51
|
Mitochondrial dynamics and mitophagy in the 6-hydroxydopamine preclinical model of Parkinson's disease. PARKINSONS DISEASE 2012; 2012:131058. [PMID: 22966477 PMCID: PMC3431121 DOI: 10.1155/2012/131058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/18/2012] [Indexed: 11/17/2022]
Abstract
We discuss the participation of mitochondrial dynamics and autophagy in the 6-hydroxidopamine-induced Parkinson's disease model. The regulation of dynamic mitochondrial processes such as fusion, fission, and mitophagy has been shown to be an important mechanism controlling cellular fate. An imbalance in mitochondrial dynamics may contribute to both familial and sporadic neurodegenerative diseases including Parkinson's disease. With special attention we address the role of second messengers as the role of reactive oxygen species and the mitochondria as the headquarters of cell death. The role of molecular signaling pathways, for instance, the participation of Dynamin-related protein 1(Drp1), will also be addressed. Furthermore evidence demonstrates the therapeutic potential of small-molecule inhibitors of mitochondrial division in Parkinson's disease. For instance, pharmacological inhibition of Drp1, through treatment with the mitochondrial division inhibitor-1, results in the abrogation of mitochondrial fission and in a decrease of the number of autophagic cells. Deciphering the signaling cascades that underlie mitophagy triggered by 6-OHDA, as well as the mechanisms that determine the selectivity of this response, will help to better understand this process and may have impact on human treatment strategies of Parkinson's disease.
Collapse
|
52
|
Wang Z, Kim JI, Frilot N, Daaka Y. Dynamin2 S-nitrosylation regulates adenovirus type 5 infection of epithelial cells. J Gen Virol 2012; 93:2109-2117. [PMID: 22791607 DOI: 10.1099/vir.0.042713-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamin2 is a large GTPase that regulates vesicle trafficking, and the GTPase activity of dynamin2 is required for the multistep process of adenovirus infection. Activity of dynamin2 may be regulated by post-translational phosphorylation and S-nitrosylation modifications. In this study, we demonstrate a role for dynamin2 S-nitrosylation in adenovirus infection of epithelial cells. We show that adenovirus serotype 5 (Ad5) infection augments production of nitric oxide (NO) in epithelial cells and causes the S-nitrosylation of dynamin2, mainly on cysteine 86 (C86) and 607 (C607) residues. Forced overexpression of dynamin2 bearing C86A and/or C607A mutations decreases Ad5 infection. Diminishing NO synthesis by RNAi-induced knockdown of endogenous endothelial NO synthase (eNOS) expression attenuates virus infection of target cells. Ad5 infection promotes the kinetically dynamic S-nitrosylation of dynamin2 and eNOS: there is a rapid decrease in eNOS S-nitrosylation and a concomitant increase in the dynamin2 S-nitrosylation. These results support the hypothesis that dynamin2 S-nitrosylation following eNOS activation facilitates adenovirus infection of host epithelial cells.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610, USA
| | - Jae Il Kim
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610, USA
| | - Nicole Frilot
- Department of Pathology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA.,Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
53
|
Daaka Y. S-nitrosylation-regulated GPCR signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:743-51. [PMID: 21397660 PMCID: PMC3131494 DOI: 10.1016/j.bbagen.2011.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/26/2011] [Accepted: 03/04/2011] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most numerous and diverse type of cell surface receptors, accounting for about 1% of the entire human genome and relaying signals from a variety of extracellular stimuli that range from lipid and peptide growth factors to ions and sensory inputs. Activated GPCRs regulate a multitude of target cell functions, including intermediary metabolism, growth and differentiation, and migration and invasion. The GPCRs contain a characteristic 7-transmembrane domain topology and their activation promotes complex formation with a variety of intracellular partner proteins, which form basis for initiation of distinct signaling networks as well as dictate fate of the receptor itself. Both termination of active GPCR signaling and removal from the plasma membrane are controlled by protein post-translational modifications of the receptor itself and its interacting partners. Phosphorylation, acylation and ubiquitination are the most studied post-translational modifications involved in GPCR signal transduction, subcellular trafficking and overall expression. Emerging evidence demonstrates that protein S-nitrosylation, the covalent attachment of a nitric oxide moiety to specified cysteine thiol groups, of GPCRs and/or their associated effectors also participates in the fine-tuning of receptor signaling and expression. This newly appreciated mode of GPCR system modification adds another set of controls to more precisely regulate the many cellular functions elicited by this large group of receptors. This article is part of a Special Issue entitled: Regulation of cellular processes by S-nitrosylation.
Collapse
Affiliation(s)
- Yehia Daaka
- The Department of Microbiology and Immunology, University of California, San Francisco, CA, United States.
| |
Collapse
|
54
|
Chakrabarti S, Chan CK, Jiang Y, Davidge ST. Neuronal nitric oxide synthase regulates endothelial inflammation. J Leukoc Biol 2012; 91:947-56. [DOI: 10.1189/jlb.1011513] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
55
|
Kumar A, Bharti AC, Singh SM. Effect of aspirin administration on reversal of tumor-induced suppression of myelopoiesis in T-cell lymphoma bearing host. Blood Cells Mol Dis 2012; 48:238-46. [DOI: 10.1016/j.bcmd.2012.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
|
56
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
57
|
Protein S-nitrosylation and cancer. Cancer Lett 2012; 320:123-9. [PMID: 22425962 DOI: 10.1016/j.canlet.2012.03.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022]
Abstract
Protein S-nitrosylation is a covalent post-translational modification through coupling of a nitric oxide (NO) moiety with the reactive thiol group of a protein cysteine residue to form an S-nitrosothiol (SNO). S-nitrosylation is a key mechanism in the transmission of NO-based cellular signals in the vital cellular processes, including transcription regulation, DNA repair, and apoptosis. Contemporary research has implicated dysregulation of S-nitrosylation in severe pathological events, including cancer onset, progression, and treatment resistance. The S-nitrosylation status may be directly linked to many cancer therapy outcomes as well as therapeutic-resistance, emphasizing the need to develop S-nitrosylation-related anti-cancer therapeutics. The role of S-nitrosylated proteins in the development and progression of cancer are varied, generating a critical need for a thorough review of the current dynamic research in this area.
Collapse
|
58
|
Zhang HH, Feng L, Wang W, Magness RR, Chen DB. Estrogen-responsive nitroso-proteome in uterine artery endothelial cells: role of endothelial nitric oxide synthase and estrogen receptor-β. J Cell Physiol 2012; 227:146-59. [PMID: 21374595 PMCID: PMC3125455 DOI: 10.1002/jcp.22712] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covalent adduction of a NO moiety to cysteines (S-nitrosylation or SNO) is a major route for NO to directly regulate protein functions. In uterine artery endothelial cells (UAEC), estradiol-17β (E2) rapidly stimulated protein SNO that maximized within 10-30 min post-E2 exposure. E2-bovine serum albumin stimulated protein SNO similarly. Stimulation of SNO by both was blocked by ICI 182, 780, implicating mechanisms linked to specific estrogen receptors (ERs) localized on the plasma membrane. E2-induced protein SNO was attenuated by selective ERβ, but not ERα, antagonists. A specific ERβ but not ERα agonist was able to induce protein SNO. Overexpression of ERβ, but not ERα, significantly enhanced E2-induced SNO. Overexpression of both ERs increased basal SNO, but did not further enhance E2-stimulated SNO. E2-induced SNO was inhibited by N-nitro-L-arginine-methylester and specific endothelial NO synthase (eNOS) siRNA. Thus, estrogen-induced SNO is mediated by endogenous NO via eNOS and mainly ERβ in UAEC. We further analyzed the nitroso-proteomes by CyDye switch technique combined with two-dimensional (2D) fluorescence difference gel electrophoresis. Numerous nitrosoprotein (spots) were visible on the 2D gel. Sixty spots were chosen and subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Among the 54 identified, nine were novel SNO-proteins, 32 were increased, eight were decreased, and the rest were unchanged by E2. Tandom MS identified Cys139 as a specific site for SNO in GAPDH. Pathway analysis of basal and estrogen-responsive nitroso-proteomes suggested that SNO regulates diverse protein functions, directly implicating SNO as a novel mechanism for estrogen to regulate uterine endothelial function and thus uterine vasodilatation.
Collapse
Affiliation(s)
- Hong-hai Zhang
- Department of Obstetrics & Gynecology, University of California-Irvine, Irvine, CA 92697
| | - Lin Feng
- Department of Obstetrics & Gynecology, University of California-Irvine, Irvine, CA 92697
| | - Wen Wang
- Department of Obstetrics & Gynecology, University of California-Irvine, Irvine, CA 92697
| | - Ronald R. Magness
- Department of Obstetrics and Gynecology - Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI 53715
| | - Dong-bao Chen
- Department of Obstetrics & Gynecology, University of California-Irvine, Irvine, CA 92697
- Experimental Pathology, University of California-Irvine, Irvine, CA 92697
| |
Collapse
|
59
|
Chakrabarti S, Cheung CC, Davidge ST. Estradiol attenuates high glucose-induced endothelial nitrotyrosine: role for neuronal nitric oxide synthase. Am J Physiol Cell Physiol 2011; 302:C666-75. [PMID: 22135215 DOI: 10.1152/ajpcell.00181.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia in diabetes causes increased oxidative stress in the vascular endothelium with generation of free radicals such as superoxide. Peroxynitrite, a highly reactive species generated from superoxide and nitric oxide (NO), induces proinflammatory tyrosine nitration of intracellular proteins under such conditions. The female sex hormone estrogen appears to exert protective effects on the nondiabetic endothelium. However, several studies show reduced vascular protection in women with diabetes, suggesting alterations in estrogen signaling under high glucose. In this study, we examined the endothelial effects of estrogen under increasing glucose levels, focusing on nitrotyrosine and peroxynitrite. Human umbilical vein endothelial cells were incubated with normal (5.5 mM) or high (15.5 or 30.5 mM) glucose before addition of estradiol (E2, 1 or 10 nM). Selective NO synthase (NOS) inhibitors were used to determine the role of specific NOS isoforms. Addition of E2 significantly reduced high glucose-induced increase in peroxynitrite and consequently, nitrotyrosine. The superoxide levels were unchanged, suggesting effects on NO generation. Inhibition of neuronal NOS (nNOS) reduced high glucose-induced nitrotyrosine, demonstrating a critical role for this enzyme. E2 increased nNOS activity under normal glucose while decreasing it under high glucose as determined by its phosphorylation status. These data show that nNOS contributes to endothelial peroxynitrite and subsequent nitrotyrosine generation under high glucose, which can be attenuated by E2 through nNOS inhibition. The altered regulation of nNOS by E2 under high glucose is a potential therapeutic target in women with diabetes.
Collapse
Affiliation(s)
- Subhadeep Chakrabarti
- Department of Obstetrics and Gynecology, Women and Children's Health Research Institute, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
60
|
The role of thioredoxin in the regulation of cellular processes by S-nitrosylation. Biochim Biophys Acta Gen Subj 2011; 1820:689-700. [PMID: 21878369 DOI: 10.1016/j.bbagen.2011.08.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/27/2011] [Accepted: 08/16/2011] [Indexed: 01/29/2023]
Abstract
BACKGROUND S-nitrosylation (or S-nitrosation) by Nitric Oxide (NO), i.e., the covalent attachment of a NO group to a cysteine thiol and formation of S-nitrosothiols (R-S-N=O or RSNO), has emerged as an important feature of NO biology and pathobiology. Many NO-related biological functions have been directly associated with the S-nitrosothiols and a considerable number of S-nitrosylated proteins have been identified which can positively or negatively regulate various cellular processes including signaling and metabolic pathways. SCOPE OF THE REVIEW Taking account of the recent progress in the field of research, this review focuses on the regulation of cellular processes by S-nitrosylation and Trx-mediated cellular homeostasis of S-nitrosothiols. MAJOR CONCLUSIONS Thioredoxin (Trx) system in mammalian cells utilizes thiol and selenol groups to maintain a reducing intracellular environment to combat oxidative/nitrosative stress. Reduced glutathione (GSH) and Trx system perform the major role in denitrosylation of S-nitrosylated proteins. However, under certain conditions, oxidized form of mammalian Trx can be S-nitrosylated and then it can trans-S-nitrosylate target proteins, such as caspase 3. GENERAL SIGNIFICANCE Investigations on the role of thioredoxin system in relation to biologically relevant RSNOs, their functions, and the mechanisms of S-denitrosylation facilitate the development of drugs and therapies. This article is part of a Special Issue entitled Regulation of Cellular Processes.
Collapse
|
61
|
Iwakiri Y. S-nitrosylation of proteins: a new insight into endothelial cell function regulated by eNOS-derived NO. Nitric Oxide 2011; 25:95-101. [PMID: 21554971 PMCID: PMC3152628 DOI: 10.1016/j.niox.2011.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) is a messenger molecule that is highly diffusible and short-lived. Despite these two characteristics, seemingly unsuitable for intracellular reactions, NO modulates a variety of cellular processes via the mechanism of S-nitrosylation. An important factor that determines the specificity of S-nitrosylation as a signaling mechanism is the compartmentalization of nitric oxide synthase (NOS) with its target proteins. Endothelial NOS (eNOS) is unique among the NOS family members by being localized mainly near specific intracellular membrane domains including the cytoplasmic face of the Golgi apparatus and plasma membrane caveolae. Nitric oxide produced by eNOS localized on the Golgi apparatus can react with thiol groups on nearby Golgi proteins via a redox mechanism resulting in S-nitrosylation of these proteins. This modification influences their function as regulators of cellular processes such as protein trafficking (e.g., exocytosis and endocytosis), redox state, and cell cycle. Thus, eNOS-derived NO regulates a wide range of endothelial cell functions, such as inflammation, apoptosis, permeability, migration, and cell growth.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
62
|
Abstract
Nitric oxide is generally considered a pronociceptive retrograde transmitter that, by activation of soluble guanylyl cyclase-mediated cGMP production and activation of cGMP-dependent protein kinase, drives nociceptive hypersensitivity. The duality of its functions, however, is increasingly recognized. This review summarizes nitric-oxide-mediated direct S-nitrosylation of target proteins that may modify nociceptive signaling, including glutamate receptors and G-protein-coupled receptors, transient receptor potential channels, voltage-gated channels, proinflammatory enzymes, transcription factors, and redoxins. S-Nitrosylation events require close proximity of nitric oxide production and target proteins and a permissive redox state in the vicinity. Despite the diversity of potential targets and effects, three major schemes arise that may affect nociceptive signaling: 1) S-Nitrosylation-mediated changes of ion channel gating properties, 2) modulation of membrane fusion and fission, and thereby receptor and channel membrane insertion, and 3) modulation of ubiquitination, and thereby protein degradation or transcriptional activity. In addition, S-Nitrosylation may alter the production of nitric oxide itself.
Collapse
Affiliation(s)
- Irmgard Tegeder
- Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, Haus 74; 60590 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
63
|
Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 2011; 18:1478-86. [PMID: 21597461 DOI: 10.1038/cdd.2011.65] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pathological processes of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases engender synaptic and neuronal cell damage. While mild oxidative and nitrosative (nitric oxide (NO)-related) stress mediates normal neuronal signaling, excessive accumulation of these free radicals is linked to neuronal cell injury or death. In neurons, N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation and subsequent Ca(2+) influx can induce the generation of NO via neuronal NO synthase. Emerging evidence has demonstrated that S-nitrosylation, representing covalent reaction of an NO group with a critical protein thiol, mediates the vast majority of NO signaling. Analogous to phosphorylation and other posttranslational modifications, S-nitrosylation can regulate the biological activity of many proteins. Here, we discuss recent studies that implicate neuropathogenic roles of S-nitrosylation in protein misfolding, mitochondrial dysfunction, synaptic injury, and eventual neuronal loss. Among a growing number of S-nitrosylated proteins that contribute to disease pathogenesis, in this review we focus on S-nitrosylated protein-disulfide isomerase (forming SNO-PDI) and dynamin-related protein 1 (forming SNO-Drp1). Furthermore, we describe drugs, such as memantine and newer derivatives of this compound that can prevent both hyperactivation of extrasynaptic NMDARs as well as downstream pathways that lead to nitrosative stress, synaptic damage, and neuronal loss.
Collapse
|
64
|
Schulman IH, Hare JM. Regulation of cardiovascular cellular processes by S-nitrosylation. Biochim Biophys Acta Gen Subj 2011; 1820:752-62. [PMID: 21536106 DOI: 10.1016/j.bbagen.2011.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 04/07/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nitric oxide (NO), a highly versatile signaling molecule, exerts a broad range of regulatory influences in the cardiovascular system that extends from vasodilation to myocardial contractility, angiogenesis, inflammation, and energy metabolism. Considerable attention has been paid to deciphering the mechanisms for such diversity in signaling. S-nitrosylation of cysteine thiols is a major signaling pathway through which NO exerts its actions. An emerging concept of NO pathophysiology is that the interplay between NO and reactive oxygen species (ROS), the nitroso/redox balance, is an important regulator of cardiovascular homeostasis. SCOPE OF REVIEW ROS react with NO, limit its bioavailability, and compete with NO for binding to the same thiol in effector molecules. The interplay between NO and ROS appears to be tightly regulated and spatially confined based on the co-localization of specific NO synthase (NOS) isoforms and oxidative enzymes in unique subcellular compartments. NOS isoforms are also in close contact with denitrosylases, leading to crucial regulation of S-nitrosylation. MAJOR CONCLUSIONS Nitroso/redox balance is an emerging regulatory pathway for multiple cells and tissues, including the cardiovascular system. Studies using relevant knockout models, isoform specific NOS inhibitors, and both in vitro and in vivo methods have provided novel insights into NO- and ROS-based signaling interactions responsible for numerous cardiovascular disorders. GENERAL SIGNIFICANCE An integrated view of the role of nitroso/redox balance in cardiovascular pathophysiology has significant therapeutic implications. This is highlighted by human studies where pharmacologic manipulation of oxidative and nitrosative pathways exerted salutary effects in patients with advanced heart failure. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
Affiliation(s)
- Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
65
|
Nakamura T, Lipton SA. S-nitrosylation of critical protein thiols mediates protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Antioxid Redox Signal 2011; 14:1479-92. [PMID: 20812868 PMCID: PMC3061195 DOI: 10.1089/ars.2010.3570] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Excessive nitrosative and oxidative stress is thought to trigger cellular signaling pathways leading to neurodegenerative conditions. Such redox dysregulation can result from many cellular events, including hyperactivation of the N-methyl-D-aspartate-type glutamate receptor, mitochondrial dysfunction, and cellular aging. Recently, we and our colleagues have shown that excessive generation of free radicals and related molecules, in particular nitric oxide species (NO), can trigger pathological production of misfolded proteins, abnormal mitochondrial dynamics (comprised of mitochondrial fission and fusion events), and apoptotic pathways in neuronal cells. Emerging evidence suggests that excessive NO production can contribute to these pathological processes, specifically by S-nitrosylation of specific target proteins. Here, we highlight examples of S-nitrosylated proteins that regulate misfolded protein accumulation and mitochondrial dynamics. For instance, in models of Parkinson's disease, these S-nitrosylation targets include parkin, a ubiquitin E3 ligase and neuroprotective molecule, and protein-disulfide isomerase, a chaperone enzyme for nascent protein folding. S-Nitrosylation of protein-disulfide isomerase may also be associated with mutant Cu/Zn superoxide dismutase toxicity in amyotrophic lateral sclerosis. Additionally, in models of Alzheimer's disease, excessive NO generation leads to the formation of S-nitrosylated dynamin-related protein 1 (forming SNO-Drp1), which contributes to abnormal mitochondrial fragmentation and resultant synaptic damage.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
66
|
Lee JE, Patel K, Almodóvar S, Tuder RM, Flores SC, Sehgal PB. Dependence of Golgi apparatus integrity on nitric oxide in vascular cells: implications in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2011; 300:H1141-58. [PMID: 21217069 PMCID: PMC3075042 DOI: 10.1152/ajpheart.00767.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/24/2010] [Indexed: 01/26/2023]
Abstract
Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial endothelial (HPAECs) and smooth muscle (HPASMCs) cells, bovine PAECs, and human EA.hy926 endothelial cells. Golgi structure was also investigated in cells in tissue sections of pulmonary vascular lesions in idiopathic PAH (IPAH) and in macaques infected with a chimeric simian immunodeficiency virus containing the human immunodeficiency virus (HIV)-nef gene (SHIV-nef) with subcellular three-dimensional (3D) immunoimaging. Compounds with NO scavenging activity including 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), methylene blue, N-acetylcysteine, and hemoglobin markedly fragmented the Golgi in all cell types evaluated as did monocrotaline pyrrole, while LY-83583, sildenafil, fasudil, Y-27632, Tiron, Tempol, or H(2)O(2) did not. Golgi fragmentation by NO scavengers was inhibited by diethylamine NONOate, was evident in HPAECs after selective knockdown of endothelial nitric oxide synthase using small interfering RNA (siRNA), was independent of microtubule organization, required the GTPase dynamin 2, and was accompanied by depletion of α-soluble N-ethylmaleimide-sensitive factor (NSF) acceptor protein (α-SNAP) from Golgi membranes and codispersal of the SNAP receptor (SNARE) Vti1a with giantin. Golgi fragmentation was confirmed in endothelial and smooth muscle cells in pulmonary arterial lesions in IPAH and the SHIV-nef-infected macaque with subcellular 3D immunoimaging. In SHIV-nef-infected macaques Golgi fragmentation was observed in cells containing HIV-nef-bearing endosomes. The observed Golgi fragmentation suggests that NO plays a significant role in modulating global protein trafficking patterns that contribute to changes in the cell surface landscape and functional signaling in vascular cells.
Collapse
Affiliation(s)
- Jason E Lee
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, 10595, USA
| | | | | | | | | | | |
Collapse
|
67
|
Jean-Alphonse F, Hanyaloglu AC. Regulation of GPCR signal networks via membrane trafficking. Mol Cell Endocrinol 2011; 331:205-14. [PMID: 20654691 DOI: 10.1016/j.mce.2010.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/07/2010] [Accepted: 07/13/2010] [Indexed: 01/12/2023]
Abstract
G-protein-coupled receptors (GPCRs) are a superfamily of cell surface signaling proteins that act as central molecular activators and integrators in all endocrine systems. Membrane trafficking of GPCRs is a fundamental process in shaping extensive signaling networks activated by these receptors. Mounting evidence has identified an increasingly complex network of pathways and protein interactions that a GPCR can traverse and associate with, indicating a multi-level system of regulation. This review will discuss the recent developments in how GPCRs are trafficked to the cell surface as newly synthesized receptors, their recruitment to the clathrin-mediated pathway for endocytosis, and their sorting to subsequent divergent post-endocytic fates, focusing primarily on hormone-activated GPCRs. Current models depicting the classic roles membrane trafficking plays in GPCR signaling have evolved to a highly regulated and complex system than previously appreciated. These developments impart key mechanistic information on how spatial and temporal aspects of GPCR signaling may be integrated and could provide pathway-specific targets to be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- F Jean-Alphonse
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
68
|
Wang Z, Humphrey C, Frilot N, Wang G, Nie Z, Moniri NH, Daaka Y. Dynamin2- and endothelial nitric oxide synthase-regulated invasion of bladder epithelial cells by uropathogenic Escherichia coli. J Cell Biol 2011; 192:101-10. [PMID: 21220511 PMCID: PMC3019553 DOI: 10.1083/jcb.201003027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 12/07/2010] [Indexed: 11/22/2022] Open
Abstract
Invasion of bladder epithelial cells by uropathogenic Escherichia coli (UPEC) contributes to antibiotic-resistant and recurrent urinary tract infections (UTIs), but this process is incompletely understood. In this paper, we provide evidence that the large guanosine triphosphatase dynamin2 and its partner, endothelial nitric oxide (NO) synthase (NOS [eNOS]), mediate bacterial entry. Overexpression of dynamin2 or treatment with the NO donor S-nitrosothiols increases, whereas targeted reduction of endogenous dynamin2 or eNOS expression with ribonucleic acid interference impairs, bacterial invasion. Exposure of mouse bladder to small molecule NOS inhibitors abrogates infection of the uroepithelium by E. coli, and, concordantly, bacteria more efficiently invade uroepithelia isolated from wild-type compared with eNOS(-/-) mice. E. coli internalization promotes rapid phosphorylation of host cell eNOS and NO generation, and dynamin2 S-nitrosylation, a posttranslational modification required for the bacterial entry, also increases during E. coli invasion. These findings suggest that UPEC escape urinary flushing and immune cell surveillance by means of eNOS-dependent dynamin2 S-nitrosylation and invasion of host cells to cause recurrent UTIs.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610
| | - Ceba Humphrey
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
| | - Nicole Frilot
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Zhongzhen Nie
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341
| | - Yehia Daaka
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610
| |
Collapse
|
69
|
Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MAH, Chen YR, Druhan LJ, Zweier JL. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 2010; 468:1115-8. [PMID: 21179168 PMCID: PMC3370391 DOI: 10.1038/nature09599] [Citation(s) in RCA: 451] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 10/12/2010] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O(2)(•-)), which are key mediators of cellular signalling. In the presence of Ca(2+)/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from l-arginine (l-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH(4)) and l-Arg. In the absence of BH(4), NO synthesis is abrogated and instead O(2)(•-) is generated. While NOS dysfunction occurs in diseases with redox stress, BH(4) repletion only partly restores NOS activity and NOS-dependent vasodilation. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation. Under oxidative stress, S-glutathionylation occurs through thiol-disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione. Cysteine residues are critical for the maintenance of eNOS function; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O(2)(•-) generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O(2)(•-) generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol-specific reducing agents, which reverse this S-glutathionylation. Thus, S-glutathionylation of eNOS is a pivotal switch providing redox regulation of cellular signalling, endothelial function and vascular tone.
Collapse
Affiliation(s)
- Chun-An Chen
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Nakamura T, Lipton SA. Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer's and Parkinson's diseases. Apoptosis 2010; 15:1354-63. [PMID: 20177970 PMCID: PMC2978885 DOI: 10.1007/s10495-010-0476-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer's disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson's disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Stuart A. Lipton
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
- Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92037 USA
| |
Collapse
|
71
|
Edirisinghe I, Rahman I. Cigarette smoke-mediated oxidative stress, shear stress, and endothelial dysfunction: role of VEGFR2. Ann N Y Acad Sci 2010; 1203:66-72. [PMID: 20716285 DOI: 10.1111/j.1749-6632.2010.05601.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2), a tyrosine kinase receptor, is activated by VEGF and fluid shear stress (FSS), and its downstream signaling is important in regulation of endothelial functions, such as cell migration, endothelium-dependent relaxation, and angiogenesis. Inhibition of VEGFR2 augments cigarette smoke (CS)-induced oxidative stress and inflammatory responses leading to endothelial dysfunction. CS-derived reactive oxygen/nitrogen species interact with VEGFR2, causing posttranslational modifications that render VEGFR2 inactive for downstream signaling, resulting in endothelial dysfunction. CS-mediated oxidants/carbonyl stress decreases SIRT1 levels and causes eNOS acetylation, which has ramifications in endothelial dysfunction. CS also affects endothelial cell survival pathway by disrupting VEGF- and FSS-mediated VEGFR2/PI3-kinase signaling, leading to decreased Akt phosphorylation and eNOS acetylation. We describe here the mechanisms whereby CS alters VEGF- and FSS-mediated VEGFR2-eNOS signaling, which may have implications for understanding the pathogenesis of pulmonary and cardiovascular diseases.
Collapse
Affiliation(s)
- Indika Edirisinghe
- National Center for Food Safety and Technology, Illinois Institute of Technology, Summit Argo, Illinois, USA
| | | |
Collapse
|
72
|
Kang N, Yaqoob U, Geng Z, Bloch K, Liu C, Gomez T, Billadeau D, Shah V. Focal adhesion assembly in myofibroblasts fosters a microenvironment that promotes tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1888-900. [PMID: 20802179 DOI: 10.2353/ajpath.2010.100187] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cells within the tumor microenvironment influence tumor growth through multiple mechanisms. Pericytes such as hepatic stellate cells are an important cell within the tumor microenvironment; their transformation into highly motile myofibroblasts leads to angiogenesis, stromal cell recruitment, matrix deposition, and ensuing tumor growth. Thus, a better understanding of mechanisms that regulate motility of pericytes is required. Focal adhesions (FAs) form a physical link between the extracellular environment and the actin cytoskeleton, a requisite step for cell motility. FAs contain a collection of proteins including the Ena/VASP family member, vasodilator-stimulated phosphoprotein (VASP); however, a role for VASP in FA development has been elusive. Using a comprehensive siRNA knockdown approach and a variety of VASP mutants coupled with complementary cell imaging methodologies, we demonstrate a requirement of VASP for optimal development of FAs and cell spreading in LX2 liver myofibroblasts, which express high levels of endogenous VASP. Rac1, a binding partner of VASP, acts in tandem with VASP to regulate FAs. In vivo, perturbation of Ena/VASP function in tumor myofibroblast precursor cells significantly reduces pericyte recruitment to tumor vasculature, myofibroblastic transformation, tumor angiogenesis, and tumor growth, providing in vivo pathobiologic relevance to these findings. Taken together, our results identify Ena/VASP as a significant modifier of tumor growth through regulation of FA dynamics and ensuing pericyte/myofibroblast function within the tumor microenvironment.
Collapse
|
73
|
Nakamura T, Cieplak P, Cho DH, Godzik A, Lipton SA. S-nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion 2010; 10:573-8. [PMID: 20447471 PMCID: PMC2918703 DOI: 10.1016/j.mito.2010.04.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2010] [Indexed: 02/04/2023]
Abstract
Neurons are known to use large amounts of energy for their normal function and activity. In order to meet this demand, mitochondrial fission, fusion, and movement events (mitochondrial dynamics) control mitochondrial morphology, facilitating biogenesis and proper distribution of mitochondria within neurons. In contrast, dysfunction in mitochondrial dynamics results in reduced cell bioenergetics and thus contributes to neuronal injury and death in many neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. We recently reported that amyloid-beta peptide, thought to be a key mediator of AD pathogenesis, engenders S-nitrosylation and thus hyperactivation of the mitochondrial fission protein Drp1. This activation leads to excessive mitochondrial fragmentation, bioenergetic compromise, and synaptic damage in models of AD. Here, we provide an extended commentary on our findings of nitric oxide-mediated abnormal mitochondrial dynamics.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
74
|
Jagavelu K, Routray C, Shergill U, O'Hara SP, Faubion W, Shah VH. Endothelial cell toll-like receptor 4 regulates fibrosis-associated angiogenesis in the liver. Hepatology 2010; 52:590-601. [PMID: 20564354 PMCID: PMC2916032 DOI: 10.1002/hep.23739] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Angiogenesis defines the growth of new blood vessels from preexisting vascular endothelial networks and corresponds to the wound healing process that is typified by the process of liver fibrosis. Liver fibrosis is also associated with increased endotoxin within the gut lumen and its associated portal circulation. However, the interrelationship of gut endotoxin and its receptor, toll-like receptor 4 (TLR4), with liver fibrosis and associated angiogenesis remains incompletely defined. Here, using complementary genetic, molecular, and pharmacological approaches, we provide evidence that the pattern recognition receptor that recognizes endotoxin, TLR4, which is expressed on liver endothelial cells (LECs), regulates angiogenic responses both in vitro and in vivo. Mechanistic studies have revealed a key role for a cognate TLR4 effector protein, myeloid differentiation protein 88 (MyD88), in this process, which culminates in extracellular protease production that regulates the invasive capacity of LECs, a key step in angiogenesis. Furthermore, TLR4-dependent angiogenesis in vivo corresponds to fibrosis in complementary liver models of fibrosis. CONCLUSION These studies provide evidence that the TLR4 pathway in LECs regulates angiogenesis through its MyD88 effector protein by regulating extracellular protease production and that this process is linked to the development of liver fibrosis.
Collapse
Affiliation(s)
- Kumaravelu Jagavelu
- GI Research Unit and Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
75
|
Das A, Mukherjee P, Singla SK, Guturu P, Frost MC, Mukhopadhyay D, Shah VH, Patra CR. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide. NANOTECHNOLOGY 2010; 21:305102. [PMID: 20610873 PMCID: PMC4154635 DOI: 10.1088/0957-4484/21/30/305102] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 degrees C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.
Collapse
Affiliation(s)
- Amitava Das
- Gastroenterology Research Unit, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
- Department of Basic Sciences, Biochemistry Division, Loma Linda University School of Medicine, 11234 Anderson Street, Loma Linda, CA 92350, USA
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University School of Medicine, 11234 Anderson Street, Loma Linda, CA 92350, USA
| | - Priyabrata Mukherjee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
| | - Sumit K Singla
- Gastroenterology Research Unit, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
| | - Praveen Guturu
- Department of Internal Medicine, UTMB, Galveston, TX 77555, USA
| | - Megan C Frost
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
| | - Vijay H Shah
- Gastroenterology Research Unit, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
| | - Chitta Ranjan Patra
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
| |
Collapse
|
76
|
Cao S, Yaqoob U, Das A, Shergill U, Jagavelu K, Huebert RC, Routray C, Abdelmoneim S, Vasdev M, Leof E, Charlton M, Watts RJ, Mukhopadhyay D, Shah VH. Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-beta signaling in hepatic stellate cells. J Clin Invest 2010; 120:2379-94. [PMID: 20577048 DOI: 10.1172/jci41203] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/05/2010] [Indexed: 12/13/2022] Open
Abstract
PDGF-dependent hepatic stellate cell (HSC) recruitment is an essential step in liver fibrosis and the sinusoidal vascular changes that accompany this process. However, the mechanisms that regulate PDGF signaling remain incompletely defined. Here, we found that in two rat models of liver fibrosis, the axonal guidance molecule neuropilin-1 (NRP-1) was upregulated in activated HSCs, which exhibit the highly motile myofibroblast phenotype. Additionally, NRP-1 colocalized with PDGF-receptor beta (PDGFRbeta) in HSCs both in the injury models and in human and rat HSC cell lines. In human HSCs, siRNA-mediated knockdown of NRP-1 attenuated PDGF-induced chemotaxis, while NRP-1 overexpression increased cell motility and TGF-beta-dependent collagen production. Similarly, mouse HSCs genetically modified to lack NRP-1 displayed reduced motility in response to PDGF treatment. Immunoprecipitation and biochemical binding studies revealed that NRP-1 increased PDGF binding affinity for PDGFRbeta-expressing cells and promoted downstream signaling. An NRP-1 neutralizing Ab ameliorated recruitment of HSCs, blocked liver fibrosis in a rat model of liver injury, and also attenuated VEGF responses in cultured liver endothelial cells. In addition, NRP-1 overexpression was observed in human specimens of liver cirrhosis caused by both hepatitis C and steatohepatitis. These studies reveal a role for NRP-1 as a modulator of multiple growth factor targets that regulate liver fibrosis and the vascular changes that accompany it and may have broad implications for liver cirrhosis and myofibroblast biology in a variety of other organ systems and disease conditions.
Collapse
Affiliation(s)
- Sheng Cao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Gu Z, Nakamura T, Lipton SA. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 2010; 41:55-72. [PMID: 20333559 DOI: 10.1007/s12035-010-8113-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/19/2010] [Indexed: 12/20/2022]
Abstract
Overstimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic diseases. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD), manifest deposits of misfolded or aggregated proteins, and result from synaptic injury and neuronal death. Recent studies have suggested that nitrosative stress due to generation of excessive nitric oxide (NO) can mediate excitotoxicity in part by triggering protein misfolding and aggregation, and mitochondrial fragmentation in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents a convergent signal pathway contributing to NO-induced protein misfolding and aggregation, compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence suggesting that NO contributes to protein misfolding and aggregation via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin, and mitochondrial fragmentation through beta-amyloid-related S-nitrosylation of dynamin-related protein-1. Moreover, we also discuss that inhibition of excessive NMDA receptor activity by memantine, an uncompetitive/fast off-rate (UFO) drug can ameliorate excessive production of NO, protein misfolding and aggregation, mitochondrial fragmentation, and neurodegeneration.
Collapse
Affiliation(s)
- Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
78
|
Abstract
Well over 2 decades have passed since the endothelium-derived relaxation factor was reported to be the gaseous molecule nitric oxide (NO). Although soluble guanylyl cyclase (which generates cyclic guanosine monophosphate, cGMP) was the first identified receptor for NO, it has become increasingly clear that NO exerts a ubiquitous influence in a cGMP-independent manner. In particular, many, if not most, effects of NO are mediated by S-nitrosylation, the covalent modification of a protein cysteine thiol by an NO group to generate an S-nitrosothiol (SNO). Moreover, within the current framework of NO biology, endothelium-derived relaxation factor activity (ie, G protein-coupled receptor-mediated, or shear-induced endothelium-derived NO bioactivity) is understood to involve a central role for SNOs, acting both as second messengers and signal effectors. Furthermore, essential roles for S-nitrosylation have been implicated in virtually all major functions of NO in the cardiovascular system. Here, we review the basic biochemistry of S-nitrosylation (and denitrosylation), discuss the role of S-nitrosylation in the vascular and cardiac functions of NO, and identify current and potential clinical applications.
Collapse
Affiliation(s)
- Brian Lima
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, 27710
| | - Michael T. Forrester
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
| | - Douglas T. Hess
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710
- Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Jonathan S. Stamler
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710
- Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| |
Collapse
|
79
|
Marwick JA, Edirisinghe I, Arunachalam G, Stevenson CS, MacNee W, Kirkham PA, Rahman I. Cigarette smoke regulates VEGFR2-mediated survival signaling in rat lungs. J Inflamm (Lond) 2010; 7:11. [PMID: 20205917 PMCID: PMC2831890 DOI: 10.1186/1476-9255-7-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/13/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2)-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs. However, the VEGFR2-mediated survival signaling in response to oxidants/cigarette smoke (CS) is not known. We hypothesized that CS exposure leads to disruption of VEGFR2-mediated endothelial survival signaling in rat lungs. METHODS Adult male Sprague-Dawley rats were exposed CS for 3 days, 8 weeks and 6 months to investigate the effect of CS on VEGFR2-mediated survival signaling by measuring the Akt/PI3-kinase/eNOS downstream signaling in rat lungs. RESULTS AND DISCUSSION We show that CS disrupts VEGFR2/PI3-kinase association leading to decreased Akt and eNOS phosphorylation. This may further alter the phosphorylation of the pro-apoptotic protein Bad and increase the Bad/Bcl-xl association. However, this was not associated with a significant lung cell death as evidenced by active caspase-3 levels. These data suggest that although CS altered the VEGFR2-mediated survival signaling in the rat lungs, but it was not sufficient to cause lung cell death. CONCLUSION The rat lungs exposed to CS in acute, sub-chronic and chronic levels may be representative of smokers where survival signaling is altered but was not associated with lung cell death whereas emphysema is known to be associated with lung cell apoptosis.
Collapse
Affiliation(s)
- John A Marwick
- National Heart and Lung Institute, Imperial College London, UK
- Respiratory Disease Area, Novartis Institute for Biomedical Research, Horsham, UK
| | - Indika Edirisinghe
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Centre, Rochester, NY, USA
| | - Gnanapragasam Arunachalam
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Centre, Rochester, NY, USA
| | - Christopher S Stevenson
- National Heart and Lung Institute, Imperial College London, UK
- Respiratory Disease Area, Novartis Institute for Biomedical Research, Horsham, UK
| | - William MacNee
- Edinburgh Lung and the Environment Group Initiative Colt Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Paul A Kirkham
- National Heart and Lung Institute, Imperial College London, UK
- Respiratory Disease Area, Novartis Institute for Biomedical Research, Horsham, UK
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Centre, Rochester, NY, USA
| |
Collapse
|
80
|
Abstract
Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. In addition to the classic NO activation of the cGMP-dependent pathway, NO can also regulate cell function through protein S-nitrosylation, a redox dependent, thiol-based, reversible posttranslational protein modification that involves attachment of an NO moiety to a nucleophilic protein sulfhydryl group. There are emerging data suggesting that S-nitrosylation of proteins plays an important role in cardioprotection. Protein S-nitrosylation not only leads to changes in protein structure and function but also prevents these thiol(s) from further irreversible oxidative/nitrosative modification. A better understanding of the mechanism regulating protein S-nitrosylation and its role in cardioprotection will provide us new therapeutic opportunities and targets for interventions in cardiovascular diseases.
Collapse
Affiliation(s)
- Junhui Sun
- Translational Medicine Branch, NHLBI, NIH, 10 Center Dr, Room 7N112, Bethesda, MD 20892, USA
| | | |
Collapse
|
81
|
Dynamin 2 and human diseases. J Mol Med (Berl) 2010; 88:339-50. [PMID: 20127478 DOI: 10.1007/s00109-009-0587-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/21/2009] [Accepted: 12/25/2009] [Indexed: 10/25/2022]
Abstract
Dynamin 2 (DNM2) mutations cause autosomal dominant centronuclear myopathy, a rare form of congenital myopathy, and intermediate and axonal forms of Charcot-Marie-Tooth disease, a peripheral neuropathy. DNM2 is a large GTPase mainly involved in membrane trafficking through its function in the formation and release of nascent vesicles from biological membranes. DNM2 participates in clathrin-dependent and clathrin-independent endocytosis and intracellular membrane trafficking (from endosomes and Golgi apparatus). Recent studies have also implicated DNM2 in exocytosis. DNM2 belongs to the machinery responsible for the formation of vesicles and regulates the cytoskeleton providing intracellular vesicle transport. In addition, DNM2 tightly interacts with and is involved in the regulation of actin and microtubule networks, independent from membrane trafficking processes. We summarize here the molecular, biochemical, and functional data on DNM2 and discuss the possible pathophysiological mechanisms via which DNM2 mutations can lead to two distinct neuromuscular disorders.
Collapse
|
82
|
Qian J, Zhang Q, Church JE, Stepp DW, Rudic RD, Fulton DJR. Role of local production of endothelium-derived nitric oxide on cGMP signaling and S-nitrosylation. Am J Physiol Heart Circ Physiol 2010; 298:H112-8. [PMID: 19855060 PMCID: PMC3774418 DOI: 10.1152/ajpheart.00614.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/13/2009] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), exerts control over vascular function via two distinct mechanisms, the activation of soluble guanylate cyclase (sGC)/cGMP-dependent signaling or through S-nitrosylation of proteins with reactive thiols (S-nitrosylation). Previous studies in cultured endothelial cells revealed that eNOS targeted to the plasma membrane (PM) releases greater amounts of NO compared with Golgi tethered eNOS. However, the significance of eNOS localization to sGC-dependent or -independent signaling is not known. Here we show that PM-targeted eNOS, when expressed in human aortic endothelial cells (HAEC) and isolated blood vessels, increases sGC/cGMP signaling to a greater extent than Golgi-localized eNOS. The ability of local NO production to influence sGC-independent mechanisms was also tested by monitoring the secretion of Von Willebrand factor (vWF), which is tonically inhibited by the S-nitrosylation of N-ethylmaleimide sensitive factor (NSF). In eNOS "knockdown" HAECs, vWF secretion was attenuated to a greater degree by PM eNOS compared with a Golgi-restricted eNOS. Moreover, the PM-targeted eNOS induced greater S-nitrosylation of NSF vs. Golgi eNOS. To distinguish between the amount of NO generated and the intracellular location of synthesis, we expressed Golgi and PM-targeted calcium-insensitive forms of eNOS in HAEC. These constructs, which generate equal amounts of NO regardless of location, produced equivalent increases in cGMP in bioassays and equal inhibition of vWF secretion. We conclude that the greater functional effects of PM eNOS are due to the increased amount of NO produced rather than effects derived from the local synthesis of NO.
Collapse
Affiliation(s)
- Jin Qian
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
83
|
Chakrabarti S, Lekontseva O, Peters A, Davidge ST. 17beta-Estradiol induces protein S-nitrosylation in the endothelium. Cardiovasc Res 2009; 85:796-805. [PMID: 19914929 DOI: 10.1093/cvr/cvp368] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS Estrogen induces nitric oxide (NO) in the endothelium and appears to protect against inflammation and atherosclerosis. NO can induce post-translational protein modifications such as cysteine S-nitrosylation in the cellular proteins which may exert anti-inflammatory effects. However, whether estrogen can induce protein S-nitrosylation in the endothelium is not known. Given this background, we investigated the role of 17beta-estradiol (E2beta), the major form of estrogen in the body, on endothelial protein S-nitrosylation. METHODS AND RESULTS Experiments were performed in human umbilical vein endothelial cells (HUVECs). S-nitrosylation was detected by immunostaining for nitrosocysteine and further confirmed by biotin switch method. Ovariectomized 12-month-old Sprague-Dawley rats with/without estradiol supplementation were used for in vivo validation of findings. We found that physiologically relevant doses of E2beta increased protein S-nitrosylation in HUVECs through estrogen receptor-alpha (ERalpha) and endothelial nitric oxide synthase (eNOS). Interestingly, specific agonists for both ERalpha and ERbeta increased eNOS protein expression, while only the former could activate eNOS through phosphorylation. S-nitrosylation by E2beta prevented angiotensin II-induced upregulation of intercellular cell adhesion molecule-1, suggesting a potential anti-inflammatory mechanism. Finally, we showed that exogenous E2beta could increase endothelial S-nitrosylation in vivo in a rat model. CONCLUSION Our results demonstrate for the first time that E2beta increases protein S-nitrosylation in the vascular endothelium, which might be a novel pathway to mediate the protective effects on the vasculature.
Collapse
Affiliation(s)
- Subhadeep Chakrabarti
- Department of Obstetrics and Gynecology, Women and Children's Health Research Institute (WCHRI), Cardiovascular Research Centre and Mazankowski Alberta Heart Institute, University of Alberta, 232 HMRC, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
84
|
Lee J, Reich R, Xu F, Sehgal PB. Golgi, trafficking, and mitosis dysfunctions in pulmonary arterial endothelial cells exposed to monocrotaline pyrrole and NO scavenging. Am J Physiol Lung Cell Mol Physiol 2009; 297:L715-28. [PMID: 19648287 PMCID: PMC2770779 DOI: 10.1152/ajplung.00086.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 07/28/2009] [Indexed: 01/22/2023] Open
Abstract
Although the administration of monocrotaline (MCT) into experimental animals is in widespread use today in investigations of pulmonary arterial hypertension (PAH), the underlying cellular and subcellular mechanisms that culminate in vascular remodeling are incompletely understood. Bovine pulmonary arterial endothelial cells (PAECs) in culture exposed to monocrotaline pyrrole (MCTP) develop "megalocytosis" 18-24 h later characterized by enlarged hyperploid cells with enlarged Golgi, mislocalization of endothelial nitric oxide synthase away from the plasma membrane, decreased cell-surface/caveolar nitric oxide (NO), and hypo-S-nitrosylation of caveolin-1, clathrin heavy chain, and N-ethylmaleimide-sensitive factor. We investigated whether MCTP did in fact affect functional intracellular trafficking. The NO scavenger (4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) and the NO donor diethylamine NONOate were used for comparison. Both MCTP and c-PTIO produced distinctive four- to fivefold enlarged PAECs within 24-48 h with markedly enlarged/dispersed Golgi, as visualized by immunostaining for the Golgi tethers/matrix proteins giantin, GM130, and p115. Live-cell uptake of the Golgi marker C(5) ceramide revealed a compact juxtanuclear Golgi in untreated PAECs, brightly labeled enlarged circumnuclear Golgi after MCTP, but minimally labeled Golgi elements after c-PTIO. These Golgi changes were reduced by NONOate. After an initial inhibition during the first day, both MCTP and c-PTIO markedly enhanced anterograde secretion of soluble cargo (exogenous vector-expressed recombinant horseradish peroxidase) over the next 4 days. Live-cell internalization assays using fluorescently tagged ligands showed that both MCTP and c-PTIO inhibited the retrograde uptake of acetylated low-density lipoprotein, transferrin, and cholera toxin B. Moreover, MCTP, and to a variable extent c-PTIO, reduced the cell-surface density of all receptors assayed (LDLR, TfnR, BMPR, Tie-2, and PECAM-1/CD31). In an important distinction, c-PTIO enhanced mitosis in PAECs but MCTP inhibited mitosis, even that due to c-PTIO, despite markedly exaggerated Golgi dispersal. Taken together, these data define a broad-spectrum Golgi and subcellular trafficking dysfunction syndrome in endothelial cells exposed to MCTP or NO scavenging.
Collapse
Affiliation(s)
- Jason Lee
- Dept. of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
85
|
Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009; 15:391-404. [PMID: 19726230 DOI: 10.1016/j.molmed.2009.06.007] [Citation(s) in RCA: 577] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/24/2022]
Abstract
Protein S-nitrosylation constitutes a large part of the ubiquitous influence of nitric oxide on cellular signal transduction and accumulating evidence indicates important roles for S-nitrosylation both in normal physiology and in a broad spectrum of human diseases. Here we review recent findings that implicate S-nitrosylation in cardiovascular, pulmonary, musculoskeletal and neurological (dys)function, as well as in cancer. The emerging picture shows that, in many cases, pathophysiology correlates with hypo- or hyper-S-nitrosylation of specific protein targets rather than a general cellular insult due to loss of or enhanced nitric oxide synthase activity. In addition, it is increasingly evident that dysregulated S-nitrosylation can not only result from alterations in the expression, compartmentalization and/or activity of nitric oxide synthases, but can also reflect a contribution from denitrosylases, including prominently the S-nitrosoglutathione (GSNO)-metabolizing enzyme GSNO reductase. Finally, because exogenous mediators of protein S-nitrosylation or denitrosylation can substantially affect the development or progression of disease, potential therapeutic agents that modulate S-nitrosylation could well have broad clinical utility.
Collapse
Affiliation(s)
- Matthew W Foster
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
86
|
Akazawa Y, Mott JL, Bronk SF, Werneburg NW, Kahraman A, Guicciardi ME, Meng XW, Kohno S, Shah VH, Kaufmann SH, McNiven MA, Gores GJ. Death receptor 5 internalization is required for lysosomal permeabilization by TRAIL in malignant liver cell lines. Gastroenterology 2009; 136:2365-2376.e1-7. [PMID: 19272388 PMCID: PMC2693420 DOI: 10.1053/j.gastro.2009.02.071] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/02/2009] [Accepted: 02/20/2009] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity in hepatocellular carcinoma cells is mediated by lysosomal permeabilization. Our aims were to determine which TRAIL receptor, death receptor (DR) 4 or DR5, mediates lysosomal permeabilization and assess whether receptor endocytosis followed by trafficking to lysosomes contributes in this process. METHODS TRAIL ligand internalization in Huh-7 cells was examined by confocal microscopy using Flag-tagged TRAIL, whereas DR4- and DR5-enhanced green fluorescent protein internalization was assessed by total internal reflection microscopy. Clathrin-dependent endocytosis was inhibited by expressing dominant negative dynamin. RESULTS Although Huh-7 cells express both TRAIL receptors, short hairpin RNA silencing of DR5 but not DR4 attenuated TRAIL-mediated lysosomal permeabilization and apoptosis. The TRAIL/DR5 complex underwent rapid cellular internalization upon ligand stimulation, whereas the TRAIL/DR4 complex was not efficiently internalized. DR5-enhanced green fluorescent protein internalization was dependent on a dileucine-based internalization motif. Endocytosis of the TRAIL/DR5 complex was dynamin dependent and was required for rapid lysosomal permeabilization and apoptosis in multiple malignant hepatocellular and cholangiocarcinoma cell lines. Upon TRAIL treatment, DR5 colocalized with lysosomes after internalization. Inhibition of DR5 trafficking to lysosomes by Rab7 small interfering RNA also reduced TRAIL-mediated lysosomal disruption and apoptosis. CONCLUSIONS TRAIL-mediated endocytosis of DR5 with trafficking to lysosomes contributes to lysosomal protease release into the cytosol and efficient apoptosis in malignant liver cell lines.
Collapse
Affiliation(s)
- Yuko Akazawa
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki 852-8562, Japan
| | - Justin L. Mott
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven F. Bronk
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nathan W. Werneburg
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alisan Kahraman
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maria Eugenia Guicciardi
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xue Wei Meng
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki 852-8562, Japan
| | - Vijay H. Shah
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H. Kaufmann
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Gregory J. Gores
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
87
|
Lima B, Lam GKW, Xie L, Diesen DL, Villamizar N, Nienaber J, Messina E, Bowles D, Kontos CD, Hare JM, Stamler JS, Rockman HA. Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci U S A 2009; 106:6297-302. [PMID: 19325130 PMCID: PMC2669330 DOI: 10.1073/pnas.0901043106] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Indexed: 11/18/2022] Open
Abstract
Despite substantial evidence that nitric oxide (NO) and/or endogenous S-nitrosothiols (SNOs) exert protective effects in a variety of cardiovascular diseases, the molecular details are largely unknown. Here we show that following left coronary artery ligation, mice with a targeted deletion of the S-nitrosoglutathione reductase gene (GSNOR(-/-)) have reduced myocardial infarct size, preserved ventricular systolic and diastolic function, and maintained tissue oxygenation. These profound physiological effects are associated with increases in myocardial capillary density and S-nitrosylation of the transcription factor hypoxia inducible factor-1alpha (HIF-1alpha) under normoxic conditions. We further show that S-nitrosylated HIF-1alpha binds to the vascular endothelial growth factor (VEGF) gene, thus identifying a role for GSNO in angiogenesis and myocardial protection. These results suggest innovative approaches to modulate angiogenesis and preserve cardiac function.
Collapse
Affiliation(s)
| | | | - Liang Xie
- Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Diana L. Diesen
- Medicine, Duke University Medical Center, Durham, NC 27710; and
| | | | | | | | | | | | - Joshua M. Hare
- Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL 33136
| | | | | |
Collapse
|
88
|
|
89
|
Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 2009; 324:102-5. [PMID: 19342591 PMCID: PMC2823371 DOI: 10.1126/science.1171091] [Citation(s) in RCA: 872] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of this dynamic equilibrium may herald cell injury or death and may contribute to developmental and neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the underlying mechanism for nitric oxide-induced pathological fission remains unclear. We found that nitric oxide produced in response to beta-amyloid protein, thought to be a key mediator of Alzheimer's disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of human Alzheimer's disease patients and may thus contribute to the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Dong-Hyung Cho
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jianguo Fang
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- Bioinformatics and Systems Biology Program, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Adam Godzik
- Bioinformatics and Systems Biology Program, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zezong Gu
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stuart A. Lipton
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
90
|
Kasprowicz A, Szuba A, Volkmann D, Baluška F, Wojtaszek P. Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1605-17. [PMID: 19261922 PMCID: PMC2671617 DOI: 10.1093/jxb/erp033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/30/2008] [Accepted: 01/26/2009] [Indexed: 05/18/2023]
Abstract
NO is an important regulatory molecule in eukaryotes. Much of its effect is ascribed to the action of NO as a signalling molecule. However, NO can also directly modify proteins thus affecting their activities. Although the signalling functions of NO are relatively well recognized in plants, very little is known about its potential influence on the structural integrity of plant cells. In this study, the reorganization of the actin cytoskeleton, and the recycling of wall polysaccharides in plants via the endocytic pathway in the presence of NO or NO-modulating substances were analysed. The actin cytoskeleton and endocytosis in maize (Zea mays) root apices were visualized with fluorescence immunocytochemistry. The organization of the actin cytoskeleton is modulated via NO levels and the extent of such modulation is cell-type specific. In endodermis cells, actin cables change their orientation from longitudinal to oblique and cellular cross-wall domains become actin-depleted/depolymerized. The reaction is reversible and depends on the type of NO donor. Actin-dependent vesicle trafficking is also affected. This was demonstrated through the analysis of recycled wall material transported to newly-formed cell plates and BFA compartments. Therefore, it is concluded that, in plant cells, NO affects the functioning of the actin cytoskeleton and actin-dependent processes. Mechanisms for the reorganization of the actin cytoskeleton are cell-type specific, and such rearrangements might selectively impinge on the functioning of various cellular domains. Thus, the dynamic actin cytoskeleton could be considered as a downstream effector of NO signalling in cells of root apices.
Collapse
Affiliation(s)
- Anna Kasprowicz
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Agnieszka Szuba
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Dieter Volkmann
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW G protein-coupled receptor (GPCR) signaling machinery can serve as a direct target of reactive oxygen species (ROS), including superoxide (O2-), hydrogen peroxide (H2O2) as well as reactive nitrogen species, including nitric oxide and S-nitrosothiols (SNOs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of the major sources of O2- produced following GPCR activation in vasculature. Nitric oxide is generated by three isoforms of nitric oxide synthase (NOS). This review will summarize the recent progress on GPCR signaling modulation by NADPH oxidase-derived ROS and NOS-derived SNOs. RECENT FINDINGS ROS and reactive nitrogen species play an important role in GPCR signaling involved in various physiological functions such as cell growth, migration, gene expression as well as pathophysiologies. NADPH oxidase-derived ROS activate specific redox signaling events involved in cardiovascular diseases. SNOs can modulate GPCR signaling and internalization through S-nitrosylation of the scaffolding protein beta-arrestin, the GPCR kinases, and dynamin, a guanosine triphosphatase responsible for endocytosis. SUMMARY NADPH oxidase-derived ROS and NOS-derived SNOs are now recognized as important second messengers to regulate GPCR signaling, thereby contributing to various biological and pathophysiological functions. Understanding the molecular mechanism of how ROS, nitric oxide, and SNOs might modulate GPCR signaling is essential for development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| |
Collapse
|
92
|
Nakayama T, Sato W, Kosugi T, Zhang L, Campbell-Thompson M, Yoshimura A, Croker BP, Johnson RJ, Nakagawa T. Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse. Am J Physiol Renal Physiol 2009; 296:F317-27. [PMID: 19036847 PMCID: PMC4063508 DOI: 10.1152/ajprenal.90450.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Accepted: 11/21/2008] [Indexed: 11/22/2022] Open
Abstract
The vascular endothelium expresses endothelial nitric oxide synthase (eNOS) that generates nitric oxide (NO) to help maintain vascular integrity due to its anti-inflammatory, antiproliferative, and antithrombogenic effects. Pharmacological blockade of NO production has been shown to exacerbate renal injury in chronic renal disease and induces endothelial cell loss. However, pharmacological inhibition of NO nonspecifically blocks other types of NOS and therefore does not define the specific role of eNOS in kidney disease. We hypothesized that a lack of endothelial eNOS can induce a loss of glomerular and peritubular capillary endothelium and exacerbate renal injury in progressive renal disease. We tested out this hypothesis using remnant kidney (RK) in eNOS knockout (eNOS KO) mice. Systolic blood pressure was significantly higher, and renal function was worse in RK-eNOS KO mice compared with those in RK-C57BL6 mice. eNOS deficiency resulted in more severe glomerulosclerosis, mesangiolysis, and tubular damage. Glomerular and tubular macrophage infiltration and collagen deposition were also greater in RK-eNOS KO mice. Renal injuries in the RK-eNOS KO mice were accompanied by a greater loss of endothelial cells that was shown to be due to both a decrease in endothelial cell proliferation and an increase in apoptosis. A lack of eNOS accelerates both glomerular and tubulointerstitial injury with a loss of glomerular capillaries and peritubular capillaries. Impaired endothelial function is likely a direct risk factor for renal disease.
Collapse
Affiliation(s)
- Takahiro Nakayama
- Division of Nephrology, Univ. of Colorado Denver, P.O. Box C281, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Chen SC, Huang B, Liu YC, Shyu KG, Lin PY, Wang DL. Acute hypoxia enhances proteins' S-nitrosylation in endothelial cells. Biochem Biophys Res Commun 2008; 377:1274-8. [PMID: 18992711 DOI: 10.1016/j.bbrc.2008.10.144] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
Hypoxia-induced responses are frequently encountered during cardiovascular injuries. Hypoxia triggers intracellular reactive oxygen species/nitric oxide (NO) imbalance. Recent studies indicate that NO-mediated S-nitrosylation (S-NO) of cysteine residue is a key posttranslational modification of proteins. We demonstrated that acute hypoxia to endothelial cells (ECs) transiently increased the NO levels via endothelial NO synthase (eNOS) activation. A modified biotin-switch method coupled with Western blot on 2-dimensional electrophoresis (2-DE) demonstrated that at least 11 major proteins have significant increase in S-NO after acute hypoxia. Mass analysis by CapLC/Q-TOF identified those as Ras-GTPase-activating protein, protein disulfide-isomerase, human elongation factor-1-delta, tyrosine 3/tryptophan 5-monooxygenase activating protein, and several cytoskeleton proteins. The S-nitrosylated cysteine residue on tropomyosin (Cys 170) and beta-actin (Cys 285) was further verified with the trypsic peptides analyzed by MASCOT search program. Further understanding of the functional relevance of these S-nitrosylated proteins may provide a molecular basis for treating ischemia-induced vascular disorders.
Collapse
Affiliation(s)
- Shih Chung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
94
|
Chatterjee S, Chapman KE, Fisher AB. Lung ischemia: a model for endothelial mechanotransduction. Cell Biochem Biophys 2008; 52:125-38. [PMID: 18982455 PMCID: PMC2667227 DOI: 10.1007/s12013-008-9030-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
Endothelial cells in vivo are constantly exposed to shear associated with blood flow and altered shear stress elicits cellular responses (mechanotransduction). This review describes the role of shear sensors and signal transducers in these events. The major focus is the response to removal of shear as occurs when blood flow is compromised (i.e., ischemia). Pulmonary ischemia studied with the isolated murine lung or flow adapted pulmonary microvascular endothelial cells in vitro results in endothelial generation of reactive oxygen species (ROS) and NO. The response requires caveolae and is initiated by endothelial cell depolarization via K(ATP) channel closure followed by activation of NADPH oxidase (NOX2) and NO synthase (eNOS), signaling through MAP kinases, and endothelial cell proliferation. These physiological mediators can promote vasodilation and angiogenesis as compensation for decreased tissue perfusion.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, 1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, 19104-6068, USA
| | | | | |
Collapse
|
95
|
Mukhopadhyay S, Lee J, Sehgal PB. Depletion of the ATPase NSF from Golgi membranes with hypo-S-nitrosylation of vasorelevant proteins in endothelial cells exposed to monocrotaline pyrrole. Am J Physiol Heart Circ Physiol 2008; 295:H1943-55. [PMID: 18775848 PMCID: PMC2614653 DOI: 10.1152/ajpheart.00642.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/01/2008] [Indexed: 11/22/2022]
Abstract
Investigations of regulated S-nitrosylation and denitrosylation of vasorelevant proteins are a newly emergent area in vascular biology. We previously showed that monocrotaline pyrrole (MCTP)-induced megalocytosis of pulmonary arterial endothelial cells (PAECs), which underlies the development of pulmonary arterial hypertension, was associated with a Golgi blockade characterized by the trapping of diverse vesicle tethers, soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptors (SNAREs), and soluble NSF-attachment proteins (SNAPs) in the Golgi; reduced trafficking of caveolin-1 (cav-1) and endotheial nitric oxide (NO) synthase (eNOS) from the Golgi to the plasma membrane; and decreased caveolar NO. We have investigated whether NSF, the ATPase involved in all SNARE disassembly, might be the upstream target of MCTP and whether MCTP might regulate NSF by S-nitrosylation. Immunofluorescence microscopy and Golgi purification techniques revealed the discordant decrease of NSF by approximately 50% in Golgi membranes after MCTP despite increases in alpha-SNAP, cav-1, eNOS, and syntaxin-6. The NO scavenger (4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide failed to affect the initiation or progression of MCTP megalocytosis despite a reduction of 4,5-diaminofluorescein diacetate fluorescence and inhibition of S-nitrosylation of eNOS as assayed using the biotin-switch method. Moreover, the latter assay not only revealed constitutive S-nitrosylation of NSF, eNOS, cav-1, and clathrin heavy chain (CHC) in PAECs but also a dramatic 70-95% decrease in the S-nitrosylation of NSF, eNOS, cav-1, and CHC after MCTP. These data point to depletion of NSF from Golgi membranes as a mechanism for Golgi blockade after MCTP and to denitrosylation of vasorelevant proteins as critical to the development of endothelial cell megalocytosis.
Collapse
|
96
|
Decker NK, Abdelmoneim SS, Yaqoob U, Hendrickson H, Hormes J, Bentley M, Pitot H, Urrutia R, Gores GJ, Shah VH. Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1002-12. [PMID: 18755846 PMCID: PMC2543069 DOI: 10.2353/ajpath.2008.080158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 06/20/2008] [Indexed: 12/20/2022]
Abstract
Tumor progression is regulated through paracrine interactions between tumor cells and stromal cells in the microenvironment, including endothelial cells and myofibroblasts. Nitric oxide (NO) is a key molecule in the regulation of tumor-microenvironment interactions, although its precise role is incompletely defined. By using complementary in vitro and in vivo approaches, we studied the effect of endothelial NO synthase (eNOS)-derived NO on liver tumor growth and metastasis in relation to adjacent stromal myofibroblasts and matrix because liver tumors maintain a rich, vascular stromal network enriched with phenotypically heterogeneous myofibroblasts. Mice with an eNOS deficiency developed liver tumors more frequently in response to carcinogens compared with control animals. In a surgical model of pancreatic cancer liver metastasis, eNOS overexpression in the tumor microenvironment attenuated both the number and size of tumor implants. NO promoted anoikis of tumor cells in vitro and limited their invasive capacity. Because tumor cell anoikis and invasion are both regulated by myofibroblast-derived matrix, we explored the effect of NO on tumor cell protease expression. Both microarray and Western blot analysis revealed eNOS-dependent down-regulation of the matrix protease cathepsin B within tumor cells, and silencing of cathepsin B attenuated tumor cell invasive capacity in a similar manner to that observed with eNOS overexpression. Thus, a NO gradient within the tumor microenvironment influences tumor progression through orchestrated molecular interactions between tumor cells and stroma.
Collapse
|
97
|
Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ, Stamler JS. S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 2008; 31:395-405. [PMID: 18691971 PMCID: PMC2630185 DOI: 10.1016/j.molcel.2008.05.024] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/26/2008] [Accepted: 05/29/2008] [Indexed: 02/03/2023]
Abstract
Signal transduction through G protein-coupled receptors (GPCRs) is regulated by receptor desensitization and internalization that follow agonist stimulation. Nitric oxide (NO) can influence these processes, but the cellular source of NO bioactivity and the effects of NO on GPCR-mediated signal transduction are incompletely understood. Here, we show in cells and mice that beta-arrestin 2, a central element in GPCR trafficking, interacts with and is S-nitrosylated at a single cysteine by endothelial NO synthase (eNOS), and that S-nitrosylation of beta-arrestin 2 is promoted by endogenous S-nitrosogluthathione. S-nitrosylation after agonist stimulation of the beta-adrenergic receptor, a prototypical GPCR, dissociates eNOS from beta-arrestin 2 and promotes binding of beta-arrestin 2 to clathrin heavy chain/beta-adaptin, thereby accelerating receptor internalization. The agonist- and NO-dependent shift in the affiliations of beta-arrestin 2 is followed by denitrosylation. Thus, beta-arrestin subserves the functional coupling of eNOS and GPCRs, and dynamic S-nitrosylation/denitrosylation of beta-arrestin 2 regulates stimulus-induced GPCR trafficking.
Collapse
Affiliation(s)
- Kentaro Ozawa
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Erin J. Whalen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | | | - Yuanyu Mu
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Douglas T. Hess
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Jonathan S. Stamler
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
98
|
Semela D, Das A, Langer D, Kang N, Leof E, Shah V. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology 2008; 135:671-9. [PMID: 18570897 PMCID: PMC2639748 DOI: 10.1053/j.gastro.2008.04.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/28/2008] [Accepted: 04/10/2008] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Cirrhosis is associated with prominent changes in sinusoidal structure and function. Although the resident pericyte in liver, the hepatic stellate cell (HSC), is well characterized in the process of fibrogenesis, signaling pathways that regulate HSC vascular function are less developed. Because pericyte populations outside the liver are increasingly being recognized as a key cell type for angiogenesis and changes in vascular structure, in this study, we explore new HSC-signaling pathways that regulate sinusoidal structure and function. METHODS Real-time video microscopy and quantitative software analysis of vascular tube formation were used to measure HSC angiogenesis in vitro. Platelet-derived growth factor (PDGF) and ephrin-signaling pathways were modulated using molecular and pharmacologic techniques. Complementary whole animal studies were performed to correlate in vitro findings with pericyte functions in vivo. RESULTS We show that PDGF promotes a phenotype of HSC evidenced by enhanced HSC-driven vascular tube formation in vitro and enhanced HSC coverage of sinusoids in vivo. This angiogenic phenotype modulates specific pericyte vascular functions including permeability and pressure regulation. Furthermore, we identify a key role for ephrin-B2 as a downstream effector of PDGF signaling. CONCLUSIONS These studies elucidate novel HSC-signaling pathways that regulate microvascular structure and function in liver.
Collapse
MESH Headings
- Animals
- Becaplermin
- Benzamides
- Capillary Permeability
- Cells, Cultured
- Coculture Techniques
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Ephrin-B2/genetics
- Ephrin-B2/metabolism
- Humans
- Hypertension, Portal/metabolism
- Hypertension, Portal/physiopathology
- Image Processing, Computer-Assisted
- Imatinib Mesylate
- Liver/blood supply
- Mice
- Microscopy, Confocal
- Microscopy, Video
- NIH 3T3 Cells
- Neovascularization, Physiologic/drug effects
- Pericytes/drug effects
- Pericytes/metabolism
- Phenotype
- Piperazines/pharmacology
- Platelet-Derived Growth Factor/metabolism
- Portal Pressure
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-sis
- Pyrimidines/pharmacology
- RNA Interference
- Rats
- Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors
- Receptors, Platelet-Derived Growth Factor/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transfection
Collapse
Affiliation(s)
- David Semela
- GI Research Unit/Fitterman Center for Digestive Disease, Mayo Clinic, Rochester, Minnesota
- Division of GI/Hepatology, University Hospital Basel, Switzerland
| | - Amitava Das
- GI Research Unit/Fitterman Center for Digestive Disease, Mayo Clinic, Rochester, Minnesota
| | - Daniel Langer
- GI Research Unit/Fitterman Center for Digestive Disease, Mayo Clinic, Rochester, Minnesota
| | - Ningling Kang
- GI Research Unit/Fitterman Center for Digestive Disease, Mayo Clinic, Rochester, Minnesota
| | - Edward Leof
- Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota
| | - Vijay Shah
- GI Research Unit/Fitterman Center for Digestive Disease, Mayo Clinic, Rochester, Minnesota
- Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
99
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 373] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
100
|
Lowenstein CJ. Nitric oxide regulation of protein trafficking in the cardiovascular system. Cardiovasc Res 2007; 75:240-6. [PMID: 17490627 PMCID: PMC2213885 DOI: 10.1016/j.cardiores.2007.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 03/23/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022] Open
Abstract
Nitric oxide (NO) is a second messenger with diverse roles in the cardiovascular system, such as inhibiting thrombosis and limiting vascular inflammation. One mechanism by which NO modulates such disparate physiological processes is by regulating protein trafficking within cells. NO inhibits exocytosis of endothelial granules which would otherwise trigger inflammation. NO also blocks platelet secretion of granules that would otherwise activate thrombosis. NO decreases granule trafficking from the Golgi to the plasma membrane by targeting a key component of the exocytic machinery, N-ethylmaleimide sensitive factor (NSF). In contrast to its inhibitory effects on exocytosis, NO accelerates endocytosis. S-nitrosylation of dynamin increases its ability to hydrolyze GTP, assemble in oligomers around a nascent vesicle, and cleave the endocytic vesicle free from the plasma membrane. NO regulation of vesicle trafficking is a molecular mechanism that explains some of the cardiovascular effects of NO, and may be of broad physiological significance.
Collapse
|