51
|
Yin X, Jin N, Shi J, Zhang Y, Wu Y, Gong CX, Iqbal K, Liu F. Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice. Sci Rep 2017; 7:619. [PMID: 28377597 PMCID: PMC5428843 DOI: 10.1038/s41598-017-00682-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing of tau exon 10 generates tau isoforms with three or four microtubule-binding repeats, 3R-tau and 4R-tau, which is equally expressed in adult human brain. Imbalanced expression in 3R-tau and 4R-tau has been found in several sporadic and inherited tauopathies, suggesting that dysregulation of tau exon 10 is sufficient to cause neurodegenerative diseases. We previously reported that Dyrk1A, which is overexpressed in Down syndrome brains, regulates alternative splicing of exogenous tau exon 10. In the present study, we investigated the regulation of endogenous tau exon 10 splicing by Dyrk1A. We found that inhibition of Dyrk1A enhanced tau exon 10 inclusion, leading to an increase in 4R-tau/3R-tau ratio in differentiated-human neuronal progenitors and in the neonatal rat brains. Accompanied with overexpression of Dyrk1A, 3R-tau was increased and 4R-tau was decreased in the neonatal brains of Ts65Dn mice, a model of Down syndrome. Treatment with Dyrk1A inhibitor, green tea flavonol epigallocatechin-gallate (EGCG), from gestation to adulthood suppressed 3R-tau expression and rescued anxiety and memory deficits in Ts65Dn mouse brains. Thus, Dyrk1A might be an ideal therapeutic target for Alzheimer's disease, especially for Down syndrome and EGCG which inhibits Dyrk1A may have potential effect on the treatment or prevention of this disease.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, P. R. China
| | - Nana Jin
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Jianhua Shi
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Yanchong Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Yue Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China.
| |
Collapse
|
52
|
Evers JM, Laskowski RA, Bertolli M, Clayton-Smith J, Deshpande C, Eason J, Elmslie F, Flinter F, Gardiner C, Hurst JA, Kingston H, Kini U, Lampe AK, Lim D, Male A, Naik S, Parker MJ, Price S, Robert L, Sarkar A, Straub V, Woods G, Thornton JM, Wright CF. Structural analysis of pathogenic mutations in the DYRK1A gene in patients with developmental disorders. Hum Mol Genet 2017; 26:519-526. [PMID: 28053047 PMCID: PMC5409128 DOI: 10.1093/hmg/ddw409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency in DYRK1A is associated with a recognizable developmental syndrome, though the mechanism of action of pathogenic missense mutations is currently unclear. Here we present 19 de novo mutations in this gene, including five missense mutations, identified by the Deciphering Developmental Disorder study. Protein structural analysis reveals that the missense mutations are either close to the ATP or peptide binding-sites within the kinase domain, or are important for protein stability, suggesting they lead to a loss of the protein's function mechanism. Furthermore, there is some correlation between the magnitude of the change and the severity of the resultant phenotype. A comparison of the distribution of the pathogenic mutations along the length of DYRK1A with that of natural variants, as found in the ExAC database, confirms that mutations in the N-terminal end of the kinase domain are more disruptive of protein function. In particular, pathogenic mutations occur in significantly closer proximity to the ATP and the substrate peptide than the natural variants. Overall, we suggest that de novo dominant mutations in DYRK1A account for nearly 0.5% of severe developmental disorders due to substantially reduced kinase function.
Collapse
Affiliation(s)
- Jochem M.G. Evers
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Roman A. Laskowski
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Marta Bertolli
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, St Marys Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, USA
| | - Charu Deshpande
- Clinical Genetics Department, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
| | - Jacqueline Eason
- Nottingham Regional Genetics Service, City Hospital Campus, Nottingham University Hospitals NHS Trust, The Gables, Hucknall Road, Nottingham, UK
| | - Frances Elmslie
- South West Thames Regional Genetics Centre, St George’s Healthcare NHS Trust, St George’s, University of London, Cranmer Terrace, London, UK
| | - Frances Flinter
- Clinical Genetics Department, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
| | - Carol Gardiner
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute Of Medical Genetics, Yorkhill Hospital, Glasgow, UK
| | - Jane A. Hurst
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Helen Kingston
- Manchester Centre for Genomic Medicine, St Marys Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, USA
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, The Churchill Old Road, Oxford, UK
| | - Anne K. Lampe
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, UK
| | - Derek Lim
- West Midlands Regional Genetics Service, Birmingham Women’s NHS Foundation Trust, Birmingham Women’s Hospital, Edgbaston, Birmingham, UK
| | - Alison Male
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Swati Naik
- West Midlands Regional Genetics Service, Birmingham Women’s NHS Foundation Trust, Birmingham Women’s Hospital, Edgbaston, Birmingham, UK
| | - Michael J. Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield, UK
| | - Sue Price
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, The Churchill Old Road, Oxford, UK
| | - Leema Robert
- Clinical Genetics Department, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
| | - Ajoy Sarkar
- Nottingham Regional Genetics Service, City Hospital Campus, Nottingham University Hospitals NHS Trust, The Gables, Hucknall Road, Nottingham, UK
| | - Volker Straub
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Geoff Woods
- East Anglian Medical Genetics Service, Box 134, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK and
| | - Janet M. Thornton
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - the DDD Study
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Caroline F. Wright
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
53
|
Abstract
More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed.
Collapse
Affiliation(s)
- David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Jonathan C Morris
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Sebastian Oltean
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Lucy F Donaldson
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| |
Collapse
|
54
|
Blaquiere JA, Verheyen EM. Homeodomain-Interacting Protein Kinases: Diverse and Complex Roles in Development and Disease. Curr Top Dev Biol 2016; 123:73-103. [PMID: 28236976 DOI: 10.1016/bs.ctdb.2016.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Homeodomain-interacting protein kinase (Hipk) family of proteins plays diverse, and at times conflicting, biological roles in normal development and disease. In this review we will highlight developmental and cellular roles for Hipk proteins, with an emphasis on the pleiotropic and essential physiological roles revealed through genetic studies. We discuss the myriad ways of regulating Hipk protein function, and how these may contribute to the diverse cellular roles. Furthermore we will describe the context-specific activities of Hipk family members in diseases such as cancer and fibrosis, including seemingly contradictory tumor-suppressive and oncogenic activities. Given the diverse signaling pathways regulated by Hipk proteins, it is likely that Hipks act to fine-tune signaling and may mediate cross talk in certain contexts. Such regulation is emerging as vital for development and in disease.
Collapse
Affiliation(s)
- Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
55
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
56
|
Non-random distribution of homo-repeats: links with biological functions and human diseases. Sci Rep 2016; 6:26941. [PMID: 27256590 PMCID: PMC4891720 DOI: 10.1038/srep26941] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
The biological function of multiple repetitions of single amino acids, or homo-repeats, is largely unknown, but their occurrence in proteins has been associated with more than 20 hereditary diseases. Analysing 122 bacterial and eukaryotic genomes, we observed that the number of proteins containing homo-repeats is significantly larger than expected from theoretical estimates. Analysis of statistical significance indicates that the minimal size of homo-repeats varies with amino acid type and proteome. In an attempt to characterize proteins harbouring long homo-repeats, we found that those containing polar or small amino acids S, P, H, E, D, K, Q and N are enriched in structural disorder as well as protein- and RNA-interactions. We observed that E, S, Q, G, L, P, D, A and H homo-repeats are strongly linked with occurrence in human diseases. Moreover, S, E, P, A, Q, D and T homo-repeats are significantly enriched in neuronal proteins associated with autism and other disorders. We release a webserver for further exploration of homo-repeats occurrence in human pathology at http://bioinfo.protres.ru/hradis/.
Collapse
|
57
|
Zheng X, Li Y, Zhao J, Wang D, Xia H, Mao Q. Production and Characterization of Monoclonal Antibodies against Human Nuclear Protein FAM76B. PLoS One 2016; 11:e0152237. [PMID: 27018871 PMCID: PMC4809503 DOI: 10.1371/journal.pone.0152237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
Human FAM76B (hFAM76B) is a 39 kDa protein that contains homopolymeric histidine tracts, a targeting signal for nuclear speckles. FAM76B is highly conserved among different species, suggesting that it may play an important physiological role in normal cellular functions. However, a lack of appropriate tools has hampered study of this potentially important protein. To facilitate research into the biological function(s) of FAM76B, murine monoclonal antibodies (MAbs) against hFAM76B were generated by using purified, prokaryotically expressed hFAM76B protein. Six strains of MAbs specific for hFAM76B were obtained and characterized. The specificity of MAbs was validated by using FAM76B-/- HEK 293 cell line. Double immunofluorescence followed by laser confocal microscopy confirmed the nuclear speckle localization of hFAM76B, and the specific domains recognized by different MAbs were further elucidated by Western blot. Due to the high conservation of protein sequences between mouse and human FAM76B, MAbs against hFAM76B were shown to react with mouse FAM76B (mFAM76B) specifically. Lastly, FAM76B was found to be expressed in the normal tissues of most human organs, though to different extents. The MAbs produced in this study should provide a useful tool for investigating the biological function(s) of FAM76B.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Co-Innovation Center for Qinba Regions’ Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi’an, 710062, Shaanxi, P. R. China
| | - Yanqing Li
- Co-Innovation Center for Qinba Regions’ Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi’an, 710062, Shaanxi, P. R. China
| | - Junli Zhao
- Co-Innovation Center for Qinba Regions’ Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi’an, 710062, Shaanxi, P. R. China
| | - Dongyang Wang
- Co-Innovation Center for Qinba Regions’ Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi’an, 710062, Shaanxi, P. R. China
| | - Haibin Xia
- Co-Innovation Center for Qinba Regions’ Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi’an, 710062, Shaanxi, P. R. China
- * E-mail:
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, United States of America
| |
Collapse
|
58
|
Luco SM, Pohl D, Sell E, Wagner JD, Dyment DA, Daoud H. Case report of novel DYRK1A mutations in 2 individuals with syndromic intellectual disability and a review of the literature. BMC MEDICAL GENETICS 2016; 17:15. [PMID: 26922654 PMCID: PMC4769499 DOI: 10.1186/s12881-016-0276-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chromosomal deletions encompassing DYRK1A have been associated with intellectual disability for several years. More recently, point mutations in DYRK1A have been shown to be responsible for a recognizable syndrome characterized by microcephaly, developmental delay and intellectual disability (ID) as well as characteristic facial features. Here we present 2 individuals with novel mutations in DYRK1A, and a review of the cases reported to date. CASE PRESENTATION Both individuals presented with the well-known characteristic features, as well as rarer anomalies seen in a minority of patients. Patient 1 presented shortly after birth with an enlarged cisterna magna, distal contractures, and distinctive facies that included bitemporal narrowing and deep set eyes. A de novo splice site mutation in DYRK1A [c.951 + 4_951 + 7delAGTA; p.Val222Aspfs*22] was identified by next generation sequencing. Patient 2 presented at 7 months of age with microcephaly and dysmorphic features. She went several years without a diagnosis until a de novo DYRK1A nonsense mutation [c.787C>T; p.(Arg263*)] was identified at age 12. These individuals, and the 52 cases reviewed from the literature, show the characteristic features of the DYRK1A-related syndrome including global developmental delay, ID, microcephaly, feeding difficulties, and the facial gestalt. Other common findings include seizures, vision defects, brain abnormalities and skeletal abnormalities of the hands and feet. Less common features include optic nerve defects, contractures, ataxia, and cardiac anomalies. CONCLUSION DYRK1A testing should be considered in individuals with the facial features, intellectual disability and post-natal microcephaly. Once diagnosed with DYRK1A-related intellectual disability, a cardiac and ophthalmologic assessment would be recommended as would routine surveillance by a pediatrician for psychomotor development, growth, and feeding.
Collapse
Affiliation(s)
- Stephanie M Luco
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, K1H 8L1, Canada.
| | - Daniela Pohl
- Division of Pediatric Neurology, Children's Hospital of Eastern Ontario, Ottawa, K1H 8L1, ON, Canada.
| | - Erick Sell
- Division of Pediatric Neurology, Children's Hospital of Eastern Ontario, Ottawa, K1H 8L1, ON, Canada.
| | - Justin D Wagner
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, ON, Canada.
| | - David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, K1H 8L1, Canada.
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, ON, Canada.
| | - Hussein Daoud
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
59
|
Shaikh MN, Gutierrez-Aviño F, Colonques J, Ceron J, Hämmerle B, Tejedor FJ. Minibrain drives the Dacapo dependent cell cycle exit of neurons in the Drosophila brain by promoting asense and prospero expression. Development 2016; 143:3195-205. [DOI: 10.1242/dev.134338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/25/2016] [Indexed: 01/20/2023]
Abstract
A key issue in neurodevelopment is to understand how precursor cells decide to stop dividing and commence their terminal differentiation at the correct time and place. Here, we show that minibrain (mnb), the Drosophila ortholog of the Down syndrome candidate gene MNB/DYRK1A, is transiently expressed in newborn neuronal precursors known as ganglion cells (GCs). Mnb promotes the cell cycle exit of GCs through a dual mechanism that regulates the expression of the cyclin-dependent kinase inhibitor Dacapo, the homolog of vertebrate p27kip1. On the one hand, Mnb upregulates the expression of the proneural transcription factor (TF) Asense, which promotes Dacapo expression. On the other, Mnb induces the expression of Prospero, a homeodomain TF that in turn inhibits the expression of Deadpan, a pan-neural TF that represses dacapo. In addition to its effects on Asense and Prospero, Mnb also promotes the expression of the neuronal-specific RNA regulator Elav, strongly suggesting that Mnb facilitates neuronal differentiation. These actions of Mnb ensure the precise timing of neuronal birth, coupling the mechanisms that regulate neurogenesis, cell cycle control and terminal differentiation of neurons.
Collapse
Affiliation(s)
- Mirja N. Shaikh
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante, Spain
| | | | - Jordi Colonques
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante, Spain
| | - Julian Ceron
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante, Spain
| | - Barbara Hämmerle
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante, Spain
| | - Francisco J. Tejedor
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante, Spain
| |
Collapse
|
60
|
He J, Yao J, Sheng H, Zhu J. Involvement of the dual-specificity tyrosine phosphorylation-regulated kinase 1A-alternative splicing factor-calcium/calmodulin-dependent protein kinase IIδ signaling pathway in myocardial infarction-induced heart failure of rats. J Card Fail 2015; 21:751-60. [PMID: 26067684 DOI: 10.1016/j.cardfail.2015.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Alternative splicing factor (ASF)-regulated alternative splicing of calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) plays an important role in pathologic cardiac remodeling. ASF can be phosphorylated by dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). This study aimed to investigate the possible involvement of the Dyrk1A-ASF-CaMKIIδ signaling pathway in the progression of myocardial infarction (MI)-induced heart failure (HF). METHODS AND RESULTS MI in rats was induced by means of left anterior descending coronary artery ligation. Seven weeks after MI, the increase in left ventricular internal diameter at end-diastole (LVIDd), and the decrease in both ejection fraction (EF) and fractional shortening (FS) indicated that MI rats had developed HF. Quantitative real time reverse-transcription polymerase chain reaction indicated the dysregulation of CaMKIIδ alternative splicing, ie, up-regulation of CaMKIIδA and CaMKIIδC and down-regulation of CaMKIIδB in the hearts of HF rats. Electrophoresis and immunostaining revealed that HF activated the phosphorylation of ASF and affected its subcellular localization. Western blot analysis demonstrated a significant elevation in the activity and expression of Dyrk1A in HF rats. Inversely, treatment of MI-induced HF rats with Dyrk1A inhibitor, either harmine or EGCG, improved the symptoms of HF, reversed the molecular changes of Dyrk1A and ASF, and regulated alternative splicing of CaMKIIδ in HF rats. CONCLUSIONS Enhanced activation of Dyrk1A-ASF-CaMKIIδ signaling pathway may underlie the mechanisms of HF after MI, and Dyrk1A inhibition may contribute to inactivation of this pathway and thereby retard the progression of MI-induced HF.
Collapse
Affiliation(s)
- Jing He
- Institute of Cardiovascular Disease, Nantong University, Nantong, Jiangsu, People's Republic of China; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jian Yao
- Department of Histology and Embryology, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Hongzhuan Sheng
- Institute of Cardiovascular Disease, Nantong University, Nantong, Jiangsu, People's Republic of China; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.
| | - Jianhua Zhu
- Institute of Cardiovascular Disease, Nantong University, Nantong, Jiangsu, People's Republic of China; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
61
|
Di Vona C, Bezdan D, Islam ABMMK, Salichs E, López-Bigas N, Ossowski S, de la Luna S. Chromatin-wide profiling of DYRK1A reveals a role as a gene-specific RNA polymerase II CTD kinase. Mol Cell 2015; 57:506-20. [PMID: 25620562 DOI: 10.1016/j.molcel.2014.12.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/03/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023]
Abstract
DYRK1A is a dosage-sensitive protein kinase that fulfills key roles during development and in tissue homeostasis, and its dysregulation results in human pathologies. DYRK1A is present in both the nucleus and cytoplasm of mammalian cells, although its nuclear function remains unclear. Genome-wide analysis of DYRK1A-associated loci reveals that the kinase is recruited preferentially to promoters of genes actively transcribed by RNA polymerase II (RNAPII), which are functionally associated with translation, RNA processing, and cell cycle. DYRK1A-bound promoter sequences are highly enriched in a conserved palindromic motif, which is necessary to drive DYRK1A-dependent transcriptional activation. DYRK1A phosphorylates the C-terminal domain (CTD) of RNAPII at Ser2 and Ser5. Depletion of DYRK1A results in reduced association of RNAPII at the target promoters as well as hypophosphorylation of the RNAPII CTD along the target gene bodies. These results are consistent with DYRK1A being a transcriptional regulator by acting as a CTD kinase.
Collapse
Affiliation(s)
- Chiara Di Vona
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Daniela Bezdan
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Abul B M M K Islam
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Eulàlia Salichs
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Nuria López-Bigas
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Stephan Ossowski
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Susana de la Luna
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
62
|
Schmitt C, Kail D, Mariano M, Empting M, Weber N, Paul T, Hartmann RW, Engel M. Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors. PLoS One 2014; 9:e87851. [PMID: 24676346 PMCID: PMC3968014 DOI: 10.1371/journal.pone.0087851] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022] Open
Abstract
The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform-mediated functions.
Collapse
Affiliation(s)
- Christian Schmitt
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | | | - Marica Mariano
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Nadja Weber
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Tamara Paul
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Rolf W. Hartmann
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
63
|
Kaczmarski W, Barua M, Mazur-Kolecka B, Frackowiak J, Dowjat W, Mehta P, Bolton D, Hwang YW, Rabe A, Albertini G, Wegiel J. Intracellular distribution of differentially phosphorylated dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). J Neurosci Res 2014; 92:162-73. [PMID: 24327345 PMCID: PMC3951420 DOI: 10.1002/jnr.23279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023]
Abstract
The gene encoding dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is located within the Down syndrome (DS) critical region of chromosome 21. DYRK1A interacts with a plethora of substrates in the cytosol, cytoskeleton, and nucleus. Its overexpression is a contributing factor to the developmental alterations and age-associated pathology observed in DS. We hypothesized that the intracellular distribution of DYRK1A and cell-compartment-specific functions are associated with DYRK1A posttranslational modifications. Fractionation showed that, in both human and mouse brain, almost 80% of DYRK1A was associated with the cytoskeleton, and the remaining DYRK1A was present in the cytosolic and nuclear fractions. Coimmunoprecipitation revealed that DYRK1A in the brain cytoskeleton fraction forms complexes with filamentous actin, neurofilaments, and tubulin. Two-dimensional gel analysis of the fractions revealed DYRK1A with distinct isoelectric points: 5.5-6.5 in the nucleus, 7.2-8.2 in the cytoskeleton, and 8.7 in the cytosol. Phosphate-affinity gel electrophoresis demonstrated several bands of DYRK1A with different mobility shifts for nuclear, cytoskeletal, and cytosolic DYRK1A, indicating modification by phosphorylation. Mass spectrometry analysis disclosed one phosphorylated site in the cytosolic DYRK1A and multiple phosphorylated residues in the cytoskeletal DYRK1A, including two not previously described. This study supports the hypothesis that intracellular distribution and compartment-specific functions of DYRK1A may depend on its phosphorylation pattern.
Collapse
Affiliation(s)
- Wojciech Kaczmarski
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Madhabi Barua
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Bozena Mazur-Kolecka
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Janusz Frackowiak
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Wieslaw Dowjat
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Pankaj Mehta
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - David Bolton
- Department of Molecular Biology, NYS Institute for Basic Research in
Developmental Disabilities, Staten Island, New York, USA
| | - Yu-Wen Hwang
- Department of Molecular Biology, NYS Institute for Basic Research in
Developmental Disabilities, Staten Island, New York, USA
| | - Ausma Rabe
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Giorgio Albertini
- Instituto di Ricovero e Cura a Carattere Scientifico, San Raffaele
Pisana, Rome, Italy
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
64
|
Derlig K, Gießl A, Brandstätter JH, Enz R, Dahlhaus R. Identification and characterisation of Simiate, a novel protein linked to the fragile X syndrome. PLoS One 2013; 8:e83007. [PMID: 24349419 PMCID: PMC3859600 DOI: 10.1371/journal.pone.0083007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
A strict regulation of protein expression during developmental stages and in response to environmental signals is essential to every cell and organism. Recent research has shown that the mammalian brain is particularly sensitive to alterations in expression patterns of specific proteins and cognitive deficits as well as autistic behaviours have been linked to dysregulated protein expression. An intellectual disability characterised by changes in the expression of a variety of proteins is the fragile X syndrome. Due to the loss of a single mRNA binding protein, the Fragile X Mental Retardation Protein FMRP, vast misregulation of the mRNA metabolism is taking place in the disease. Here, we present the identification and characterisation of a novel protein named Simiate, whose mRNA contains several FMRP recognition motifs and associates with FMRP upon co-precipitation. Sequence analysis revealed that the protein evolved app. 1.7 billion years ago when eukaryotes developed. Applying antibodies generated against Simiate, the protein is detected in a variety of tissues, including the mammalian brain. On the subcellular level, Simiate localises to somata and nuclear speckles. We show that Simiate and nuclear speckles experience specific alterations in FMR1(-/-) mice. An antibody-based block of endogenous Simiate revealed that the protein is essential for cell survival. These findings suggest not only an important role for Simiate in gene transcription and/or RNA splicing, but also provide evidence for a function of nuclear speckles in the fragile X syndrome. Indeed, transcription and splicing are two fundamental mechanisms to control protein expression, that underlie not only synaptic plasticity and memory formation, but are also affected in several diseases associated with mental disabilities.
Collapse
Affiliation(s)
- Kristin Derlig
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen- Nuremberg, Erlangen, Germany
| | | | - Ralf Enz
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
65
|
Lobanov MY, Sokolovskiy IV, Galzitskaya OV. HRaP: database of occurrence of HomoRepeats and patterns in proteomes. Nucleic Acids Res 2013; 42:D273-8. [PMID: 24150944 PMCID: PMC3965023 DOI: 10.1093/nar/gkt927] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We focus our attention on multiple repeats of one amino acid (homorepeats) and create a new database (named HRaP, at http://bioinfo.protres.ru/hrap/) of occurrence of homorepeats and disordered patterns in different proteomes. HRaP is aimed at understanding the amino acid tandem repeat function in different proteomes. Therefore, the database includes 122 proteomes, 97 eukaryotic and 25 bacterial ones that can be divided into 9 kingdoms and 5 phyla of bacteria. The database includes 1,449,561 protein sequences and 771,786 sequences of proteins with GO annotations. We have determined homorepeats and patterns that are associated with some function. Through our web server, the user can do the following: (i) search for proteins with the given homorepeat in 122 proteomes, including GO annotation for these proteins; (ii) search for proteins with the given disordered pattern from the library of disordered patterns constructed on the clustered Protein Data Bank in 122 proteomes, including GO annotations for these proteins; (iii) analyze lengths of homorepeats in different proteomes; (iv) investigate disordered regions in the chosen proteins in 122 proteomes; (v) study the coupling of different homorepeats in one protein; (vi) determine longest runs for each amino acid inside each proteome; and (vii) download the full list of proteins with the given length of a homorepeat.
Collapse
Affiliation(s)
- Mikhail Yu Lobanov
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | | | | |
Collapse
|
66
|
Naro C, Sette C. Phosphorylation-mediated regulation of alternative splicing in cancer. Int J Cell Biol 2013; 2013:151839. [PMID: 24069033 PMCID: PMC3771450 DOI: 10.1155/2013/151839] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large macromolecular complex, the spliceosome, whose activity needs a fine regulation exerted by cis-acting RNA sequence elements and trans-acting RNA binding proteins (RBP). The activity of both core spliceosomal components and accessory splicing factors is modulated by their reversible phosphorylation. The kinases and phosphatases involved in these posttranslational modifications significantly contribute to AS regulation and to its integration in the complex regulative network that controls gene expression in eukaryotic cells. Herein, we will review the major canonical and noncanonical splicing factor kinases and phosphatases, focusing on those whose activity has been implicated in the aberrant splicing events that characterize neoplastic transformation.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|
67
|
Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 2013; 152:791-805. [PMID: 23415227 DOI: 10.1016/j.cell.2013.01.033] [Citation(s) in RCA: 453] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022]
Abstract
Cytosolic compartmentalization through liquid-liquid unmixing, such as the formation of RNA granules, is involved in many cellular processes and might be used to regulate signal transduction. However, specific molecular mechanisms by which liquid-liquid unmixing and signal transduction are coupled remain unknown. Here, we show that during cellular stress the dual specificity kinase DYRK3 regulates the stability of P-granule-like structures and mTORC1 signaling. DYRK3 displays a cyclic partitioning mechanism between stress granules and the cytosol via a low-complexity domain in its N terminus and its kinase activity. When DYRK3 is inactive, it prevents stress granule dissolution and the release of sequestered mTORC1. When DYRK3 is active, it allows stress granule dissolution, releasing mTORC1 for signaling and promoting its activity by directly phosphorylating the mTORC1 inhibitor PRAS40. This mechanism links cytoplasmic compartmentalization via liquid phase transitions with cellular signaling.
Collapse
Affiliation(s)
- Frank Wippich
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
68
|
Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 2013; 122:191-207. [PMID: 23525660 DOI: 10.1007/s00412-013-0407-z] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
Genomic sequencing reveals similar but limited numbers of protein-coding genes in different genomes, which begs the question of how organismal diversities are generated. Alternative pre-mRNA splicing, a widespread phenomenon in higher eukaryotic genomes, is thought to provide a mechanism to increase the complexity of the proteome and introduce additional layers for regulating gene expression in different cell types and during development. Among a large number of factors implicated in the splicing regulation are the SR protein family of splicing factors and SR protein-specific kinases. Here, we summarize the rules for SR proteins to function as splicing regulators, which depend on where they bind in exons versus intronic regions, on alternative exons versus flanking competing exons, and on cooperative as well as competitive binding between different SR protein family members on many of those locations. We review the importance of cycles of SR protein phosphorylation/dephosphorylation in the splicing reaction with emphasis on the recent molecular insight into the role of SR protein phosphorylation in early steps of spliceosome assembly. Finally, we highlight recent discoveries of SR protein-specific kinases in transducing growth signals to regulate alternative splicing in the nucleus and the connection of both SR proteins and SR protein kinases to human diseases, particularly cancer.
Collapse
|
69
|
Molecular and cellular alterations in Down syndrome: toward the identification of targets for therapeutics. Neural Plast 2012; 2012:171639. [PMID: 22848846 PMCID: PMC3403492 DOI: 10.1155/2012/171639] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/25/2022] Open
Abstract
Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes.
Collapse
|
70
|
Slepak T, Salay L, Lemmon V, Bixby J. Dyrk kinases regulate phosphorylation of doublecortin, cytoskeletal organization, and neuronal morphology. Cytoskeleton (Hoboken) 2012; 69:514-27. [PMID: 22359282 PMCID: PMC3556588 DOI: 10.1002/cm.21021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 11/06/2022]
Abstract
In a neuronal overexpression screen focused on kinases and phosphatases, one "hit" was the dual specificity tyrosine phosphorylation-regulated kinase (Dyrk4), which increased the number of dendritic branches in hippocampal neurons. Overexpression of various Dyrk family members in primary neurons significantly changed neuronal morphology. Dyrk1A decreased axon growth, Dyrk3 and Dyrk4 increased dendritic branching, and Dyrk2 decreased both axon and dendrite growth and branching. Kinase-deficient mutants revealed that most of these effects depend on kinase activity. Because doublecortin (DCX), a microtubule-binding protein, regulates cytoskeletal dynamics and neuronal morphogenesis, we investigated the possibility that DCX is a target of Dyrks. We found that overexpression of Dyrk2 and Dyrk3, but not Dyrk1A or Dyrk4, can change DCX phosphorylation status. Mutation of a consensus phosphorylation site for Dyrk kinases at Serine 306 (Ser306) in DCX indicated that this is one target site for Dyrk2 and Dyrk3. Overexpression of Dyrk2 restored altered DCX distribution in the growth cones of dendrites and axons, and partially reversed the morphological effects of DCX overexpression; some of these effects were abrogated by mutation of Ser306 to alanine. These studies implicate Dyrks in the regulation of cytoskeletal organization and process outgrowth in neurons, and suggest that DCX is one relevant Dyrk target.
Collapse
Affiliation(s)
- T.I. Slepak
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine
| | - L.D. Salay
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine
| | - V.P. Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine
- Department of Neurological Surgery, University of Miami Miller School of Medicine
| | - J.L. Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine
- Department of Neurological Surgery, University of Miami Miller School of Medicine
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine
| |
Collapse
|
71
|
Sánchez-Hernández N, Ruiz L, Sánchez-Álvarez M, Montes M, Macias MJ, Hernández-Munain C, Suñé C. The FF4 and FF5 domains of transcription elongation regulator 1 (TCERG1) target proteins to the periphery of speckles. J Biol Chem 2012; 287:17789-17800. [PMID: 22453921 DOI: 10.1074/jbc.m111.304782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transcription elongation regulator 1 (TCERG1) is a human factor implicated in interactions with the spliceosome as a coupler of transcription and splicing. The protein is highly concentrated at the interface between speckles (the compartments enriched in splicing factors) and nearby transcription sites. Here, we identified the FF4 and FF5 domains of TCERG1 as the amino acid sequences required to direct this protein to the periphery of nuclear speckles, where coordinated transcription/RNA processing events occur. Consistent with our localization data, we observed that the FF4 and FF5 pair is required to fold in solution, thus suggesting that the pair forms a functional unit. When added to heterologous proteins, the FF4-FF5 pair is capable of targeting the resulting fusion protein to speckles. This represents, to our knowledge, the first description of a targeting signal for the localization of proteins to sites peripheral to speckled domains. Moreover, this "speckle periphery-targeting signal" contributes to the regulation of alternative splicing decisions of a reporter pre-mRNA in vivo.
Collapse
Affiliation(s)
- Noemí Sánchez-Hernández
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain
| | - Lidia Ruiz
- Structural and Computational Biology Programme, Institute for Research in Biomedicine (IRB), 08028 Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain
| | - Marta Montes
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain
| | - Maria J Macias
- Structural and Computational Biology Programme, Institute for Research in Biomedicine (IRB), 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Cristina Hernández-Munain
- Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain.
| |
Collapse
|
72
|
Malinge S, Bliss-Moreau M, Kirsammer G, Diebold L, Chlon T, Gurbuxani S, Crispino JD. Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Invest 2012; 122:948-62. [PMID: 22354171 PMCID: PMC3287382 DOI: 10.1172/jci60455] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/07/2011] [Indexed: 01/16/2023] Open
Abstract
Individuals with Down syndrome (DS; also known as trisomy 21) have a markedly increased risk of leukemia in childhood but a decreased risk of solid tumors in adulthood. Acquired mutations in the transcription factor-encoding GATA1 gene are observed in nearly all individuals with DS who are born with transient myeloproliferative disorder (TMD), a clonal preleukemia, and/or who develop acute megakaryoblastic leukemia (AMKL). Individuals who do not have DS but bear germline GATA1 mutations analogous to those detected in individuals with TMD and DS-AMKL are not predisposed to leukemia. To better understand the functional contribution of trisomy 21 to leukemogenesis, we used mouse and human cell models of DS to reproduce the multistep pathogenesis of DS-AMKL and to identify chromosome 21 genes that promote megakaryoblastic leukemia in children with DS. Our results revealed that trisomy for only 33 orthologs of human chromosome 21 (Hsa21) genes was sufficient to cooperate with GATA1 mutations to initiate megakaryoblastic leukemia in vivo. Furthermore, through a functional screening of the trisomic genes, we demonstrated that DYRK1A, which encodes dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A, was a potent megakaryoblastic tumor-promoting gene that contributed to leukemogenesis through dysregulation of nuclear factor of activated T cells (NFAT) activation. Given that calcineurin/NFAT pathway inhibition has been implicated in the decreased tumor incidence in adults with DS, our results show that the same pathway can be both proleukemic in children and antitumorigenic in adults.
Collapse
Affiliation(s)
- Sébastien Malinge
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Meghan Bliss-Moreau
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Gina Kirsammer
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Lauren Diebold
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Timothy Chlon
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Sandeep Gurbuxani
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - John D. Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
73
|
Bardoni B, Abekhoukh S, Zongaro S, Melko M. Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins: three actors for a complex scenario. PROGRESS IN BRAIN RESEARCH 2012; 197:29-51. [PMID: 22541287 DOI: 10.1016/b978-0-444-54299-1.00003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intellectual disability (ID) is the most frequent cause of serious handicap in children and young adults and interests 2-3% of worldwide population, representing a serious problem from the medical, social, and economic points of view. The causes are very heterogeneous. Genes involved in ID have various functions altering different pathways important in neuronal function. Regulation of mRNA metabolism is particularly important in neurons for synaptic structure and function. Here, we review ID due to alteration of mRNA metabolism. Functional absence of some RNA-binding proteins--namely, FMRP, FMR2P, PQBP1, UFP3B, VCX-A--causes different forms of ID. These proteins are involved in different steps of RNA metabolism and, even if a detailed analysis of their RNA targets has been performed so far only for FMRP, it appears clear that they modulate some aspects (translation, stability, transport, and sublocalization) of a subset of RNAs coding for proteins, whose function must be relevant for neurons. Two other proteins, DYRK1A and CDKL5, involved in Down syndrome and Rett syndrome, respectively, have been shown to have an impact on splicing efficiency of specific mRNAs. Both proteins are kinases and their effect is indirect. Interestingly, both are localized in nuclear speckles, the nuclear domains where splicing factors are assembled, stocked, and recycled and influence their biogenesis and/or their organization.
Collapse
Affiliation(s)
- Barbara Bardoni
- Institute of Molecular and Cellular Pharmacology, CNRS-UMR6097, Université de Nice Sophia-Antipolis,Valbonne, France.
| | | | | | | |
Collapse
|
74
|
Kida E, Walus M, Jarząbek K, Palminiello S, Albertini G, Rabe A, Hwang YW, Golabek AA. Form of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A nonphosphorylated at tyrosine 145 and 147 is enriched in the nuclei of astroglial cells, adult hippocampal progenitors, and some cholinergic axon terminals. Neuroscience 2011; 195:112-27. [PMID: 21878370 DOI: 10.1016/j.neuroscience.2011.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/10/2011] [Accepted: 08/12/2011] [Indexed: 01/01/2023]
Abstract
Compelling lines of evidence indicate that overexpression of dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) in subjects with trisomy 21 (Down syndrome[DS]) contributes to the abnormal structure and function of the DS brain. In the present study, we used a novel, phospho-dependent antibody recognizing DYRK1A only with nonphosphorylated tyrosine 145 and 147 (DYRK1A Tyr-145/147P(-)), to investigate the expression pattern of this DYRK1A species in trisomic and disomic human and mouse brains. Immunoblotting and dephosphorylation experiments demonstrated higher levels of DYRK1A Tyr-145/147P(-) in postnatal trisomic brains in comparison with controls (by ∼40%) than those of the DYRK1A visualized by three other N- and C-terminally directed antibodies to DYRK1A. By immunofluorescence, the immunoreactivity to DYRK1A Tyr-145/147P(-) was the strongest in the nuclei of astroglial cells, which contrasted with the predominantly neuronal localization of DYRK1A visualized by the three other antibodies to DYRK1A we used. In addition, DYRK1A Tyr-145/147P(-) was enriched in the nuclei of neuronal progenitors and newly born neurons in the adult hippocampal proliferative zone and also occurred in some cholinergic axonal terminals. Our data show a distinctive expression pattern of DYRK1A forms nonphosphorylated at Tyr-145 and Tyr-147 in the brain tissue and suggest that DS subjects may exhibit not only upregulation of total DYRK1A, but also more subtle differences in phosphorylation levels of this kinase in comparison with control individuals.
Collapse
Affiliation(s)
- E Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Miyata Y, Nishida E. DYRK1A binds to an evolutionarily conserved WD40-repeat protein WDR68 and induces its nuclear translocation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1728-39. [PMID: 21777625 DOI: 10.1016/j.bbamcr.2011.06.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 06/10/2011] [Accepted: 06/30/2011] [Indexed: 12/25/2022]
Abstract
DYRK1A is encoded in the Down's syndrome critical region on human chromosome 21, and plays an important role in the functional and developmental regulation of many types of cells, including neuronal cells. Here we have identified WDR68, an evolutionarily conserved protein with WD40-repeat domains, as a cellular binding partner of DYRK1A. WDR68 was originally identified in petunia as AN11 that controls the pigmentation of flowers by stimulating the transcription of anthocyanin biosynthetic genes. Experiments with RNA interference showed that WDR68 was indispensable for the optimal proliferation and survival of mammalian cultured cell, and WDR68 depletion induced cell apoptosis. DYRK1A and DYRK1B, but not DYRK2, DYRK3, or DYRK4, bound to endogenous and expressed WDR68. The N-terminal domain, but not the catalytic kinase domain or the C-terminal domain of DYRK1A, was responsible for the WDR68 binding. Deletions in the N-terminal or C-terminal region outside of the central WD40-repeats of WDR68 abolished its binding to DYRK1A, suggesting that WD40 repeats are not sufficient for the association with DYRK1A. Immunofluorescent staining revealed that WDR68 was distributed throughout the cell. Importantly, nuclear accumulation of WDR68 was observed upon co-expression of the wild type and a kinase-dead mutant of DYRK1A. Taken together, these results suggest that DYRK1A binds specifically to WDR68 in cells, and that the binding, but not the phosphorylation event, induces the nuclear translocation of WDR68.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
76
|
Ninomiya K, Kataoka N, Hagiwara M. Stress-responsive maturation of Clk1/4 pre-mRNAs promotes phosphorylation of SR splicing factor. ACTA ACUST UNITED AC 2011; 195:27-40. [PMID: 21949414 PMCID: PMC3187705 DOI: 10.1083/jcb.201107093] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A nuclear pool of partially spliced Clk1/4 pre-mRNAs matures in response to stress and induces SR protein phosphorylation and activation. It has been assumed that premessenger ribonucleic acids (RNAs; pre-mRNAs) are spliced cotranscriptionally in the process of gene expression. However, in this paper, we report that splicing of Clk1/4 mRNAs is suspended in tissues and cultured cells and that intermediate forms retaining specific introns are abundantly pooled in the nucleus. Administration of the Cdc2-like kinase–specific inhibitor TG003 increased the level of Clk1/4 mature mRNAs by promoting splicing of the intron-retaining RNAs. Under stress conditions, splicing of general pre-mRNAs was inhibited by dephosphorylation of SR splicing factors, but exposure to stresses, such as heat shock and osmotic stress, promoted the maturation of Clk1/4 mRNAs. Clk1/4 proteins translated after heat shock catalyzed rephosphorylation of SR proteins, especially SRSF4 and SRSF10. These findings suggest that Clk1/4 expression induced by stress-responsive splicing serves to maintain the phosphorylation state of SR proteins.
Collapse
Affiliation(s)
- Kensuke Ninomiya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
77
|
Qian W, Liang H, Shi J, Jin N, Grundke-Iqbal I, Iqbal K, Gong CX, Liu F. Regulation of the alternative splicing of tau exon 10 by SC35 and Dyrk1A. Nucleic Acids Res 2011; 39:6161-71. [PMID: 21470964 PMCID: PMC3152345 DOI: 10.1093/nar/gkr195] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
Abnormal alternative splicing of tau exon 10 results in imbalance of 3R-tau and 4R-tau expression, which is sufficient to cause neurofibrillary degeneration. Splicing factor SC35, a member of the superfamily of the serine/arginine-rich (SR) proteins, promotes tau exon 10 inclusion. The molecular mechanism by which SC35 participates in tau exon 10 splicing remains elusive. In the present study, we found that tau pre-mRNA was coprecipitated by SC35 tagged with HA. Mutation of the SC35-like exonic splicing enhancer located at exon 10 of tau affected both the binding of SC35 to tau pre-mRNA and promotion of tau exon 10 inclusion, suggesting that SC35 acts on the SC35-like exonic splicing enhancer to promote tau exon 10 inclusion. Dyrk1A (dual-specificity tyrosine-phosphorylated and regulated kinase 1A) phosphorylated SC35 in vitro and interacted with it in cultured cells. Overexpression of Dyrk1A suppressed SC35's ability to promote tau exon 10 inclusion. Downregulation of Dyrk1A promoted 4R-tau expression. Therefore, upregulation of Dyrk1A in Down syndrome brain or Alzheimer's brain may cause dysregulation of tau exon 10 splicing through SC35, and probably together with other splicing factors, leading to the imbalance in 3R-tau and 4R-tau expression, which may initiate or accelerate tau pathology and cause neurofibrillary degeneration in the diseases.
Collapse
Affiliation(s)
- Wei Qian
- Jiangsu Key Laboratory of Neuroregeneration, Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P. R. China and Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Hongwei Liang
- Jiangsu Key Laboratory of Neuroregeneration, Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P. R. China and Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jianhua Shi
- Jiangsu Key Laboratory of Neuroregeneration, Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P. R. China and Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nana Jin
- Jiangsu Key Laboratory of Neuroregeneration, Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P. R. China and Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Inge Grundke-Iqbal
- Jiangsu Key Laboratory of Neuroregeneration, Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P. R. China and Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Jiangsu Key Laboratory of Neuroregeneration, Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P. R. China and Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Jiangsu Key Laboratory of Neuroregeneration, Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P. R. China and Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Jiangsu Key Laboratory of Neuroregeneration, Department of Biochemistry, Medical School, Nantong University, Nantong, Jiangsu, P. R. China and Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
78
|
Rosenthal AS, Tanega C, Shen M, Mott BT, Bougie JM, Nguyen DT, Misteli T, Auld DS, Maloney DJ, Thomas CJ. Potent and selective small molecule inhibitors of specific isoforms of Cdc2-like kinases (Clk) and dual specificity tyrosine-phosphorylation-regulated kinases (Dyrk). Bioorg Med Chem Lett 2011; 21:3152-8. [PMID: 21450467 PMCID: PMC3085634 DOI: 10.1016/j.bmcl.2011.02.114] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 11/22/2022]
Abstract
Continued examination of substituted 6-arylquinazolin-4-amines as Clk4 inhibitors resulted in selective inhibitors of Clk1, Clk4, Dyrk1A and Dyrk1B. Several of the most potent inhibitors were validated as being highly selective within a comprehensive kinome scan.
Collapse
Affiliation(s)
- Andrew S. Rosenthal
- NIH Chemical Genomics Center, National Human Genome Research Institute, NIH 9800 Medical Center Drive, MSC 3370 Bethesda, MD 20892-3370 USA
| | - Cordelle Tanega
- NIH Chemical Genomics Center, National Human Genome Research Institute, NIH 9800 Medical Center Drive, MSC 3370 Bethesda, MD 20892-3370 USA
| | - Min Shen
- NIH Chemical Genomics Center, National Human Genome Research Institute, NIH 9800 Medical Center Drive, MSC 3370 Bethesda, MD 20892-3370 USA
| | - Bryan T. Mott
- NIH Chemical Genomics Center, National Human Genome Research Institute, NIH 9800 Medical Center Drive, MSC 3370 Bethesda, MD 20892-3370 USA
| | - James M. Bougie
- NIH Chemical Genomics Center, National Human Genome Research Institute, NIH 9800 Medical Center Drive, MSC 3370 Bethesda, MD 20892-3370 USA
| | - Dac-Trung Nguyen
- NIH Chemical Genomics Center, National Human Genome Research Institute, NIH 9800 Medical Center Drive, MSC 3370 Bethesda, MD 20892-3370 USA
| | - Tom Misteli
- Cell Biology of Genomes, National Cancer Institute, NIH, 41 Library Drive, Bethesda, MD 20892 USA
| | - Douglas S. Auld
- NIH Chemical Genomics Center, National Human Genome Research Institute, NIH 9800 Medical Center Drive, MSC 3370 Bethesda, MD 20892-3370 USA
| | - David J. Maloney
- NIH Chemical Genomics Center, National Human Genome Research Institute, NIH 9800 Medical Center Drive, MSC 3370 Bethesda, MD 20892-3370 USA
| | - Craig J. Thomas
- NIH Chemical Genomics Center, National Human Genome Research Institute, NIH 9800 Medical Center Drive, MSC 3370 Bethesda, MD 20892-3370 USA
| |
Collapse
|
79
|
Papadopoulos C, Arato K, Lilienthal E, Zerweck J, Schutkowski M, Chatain N, Müller-Newen G, Becker W, de la Luna S. Splice variants of the dual specificity tyrosine phosphorylation-regulated kinase 4 (DYRK4) differ in their subcellular localization and catalytic activity. J Biol Chem 2011; 286:5494-505. [PMID: 21127067 PMCID: PMC3037663 DOI: 10.1074/jbc.m110.157909] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 12/01/2010] [Indexed: 11/06/2022] Open
Abstract
Dual specificity tyrosine phosphorylation-regulated kinases, DYRKs, are a family of conserved protein kinases that play key roles in the regulation of cell differentiation, proliferation, and survival. Of the five mammalian DYRKs, DYRK4 is the least studied family member. Here, we show that several splice variants of DYRK4 are expressed in tissue-specific patterns and that these variants have distinct functional capacities. One of these variants contains a nuclear localization signal in its extended N terminus that mediates its interaction with importin α3 and α5 and that is capable of targeting a heterologous protein to the nucleus. Consequently, the nucleocytoplasmic mobility of this variant differs from that of a shorter isoform in live cell imaging experiments. Other splicing events affect the catalytic domain, including a three-amino acid deletion within subdomain XI that markedly reduces the enzymatic activity of DYRK4. We also show that autophosphorylation of a tyrosine residue within the activation loop is necessary for full DYRK4 kinase activity, a defining feature of the DYRK family. Finally, by comparing the phosphorylation of an array of 720 peptides, we show that DYRK1A, DYRK2, and DYRK4 differ in their target recognition sequence and that preference for an arginine residue at position P -3 is a feature of DYRK1A but not of DYRK2 and DYRK4. Therefore, we highlight the use of subcellular localization as an important regulatory mechanism for DYRK proteins, and we propose that substrate specificity could be a source of functional diversity among DYRKs.
Collapse
Affiliation(s)
- Chrisovalantis Papadopoulos
- From the Genes and Disease Program, Centre for Genomic Regulation, University Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
- the Institute of Pharmacology and Toxicology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Krisztina Arato
- From the Genes and Disease Program, Centre for Genomic Regulation, University Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
- the Centro de Investigación Biomédica en Red de Enfermedades Raras, 08003 Barcelona, Spain
| | - Eva Lilienthal
- the Institute of Pharmacology and Toxicology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Johannes Zerweck
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
| | - Mike Schutkowski
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
- the Institute of Biochemistry and Biotechnology, University of Halle-Wittenberg, Kurt-Mothes Strasse 3, 06099 Halle (Saale), Germany, and
| | - Nicolas Chatain
- the Department of Biochemistry, Rheinisch-Westfaelische Technische Hochschule Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Gerhard Müller-Newen
- the Department of Biochemistry, Rheinisch-Westfaelische Technische Hochschule Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Walter Becker
- the Institute of Pharmacology and Toxicology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Susana de la Luna
- From the Genes and Disease Program, Centre for Genomic Regulation, University Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
- the Centro de Investigación Biomédica en Red de Enfermedades Raras, 08003 Barcelona, Spain
- the Institució Catalana de Recerca i Estudis Avançats, 08003 Barcelona, Spain
| |
Collapse
|
80
|
Melko M, Douguet D, Bensaid M, Zongaro S, Verheggen C, Gecz J, Bardoni B. Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability. Hum Mol Genet 2011; 20:1873-85. [PMID: 21330300 DOI: 10.1093/hmg/ddr069] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The AFF (AF4/FMR2) family of genes includes four members: AFF1/AF4, AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31. AFF2/FMR2 is silenced in FRAXE intellectual disability, while the other three members have been reported to form fusion genes as a consequence of chromosome translocations with the myeloid/lymphoid or mixed lineage leukemia (MLL) gene in acute lymphoblastic leukemias (ALLs). All AFF proteins are localized in the nucleus and their role as transcriptional activators with a positive action on RNA elongation was primarily studied. We have recently shown that AFF2/FMR2 localizes to nuclear speckles, subnuclear structures considered as storage/modification sites of pre-mRNA splicing factors, and modulates alternative splicing via the interaction with the G-quadruplex RNA-forming structure. We show here that similarly to AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31 localize to nuclear speckles and are able to bind RNA, having a high apparent affinity for the G-quadruplex structure. Interestingly, AFF3/LAF4 and AFF4/AF5q31, like AFF2/FMR2, modulate, in vivo, the splicing efficiency of a mini-gene containing a G-quadruplex structure in one alternatively spliced exon. Furthermore, we observed that the overexpression of AFF2/3/4 interferes with the organization and/or biogenesis of nuclear speckles. These findings fit well with our observation that enlarged nuclear speckles are present in FRAXE fibroblasts. Furthermore, our findings suggest functional redundancy among the AFF family members in the regulation of splicing and transcription. It is possible that other members of the AFF family compensate for the loss of AFF2/FMR2 activity and as such explain the relatively mild to borderline phenotype observed in FRAXE patients.
Collapse
Affiliation(s)
- Mireille Melko
- CNRS UMR 6097, Institute of Molecular and Cellular Pharmacology, University of Nice-Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
81
|
Qian W, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F. Splicing factor SC35 promotes tau expression through stabilization of its mRNA. FEBS Lett 2011; 585:875-80. [PMID: 21333649 DOI: 10.1016/j.febslet.2011.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 01/28/2011] [Accepted: 02/14/2011] [Indexed: 01/21/2023]
Abstract
Altered alternative splicing and accumulation of brain microtubule-associated protein tau are found in several tauopathies and are believed to lead to these neurodegenerative diseases. We found that in addition to promoting tau exon 10 inclusion, splicing factor SC35 also promoted tau expression in HEK-293T cells. The activity of SC35 in promotion of tau expression was limited to exon 10 containing tau isoforms. SC35 did not affect tau transcription, but stabilized tau mRNA by binding to the SC35-like element of exon 10. These results provide novel insight into the regulation of tau expression and a molecular mechanism of tauopathies.
Collapse
Affiliation(s)
- Wei Qian
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | | | | | | | | |
Collapse
|
82
|
Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 2011; 25:449-62. [PMID: 21048044 DOI: 10.1096/fj.10-165837] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) comprise a family of protein kinases within the CMGC group of the eukaryotic kinome. Members of the DYRK family are found in 4 (animalia, plantae, fungi, and protista) of the 5 main taxa or kingdoms, and all DYRK proteins studied to date share common structural, biochemical, and functional properties with their ancestors in yeast. Recent work on DYRK proteins indicates that they participate in several signaling pathways critical for developmental processes and cell homeostasis. In this review, we focus on the DYRK family of proteins from an evolutionary, biochemical, and functional point of view and discuss the most recent, relevant, and controversial contributions to the study of these kinases.
Collapse
Affiliation(s)
- Sergi Aranda
- Center for Genomic Regulation, University Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
83
|
Wegiel J, Kaczmarski W, Barua M, Kuchna I, Nowicki K, Wang KC, Wegiel J, Yang SM, Frackowiak J, Mazur-Kolecka B, Silverman WP, Reisberg B, Monteiro I, de Leon M, Wisniewski T, Dalton A, Lai F, Hwang YW, Adayev T, Liu F, Iqbal K, Iqbal IG, Gong CX. Link between DYRK1A overexpression and several-fold enhancement of neurofibrillary degeneration with 3-repeat tau protein in Down syndrome. J Neuropathol Exp Neurol 2011; 70:36-50. [PMID: 21157379 PMCID: PMC3083064 DOI: 10.1097/nen.0b013e318202bfa1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Triplication of chromosome 21 in Down syndrome (DS) results in overexpression of the minibrain kinase/dual-specificity tyrosine phosphorylated and regulated kinase 1A gene (DYRK1A). DYRK1A phosphorylates cytoplasmic tau protein and appears in intraneuronal neurofibrillary tangles (NFTs). We have previously shown significantly more DYRK1A-positive NFTs in DS brains than in sporadic Alzheimer disease (AD) brains. This study demonstrates a gene dosage-proportional increase in the level of DYRK1A in DS in the cytoplasm and the cell nucleus, and enhanced cytoplasmic and nuclear immunoreactivity of DYRK1A in DS. The results suggest that overexpressed DYRK1A may alter both phosphorylation of tau and alternative splicing factor (ASF). Two-dimensional electrophoresis revealed modification of ASF phosphorylation in DS/AD and AD in comparison to controls. Altered phosphorylation of ASF by overexpressed nuclear DYRK1A may contribute to the alternative splicing of the tau gene and an increase by 2.68 × of the 3R/4R ratio in DS/AD, and a several-fold increase in the number of 3R tau-positive NFTs in DS/AD subjects compared with that in sporadic AD subjects. These data support the hypothesis that phosphorylation of ASF by overexpressed DYRK1A may contribute to alternative splicing of exon 10, increased expression of 3R tau, and early onset of neurofibrillary degeneration in DS.
Collapse
Affiliation(s)
- Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Kim Y, Park J, Song WJ, Chang S. Overexpression of Dyrk1A causes the defects in synaptic vesicle endocytosis. Neurosignals 2010; 18:164-72. [PMID: 21135538 DOI: 10.1159/000321994] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/12/2010] [Indexed: 11/19/2022] Open
Abstract
Trisomy 21-linked Dyrk1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) overexpression is implicated in pathogenic mechanisms underlying mental retardation in Down syndrome (DS). It is known to phosphorylate multiple substrates including endocytic proteins in vitro, but the functional consequence of Dyrk1A-mediated phosphorylation on endocytosis has never been investigated. Here, we show that overexpression of Dyrk1A causes defects in clathrin-mediated endocytosis and specifically, in the recruitment of endocytic proteins to clathrin-coated pits in fibroblasts. Synaptic vesicle endocytosis also significantly slowed down as a result of Dyrk1A overexpression in cultured hippocampal neurons. These effects are dependent on Dyrk1A kinase activity. The inhibitory effect of Dyrk1A on synaptic vesicle endocytosis was confirmed in neuronal cultures derived from transgenic mice overexpressing Dyrk1A at levels found in DS. Pharmacological blockade of Dyrk1A with epigallocatechin gallate rescued the endocytic phenotypes found in transgenic neurons. Together, our results suggest that aberrant Dyrk1A-mediated phosphorylation of the endocytic machinery perturbs synaptic vesicle endocytosis, which may contribute to synaptic dysfunctions and cognitive deficits associated with DS.
Collapse
Affiliation(s)
- Yoonju Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
85
|
Ritterhoff S, Farah CM, Grabitzki J, Lochnit G, Skurat AV, Schmitz ML. The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. EMBO J 2010; 29:3750-61. [PMID: 20940704 PMCID: PMC2989105 DOI: 10.1038/emboj.2010.251] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/17/2010] [Indexed: 12/18/2022] Open
Abstract
Protein kinases are organized in hierarchical networks that are assembled and regulated by scaffold proteins. Here, we identify the evolutionary conserved WD40-repeat protein Han11 as an interactor of the kinase homeodomain-interacting protein kinase 2 (HIPK2). In vitro experiments showed the direct binding of Han11 to HIPK2, but also to the kinases DYRK1a, DYRK1b and mitogen-activated protein kinase kinase kinase 1 (MEKK1). Han11 was required to allow coupling of MEKK1 to DYRK1 and HIPK2. Knockdown experiments in Caenorhabditis elegans showed the relevance of the Han11 orthologs Swan-1 and Swan-2 for the osmotic stress response. Downregulation of Han11 in human cells lowered the threshold and amplitude of HIPK2- and MEKK1-triggered signalling events and changed the kinetics of kinase induction. Han11 knockdown changed the amplitude and time dependence of HIPK2-driven transcription in response to DNA damage and also interfered with MEKK1-triggered gene expression and stress signalling. Impaired signal transmission also occurred upon interference with stoichiometrically assembled signalling complexes by Han11 overexpression. Collectively, these experiments identify Han11 as a novel scaffold protein regulating kinase signalling by HIPK2 and MEKK1.
Collapse
Affiliation(s)
- Stefanie Ritterhoff
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Carla M Farah
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Julia Grabitzki
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
86
|
Li D, Jackson RA, Yusoff P, Guy GR. Direct association of Sprouty-related protein with an EVH1 domain (SPRED) 1 or SPRED2 with DYRK1A modifies substrate/kinase interactions. J Biol Chem 2010; 285:35374-85. [PMID: 20736167 PMCID: PMC2975161 DOI: 10.1074/jbc.m110.148445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/23/2010] [Indexed: 12/30/2022] Open
Abstract
The mammalian SPRED (Sprouty-related protein with an EVH1 domain) proteins include a family of three members, SPRED1-3. Currently, little is known about their biochemistry. The best described, SPRED1, has been shown to inhibit the Ras/ERK pathway downstream of Ras. All three SPREDs have a cysteine-rich domain (CRD) that has high homology to the CRD of the Sprouty family of proteins, several of which are also Ras/ERK inhibitors. In the belief that binding partners would clarify SPRED function, we assayed for their associated proteins. Here, we describe the direct and endogenous interaction of SPRED1 and SPRED2 with the novel kinase, DYRK1A. DYRK1A has become the subject of recent research focus as it plays a central role in Caenorhabditis elegans oocyte maturation and egg activation, and there is strong evidence that it could be involved in Down syndrome in humans. Both SPRED1 and SPRED2 inhibit the ability of DYRK1A to phosphorylate its substrates, Tau and STAT3. This inhibition occurs via an interaction of the CRD of the SPREDs with the kinase domain of DYRK1A. DYRK1A substrates must bind to the kinase to enable phosphorylation, and SPRED proteins compete for the same binding site to modify this process. Our accumulated evidence indicates that the SPRED proteins are likely physiological modifiers of DYRK1A.
Collapse
Affiliation(s)
- Dan Li
- From the Institute of Molecular and Cell Biology, Signal Transduction Laboratory, 61 Biopolis Drive, Proteos 138673, Singapore
| | - Rebecca A. Jackson
- From the Institute of Molecular and Cell Biology, Signal Transduction Laboratory, 61 Biopolis Drive, Proteos 138673, Singapore
| | - Permeen Yusoff
- From the Institute of Molecular and Cell Biology, Signal Transduction Laboratory, 61 Biopolis Drive, Proteos 138673, Singapore
| | - Graeme R. Guy
- From the Institute of Molecular and Cell Biology, Signal Transduction Laboratory, 61 Biopolis Drive, Proteos 138673, Singapore
| |
Collapse
|
87
|
Toiber D, Azkona G, Ben-Ari S, Torán N, Soreq H, Dierssen M. Engineering DYRK1A overdosage yields Down syndrome-characteristic cortical splicing aberrations. Neurobiol Dis 2010; 40:348-59. [PMID: 20600907 DOI: 10.1016/j.nbd.2010.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 05/31/2010] [Accepted: 06/22/2010] [Indexed: 01/07/2023] Open
Abstract
Down syndrome (DS) associates with impaired brain functions, but the underlying mechanism(s) are yet unclear. The "gene dosage" hypothesis predicts that in DS, overexpression of a single gene can impair multiple brain functions through a signal amplification effect due to impaired regulatory mechanism(s). Here, we report findings attributing to impairments in the splicing process such a regulatory role. We have used DS fetal brain samples in search for initial evidence and employed engineered mice with MMU16 partial trisomy (Ts65Dn) or direct excess of the splicing-associated nuclear kinase Dyrk1A, overdosed in DS for further analyses. We present specific albeit modest changes in the DS brain's splicing machinery with subsequently amplified effects in target transcripts; and we demonstrate that engineered excess of Dyrk1A can largely recapitulate these changes. Specifically, in both the fetal DS brains and the Dyrk1A overdose models, we found ample modestly modified splicing-associated transcripts which apparently induced secondary enhancement in exon inclusion of key synaptic transcripts. Thus, DS-reduced levels of the dominant-negative TRKBT1 transcript, but not other TRKB mRNA transcripts, were accompanied by corresponding decreases in BDNF. In addition, the DS brains and Dyrk1A overdosage models showed selective changes in the transcripts composition of neuroligin mRNAs as well as reductions in the "synaptic" acetylcholinesterase variant AChE-S mRNA and corresponding increases in the stress-inducible AChE-R mRNA variant, yielding key synaptic proteins with unusual features. In cotransfected cells, Dyrk1A overdosage caused parallel changes in the splicing pattern of an AChE mini-gene, suggesting that Dyrk1A overdosage is both essential and sufficient to induce the observed change in the composition of AChE mRNA variants. Furthermore, the Dyrk1A overdosage animal models showed pronounced changes in the structure of neuronal nuclear speckles, where splicing events take place and in SR proteins phosphorylation known to be required for the splicing process. Together, our findings demonstrate DS-like brain splicing machinery malfunctioning in Dyrk1A overexpressing mice. Since individual splicing choices may alter cell fate determination, axon guidance, and synaptogenesis, these findings suggest the retrieval of balanced splicing as a goal for DS therapeutic manipulations early in DS development.
Collapse
Affiliation(s)
- Debra Toiber
- Department of Biological Chemistry and Interdisciplinary Center for Neuronal Computation (ICNC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
88
|
Ferron SR, Pozo N, Laguna A, Aranda S, Porlan E, Moreno M, Fillat C, de la Luna S, Sánchez P, Arbonés ML, Fariñas I. Regulated segregation of kinase Dyrk1A during asymmetric neural stem cell division is critical for EGFR-mediated biased signaling. Cell Stem Cell 2010; 7:367-79. [PMID: 20804972 DOI: 10.1016/j.stem.2010.06.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 03/30/2010] [Accepted: 06/04/2010] [Indexed: 11/29/2022]
Abstract
Stem cell division can result in two sibling cells exhibiting differential mitogenic and self-renewing potential. Here, we present evidence that the dual-specificity kinase Dyrk1A is part of a molecular pathway involved in the regulation of biased epidermal growth factor receptor (EGFR) signaling in the progeny of dividing neural stem cells (NSC) of the adult subependymal zone (SEZ). We show that EGFR asymmetry requires regulated sorting and that a normal Dyrk1a dosage is required to sustain EGFR in the two daughters of a symmetrically dividing progenitor. Dyrk1A is symmetrically or asymmetrically distributed during mitosis, and biochemical analyses indicate that it prevents endocytosis-mediated degradation of EGFR by a mechanism that requires phosphorylation of the EGFR signaling modulator Sprouty2. Finally, Dyrk1a heterozygous NSCs exhibit defects in self-renewal, EGF-dependent cell-fate decisions, and long-term persistence in vivo, suggesting that symmetrical divisions play a role in the maintenance of the SEZ reservoir.
Collapse
Affiliation(s)
- Sacri R Ferron
- Departamento de Biología Celular and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Mularoni L, Ledda A, Toll-Riera M, Albà MM. Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res 2010; 20:745-54. [PMID: 20335526 DOI: 10.1101/gr.101261.109] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amino acid tandem repeats are found in a large number of eukaryotic proteins. They are often encoded by trinucleotide repeats and exhibit high intra- and interspecies size variability due to the high mutation rate associated with replication slippage. The extent to which natural selection is important in shaping amino acid repeat evolution is a matter of debate. On one hand, their high frequency may simply reflect their high probability of expansion by slippage, and they could essentially evolve in a neutral manner. On the other hand, there is experimental evidence that changes in repeat size can influence protein-protein interactions, transcriptional activity, or protein subcellular localization, indicating that repeats could be functionally relevant and thus shaped by selection. To gauge the relative contribution of neutral and selective forces in amino acid repeat evolution, we have performed a comparative analysis of amino acid repeat conservation in a large set of orthologous proteins from 12 vertebrate species. As a neutral model of repeat evolution we have used sequences with the same DNA triplet composition as the coding sequences--and thus expected to be subject to the same mutational forces--but located in syntenic noncoding genomic regions. The results strongly indicate that selection has played a more important role than previously suspected in amino acid tandem repeat evolution, by increasing the repeat retention rate and by modulating repeat size. The data obtained in this study have allowed us to identify a set of 92 repeats that are postulated to play important functional roles due to their strong selective signature, including five cases with direct experimental evidence.
Collapse
Affiliation(s)
- Loris Mularoni
- Biomedical Informatics Research Programme (GRIB), Fundació Institut Municipal d'Investigació Mèdica, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
90
|
Yabut O, Domogauer J, D'Arcangelo G. Dyrk1A overexpression inhibits proliferation and induces premature neuronal differentiation of neural progenitor cells. J Neurosci 2010; 30:4004-14. [PMID: 20237271 PMCID: PMC3842457 DOI: 10.1523/jneurosci.4711-09.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/19/2010] [Accepted: 01/27/2010] [Indexed: 01/08/2023] Open
Abstract
Dyrk1A is a member of the mammalian Dyrk [dual-specificity tyrosine-(Y)-phosphorylation regulated kinase] family of protein kinases that is expressed at high levels in the brain, but its role in the development and function of this organ is not well understood. The human DYRK1A gene is located on trisomic chromosome 21 in Down syndrome (DS) patients, leading to its overexpression. Dyrk1A is also overexpressed in animal models of DS and in gene-specific transgenic mice that consistently exhibit cognitive impairment. To elucidate the cellular and molecular mechanisms that are affected by increased levels of Dyrk1A in the developing brain, we overexpressed this kinase in the embryonic mouse neocortex using the in utero electroporation technique. We found that Dyrk1A overexpression inhibits neural cell proliferation and promotes premature neuronal differentiation in the developing cerebral cortex without affecting cell fate and layer positioning. These effects are dependent on the Dyrk1A kinase activity and are mediated by the nuclear export and degradation of cyclin D1. This study identifies specific Dyrk1A-induced mechanisms that disrupt the normal process of corticogenesis and possibly contribute to cognitive impairment observed in DS patients and animal models.
Collapse
Affiliation(s)
- Odessa Yabut
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, and
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jason Domogauer
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, and
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, and
| |
Collapse
|
91
|
Kinstrie R, Luebbering N, Miranda-Saavedra D, Sibbet G, Han J, Lochhead PA, Cleghon V. Characterization of a domain that transiently converts class 2 DYRKs into intramolecular tyrosine kinases. Sci Signal 2010; 3:ra16. [PMID: 20197545 DOI: 10.1126/scisignal.2000579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) autophosphorylate an essential tyrosine residue in their activation loop and phosphorylate their substrates on serine and threonine residues. Phosphorylation of the activation loop tyrosine occurs intramolecularly, is mediated by a short-lived transitional intermediate during protein maturation, and is required for functional serine-threonine kinase activity of DYRKs. The DYRK family is separated into two subclasses. Through bioinformatics and mutational analyses, we identified a conserved domain in the noncatalytic N terminus of a class 2 DYRK that was required for autophosphorylation of the activation loop tyrosine but not for the phosphorylation of serine or threonine residues in substrates. We propose that this domain, which we term the NAPA domain, provides a chaperone-like function that transiently converts class 2 DYRKs into intramolecular kinases capable of autophosphorylating the activation loop tyrosine. The conservation of the NAPA domain from trypanosomes to humans indicates that this form of intramolecular phosphorylation of the activation loop is ancient and may represent a primordial mechanism for the activation of protein kinases.
Collapse
Affiliation(s)
- Ross Kinstrie
- 1Department of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | | | | | | | | | | |
Collapse
|
92
|
Park J, Song WJ, Chung KC. Function and regulation of Dyrk1A: towards understanding Down syndrome. Cell Mol Life Sci 2009; 66:3235-40. [PMID: 19685005 PMCID: PMC11115655 DOI: 10.1007/s00018-009-0123-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 12/16/2022]
Abstract
Down syndrome (DS) is associated with a variety of symptoms, such as incapacitating mental retardation and neurodegeneration (i.e., Alzheimer's disease), that prevent patients from leading fully independent lives. These phenotypes are a direct consequence of the overexpression of chromosome 21 genes, which are present in duplicate due to non-disjunction of chromosome 21. Accumulating data suggest that the chromosome 21 gene product, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (Dyrk1A), participates in the pathogenic mechanisms underlying the mental and other physical symptoms of DS. In this review, we summarize the evidence supporting a role for Dyrk1A in DS, especially DS pathogenesis. Recently, several natural and synthetic compounds have been identified as Dyrk1A inhibitors. Understanding the function and regulation of Dyrk1A may lead to the development of novel therapeutic agents aimed at treating DS.
Collapse
Affiliation(s)
- Joongkyu Park
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seongsan-no 262, Seodaemun-gu, Seoul, 120-749 Republic of Korea
| | - Woo-Joo Song
- Graduate Program in Neuroscience, Institute for Brain Science and Technology (IBST), Inje University, Gaegeum 2-dong, Busanjin-gu, Busan, 614-735 Republic of Korea
| | - Kwang Chul Chung
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seongsan-no 262, Seodaemun-gu, Seoul, 120-749 Republic of Korea
| |
Collapse
|
93
|
HSPB7 is a SC35 speckle resident small heat shock protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1343-53. [PMID: 19464326 DOI: 10.1016/j.bbamcr.2009.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND The HSPB family is one of the more diverse families within the group of HSP families. Some members have chaperone-like activities and/or play a role in cytoskeletal stabilization. Some members also show a dynamic, stress-induced translocation to SC35 splicing speckles. If and how these features are interrelated and if they are shared by all members are yet unknown. METHODS Tissue expression data and interaction and co-regulated gene expression data of the human HSPB members was analyzed using bioinformatics. Using a gene expression library, sub-cellular distribution of the diverse members was analyzed by confocal microscopy. Chaperone activity was measured using a cellular luciferase refolding assay. RESULTS Online databases did not accurately predict the sub-cellular distribution of all the HSPB members. A novel and non-predicted finding was that HSPB7 constitutively localized to SC35 splicing speckles, driven by its N-terminus. Unlike HSPB1 and HSPB5, that chaperoned heat unfolded substrates and kept them folding competent, HSPB7 did not support refolding. CONCLUSION Our data suggest a non-chaperone-like role of HSPB7 at SC35 speckles. GENERAL SIGNIFICANCE The functional divergence between HSPB members seems larger than previously expected and also includes non-canonical members lacking classical chaperone-like functions.
Collapse
|
94
|
Fernandez-Martinez J, Vela EM, Tora-Ponsioen M, Ocaña OH, Nieto MA, Galceran J. Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1A. J Cell Sci 2009; 122:1574-83. [PMID: 19383720 DOI: 10.1242/jcs.044354] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Notch signalling is used throughout the animal kingdom to spatially and temporally regulate cell fate, proliferation and differentiation. Its importance is reflected in the dramatic effects produced on both development and health by small variations in the strength of the Notch signal. The Down-syndrome-associated kinase DYRK1A is coexpressed with Notch in various tissues during embryonic development. Here we show that DYRK1A moves to the nuclear transcription compartment where it interacts with the intracellular domain of Notch promoting its phosphorylation in the ankyrin domain and reducing its capacity to sustain transcription. DYRK1A attenuates Notch signalling in neural cells both in culture and in vivo, constituting a novel mechanism capable of modulating different developmental processes that can also contribute to the alterations observed during brain development in animal models of Down syndrome.
Collapse
|
95
|
Salichs E, Ledda A, Mularoni L, Albà MM, de la Luna S. Genome-wide analysis of histidine repeats reveals their role in the localization of human proteins to the nuclear speckles compartment. PLoS Genet 2009; 5:e1000397. [PMID: 19266028 PMCID: PMC2644819 DOI: 10.1371/journal.pgen.1000397] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 01/30/2009] [Indexed: 12/20/2022] Open
Abstract
Single amino acid repeats are prevalent in eukaryote organisms, although the role of many such sequences is still poorly understood. We have performed a comprehensive analysis of the proteins containing homopolymeric histidine tracts in the human genome and identified 86 human proteins that contain stretches of five or more histidines. Most of them are endowed with DNA- and RNA-related functions, and, in addition, there is an overrepresentation of proteins expressed in the brain and/or nervous system development. An analysis of their subcellular localization shows that 15 of the 22 nuclear proteins identified accumulate in the nuclear subcompartment known as nuclear speckles. This localization is lost when the histidine repeat is deleted, and significantly, closely related paralogous proteins without histidine repeats also fail to localize to nuclear speckles. Hence, the histidine tract appears to be directly involved in targeting proteins to this compartment. The removal of DNA-binding domains or treatment with RNA polymerase II inhibitors induces the re-localization of several polyhistidine-containing proteins from the nucleoplasm to nuclear speckles. These findings highlight the dynamic relationship between sites of transcription and nuclear speckles. Therefore, we define the histidine repeats as a novel targeting signal for nuclear speckles, and we suggest that these repeats are a way of generating evolutionary diversification in gene duplicates. These data contribute to our better understanding of the physiological role of single amino acid repeats in proteins. Single amino acid repeats are common in eukaryotic proteins. Some of them are associated with developmental and neurodegenerative disorders in humans, suggesting that they play important functions. However, the role of many of these repeats is unknown. Here, we have studied histidine repeats from a bioinformatics as well as a functional point of view. We found that only 86 proteins in the human genome contain stretches of five or more histidines, and that most of these proteins have functions related with RNA synthesis. When studying where these proteins localize in the cell, we found that a significant proportion accumulate in a subnuclear organelle known as nuclear speckles, via the histidine repeat. This is a structure where proteins related to the synthesis and processing of RNA accumulate. In some cases, the localization is transient and depends on the transcriptional requirements of the cell. Our findings are important because they identify a common cellular function for stretches of histidine residues, and they support the notion that histidine repeats contribute to generate evolutionary diversification. Finally, and considering that some of the proteins with histidine stretches are key elements in essential developmental processes, variation in these repeats would be expected to contribute to human disease.
Collapse
Affiliation(s)
- Eulàlia Salichs
- Genes and Disease Program, Centre de Regulació Genòmica (CRG), Barcelona, Spain
- El Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Alice Ledda
- Biomedical Informatics Research Program, Institut Municipal d'Investigació Mèdica-IMIM, Barcelona, Spain
| | - Loris Mularoni
- Biomedical Informatics Research Program, Institut Municipal d'Investigació Mèdica-IMIM, Barcelona, Spain
| | - M. Mar Albà
- Biomedical Informatics Research Program, Institut Municipal d'Investigació Mèdica-IMIM, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Susana de la Luna
- Genes and Disease Program, Centre de Regulació Genòmica (CRG), Barcelona, Spain
- El Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
96
|
The influence of calcium signaling on the regulation of alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:979-84. [PMID: 19133299 DOI: 10.1016/j.bbamcr.2008.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/27/2008] [Accepted: 12/03/2008] [Indexed: 02/07/2023]
Abstract
In this review the influence of calcium signaling on the regulation of alternative splicing is discussed with respect to its influence on cell- and developmental-specific expression of different isoforms of the plasma membrane calcium pump (PMCA). In a second part the possibility is discussed that due to the interaction of the calcium-binding protein ALG-2 with a spliceosomal regulator of alternative splicing, RBM22, Ca2+-signaling may thus influence its regulatory property.
Collapse
|
97
|
Sitz JH, Baumgärtel K, Hämmerle B, Papadopoulos C, Hekerman P, Tejedor FJ, Becker W, Lutz B. The Down syndrome candidate dual-specificity tyrosine phosphorylation-regulated kinase 1A phosphorylates the neurodegeneration-related septin 4. Neuroscience 2008; 157:596-605. [PMID: 18938227 DOI: 10.1016/j.neuroscience.2008.09.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 08/20/2008] [Accepted: 09/16/2008] [Indexed: 11/21/2022]
Abstract
The dual-specific kinase DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) is the mammalian orthologue of the Drosophila minibrain (MNB) protein kinase and executes diverse roles in neuronal development and adult brain physiology. DYRK1A is overexpressed in Down syndrome (DS) and has recently been implicated in several neurodegenerative diseases. In an attempt to elucidate the molecular basis of its involvement in cognitive and neurodegeneration processes, we searched for novel proteins interacting with the kinase domain of DYRK1A in the adult mouse brain and identified septin 4 (SEPT4, also known as Pnutl2/CDCrel-2). SEPT4 is a member of the group III septin family of guanosine triphosphate hydrolases (GTPases), which has previously been found in neurofibrillary tangles of Alzheimer disease brains and in alpha-synuclein-positive cytoplasmic inclusions in Parkinson disease brains. In transfected mammalian cells, DYRK1A specifically interacts with and phosphorylates SEPT4. Phosphorylation of SEPT4 by DYRK1A was inhibited by harmine, which has recently been identified as the most specific inhibitor of DYRK1A. In support of a physiological relation in the brain, we found that Dyrk1A and Sept4 are co-expressed and co-localized in neocortical neurons. These findings suggest that SEPT4 is a substrate of DYRK1A kinase and thus provide a possible link for the involvement of DYRK1A in neurodegenerative processes and in DS neuropathologies.
Collapse
Affiliation(s)
- J H Sitz
- Molecular Genetics of Behaviour, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Yoshida K. Role for DYRK family kinases on regulation of apoptosis. Biochem Pharmacol 2008; 76:1389-94. [PMID: 18599021 DOI: 10.1016/j.bcp.2008.05.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/01/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
The cellular response to a variety of stress including DNA damage is involved in cell cycle arrest, activation of DNA repair, and in the event of irreparable damage, induction of apoptosis. However, the signals that determine cell fate, that is, survival or apoptosis, are largely unknown. Accumulating studies have revealed that dual-specificity tyrosine-regulated kinases (DYRKs) play key roles on cell proliferation and apoptosis induction. In particular, DYRK2 translocates from the cytoplasm into the nucleus following genotoxic stress. DYRK2 is then activated by ATM and induce apoptosis by phosphorylating p53 at Ser46. Importantly, whereas precise regulation of these kinases remain uncertain, this mechanism has consequences for cell proliferation, differentiation, or apoptosis. This progress review highlights recent efforts demonstrating that DYRKs could be novel and essential regulatory molecules for the regulation of cell fate including apoptosis.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
99
|
Laguna A, Aranda S, Barallobre MJ, Barhoum R, Fernández E, Fotaki V, Delabar JM, de la Luna S, de la Villa P, Arbonés ML. The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development. Dev Cell 2008; 15:841-53. [PMID: 19081073 DOI: 10.1016/j.devcel.2008.10.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 10/23/2008] [Accepted: 10/31/2008] [Indexed: 11/29/2022]
Abstract
The precise regulation of programmed cell death is critical for the normal development of the nervous system. We show here that DYRK1A (minibrain), a protein kinase essential for normal growth, is a negative regulator of the intrinsic apoptotic pathway in the developing retina. We provide evidence that changes in Dyrk1A gene dosage in the mouse strongly alter the cellularity of inner retina layers and result in severe functional alterations. We show that DYRK1A does not affect the proliferation or specification of retina progenitor cells, but rather regulates the number of cells that die by apoptosis. We demonstrate that DYRK1A phosphorylates caspase-9 on threonine residue 125, and that this phosphorylation event is crucial to protect retina cells from apoptotic cell death. Our data suggest a model in which dysregulation of the apoptotic response in differentiating neurons participates in the neuropathology of diseases that display DYRK1A gene-dosage imbalance effects, such as Down's syndrome.
Collapse
Affiliation(s)
- Ariadna Laguna
- Center for Genomic Regulation, UPF, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Seifert A, Allan LA, Clarke PR. DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine. FEBS J 2008; 275:6268-80. [PMID: 19016842 DOI: 10.1111/j.1742-4658.2008.06751.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
DYRK1A is a member of the dual-specificity tyrosine-phosphorylation-regulated protein kinase family and is implicated in Down's syndrome. Here, we identify the cysteine aspartyl protease caspase 9, a critical component of the intrinsic apoptotic pathway, as a substrate of DYRK1A. Depletion of DYRK1A from human cells by short interfering RNA inhibits the basal phosphorylation of caspase 9 at an inhibitory site, Thr125. DYRK1A-dependent phosphorylation of Thr125 is also blocked by harmine, confirming the use of this beta-carboline alkaloid as a potent inhibitor of DYRK1A in cells. We show that harmine not only inhibits the protein-serine/threonine kinase activity of mature DYRK1A, but also its autophosphorylation on tyrosine during translation, indicating that harmine prevents formation of the active enzyme. When co-expressed in cells, DYRK1A interacts with caspase 9, strongly induces Thr125 phosphorylation and inhibits caspase 9 auto-processing. Phosphorylation of caspase 9 by DYRK1A involves co-localization to the nucleus. These results indicate that DYRK1A sets a threshold for the activation of caspase 9 through basal inhibitory phosphorylation of this protease. Regulation of apoptosis through inhibitory phosphorylation of caspase 9 may play a role in the function of DYRK1A during development and in pathogenesis.
Collapse
Affiliation(s)
- Anne Seifert
- Biomedical Research Institute, College of Medicine, Dentistry and Nursing, University of Dundee, UK
| | | | | |
Collapse
|