Were Unaltered by Testosterone Therapy. J Diabetes Res 2017; 2017:4257875. [PMID: 28168203 PMCID: PMC5266820 DOI: 10.1155/2017/4257875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 01/15/2023] Open
Abstract
Aims. To investigate how circulating microvesicle phenotypes correlate with insulin sensitivity, body composition, plasma lipids, and hepatic fat accumulation. We hypothesized that changes elicited by testosterone replacement therapy are reflected in levels of microvesicles. Methods. Thirty-nine type 2 diabetic males with lowered testosterone levels were assigned to either testosterone replacement therapy or placebo and evaluated at baseline and after 24 weeks. Microvesicles were analysed by flow cytometry and defined as lactadherin-binding particles within the 0.1-1.0 μm gate. Microvesicles of platelet, monocyte, and endothelial cell origin were identified by cell-specific markers and their expression of CD36 was investigated. Results. Triglycerides correlated positively with all investigated microvesicle phenotypes in this study (p < 0.05), and indicators of hepatic fat accumulation, alanine aminotransferase, and gamma glutamyltransferase correlated with platelet and endothelial microvesicles and CD36-expressing microvesicles from platelets and monocytes (p < 0.05). BMI, waist circumference, and fat percentage correlated with CD36-expressing monocyte microvesicles (p < 0.05), while insulin sensitivity did not correlate with any microvesicle phenotypes. Microvesicle levels were unaffected by testosterone therapy. Conclusions. Metabolic syndrome components and hepatic fat accumulation correlated with microvesicle phenotypes, supporting the involvement of especially CD36 on monocytes in metabolic syndrome pathogenesis. Although testosterone therapy improved body composition measures, microvesicle phenotype levels were unaffected. This trial was registered at ClinicalTrials.gov (NCT01560546).
Collapse
Affiliation(s)
- Jaco Botha
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- *Jaco Botha:
| | | | | | - Tine Bo Nielsen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Section of Molecular Diabetes & Metabolism, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
98
|
Langhi C, Arias N, Rajamoorthi A, Basta J, Lee RG, Baldán Á. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J Lipid Res 2016; 58:81-91. [PMID: 27884961 PMCID: PMC5234712 DOI: 10.1194/jlr.m069799] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
Obesity is a component of the metabolic syndrome, mechanistically linked to diabetes, fatty liver disease, and cardiovascular disease. Proteins that regulate the metabolic fate of intracellular lipid droplets are potential therapeutic candidates to treat obesity and its related consequences. CIDEC (cell death-inducing DFFA-like effector C), also known in mice as Fsp27 (fat-specific protein 27), is a lipid droplet-associated protein that prevents lipid mobilization and promotes intracellular lipid storage. The consequences of complete loss of FSP27 on hepatic metabolism and on insulin resistance are controversial, as both healthy and deleterious lipodystrophic phenotypes have been reported in Fsp27−/− mice. To test whether therapeutic silencing of Fsp27 might be useful to improve obesity, fatty liver, and glycemic control, we used antisense oligonucleotides (ASOs) in both nutritional (high-fat diet) and genetic (leptin-deficient ob/ob) mouse models of obesity, hyperglycemia, and hepatosteatosis. We show that partial silencing Fsp27 in either model results in the robust decrease in visceral fat, improved insulin sensitivity and whole-body glycemic control, and tissue-specific changes in transcripts controlling lipid oxidation and synthesis. These data suggest that partial reduction of FSP27 activity (e.g., using ASOs) might be exploited therapeutically in insulin-resistant obese or overweight patients.
Collapse
Affiliation(s)
- Cédric Langhi
- Edward A. Doisy Department of Biochemistry & Molecular Biology Saint Louis University, Saint Louis, MO 63104
| | - Noemí Arias
- Edward A. Doisy Department of Biochemistry & Molecular Biology Saint Louis University, Saint Louis, MO 63104
| | - Ananthi Rajamoorthi
- Edward A. Doisy Department of Biochemistry & Molecular Biology Saint Louis University, Saint Louis, MO 63104
| | - Jeannine Basta
- Department of Internal Medicine, Saint Louis University, Saint Louis, MO 63104
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA 92010
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry & Molecular Biology Saint Louis University, Saint Louis, MO 63104 .,Center for Cardiovascular Research Saint Louis University, Saint Louis, MO 63104.,Liver Center, Saint Louis University, Saint Louis, MO 63104
| |
Collapse
|
99
|
Manikkam V, Vasiljevic T, Donkor ON, Mathai ML. A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides. Crit Rev Food Sci Nutr 2016; 56:92-112. [PMID: 25569557 DOI: 10.1080/10408398.2012.753866] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bioactive peptides are food derived components, usually consisting of 3-20 amino acids, which are inactive when incorporated within their parent protein. Once liberated by enzymatic or chemical hydrolysis, during food processing and gastrointestinal transit, they can potentially provide an array of health benefits to the human body. Owing to an unprecedented increase in the worldwide incidence of obesity and hypertension, medical researchers are focusing on the hypotensive and anti-obesity properties of nutritionally derived bioactive peptides. The role of the renin-angiotensin system has long been established in the aetiology of metabolic diseases and hypertension. Targeting the renin-angiotensin system by inhibiting the activity of angiotensin-converting enzyme (ACE) and preventing the formation of angiotensin II can be a potential therapeutic approach to the treatment of hypertension and obesity. Fish-derived proteins and peptides can potentially be excellent sources of bioactive components, mainly as a source of ACE inhibitors. However, increased use of marine sources, poses an unsustainable burden on particular fish stocks, so, the underutilized fish species and by-products can be exploited for this purpose. This paper provides an overview of the techniques involved in the production, isolation, purification, and characterization of bioactive peptides from marine sources, as well as the evaluation of the ACE inhibitory (ACE-I) activity and bioavailability.
Collapse
Affiliation(s)
- V Manikkam
- a Centre of Chronic Disease Prevention, School of Biomedical and Health Sciences , Victoria University , Melbourne , Australia
| | - T Vasiljevic
- a Centre of Chronic Disease Prevention, School of Biomedical and Health Sciences , Victoria University , Melbourne , Australia
| | - O N Donkor
- a Centre of Chronic Disease Prevention, School of Biomedical and Health Sciences , Victoria University , Melbourne , Australia
| | | |
Collapse
|
100
|
De Luca M, Angrisani L, Himpens J, Busetto L, Scopinaro N, Weiner R, Sartori A, Stier C, Lakdawala M, Bhasker AG, Buchwald H, Dixon J, Chiappetta S, Kolberg HC, Frühbeck G, Sarwer DB, Suter M, Soricelli E, Blüher M, Vilallonga R, Sharma A, Shikora S. Indications for Surgery for Obesity and Weight-Related Diseases: Position Statements from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes Surg 2016; 26:1659-96. [PMID: 27412673 PMCID: PMC6037181 DOI: 10.1007/s11695-016-2271-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maurizio De Luca
- Director Department of Surgery, Montebelluna Treviso Hospital, Montebelluna, Treviso, Italy.
| | | | - Jacques Himpens
- The European School of Laparoscopic Surgery, Brussels, Belgium
| | | | | | | | - Alberto Sartori
- Director Department of Surgery, Montebelluna Treviso Hospital, Montebelluna, Treviso, Italy
| | | | | | | | | | - John Dixon
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | | | | | | | - Michel Suter
- University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Mattias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Arya Sharma
- Obesity Research Management, University of Alberta, Edmonton, Canada
| | | |
Collapse
|