51
|
Shi Z, Das S, Morabito S, Miyoshi E, Stocksdale J, Emerson N, Srinivasan SS, Shahin A, Rahimzadeh N, Cao Z, Silva J, Castaneda AA, Head E, Thompson L, Swarup V. Single-nucleus multi-omics identifies shared and distinct pathways in Pick's and Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611761. [PMID: 39282421 PMCID: PMC11398495 DOI: 10.1101/2024.09.06.611761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The study of neurodegenerative diseases, particularly tauopathies like Pick's disease (PiD) and Alzheimer's disease (AD), offers insights into the underlying regulatory mechanisms. By investigating epigenomic variations in these conditions, we identified critical regulatory changes driving disease progression, revealing potential therapeutic targets. Our comparative analyses uncovered disease-enriched non-coding regions and genome-wide transcription factor (TF) binding differences, linking them to target genes. Notably, we identified a distal human-gained enhancer (HGE) associated with E3 ubiquitin ligase (UBE3A), highlighting disease-specific regulatory alterations. Additionally, fine-mapping of AD risk genes uncovered loci enriched in microglial enhancers and accessible in other cell types. Shared and distinct TF binding patterns were observed in neurons and glial cells across PiD and AD. We validated our findings using CRISPR to excise a predicted enhancer region in UBE3A and developed an interactive database (http://swaruplab.bio.uci.edu/scROAD) to visualize predicted single-cell TF occupancy and regulatory networks.
Collapse
Affiliation(s)
- Zechuan Shi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Samuel Morabito
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jennifer Stocksdale
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Nora Emerson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shushrruth Sai Srinivasan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Arshi Shahin
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Negin Rahimzadeh
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andres Alonso Castaneda
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Leslie Thompson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| |
Collapse
|
52
|
Ghosal S, Schatz MC, Venkataraman A. BEATRICE: Bayesian Fine-mapping from Summary Data using Deep Variational Inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.24.534116. [PMID: 36993396 PMCID: PMC10055416 DOI: 10.1101/2023.03.24.534116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We introduce a novel framework BEATRICE to identify putative causal variants from GWAS statistics. Identifying causal variants is challenging due to their sparsity and high correlation in the nearby regions. To account for these challenges, we rely on a hierarchical Bayesian model that imposes a binary concrete prior on the set of causal variants. We derive a variational algorithm for this fine-mapping problem by minimizing the KL divergence between an approximate density and the posterior probability distribution of the causal configurations. Correspondingly, we use a deep neural network as an inference machine to estimate the parameters of our proposal distribution. Our stochastic optimization procedure allows us to simultaneously sample from the space of causal configurations. We use these samples to compute the posterior inclusion probabilities and determine credible sets for each causal variant. We conduct a detailed simulation study to quantify the performance of our framework against two state-of-the-art baseline methods across different numbers of causal variants and different noise paradigms, as defined by the relative genetic contributions of causal and non-causal variants. We demonstrate that BEATRICE achieves uniformly better coverage with comparable power and set sizes, and that the performance gain increases with the number of causal variants. We also show the efficacy BEATRICE in finding causal variants from the GWAS study of Alzheimer's disease. In comparison to the baselines, only BEATRICE can successfully find the APOE ϵ 2 allele, a commonly associated variant of Alzheimer's. Thus, we show that BEATRICE is a valuable tool to identify causal variants from eQTL and GWAS summary statistics across complex diseases and traits.
Collapse
Affiliation(s)
- Sayan Ghosal
- Chan Zuckerberg Initiative Foundation, 94065, CA, USA
| | - Michael C. Schatz
- Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | |
Collapse
|
53
|
Kontou PI, Bagos PG. The goldmine of GWAS summary statistics: a systematic review of methods and tools. BioData Min 2024; 17:31. [PMID: 39238044 PMCID: PMC11375927 DOI: 10.1186/s13040-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Genome-wide association studies (GWAS) have revolutionized our understanding of the genetic architecture of complex traits and diseases. GWAS summary statistics have become essential tools for various genetic analyses, including meta-analysis, fine-mapping, and risk prediction. However, the increasing number of GWAS summary statistics and the diversity of software tools available for their analysis can make it challenging for researchers to select the most appropriate tools for their specific needs. This systematic review aims to provide a comprehensive overview of the currently available software tools and databases for GWAS summary statistics analysis. We conducted a comprehensive literature search to identify relevant software tools and databases. We categorized the tools and databases by their functionality, including data management, quality control, single-trait analysis, and multiple-trait analysis. We also compared the tools and databases based on their features, limitations, and user-friendliness. Our review identified a total of 305 functioning software tools and databases dedicated to GWAS summary statistics, each with unique strengths and limitations. We provide descriptions of the key features of each tool and database, including their input/output formats, data types, and computational requirements. We also discuss the overall usability and applicability of each tool for different research scenarios. This comprehensive review will serve as a valuable resource for researchers who are interested in using GWAS summary statistics to investigate the genetic basis of complex traits and diseases. By providing a detailed overview of the available tools and databases, we aim to facilitate informed tool selection and maximize the effectiveness of GWAS summary statistics analysis.
Collapse
Affiliation(s)
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131, Lamia, Greece.
| |
Collapse
|
54
|
Broadaway KA, Brotman SM, Rosen JD, Currin KW, Alkhawaja AA, Etheridge AS, Wright F, Gallins P, Jima D, Zhou YH, Love MI, Innocenti F, Mohlke KL. Liver eQTL meta-analysis illuminates potential molecular mechanisms of cardiometabolic traits. Am J Hum Genet 2024; 111:1899-1913. [PMID: 39173627 PMCID: PMC11393674 DOI: 10.1016/j.ajhg.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.
Collapse
Affiliation(s)
- K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan D Rosen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin W Currin
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abdalla A Alkhawaja
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amy S Etheridge
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Fred Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA; Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Paul Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Federico Innocenti
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
55
|
Wen J, Sun Q, Huang L, Zhou L, Doyle MF, Ekunwe L, Durda P, Olson NC, Reiner AP, Li Y, Raffield LM. Gene expression and splicing QTL analysis of blood cells in African American participants from the Jackson Heart Study. Genetics 2024; 228:iyae098. [PMID: 39056362 PMCID: PMC11373511 DOI: 10.1093/genetics/iyae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024] Open
Abstract
Most gene expression and alternative splicing quantitative trait loci (eQTL/sQTL) studies have been biased toward European ancestry individuals. Here, we performed eQTL and sQTL analyses using TOPMed whole-genome sequencing-derived genotype data and RNA-sequencing data from stored peripheral blood mononuclear cells in 1,012 African American participants from the Jackson Heart Study (JHS). At a false discovery rate of 5%, we identified 17,630 unique eQTL credible sets covering 16,538 unique genes; and 24,525 unique sQTL credible sets covering 9,605 unique genes, with lead QTL at P < 5e-8. About 24% of independent eQTLs and independent sQTLs with a minor allele frequency > 1% in JHS were rare (minor allele frequency < 0.1%), and therefore unlikely to be detected, in European ancestry individuals. Finally, we created an open database, which is freely available online, allowing fast query and bulk download of our QTL results.
Collapse
Affiliation(s)
- Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Huang
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lingbo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Lynette Ekunwe
- Department of Medicine, University of MS Medical Center (UMMC), Jackson, MS 39213, USA
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Nels C Olson
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research, Seattle, WA 98109, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
56
|
Bigdeli TB, Chatzinakos C, Bendl J, Barr PB, Venkatesh S, Gorman BR, Clarence T, Genovese G, Iyegbe CO, Peterson RE, Kolokotronis SO, Burstein D, Meyers JL, Li Y, Rajeevan N, Sayward F, Cheung KH, DeLisi LE, Kosten TR, Zhao H, Achtyes E, Buckley P, Malaspina D, Lehrer D, Rapaport MH, Braff DL, Pato MT, Fanous AH, Pato CN, Huang GD, Muralidhar S, Michael Gaziano J, Pyarajan S, Girdhar K, Lee D, Hoffman GE, Aslan M, Fullard JF, Voloudakis G, Harvey PD, Roussos P. Biological Insights from Schizophrenia-associated Loci in Ancestral Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312631. [PMID: 39252912 PMCID: PMC11383513 DOI: 10.1101/2024.08.27.24312631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Large-scale genome-wide association studies of schizophrenia have uncovered hundreds of associated loci but with extremely limited representation of African diaspora populations. We surveyed electronic health records of 200,000 individuals of African ancestry in the Million Veteran and All of Us Research Programs, and, coupled with genotype-level data from four case-control studies, realized a combined sample size of 13,012 affected and 54,266 unaffected persons. Three genome-wide significant signals - near PLXNA4, PMAIP1, and TRPA1 - are the first to be independently identified in populations of predominantly African ancestry. Joint analyses of African, European, and East Asian ancestries across 86,981 cases and 303,771 controls, yielded 376 distinct autosomal loci, which were refined to 708 putatively causal variants via multi-ancestry fine-mapping. Utilizing single-cell functional genomic data from human brain tissue and two complementary approaches, transcriptome-wide association studies and enhancer-promoter contact mapping, we identified a consensus set of 94 genes across ancestries and pinpointed the specific cell types in which they act. We identified reproducible associations of schizophrenia polygenic risk scores with schizophrenia diagnoses and a range of other mental and physical health problems. Our study addresses a longstanding gap in the generalizability of research findings for schizophrenia across ancestral populations, underlining shared biological underpinnings of schizophrenia across global populations in the presence of broadly divergent risk allele frequencies.
Collapse
Affiliation(s)
- Tim B. Bigdeli
- VA New York Harbor Healthcare System, Brooklyn, NY
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Chris Chatzinakos
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Peter B. Barr
- VA New York Harbor Healthcare System, Brooklyn, NY
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Sanan Venkatesh
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Bryan R. Gorman
- Massachusetts Area Veterans Epidemiology, Research, and Information Center (MAVERIC), Jamaica Plain, MA
| | - Tereza Clarence
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Conrad O. Iyegbe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
| | - Roseann E. Peterson
- VA New York Harbor Healthcare System, Brooklyn, NY
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Sergios-Orestis Kolokotronis
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - David Burstein
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jacquelyn L. Meyers
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Yuli Li
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - Nallakkandi Rajeevan
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - Frederick Sayward
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - Kei-Hoi Cheung
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | | | | | | | - Lynn E. DeLisi
- Department of Psychiatry, Cambridge Health Alliance, Cambridge, MA
| | - Thomas R. Kosten
- Michael E. DeBakey VA Medical Center, Houston, TX
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Hongyu Zhao
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - Eric Achtyes
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Peter Buckley
- University of Tennessee Health Science Center in Memphis, TN
| | - Dolores Malaspina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Douglas Lehrer
- Department of Psychiatry, Wright State University, Dayton, OH
| | - Mark H. Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah, Salt Lake City, UT
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Michele T. Pato
- Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Ayman H. Fanous
- Department of Psychiatry, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
- Department of Psychiatry, VA Phoenix Healthcare System, Phoenix, AZ
| | - Carlos N. Pato
- Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | | | | | - Grant D. Huang
- Office of Research and Development, Veterans Health Administration, Washington, DC
| | - Sumitra Muralidhar
- Office of Research and Development, Veterans Health Administration, Washington, DC
| | - J. Michael Gaziano
- Massachusetts Area Veterans Epidemiology, Research, and Information Center (MAVERIC), Jamaica Plain, MA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Saiju Pyarajan
- Massachusetts Area Veterans Epidemiology, Research, and Information Center (MAVERIC), Jamaica Plain, MA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Gabriel E. Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Mihaela Aslan
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Philip D. Harvey
- Bruce W. Carter Miami Veterans Affairs (VA) Medical Center, Miami, FL
- University of Miami School of Medicine, Miami, FL
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
57
|
Park YJ, Moon S, Choi J, Kim J, Kim HJ, Son HY, Im SW, Kim JI. Genome-wide association study for metabolic syndrome reveals APOA5 single nucleotide polymorphisms with multilayered effects in Koreans. Lipids Health Dis 2024; 23:272. [PMID: 39198834 PMCID: PMC11351254 DOI: 10.1186/s12944-024-02248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Genome-wide association studies (GWAS) of metabolic syndrome (MetS) have predominantly focused on non-Asian populations, with limited representation from East Asian cohorts. Moreover, previous GWAS analyses have primarily emphasized the significance of top single nucleotide polymorphisms (SNPs), poorly explaining other SNP signals in linkage disequilibrium. This study aimed to reveal the interaction between rs651821 and rs2266788, the principal variants of apolipoprotein A5 (APOA5), within the most significant loci identified through GWAS on MetS. METHODS GWAS on MetS and its components was conducted using the data from the Korean Genome and Epidemiology Study (KoGES) city cohort comprising 58,600 individuals with available biochemical, demographic, lifestyle factors, and the most significant APOA5 locus was analyzed further in depth. RESULTS According to GWAS of MetS and its diagnostic components, a significant association between the APOA5 SNPs rs651821/rs2266788 and MetS/triglycerides/high-density lipoprotein phenotypes was revealed. However, a conditional analysis employing rs651821 unveiled a reversal in the odds ratio for rs2266788. Therefore, rs651821 and rs2266788 emerged as independent and opposing signals in the extended GWAS analysis, i.e., the multilayered effects. Further gene-environment interaction analyses regarding lifestyle factors such as smoking, alcohol consumption, and physical activity underscored these multilayered effects. CONCLUSION This study unveils the intricate interplay between rs651821 and rs2266788 derived from MetS GWAS. Removing the influence of lead SNP reveals an independent protective signal associated with rs2266788, suggesting a multilayered effect between these SNPs. These findings underline the need for novel perspectives in future MetS GWAS.
Collapse
Affiliation(s)
- Young Jun Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sungji Moon
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jaeyong Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Ho-Young Son
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, One Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
58
|
Kaplan SJ, Wong W, Yan J, Pulecio J, Cho HS, Li Q, Zhao J, Leslie-Iyer J, Kazakov J, Murphy D, Luo R, Dey KK, Apostolou E, Leslie CS, Huangfu D. CRISPR screening uncovers a long-range enhancer for ONECUT1 in pancreatic differentiation and links a diabetes risk variant. Cell Rep 2024; 43:114640. [PMID: 39163202 PMCID: PMC11406439 DOI: 10.1016/j.celrep.2024.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers identified, we focused on an enhancer we named ONECUT1e-664kb, ∼664 kb from the ONECUT1 promoter. Previous studies have linked ONECUT1 coding mutations to pancreatic hypoplasia and neonatal diabetes. We found that homozygous deletion of ONECUT1e-664kb in hPSCs leads to a near-complete loss of ONECUT1 expression and impaired pancreatic differentiation. ONECUT1e-664kb contains a type 2 diabetes-associated variant (rs528350911) disrupting a GATA motif. Introducing the risk variant into hPSCs reduced binding of key pancreatic transcription factors (GATA4, GATA6, and FOXA2), supporting its causal role in diabetes. This work highlights the utility of unbiased enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.
Collapse
Affiliation(s)
- Samuel Joseph Kaplan
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wilfred Wong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qianzi Li
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiahui Zhao
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jayanti Leslie-Iyer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Kazakov
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dylan Murphy
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kushal K Dey
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
59
|
Wang H, Chang TS, Dombroski BA, Cheng PL, Patil V, Valiente-Banuet L, Farrell K, Mclean C, Molina-Porcel L, Rajput A, De Deyn PP, Le Bastard N, Gearing M, Kaat LD, Van Swieten JC, Dopper E, Ghetti BF, Newell KL, Troakes C, de Yébenes JG, Rábano-Gutierrez A, Meller T, Oertel WH, Respondek G, Stamelou M, Arzberger T, Roeber S, Müller U, Hopfner F, Pastor P, Brice A, Durr A, Le Ber I, Beach TG, Serrano GE, Hazrati LN, Litvan I, Rademakers R, Ross OA, Galasko D, Boxer AL, Miller BL, Seeley WW, Van Deerlin VM, Lee EB, White CL, Morris H, de Silva R, Crary JF, Goate AM, Friedman JS, Leung YY, Coppola G, Naj AC, Wang LS, Dalgard C, Dickson DW, Höglinger GU, Schellenberg GD, Geschwind DH, Lee WP. Whole-genome sequencing analysis reveals new susceptibility loci and structural variants associated with progressive supranuclear palsy. Mol Neurodegener 2024; 19:61. [PMID: 39152475 PMCID: PMC11330058 DOI: 10.1186/s13024-024-00747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). METHOD In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. RESULTS Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73 × 10-3) in PSP. CONCLUSIONS Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Chang
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishakha Patil
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leopoldo Valiente-Banuet
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kurt Farrell
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catriona Mclean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit. Neurology Service, Hospital Clínic, Fundació Recerca Clínic Barcelona (FRCB). Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Alex Rajput
- Movement Disorders Program, Division of Neurology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk (Antwerp), Belgium
- Department of Neurology, University Medical Center Groningen, NL-9713 AV, Groningen, Netherlands
| | | | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura Donker Kaat
- Netherlands Brain Bank and Erasmus University, Rotterdam, Netherlands
| | | | - Elise Dopper
- Netherlands Brain Bank and Erasmus University, Rotterdam, Netherlands
| | - Bernardino F Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, King's College London, London, UK
| | | | - Alberto Rábano-Gutierrez
- Fundación CIEN (Centro de Investigación de Enfermedades Neurológicas) - Centro Alzheimer Fundación Reina Sofía, Madrid, Spain
| | - Tina Meller
- Department of Neurology, Philipps-Universität, Marburg, Germany
| | | | - Gesine Respondek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
- European University of Cyprus, Nicosia, Cyprus
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sigrun Roeber
- German Brain Bank, Neurobiobank Munich, Munich, Germany
| | - Ulrich Müller
- German Brain Bank, Neurobiobank Munich, Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias I Pujol, Badalona, Barcelona, Spain
- Neurosciences, The Germans Trias I Pujol Research Institute (IGTP) Badalona, Badalona, Spain
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Irene Litvan
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Vivanna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huw Morris
- Departmento of Clinical and Movement Neuroscience, University College of London, London, UK
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - John F Crary
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Coppola
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clifton Dalgard
- Department of Anatomy Physiology and Genetics, the American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Daniel H Geschwind
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
60
|
Wu Y, Zheng Z, Thibaut2 L, Goddard ME, Wray NR, Visscher PM, Zeng J. Genome-wide fine-mapping improves identification of causal variants. RESEARCH SQUARE 2024:rs.3.rs-4759390. [PMID: 39149449 PMCID: PMC11326397 DOI: 10.21203/rs.3.rs-4759390/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Fine-mapping refines genotype-phenotype association signals to identify causal variants underlying complex traits. However, current methods typically focus on individual genomic segments without considering the global genetic architecture. Here, we demonstrate the advantages of performing genome-wide fine-mapping (GWFM) and develop methods to facilitate GWFM. In simulations and real data analyses, GWFM outperforms current methods in error control, mapping power and precision, replication rate, and trans-ancestry phenotype prediction. For 48 well-powered traits in the UK Biobank, we identify causal variants that collectively explain 17% of the SNP-based heritability, and predict that fine-mapping 50% of that would require 2 million samples on average. We pinpoint a known causal variant, as proof-of-principle, at FTO for body mass index, unveil a hidden secondary variant with evolutionary conservation, and identify new missense causal variants for schizophrenia and Crohn's disease. Overall, we analyse 600 complex traits with 13 million SNPs, highlighting the efficacy of GWFM with functional annotations.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | | | - Michael E. Goddard
- Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia
- Biosciences Research Division, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter M. Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
61
|
Wu Y, Zheng Z, Thibaut L, Goddard ME, Wray NR, Visscher PM, Zeng J. Genome-wide fine-mapping improves identification of causal variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.18.24310667. [PMID: 39072021 PMCID: PMC11275676 DOI: 10.1101/2024.07.18.24310667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fine-mapping refines genotype-phenotype association signals to identify causal variants underlying complex traits. However, current methods typically focus on individual genomic segments without considering the global genetic architecture. Here, we demonstrate the advantages of performing genome-wide fine-mapping (GWFM) and develop methods to facilitate GWFM. In simulations and real data analyses, GWFM outperforms current methods in error control, mapping power and precision, replication rate, and trans-ancestry phenotype prediction. For 48 well-powered traits in the UK Biobank, we identify causal variants that collectively explain 17% of the SNP-based heritability, and predict that fine-mapping 50% of that would require 2 million samples on average. We pinpoint a known causal variant, as proof-of-principle, at FTO for body mass index, unveil a hidden secondary variant with evolutionary conservation, and identify new missense causal variants for schizophrenia and Crohn's disease. Overall, we analyse 599 complex traits with 13 million SNPs, highlighting the efficacy of GWFM with functional annotations.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Loic Thibaut
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael E. Goddard
- Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia
- Biosciences Research Division, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter M. Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
62
|
Matt GY, Sioson E, Shelton K, Wang J, Lu C, Zaldivar Peraza A, Gangwani K, Paul R, Reilly C, Acić A, Liu Q, Sandor SR, McLeod C, Patel J, Wang F, Im C, Wang Z, Sapkota Y, Wilson CL, Bhakta N, Ness KK, Armstrong GT, Hudson MM, Robison LL, Zhang J, Yasui Y, Zhou X. St. Jude Survivorship Portal: Sharing and Analyzing Large Clinical and Genomic Datasets from Pediatric Cancer Survivors. Cancer Discov 2024; 14:1403-1417. [PMID: 38593228 PMCID: PMC11294819 DOI: 10.1158/2159-8290.cd-23-1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Childhood cancer survivorship studies generate comprehensive datasets comprising demographic, diagnosis, treatment, outcome, and genomic data from survivors. To broadly share this data, we created the St. Jude Survivorship Portal (https://survivorship.stjude.cloud), the first data portal for sharing, analyzing, and visualizing pediatric cancer survivorship data. More than 1,600 phenotypic variables and 400 million genetic variants from more than 7,700 childhood cancer survivors can be explored on this free, open-access portal. Summary statistics of variables are computed on-the-fly and visualized through interactive and customizable charts. Survivor cohorts can be customized and/or divided into groups for comparative analysis. Users can also seamlessly perform cumulative incidence and regression analyses on the stored survivorship data. Using the portal, we explored the ototoxic effects of platinum-based chemotherapy, uncovered a novel association between mental health, age, and limb amputation, and discovered a novel haplotype in MAGI3 strongly associated with cardiomyopathy specifically in survivors of African ancestry. Significance: The St. Jude Survivorship Portal is the first data portal designed to share and explore clinical and genetic data from childhood cancer survivors. The portal provides both open- and controlled-access features and will fulfill a wide range of data sharing needs of the survivorship research community and beyond. See co-corresponding author Xin Zhou discuss this research article, published simultaneously at the AACR Annual Meeting 2024: https://vimeo.com/932617204/7d99fa4958.
Collapse
Affiliation(s)
- Gavriel Y. Matt
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Kyla Shelton
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Jian Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Congyu Lu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Airen Zaldivar Peraza
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Karishma Gangwani
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Robin Paul
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Colleen Reilly
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Aleksandar Acić
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Qi Liu
- School of Public Health, University of Alberta, Edmonton, Canada.
| | - Stephanie R. Sandor
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Clay McLeod
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Jaimin Patel
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Fan Wang
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Cindy Im
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota.
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Carmen L. Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Nickhill Bhakta
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
- School of Public Health, University of Alberta, Edmonton, Canada.
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| |
Collapse
|
63
|
Taylor DJ, Chhetri SB, Tassia MG, Biddanda A, Yan SM, Wojcik GL, Battle A, McCoy RC. Sources of gene expression variation in a globally diverse human cohort. Nature 2024; 632:122-130. [PMID: 39020179 PMCID: PMC11291278 DOI: 10.1038/s41586-024-07708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Genetic variation that influences gene expression and splicing is a key source of phenotypic diversity1-5. Although invaluable, studies investigating these links in humans have been strongly biased towards participants of European ancestries, which constrains generalizability and hinders evolutionary research. Here to address these limitations, we developed MAGE, an open-access RNA sequencing dataset of lymphoblastoid cell lines from 731 individuals from the 1000 Genomes Project6, spread across 5 continental groups and 26 populations. Most variation in gene expression (92%) and splicing (95%) was distributed within versus between populations, which mirrored the variation in DNA sequence. We mapped associations between genetic variants and expression and splicing of nearby genes (cis-expression quantitative trait loci (eQTLs) and cis-splicing QTLs (sQTLs), respectively). We identified more than 15,000 putatively causal eQTLs and more than 16,000 putatively causal sQTLs that are enriched for relevant epigenomic signatures. These include 1,310 eQTLs and 1,657 sQTLs that are largely private to underrepresented populations. Our data further indicate that the magnitude and direction of causal eQTL effects are highly consistent across populations. Moreover, the apparent 'population-specific' effects observed in previous studies were largely driven by low resolution or additional independent eQTLs of the same genes that were not detected. Together, our study expands our understanding of human gene expression diversity and provides an inclusive resource for studying the evolution and function of human genomes.
Collapse
Affiliation(s)
- Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Surya B Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael G Tassia
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Arjun Biddanda
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie M Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
64
|
Sun X, Verma SP, Jia G, Wang X, Ping J, Guo X, Shu XO, Chen J, Derkach A, Cai Q, Liang X, Long J, Offit K, Hun Oh J, Reiner AS, Watt GP, Woods M, Yang Y, Ambrosone CB, Ambs S, Chen Y, Concannon P, Garcia-Closas M, Gu J, Haiman CA, Hu JJ, Huo D, John EM, Knight JA, Li CI, Lynch CF, Mellemkjær L, Nathanson KL, Nemesure B, Olopade OI, Olshan AF, Pal T, Palmer JR, Press MF, Sanderson M, Sandler DP, Troester MA, Zheng W, Bernstein JL, Buas MF, Shu X. Case-Case Genome-Wide Analyses Identify Subtype-Informative Variants That Confer Risk for Breast Cancer. Cancer Res 2024; 84:2533-2548. [PMID: 38832928 PMCID: PMC11293972 DOI: 10.1158/0008-5472.can-23-3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Breast cancer includes several subtypes with distinct characteristic biological, pathologic, and clinical features. Elucidating subtype-specific genetic etiology could provide insights into the heterogeneity of breast cancer to facilitate the development of improved prevention and treatment approaches. In this study, we conducted pairwise case-case comparisons among five breast cancer subtypes by applying a case-case genome-wide association study (CC-GWAS) approach to summary statistics data of the Breast Cancer Association Consortium. The approach identified 13 statistically significant loci and eight suggestive loci, the majority of which were identified from comparisons between triple-negative breast cancer (TNBC) and luminal A breast cancer. Associations of lead variants in 12 loci remained statistically significant after accounting for previously reported breast cancer susceptibility variants, among which, two were genome-wide significant. Fine mapping implicated putative functional/causal variants and risk genes at several loci, e.g., 3q26.31/TNFSF10, 8q22.3/NACAP1/GRHL2, and 8q23.3/LINC00536/TRPS1, for TNBC as compared with luminal cancer. Functional investigation further identified rs16867605 at 8q22.3 as a SNP that modulates the enhancer activity of GRHL2. Subtype-informative polygenic risk scores (PRS) were derived, and patients with a high subtype-informative PRS had an up to two-fold increased risk of being diagnosed with TNBC instead of luminal cancers. The CC-GWAS PRS remained statistically significant after adjusting for TNBC PRS derived from traditional case-control GWAS in The Cancer Genome Atlas and the African Ancestry Breast Cancer Genetic Consortium. The CC-GWAS PRS was also associated with overall survival and disease-specific survival among patients with breast cancer. Overall, these findings have advanced our understanding of the genetic etiology of breast cancer subtypes, particularly for TNBC. Significance: The discovery of subtype-informative genetic risk variants for breast cancer advances our understanding of the etiologic heterogeneity of breast cancer, which could accelerate the identification of targets and personalized strategies for prevention and treatment.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Shiv Prakash Verma
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinjun Wang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andriy Derkach
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaolin Liang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne S. Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gordon P. Watt
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meghan Woods
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Patrick Concannon
- Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Montserrat Garcia-Closas
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer J. Hu
- The University of Miami School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Esther M. John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A. Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I. Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Charles F. Lynch
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Lene Mellemkjær
- Diet, Cancer and Health, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Nemesure
- Stony Brook Medicine, Department of Family, Population, and Preventive Medicine, Stony Brook, NY, USA
| | | | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tuya Pal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie R. Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Michael F. Press
- Department of Pathology, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Melissa A. Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonine L. Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew F. Buas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Shu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
65
|
Akdeniz BC, Frei O, Shadrin A, Vetrov D, Kropotov D, Hovig E, Andreassen OA, Dale AM. Finemap-MiXeR: A variational Bayesian approach for genetic finemapping. PLoS Genet 2024; 20:e1011372. [PMID: 39146375 PMCID: PMC11349196 DOI: 10.1371/journal.pgen.1011372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Genome-wide association studies (GWAS) implicate broad genomic loci containing clusters of highly correlated genetic variants. Finemapping techniques can select and prioritize variants within each GWAS locus which are more likely to have a functional influence on the trait. Here, we present a novel method, Finemap-MiXeR, for finemapping causal variants from GWAS summary statistics, controlling for correlation among variants due to linkage disequilibrium. Our method is based on a variational Bayesian approach and direct optimization of the Evidence Lower Bound (ELBO) of the likelihood function derived from the MiXeR model. After obtaining the analytical expression for ELBO's gradient, we apply Adaptive Moment Estimation (ADAM) algorithm for optimization, allowing us to obtain the posterior causal probability of each variant. Using these posterior causal probabilities, we validated Finemap-MiXeR across a wide range of scenarios using both synthetic data, and real data on height from the UK Biobank. Comparison of Finemap-MiXeR with two existing methods, FINEMAP and SuSiE RSS, demonstrated similar or improved accuracy. Furthermore, our method is computationally efficient in several aspects. For example, unlike many other methods in the literature, its computational complexity does not increase with the number of true causal variants in a locus and it does not require any matrix inversion operation. The mathematical framework of Finemap-MiXeR is flexible and may also be applied to other problems including cross-trait and cross-ancestry finemapping.
Collapse
Affiliation(s)
- Bayram Cevdet Akdeniz
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Eivind Hovig
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, California, United States of America
| |
Collapse
|
66
|
Doostparast Torshizi A, Truong DT, Hou L, Smets B, Whelan CD, Li S. Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson's disease. Nat Commun 2024; 15:6430. [PMID: 39080267 PMCID: PMC11289099 DOI: 10.1038/s41467-024-50718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Parkinson's disease is highly heterogeneous across disease symptoms, clinical manifestations and progression trajectories, hampering the identification of therapeutic targets. Despite knowledge gleaned from genetics analysis, dysregulated proteome mechanisms stemming from genetic aberrations remain underexplored. In this study, we develop a three-phase system-level proteogenomic analytical framework to characterize disease-associated proteins and dysregulated mechanisms. Proteogenomic analysis identified 577 proteins that enrich for Parkinson's disease-related pathways, such as cytokine receptor interactions and lysosomal function. Converging lines of evidence identified nine proteins, including LGALS3, CSNK2A1, SMPD3, STX4, APOA2, PAFAH1B3, LDLR, HSPB1, BRK1, with potential roles in disease pathogenesis. This study leverages the largest population-scale proteomics dataset, the UK Biobank Pharma Proteomics Project, to characterize genetically-driven protein disturbances associated with Parkinson's disease. Taken together, our work contributes to better understanding of genome-proteome dynamics in Parkinson's disease and sets a paradigm to identify potential indirect mediators connected to GWAS signals for complex neurodegenerative disorders.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA.
| | - Dongnhu T Truong
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Liping Hou
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Bart Smets
- Neuroscience Data Science, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christopher D Whelan
- Neuroscience Data Science, Janssen Research & Development, LLC, Cambridge, MA, USA
| | - Shuwei Li
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| |
Collapse
|
67
|
Cruchaga C, Yang C, Gorijala P, Timsina J, Wang L, Liu M, Wang C, Brock W, Wang Y, Sung YJ. European and African-specific plasma protein-QTL and metabolite-QTL analyses identify ancestry-specific T2D effector proteins and metabolites. RESEARCH SQUARE 2024:rs.3.rs-3617016. [PMID: 39108494 PMCID: PMC11302687 DOI: 10.21203/rs.3.rs-3617016/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Initially focused on the European population, multiple genome-wide association studies (GWAS) of complex diseases, such as type-2 diabetes (T2D), have now extended to other populations. However, to date, few ancestry-matched omics datasets have been generated or further integrated with the disease GWAS to nominate the key genes and/or molecular traits underlying the disease risk loci. In this study, we generated and integrated plasma proteomics and metabolomics with array-based genotype datasets of European (EUR) and African (AFR) ancestries to identify ancestry-specific muti-omics quantitative trait loci (QTLs). We further applied these QTLs to ancestry-stratified T2D risk to pinpoint key proteins and metabolites underlying the disease-associated genetic loci. We nominated five proteins and four metabolites in the European group and one protein and one metabolite in the African group to be part of the molecular pathways of T2D risk in an ancestry-stratified manner. Our study demonstrates the integration of genetic and omic studies of different ancestries can be used to identify distinct effector molecular traits underlying the same disease across diverse populations. Specifically, in the AFR proteomic findings on T2D, we prioritized the protein QSOX2; while in the AFR metabolomic findings, we pinpointed the metabolite GlcNAc sulfate conjugate of C21H34O2 steroid. Neither of these findings overlapped with the corresponding EUR results.
Collapse
Affiliation(s)
| | | | | | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Washington University School of Medicine
| | - Menghan Liu
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - William Brock
- Washington University School of Medicine, St. Louis, MO, USA
| | - Yueyao Wang
- Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
68
|
Verma A, Huffman JE, Rodriguez A, Conery M, Liu M, Ho YL, Kim Y, Heise DA, Guare L, Panickan VA, Garcon H, Linares F, Costa L, Goethert I, Tipton R, Honerlaw J, Davies L, Whitbourne S, Cohen J, Posner DC, Sangar R, Murray M, Wang X, Dochtermann DR, Devineni P, Shi Y, Nandi TN, Assimes TL, Brunette CA, Carroll RJ, Clifford R, Duvall S, Gelernter J, Hung A, Iyengar SK, Joseph J, Kember R, Kranzler H, Kripke CM, Levey D, Luoh SW, Merritt VC, Overstreet C, Deak JD, Grant SFA, Polimanti R, Roussos P, Shakt G, Sun YV, Tsao N, Venkatesh S, Voloudakis G, Justice A, Begoli E, Ramoni R, Tourassi G, Pyarajan S, Tsao P, O'Donnell CJ, Muralidhar S, Moser J, Casas JP, Bick AG, Zhou W, Cai T, Voight BF, Cho K, Gaziano JM, Madduri RK, Damrauer S, Liao KP. Diversity and scale: Genetic architecture of 2068 traits in the VA Million Veteran Program. Science 2024; 385:eadj1182. [PMID: 39024449 DOI: 10.1126/science.adj1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/10/2024] [Indexed: 07/20/2024]
Abstract
One of the justifiable criticisms of human genetic studies is the underrepresentation of participants from diverse populations. Lack of inclusion must be addressed at-scale to identify causal disease factors and understand the genetic causes of health disparities. We present genome-wide associations for 2068 traits from 635,969 participants in the Department of Veterans Affairs Million Veteran Program, a longitudinal study of diverse United States Veterans. Systematic analysis revealed 13,672 genomic risk loci; 1608 were only significant after including non-European populations. Fine-mapping identified causal variants at 6318 signals across 613 traits. One-third (n = 2069) were identified in participants from non-European populations. This reveals a broadly similar genetic architecture across populations, highlights genetic insights gained from underrepresented groups, and presents an extensive atlas of genetic associations.
Collapse
Affiliation(s)
- Anurag Verma
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
- Palo Alto Veterans Institute for Research (PAVIR), Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Rodriguez
- Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mitchell Conery
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Molei Liu
- Department of Biostatistics, Columbia University's Mailman School of Public Health, New York, NY 10032, USA
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Youngdae Kim
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - David A Heise
- National Security Sciences Directorate, Cyber Resilience and Intelligence Division, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Lindsay Guare
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Helene Garcon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Franciel Linares
- R&D Systems Engineering, Information Technology Services Directorate, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Lauren Costa
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
| | - Ian Goethert
- Data Management and Engineering, Information Technology Services Division, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Ryan Tipton
- Knowledge Discovery Infrastructure, Information Technology Services Division, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Jacqueline Honerlaw
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Laura Davies
- Computing and Computational Sciences Dir PMO, PMO, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Stacey Whitbourne
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
- Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jeremy Cohen
- National Security Sciences Directorate, Cyber Resilience and Intelligence Division, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Daniel C Posner
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Rahul Sangar
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
| | - Michael Murray
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
| | - Xuan Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel R Dochtermann
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Poornima Devineni
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Yunling Shi
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Tarak Nath Nandi
- Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA
| | | | - Charles A Brunette
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Robert J Carroll
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37211, USA
| | - Royce Clifford
- Research Department, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Otolaryngology, UCSD San Diego, La Jolla, CA 92093, USA
| | - Scott Duvall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
- Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Joel Gelernter
- Psychiatry, Human Genetics, Yale University, New Haven, CT, 06520, USA
- VA Connecticut Healthcare System West Haven, West Haven, CT, 06516, USA
| | - Adriana Hung
- Medicine, Nephrology & Hypertension, VA Tennessee Valley Healthcare System & Vanderbilt University, Nashville, TN 37232, USA
| | - Sudha K Iyengar
- Departments of Population and Quantitative Health Sciences, Genetics and Genome Sciences, and Ophthalmology and Visual Sciences and the Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jacob Joseph
- Medicine, Cardiology Section, VA Providence Healthcare System, Providence, RI 02908, USA
- Department of Medicine, Brown University, Providence, RI, 02908, USA
| | - Rachel Kember
- Mental Illness Research, Education and Clinical Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Henry Kranzler
- Mental Illness Research, Education and Clinical Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Colleen M Kripke
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel Levey
- Psychiatry, Human Genetics, Yale University, New Haven, CT, 06520, USA
- Medicine, VA Connecticut Healthcare System West Haven, West Haven, CT 06516, USA
| | - Shiuh-Wen Luoh
- VA Portland Health Care System, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Victoria C Merritt
- Research Department, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Cassie Overstreet
- Psychiatry, Human Genetics, Yale University, New Haven, CT, 06520, USA
| | - Joseph D Deak
- Psychiatry, Yale University, New Haven, CT 06520, USA
- Psychiatry, VA Connecticut Healthcare System West Haven, West Haven, CT 06516, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Panos Roussos
- Psychiatry, Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center; Icahn School of Medicine at Mount Sinai, Bronx, NY 10468, USA
| | - Gabrielle Shakt
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yan V Sun
- Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Noah Tsao
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sanan Venkatesh
- Psychiatry, Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center; Icahn School of Medicine at Mount Sinai, Bronx, NY 10468, USA
| | - Georgios Voloudakis
- Psychiatry, Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center; Icahn School of Medicine at Mount Sinai, Bronx, NY 10468, USA
| | - Amy Justice
- Medicine, VA Connecticut Healthcare System West Haven, West Haven, CT 06516, USA
- Internal Medicine, General Medicine, Yale University, New Haven, CT 06520, USA
- Health Policy, Yale School of Public Health, New Haven, CT 06520, USA
| | - Edmon Begoli
- Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN, 37831, USA
| | - Rachel Ramoni
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
| | - Georgia Tourassi
- National Center for Computational Sciences, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN, 37831, USA
| | - Saiju Pyarajan
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Philip Tsao
- Medicine, Cardiology, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | | | - Sumitra Muralidhar
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
| | - Jennifer Moser
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
| | - Juan P Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Alexander G Bick
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, 37325, USA
| | - Wei Zhou
- Department of Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Cambridge, MA 02142, USA
| | - Tianxi Cai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin F Voight
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly Cho
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
- Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - J Michael Gaziano
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
- Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ravi K Madduri
- Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Scott Damrauer
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Cardiovascular Institute, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine P Liao
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Medicine, Rheumatology, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
69
|
Chen DM, Dong R, Kachuri L, Hoffmann TJ, Jiang Y, Berndt SI, Shelley JP, Schaffer KR, Machiela MJ, Freedman ND, Huang WY, Li SA, Lilja H, Justice AC, Madduri RK, Rodriguez AA, Van Den Eeden SK, Chanock SJ, Haiman CA, Conti DV, Klein RJ, Mosley JD, Witte JS, Graff RE. Transcriptome-wide association analysis identifies candidate susceptibility genes for prostate-specific antigen levels in men without prostate cancer. HGG ADVANCES 2024; 5:100315. [PMID: 38845201 PMCID: PMC11262184 DOI: 10.1016/j.xhgg.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Deciphering the genetic basis of prostate-specific antigen (PSA) levels may improve their utility for prostate cancer (PCa) screening. Using genome-wide association study (GWAS) summary statistics from 95,768 PCa-free men, we conducted a transcriptome-wide association study (TWAS) to examine impacts of genetically predicted gene expression on PSA. Analyses identified 41 statistically significant (p < 0.05/12,192 = 4.10 × 10-6) associations in whole blood and 39 statistically significant (p < 0.05/13,844 = 3.61 × 10-6) associations in prostate tissue, with 18 genes associated in both tissues. Cross-tissue analyses identified 155 statistically significantly (p < 0.05/22,249 = 2.25 × 10-6) genes. Out of 173 unique PSA-associated genes across analyses, we replicated 151 (87.3%) in a TWAS of 209,318 PCa-free individuals from the Million Veteran Program. Based on conditional analyses, we found 20 genes (11 single tissue, nine cross-tissue) that were associated with PSA levels in the discovery TWAS that were not attributable to a lead variant from a GWAS. Ten of these 20 genes replicated, and two of the replicated genes had colocalization probability of >0.5: CCNA2 and HIST1H2BN. Six of the 20 identified genes are not known to impact PCa risk. Fine-mapping based on whole blood and prostate tissue revealed five protein-coding genes with evidence of causal relationships with PSA levels. Of these five genes, four exhibited evidence of colocalization and one was conditionally independent of previous GWAS findings. These results yield hypotheses that should be further explored to improve understanding of genetic factors underlying PSA levels.
Collapse
Affiliation(s)
- Dorothy M Chen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruocheng Dong
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - John P Shelley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kerry R Schaffer
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Hans Lilja
- Departments of Pathology and Laboratory Medicine, Surgery, Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Translational Medicine, Lund University, 21428 Malmö, Sweden
| | | | | | | | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20814, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David V Conti
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan D Mosley
- Departments of Internal Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA; Departments of Biomedical Data Science and Genetics (by courtesy), Stanford University, Stanford, CA 94305, USA.
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
70
|
Wang L, Wen X, Morrison J. Imperfect gold standard gene sets yield inaccurate evaluation of causal gene identification methods. Commun Biol 2024; 7:873. [PMID: 39020054 PMCID: PMC11255313 DOI: 10.1038/s42003-024-06482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/21/2024] [Indexed: 07/19/2024] Open
Abstract
Causal gene discovery methods are often evaluated using reference sets of causal genes, which are treated as gold standards (GS) for the purposes of evaluation. However, evaluation methods typically treat genes not in the GS positive set as known negatives rather than unknowns. This leads to inaccurate estimates of sensitivity, specificity, and AUC. Labeling biases in GS gene sets can also lead to inaccurate ordering of alternative causal gene discovery methods. We argue that the evaluation of causal gene discovery methods should rely on statistical techniques like those used for variant discovery rather than on comparison with GS gene sets.
Collapse
Affiliation(s)
- Lijia Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Jean Morrison
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
71
|
Manipur I, Reales G, Sul JH, Shin MK, Longerich S, Cortes A, Wallace C. CoPheScan: phenome-wide association studies accounting for linkage disequilibrium. Nat Commun 2024; 15:5862. [PMID: 38997278 PMCID: PMC11245513 DOI: 10.1038/s41467-024-49990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Phenome-wide association studies (PheWAS) facilitate the discovery of associations between a single genetic variant with multiple phenotypes. For variants which impact a specific protein, this can help identify additional therapeutic indications or on-target side effects of intervening on that protein. However, PheWAS is restricted by an inability to distinguish confounding due to linkage disequilibrium (LD) from true pleiotropy. Here we describe CoPheScan (Coloc adapted Phenome-wide Scan), a Bayesian approach that enables an intuitive and systematic exploration of causal associations while simultaneously addressing LD confounding. We demonstrate its performance through simulation, showing considerably better control of false positive rates than a conventional approach not accounting for LD. We used CoPheScan to perform PheWAS of protein-truncating variants and fine-mapped variants from disease and pQTL studies, in 2275 disease phenotypes from the UK Biobank. Our results identify the complexity of known pleiotropic genes such as APOE, and suggest a new causal role for TGM3 in skin cancer.
Collapse
Affiliation(s)
- Ichcha Manipur
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK.
| | - Guillermo Reales
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK
| | | | | | | | - Adrian Cortes
- Human Genetics and Genomics, GSK, Heidelberg, 69117, Germany
| | - Chris Wallace
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
72
|
Loeb GB, Kathail P, Shuai R, Chung R, Grona RJ, Peddada S, Sevim V, Federman S, Mader K, Chu A, Davitte J, Du J, Gupta AR, Ye CJ, Shafer S, Przybyla L, Rapiteanu R, Ioannidis N, Reiter JF. Variants in tubule epithelial regulatory elements mediate most heritable differences in human kidney function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599625. [PMID: 38948875 PMCID: PMC11212968 DOI: 10.1101/2024.06.18.599625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Kidney disease is highly heritable; however, the causal genetic variants, the cell types in which these variants function, and the molecular mechanisms underlying kidney disease remain largely unknown. To identify genetic loci affecting kidney function, we performed a GWAS using multiple kidney function biomarkers and identified 462 loci. To begin to investigate how these loci affect kidney function, we generated single-cell chromatin accessibility (scATAC-seq) maps of the human kidney and identified candidate cis-regulatory elements (cCREs) for kidney podocytes, tubule epithelial cells, and kidney endothelial, stromal, and immune cells. Kidney tubule epithelial cCREs explained 58% of kidney function SNP-heritability and kidney podocyte cCREs explained an additional 6.5% of SNP-heritability. In contrast, little kidney function heritability was explained by kidney endothelial, stromal, or immune cell-specific cCREs. Through functionally informed fine-mapping, we identified putative causal kidney function variants and their corresponding cCREs. Using kidney scATAC-seq data, we created a deep learning model (which we named ChromKid) to predict kidney cell type-specific chromatin accessibility from sequence. ChromKid and allele specific kidney scATAC-seq revealed that many fine-mapped kidney function variants locally change chromatin accessibility in tubule epithelial cells. Enhancer assays confirmed that fine-mapped kidney function variants alter tubule epithelial regulatory element function. To map the genes which these regulatory elements control, we used CRISPR interference (CRISPRi) to target these regulatory elements in tubule epithelial cells and assessed changes in gene expression. CRISPRi of enhancers harboring kidney function variants regulated NDRG1 and RBPMS expression. Thus, inherited differences in tubule epithelial NDRG1 and RBPMS expression may predispose to kidney disease in humans. We conclude that genetic variants affecting tubule epithelial regulatory element function account for most SNP-heritability of human kidney function. This work provides an experimental approach to identify the variants, regulatory elements, and genes involved in polygenic disease.
Collapse
Affiliation(s)
- Gabriel B. Loeb
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, US
| | - Pooja Kathail
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Richard Shuai
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Ryan Chung
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Reinier J. Grona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sailaja Peddada
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Volkan Sevim
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Genomic Sciences, GlaxoSmithKline, San Francisco, CA, USA
| | - Scot Federman
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Mader
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey Chu
- Genomic Sciences, GlaxoSmithKline, San Francisco, CA, USA
| | | | - Juan Du
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander R. Gupta
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine; Bakar Computational Health Sciences Institute; Parker Institute for Cancer Immunotherapy; Institute for Human Genetics; Department of Epidemiology & Biostatistics; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA and Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Shawn Shafer
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Genomic Sciences, GlaxoSmithKline, San Francisco, CA, USA
| | - Laralynne Przybyla
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Radu Rapiteanu
- Genomic Sciences, GlaxoSmithKline, San Francisco, CA, USA
| | - Nilah Ioannidis
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeremy F. Reiter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, US
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
73
|
Zou Y, Carbonetto P, Xie D, Wang G, Stephens M. Fast and flexible joint fine-mapping of multiple traits via the Sum of Single Effects model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.14.536893. [PMID: 37425935 PMCID: PMC10327118 DOI: 10.1101/2023.04.14.536893] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We introduce mvSuSiE, a multi-trait fine-mapping method for identifying putative causal variants from genetic association data (individual-level or summary data). mvSuSiE learns patterns of shared genetic effects from data, and exploits these patterns to improve power to identify causal SNPs. Comparisons on simulated data show that mvSuSiE is competitive in speed, power and precision with existing multi-trait methods, and uniformly improves on single-trait fine-mapping (SuSiE) in each trait separately. We applied mvSuSiE to jointly fine-map 16 blood cell traits using data from the UK Biobank. By jointly analyzing the traits and modeling heterogeneous effect sharing patterns, we discovered a much larger number of causal SNPs (>3,000) compared with single-trait fine-mapping, and with narrower credible sets. mvSuSiE also more comprehensively characterized the ways in which the genetic variants affect one or more blood cell traits; 68% of causal SNPs showed significant effects in more than one blood cell type.
Collapse
Affiliation(s)
- Yuxin Zou
- Department of Statistics, University of Chicago, Chicago, IL, USA
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Peter Carbonetto
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dongyue Xie
- Department of Statistics, University of Chicago, Chicago, IL, USA
| | - Gao Wang
- Gertrude. H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Matthew Stephens
- Department of Statistics, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
74
|
Strober BJ, Zhang MJ, Amariuta T, Rossen J, Price AL. Fine-mapping causal tissues and genes at disease-associated loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.01.23297909. [PMID: 37961337 PMCID: PMC10635248 DOI: 10.1101/2023.11.01.23297909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Heritable diseases often manifest in a highly tissue-specific manner, with different disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues to build cis-predicted expression models; TGFM also assigns PIPs to causal variants that are not mediated by gene expression in assayed genes and tissues. TGFM accounts for both co-regulation across genes and tissues and LD between SNPs (generalizing existing fine-mapping methods), and incorporates genome-wide estimates of each tissue's contribution to disease as tissue-level priors. TGFM was well-calibrated and moderately well-powered in simulations; unlike previous methods, TGFM was able to attain correct calibration by modeling uncertainty in cis-predicted expression models. We applied TGFM to 45 UK Biobank diseases/traits (average N = 316K) using eQTL data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue pairs were concentrated in known disease-critical tissues, and causal genes were strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5-primarily for autoimmune disease and blood cell traits, including the biologically plausible example of CD52 in classical monocyte cells for Monocyte count. In conclusion, TGFM is a robust and powerful method for fine-mapping causal tissues and genes at disease-associated loci.
Collapse
Affiliation(s)
- Benjamin J. Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin Jinye Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tiffany Amariuta
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jordan Rossen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
75
|
Stankey CT, Bourges C, Haag LM, Turner-Stokes T, Piedade AP, Palmer-Jones C, Papa I, Silva Dos Santos M, Zhang Q, Cameron AJ, Legrini A, Zhang T, Wood CS, New FN, Randzavola LO, Speidel L, Brown AC, Hall A, Saffioti F, Parkes EC, Edwards W, Direskeneli H, Grayson PC, Jiang L, Merkel PA, Saruhan-Direskeneli G, Sawalha AH, Tombetti E, Quaglia A, Thorburn D, Knight JC, Rochford AP, Murray CD, Divakar P, Green M, Nye E, MacRae JI, Jamieson NB, Skoglund P, Cader MZ, Wallace C, Thomas DC, Lee JC. A disease-associated gene desert directs macrophage inflammation through ETS2. Nature 2024; 630:447-456. [PMID: 38839969 PMCID: PMC11168933 DOI: 10.1038/s41586-024-07501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Increasing rates of autoimmune and inflammatory disease present a burgeoning threat to human health1. This is compounded by the limited efficacy of available treatments1 and high failure rates during drug development2, highlighting an urgent need to better understand disease mechanisms. Here we show how functional genomics could address this challenge. By investigating an intergenic haplotype on chr21q22-which has been independently linked to inflammatory bowel disease, ankylosing spondylitis, primary sclerosing cholangitis and Takayasu's arteritis3-6-we identify that the causal gene, ETS2, is a central regulator of human inflammatory macrophages and delineate the shared disease mechanism that amplifies ETS2 expression. Genes regulated by ETS2 were prominently expressed in diseased tissues and more enriched for inflammatory bowel disease GWAS hits than most previously described pathways. Overexpressing ETS2 in resting macrophages reproduced the inflammatory state observed in chr21q22-associated diseases, with upregulation of multiple drug targets, including TNF and IL-23. Using a database of cellular signatures7, we identified drugs that might modulate this pathway and validated the potent anti-inflammatory activity of one class of small molecules in vitro and ex vivo. Together, this illustrates the power of functional genomics, applied directly in primary human cells, to identify immune-mediated disease mechanisms and potential therapeutic opportunities.
Collapse
Affiliation(s)
- C T Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Washington University School of Medicine, St Louis, MO, USA
| | - C Bourges
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - L M Haag
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - T Turner-Stokes
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - A P Piedade
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - C Palmer-Jones
- Department of Gastroenterology, Royal Free Hospital, London, UK
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - I Papa
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | | | - Q Zhang
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - A J Cameron
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - A Legrini
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - T Zhang
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - C S Wood
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - F N New
- NanoString Technologies, Seattle, WA, USA
| | - L O Randzavola
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - L Speidel
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- Genetics Institute, University College London, London, UK
| | - A C Brown
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A Hall
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - F Saffioti
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - E C Parkes
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - W Edwards
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - H Direskeneli
- Department of Internal Medicine, Division of Rheumatology, Marmara University, Istanbul, Turkey
| | - P C Grayson
- Systemic Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - L Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - P A Merkel
- Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Epidemiology, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - G Saruhan-Direskeneli
- Department of Physiology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - A H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Lupus Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Tombetti
- Department of Biomedical and Clinical Sciences, Milan University, Milan, Italy
- Internal Medicine and Rheumatology, ASST FBF-Sacco, Milan, Italy
| | - A Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
- UCL Cancer Institute, London, UK
| | - D Thorburn
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - J C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
| | - A P Rochford
- Department of Gastroenterology, Royal Free Hospital, London, UK
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - C D Murray
- Department of Gastroenterology, Royal Free Hospital, London, UK
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - P Divakar
- NanoString Technologies, Seattle, WA, USA
| | - M Green
- Experimental Histopathology STP, The Francis Crick Institute, London, UK
| | - E Nye
- Experimental Histopathology STP, The Francis Crick Institute, London, UK
| | - J I MacRae
- Metabolomics STP, The Francis Crick Institute, London, UK
| | - N B Jamieson
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - P Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - M Z Cader
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - C Wallace
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
| | - D C Thomas
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - J C Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK.
- Department of Gastroenterology, Royal Free Hospital, London, UK.
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK.
| |
Collapse
|
76
|
Crowley JJ, Cappi C, Ochoa-Panaifo ME, Frederick RM, Kook M, Wiese AD, Rancourt D, Atkinson EG, Giusti-Rodriguez P, Anderberg JL, Abramowitz JS, Adorno VR, Aguirre C, Alves GS, Alves GS, Ancalade N, Arellano Espinosa AA, Arnold PD, Ayton DM, Barbosa IG, Castano LMB, Barrera CN, Berardo MC, Berrones D, Best JR, Bigdeli TB, Burton CL, Buxbaum JD, Callahan JL, Carneiro MCB, Cepeda SL, Chazelle E, Chire JM, Munoz MC, Quiroz PC, Cobite J, Comer JS, Costa DL, Crosbie J, Cruz VO, Dager G, Daza LF, de la Rosa-Gómez A, Del Río D, Delage FZ, Dreher CB, Fay L, Fazio T, Ferrão YA, Ferreira GM, Figueroa EG, Fontenelle LF, Forero DA, Fragoso DTH, Gadad BS, Garrison SR, González A, Gonzalez LD, González MA, Gonzalez-Barrios P, Goodman WK, Grice DE, Guintivano J, Guttfreund DG, Guzick AG, Halvorsen MW, Hovey JD, Huang H, Irreño-Sotomonte J, Janssen-Aguilar R, Jensen M, Jimenez Reynolds AZ, Lujambio JAJ, Khalfe N, Knutsen MA, Lack C, Lanzagorta N, Lima MO, Longhurst MO, Lozada Martinez DA, Luna ES, Marques AH, Martinez MS, de Los Angeles Matos M, Maye CE, McGuire JF, Menezes G, Minaya C, Miño T, Mithani SM, de Oca CM, Morales-Rivero A, Moreira-de-Oliveira ME, Morris OJ, Muñoz SI, Naqqash Z, Núñez Bracho AA, Núñez Bracho BE, Rojas MCO, Olavarria Castaman LA, et alCrowley JJ, Cappi C, Ochoa-Panaifo ME, Frederick RM, Kook M, Wiese AD, Rancourt D, Atkinson EG, Giusti-Rodriguez P, Anderberg JL, Abramowitz JS, Adorno VR, Aguirre C, Alves GS, Alves GS, Ancalade N, Arellano Espinosa AA, Arnold PD, Ayton DM, Barbosa IG, Castano LMB, Barrera CN, Berardo MC, Berrones D, Best JR, Bigdeli TB, Burton CL, Buxbaum JD, Callahan JL, Carneiro MCB, Cepeda SL, Chazelle E, Chire JM, Munoz MC, Quiroz PC, Cobite J, Comer JS, Costa DL, Crosbie J, Cruz VO, Dager G, Daza LF, de la Rosa-Gómez A, Del Río D, Delage FZ, Dreher CB, Fay L, Fazio T, Ferrão YA, Ferreira GM, Figueroa EG, Fontenelle LF, Forero DA, Fragoso DTH, Gadad BS, Garrison SR, González A, Gonzalez LD, González MA, Gonzalez-Barrios P, Goodman WK, Grice DE, Guintivano J, Guttfreund DG, Guzick AG, Halvorsen MW, Hovey JD, Huang H, Irreño-Sotomonte J, Janssen-Aguilar R, Jensen M, Jimenez Reynolds AZ, Lujambio JAJ, Khalfe N, Knutsen MA, Lack C, Lanzagorta N, Lima MO, Longhurst MO, Lozada Martinez DA, Luna ES, Marques AH, Martinez MS, de Los Angeles Matos M, Maye CE, McGuire JF, Menezes G, Minaya C, Miño T, Mithani SM, de Oca CM, Morales-Rivero A, Moreira-de-Oliveira ME, Morris OJ, Muñoz SI, Naqqash Z, Núñez Bracho AA, Núñez Bracho BE, Rojas MCO, Olavarria Castaman LA, Balmaceda TO, Ortega I, Patel DI, Patrick AK, Paz Y Mino M, Perales Orellana JL, Stumpf BP, Peregrina T, Duarte TP, Piacsek KL, Placencia M, Prieto MB, Quarantini LC, Quarantini-Alvim Y, Ramos RT, Ramos IC, Ramos VR, Ramsey KA, Ray EV, Richter MA, Riemann BC, Rivas JC, Rosario MC, Ruggero CJ, Ruiz-Chow AA, Ruiz-Velasco A, Sagarnaga MN, Sampaio AS, Saraiva LC, Schachar RJ, Schneider SC, Schweissing EJ, Seligman LD, Shavitt RG, Soileau KJ, Stewart SE, Storch SB, Strouphauer ER, Cuevas VT, Timpano KR, la Garza BTD, Vallejo-Silva A, Vargas-Medrano J, Vásquez MI, Martinez GV, Weinzimmer SA, Yanez MA, Zai G, Zapata-Restrepo LM, Zappa LM, Zepeda-Burgos RM, Zoghbi AW, Miguel EC, Rodriguez CI, Martinez Mallen MC, Moya PR, Borda T, Moyano MB, Mattheisen M, Pereira S, Lázaro-Muñoz G, Martinez-Gonzalez KG, Pato MT, Nicolini H, Storch EA. Latin American Trans-ancestry INitiative for OCD genomics (LATINO): Study protocol. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32962. [PMID: 37946624 PMCID: PMC11076176 DOI: 10.1002/ajmg.b.32962] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder. Worldwide, its prevalence is ~2% and its etiology is mostly unknown. Identifying biological factors contributing to OCD will elucidate underlying mechanisms and might contribute to improved treatment outcomes. Genomic studies of OCD are beginning to reveal long-sought risk loci, but >95% of the cases currently in analysis are of homogenous European ancestry. If not addressed, this Eurocentric bias will result in OCD genomic findings being more accurate for individuals of European ancestry than other ancestries, thereby contributing to health disparities in potential future applications of genomics. In this study protocol paper, we describe the Latin American Trans-ancestry INitiative for OCD genomics (LATINO, https://www.latinostudy.org). LATINO is a new network of investigators from across Latin America, the United States, and Canada who have begun to collect DNA and clinical data from 5000 richly phenotyped OCD cases of Latin American ancestry in a culturally sensitive and ethical manner. In this project, we will utilize trans-ancestry genomic analyses to accelerate the identification of OCD risk loci, fine-map putative causal variants, and improve the performance of polygenic risk scores in diverse populations. We will also capitalize on rich clinical data to examine the genetics of treatment response, biologically plausible OCD subtypes, and symptom dimensions. Additionally, LATINO will help elucidate the diversity of the clinical presentations of OCD across cultures through various trainings developed and offered in collaboration with Latin American investigators. We believe this study will advance the important goal of global mental health discovery and equity.
Collapse
Affiliation(s)
- James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Departamento de Psiquiatria, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Renee M Frederick
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Minjee Kook
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew D Wiese
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Diana Rancourt
- Department of Psychology, University of South Florida, Tampa, Florida, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Paola Giusti-Rodriguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jacey L Anderberg
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Jonathan S Abramowitz
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victor R Adorno
- Hospital Psiquiátrico de Asunción, Direccion General, Asuncion, Central, Paraguay
| | - Cinthia Aguirre
- Departamento de Psiquiatría, Hospital Psiquiátrico de Asunción, Asuncion, Central, Paraguay
| | - Gilberto S Alves
- Hospital Nina Rodrigues/Universidade Federal do Maranhão (UFMA), Sao Luis do Maranhao, Maranhao, Brazil
| | - Gustavo S Alves
- Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Laboratório de Neuropsicofarmacologia-LANP, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Pós-Graduação em Medicina e Saúde, Salvador, Bahia, Brazil
| | - NaEshia Ancalade
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Daphne M Ayton
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Izabela G Barbosa
- Departamento de Saúde Mental da Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - María Celeste Berardo
- Centro Interdisciplinario de Tourette, TOC, TDAH y Trastornos Asociados (CITA), Buenos Aires, Buenos Aires, Argentina
| | - Dayan Berrones
- Department of Psychology, Rice University, Houston, Texas, USA
| | - John R Best
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- VA New York Harbor Healthcare System, Brooklyn, New York, USA
| | - Christie L Burton
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Maria Cecília B Carneiro
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Paraná, Curitiba, Parana, Brazil
| | - Sandra L Cepeda
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Evelyn Chazelle
- Centro Interdisciplinario de Tourette, TOC, TDAH y Trastornos Asociados (CITA), Buenos Aires, Buenos Aires, Argentina
| | - Jessica M Chire
- Instituto Nacional de Salud Mental "Honorio Delgado-Hideyo Noguchi", Dirección de Niños y Adolescentes Lima, Lima, Peru
| | | | | | - Journa Cobite
- Department of Counseling Psychology, University of Houston, Houston, Texas, USA
| | - Jonathan S Comer
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Daniel L Costa
- Departamento de Psiquiatria, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Jennifer Crosbie
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Victor O Cruz
- Instituto Nacional de Salud Mental "Honorio Delgado-Hideyo Noguchi", Oficina Ejecutiva de Investigación, Lima, Lima, Peru
- School of Medicine, Universidad San Martin de Porres, Lima, Lima, Peru
| | - Guillermo Dager
- Corporación Universitaria Rafael Nuñez, Cartagena, Bolivar, Colombia
| | - Luisa F Daza
- Hospital Psiquiátrico Universitario Del Valle, Cali, Valle del Cauca, Colombia
| | - Anabel de la Rosa-Gómez
- Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - Fernanda Z Delage
- Departamento de Medicina Forense e Psiquiatria, Universidade Federal do Paraná, Curitiba, Parana, Brazil
| | - Carolina B Dreher
- Departamento de Psiquiatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Psiquiatria, Clínica Médica, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucila Fay
- Centro Interdisciplinario de Tourette, TOC, TDAH y Trastornos Asociados (CITA), Buenos Aires, Buenos Aires, Argentina
| | - Tomas Fazio
- Centro Interdisciplinario de Tourette, TOC, TDAH y Trastornos Asociados (CITA), Buenos Aires, Buenos Aires, Argentina
| | - Ygor A Ferrão
- Departamento de Psiquiatria, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela M Ferreira
- Departamento de Medicina Forense e Psiquiatria, Universidade Federal do Paraná, Curitiba, Parana, Brazil
- Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Parana, Brazil
| | - Edith G Figueroa
- Departamento de Psiquiatría de Adultos, Instituto Nacional de Salud Mental "Honorio Delgado-Hideyo Noguchi", Lima, Lima, Peru
| | - Leonardo F Fontenelle
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Psiquiatria, Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego A Forero
- Fundación Universitaria del Área Andina, Escuela de Salud y Ciencias del Deporte, Bogota, Bogota, Colombia
| | - Daniele T H Fragoso
- Departamento de Medicina Forense e Psiquiatria, Universidade Federal do Paraná, Curitiba, Parana, Brazil
| | - Bharathi S Gadad
- Department of Psychiatry, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | | | | | - Laura D Gonzalez
- Centro Interdisciplinario de Tourette, TOC, TDAH y Trastornos Asociados (CITA), Buenos Aires, Buenos Aires, Argentina
| | - Marco A González
- Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Polaris Gonzalez-Barrios
- Departamento de Psiquiatría, Universidad de Puerto Rico, San Juan, Puerto Rico, USA
- Universidad de Puerto Rico Campus de Ciências Médicas, San Juan, Puerto Rico, USA
| | - Wayne K Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jerry Guintivano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Andrew G Guzick
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph D Hovey
- Department of Psychological Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, Massachusetts, USA
| | - Jonathan Irreño-Sotomonte
- Center for Mental Health-Cersame, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, District of Colombia, Colombia
| | - Reinhard Janssen-Aguilar
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Subdirección de Psiquiatría, Ciudad de México, Ciudad de Mexico, Mexico
| | - Matias Jensen
- Centro de Neurociencias, Universidad de Valparaíso, Valparaiso, Chile
| | | | | | - Nasim Khalfe
- Baylor College of Medicine, School of Medicine, Houston, Texas, USA
| | - Madison A Knutsen
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychology, Augustana College, Rock Island, Illinois, USA
| | - Caleb Lack
- Department of Psychology, University of Central Oklahoma, Edmond, Oklahoma, USA
| | - Nuria Lanzagorta
- Departamento de Investigación Clínica, Grupo Médico Carracci, Ciudad de México, Ciudad de Mexico, Mexico
| | - Monicke O Lima
- Departamento de Psiquiatria, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Melanie O Longhurst
- Department of Psychiatry, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | | | - Elba S Luna
- Instituto Nacional de Salud Mental "Honorio Delgado-Hideyo Noguchi", Oficina Ejecutiva de Investigación, Lima, Lima, Peru
| | - Andrea H Marques
- National Institute of Mental Heatlh (NIMH), Bethesda, Maryland, USA
| | - Molly S Martinez
- DFW OCD Treatment Specialists, Richardson, Texas, USA
- Specialists in OCD and Anxiety Recovery (SOAR), Richardson, Texas, USA
| | - Maria de Los Angeles Matos
- Centro Interdisciplinario de Tourette, TOC, TDAH y Trastornos Asociados (CITA), Buenos Aires, Buenos Aires, Argentina
| | - Caitlyn E Maye
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph F McGuire
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabriela Menezes
- Programa de Ansiedade, Obsessões e Compulsões, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Charlene Minaya
- Department of Psychology, Fordham University, New York, New York, USA
| | - Tomás Miño
- Centro de Neurociencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Sara M Mithani
- School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | - Maria E Moreira-de-Oliveira
- Programa de Ansiedade, Obsessões e Compulsões, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Olivia J Morris
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra I Muñoz
- Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Zainab Naqqash
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | - Trinidad Olivos Balmaceda
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaiso, Valparaiso, Chile
| | - Iliana Ortega
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Darpan I Patel
- School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ainsley K Patrick
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariel Paz Y Mino
- Clínica de Salud Mental USFQ, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
- Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Jose L Perales Orellana
- Universidad Tegnológica Privada de Santa Cruz (UTEPSA), Santa Cruz de la Sierra, Andres Ibañez, Bolivia
| | - Bárbara Perdigão Stumpf
- Departamento de Saúde Mental da Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Maritza Placencia
- Departamento Académico de Ciencias Dinámicas, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - María Belén Prieto
- Centro Interdisciplinario de Tourette, TOC, TDAH y Trastornos Asociados (CITA), Buenos Aires, Buenos Aires, Argentina
| | - Lucas C Quarantini
- Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Laboratório de Neuropsicofarmacologia-LANP, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Yana Quarantini-Alvim
- Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Laboratório de Neuropsicofarmacologia-LANP, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Faculdade Santa Casa, Faculdade de Psicologia, Salvador, Bahia, Brazil
| | - Renato T Ramos
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Iaroslava C Ramos
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, Frederick Thompson Anxiety Disorders Centre, Toronto, Ontario, Canada
| | - Vanessa R Ramos
- Departamento de Psiquiatria, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Kesley A Ramsey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elise V Ray
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret A Richter
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Juan C Rivas
- Hospital Psiquiátrico Universitario Del Valle, Cali, Valle del Cauca, Colombia
- Departamento de Psiquiatría, Universidad del Valle, Cali, Valle del Cauca, Colombia
- Departamento de Psiquiatria, Universidad ICESI, Cali, Valle del Cauca, Colombia
- Departamento de Psiquiatria, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
| | - Maria C Rosario
- Departamento de Psiquiatria da, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
| | - Camilo J Ruggero
- Department of Psychology, University of North Texas, Denton, Texas, USA
| | | | - Alejandra Ruiz-Velasco
- Department of Psychiatry, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Melisa N Sagarnaga
- Facultad de Psicología, Universidad de Buenos Aires, Buenos Aires, Buenos Aires, Argentina
| | - Aline S Sampaio
- Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Laboratório de Neuropsicofarmacologia-LANP, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Pós-Graduação em Medicina e Saúde, Salvador, Bahia, Brazil
- Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Leonardo C Saraiva
- Departamento de Psiquiatria, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Russell J Schachar
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sophie C Schneider
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Ethan J Schweissing
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Laura D Seligman
- Department of Psychological Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Roseli G Shavitt
- Departamento de Psiquiatria, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Keaton J Soileau
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - S Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- BC Mental Health and Substance Use Services, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Shaina B Storch
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Vissente Tapia Cuevas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaiso, Valparaiso, Chile
| | - Kiara R Timpano
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | | | - Alexie Vallejo-Silva
- Center for Mental Health-Cersame, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, District of Colombia, Colombia
| | - Javier Vargas-Medrano
- Department of Psychiatry, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - María I Vásquez
- Hospital Nacional Arzobispo Loayza, Servicio de Salud Mental, Lima, Lima, Peru
| | - Guadalupe Vidal Martinez
- Department of Psychiatry, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Saira A Weinzimmer
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Mauricio A Yanez
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Gwyneth Zai
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Brain Sciences, Centre for Addiction and Mental Health, Neurogenetics Section, Toronto, Ontario, Canada
| | - Lina M Zapata-Restrepo
- Departamento de Psiquiatria, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
- Facultad de Ciencias de la Salud, Universidad ICESI, Cali, Valle, Colombia
- Department of Neurology, Global Brain Health Institute-University of California San Francisco, San Francisco, California, USA
| | - Luz M Zappa
- Centro Interdisciplinario de Tourette, TOC, TDAH y Trastornos Asociados (CITA), Buenos Aires, Buenos Aires, Argentina
- Departamento de Salud Mental, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Buenos Aires, Argentina
- Hospital Universitario Austral, Materno Infantil, Buenos Aires, Buenos Aires, Argentina
| | - Raquel M Zepeda-Burgos
- Centro de Investigación en Ciencias y Humanidades, Universidad Dr. José Matías Delgado, Santa Tecla, La Libertad, El Salvador
| | - Anthony W Zoghbi
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Euripedes C Miguel
- Departamento de Psiquiatria, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Carolyn I Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Department of Psychiatry, Temerty Faculty of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | | | - Pablo R Moya
- Universidad de Valparaíso, Instituto de Fisiología Valparaiso, Valparaiso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Valparaiso, Chile
| | - Tania Borda
- Instituto Realize, Buenos Aires, Buenos Aires, Argentina
- Facultad de Psicología, Universidad Catolica Argentina, Buenos Aires, Buenos Aires, Argentina
| | - María Beatriz Moyano
- Centro Interdisciplinario de Tourette, TOC, TDAH y Trastornos Asociados (CITA), Buenos Aires, Buenos Aires, Argentina
- Asociación de Psiquiatras Argentinos (APSA), Buenos Aires, Buenos Aires, Argentina
- Asociación de Psiquiatras Argentinos (APSA), Presidente del Capítulo de Investigacion en Psiquiatria, Buenos Aires, Buenos Aires, Argentina
| | - Manuel Mattheisen
- Department of Community Health and Epidemiology & Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- LMU Munich, Institute of Psychiatric Phenomics and Genomics (IPPG), Munich, Germany
| | - Stacey Pereira
- Baylor College of Medicine, Center for Medical Ethics and Health Policy, Houston, Texas, USA
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard University School of Medicine, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Michele T Pato
- Department of Psychiatry, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Humberto Nicolini
- Departamento de Psiquiatría, Ciudad de México, Grupo Médico Carracci, Ciudad de Mexico, Mexico
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Ciudad de México, Instituto Nacional de Medicina Genómica, Ciudad de Mexico, Mexico
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
77
|
Gagnon E, Bourgault J, Gobeil É, Thériault S, Arsenault BJ. Impact of loss-of-function in angiopoietin-like 4 on the human phenome. Atherosclerosis 2024; 393:117558. [PMID: 38703417 DOI: 10.1016/j.atherosclerosis.2024.117558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Carriers of the E40K loss-of-function variant in Angiopoietin-like 4 (ANGPTL4), have lower plasma triglyceride levels as well as lower rates of coronary artery disease (CAD) and type 2 diabetes (T2D). These genetic data suggest ANGPTL4 inhibition as a potential therapeutic target for cardiometabolic diseases. However, it is unknown whether the association between E40K and human diseases is due to linkage disequilibrium confounding. The broader impact of genetic ANGPTL4 inhibition is also unknown, raising uncertainties about the safety and validity of this target. METHODS To assess the impact of ANGPLT4 inhibition, we evaluated whether E40K and other loss-of-function variants in ANGPTL4 influenced a wide range of health markers and diseases using 29 publicly available genome-wide association meta-analyses of cardiometabolic traits and diseases, as well as 1589 diseases assessed in electronic health records within FinnGen (n = 309,154). To determine whether these relationships were likely causal, and not driven by other correlated variants, we used the Bayesian fine mapping algorithm CoPheScan. RESULTS The CoPheScan posterior probability of E40K being the causal variant for triglyceride levels was 99.99 %, validating the E40K to proxy lifelong lower activity of ANGPTL4. The E40K variant was associated with lower risk of CAD (odds ratio [OR] = 0.84, 95 % CI = 0.81 to 0.87, p=3.6e-21) and T2D (OR = 0.91, 95 % CI = 0.87 to 0.95, p=2.8e-05) in GWAS meta-analyses, with results replicated in FinnGen. These significant results were also replicated using other rare loss-of-function variants identified through whole exome sequencing in 488,278 participants of the UK Biobank. Using a Mendelian randomization study design, the E40K variant effect on cardiometabolic diseases was concordant with lipoprotein lipase enhancement (r = 0.82), but not hepatic lipase enhancement (r = -0.10), suggesting that ANGPTL4 effects on cardiometabolic diseases are potentially mainly mediated through lipoprotein lipase. After correction for multiple testing, the E40K variant did not significantly increase the risk of any of the 1589 diseases tested in FinnGen. CONCLUSIONS ANGPTL4 inhibition may represent a potentially safe and effective target for cardiometabolic diseases prevention or treatment.
Collapse
Affiliation(s)
- Eloi Gagnon
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Jérome Bourgault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Émilie Gobeil
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Sébastien Thériault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit J Arsenault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
78
|
Strausz S, Agafonova E, Tiullinen V, Kiiskinen T, Broberg M, Ruotsalainen SE, Koskela J, Bachour A, Sofer T, Gottlieb DJ, Palotie A, Palotie T, Ripatti S, Ollila HM. Genetic Analysis of Obstructive Sleep Apnea and Its Relationship with Severe COVID-19. Ann Am Thorac Soc 2024; 21:961-970. [PMID: 38330144 PMCID: PMC11160132 DOI: 10.1513/annalsats.202303-215oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
Rationale: Although patients with obstructive sleep apnea (OSA) have a higher risk for coronavirus disease (COVID-19) hospitalization, the causal relationship has remained unexplored. Objectives: To understand the causal relationship between OSA and COVID-19 by leveraging data from vaccination and electronic health records, genetic risk factors from genome-wide association studies, and Mendelian randomization. Methods: We elucidated genetic risk factors for OSA using FinnGen (total N = 377,277), performing genome-wide association. We used the associated variants as instruments for univariate and multivariate Mendelian randomization (MR) analyses and computed absolute risk reduction against COVID-19 hospitalization with or without vaccination. Results: We identified nine novel loci for OSA and replicated our findings in the Million Veteran Program. Furthermore, MR analysis showed that OSA was a causal risk factor for severe COVID-19 (P = 9.41 × 10-4). Probabilistic modeling showed that the strongest genetic risk factor for OSA at the FTO locus reflected a signal of higher body mass index (BMI), whereas BMI-independent association was seen with the earlier reported SLC9A4 locus and a MECOM locus, which is a transcriptional regulator with 210-fold enrichment in the Finnish population. Similarly, multivariate MR analysis showed that the causality for severe COVID-19 was driven by BMI (multivariate MR P = 5.97 × 10-6, β = 0.47). Finally, vaccination reduced the risk for COVID-19 hospitalization more in the patients with OSA than in the non-OSA controls, with respective absolute risk reductions of 13.3% versus 6.3%. Conclusions: Our analysis identified novel genetic risk factors for OSA and showed that OSA is a causal risk factor for severe COVID-19. The effect is predominantly explained by higher BMI and suggests BMI-dependent effects at the level of individual variants and at the level of comorbid causality.
Collapse
Affiliation(s)
- Satu Strausz
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, and
- Orthodontics, Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine
- Department of Oral and Maxillofacial Diseases
- Department of Plastic Surgery, Cleft Palate and Craniofacial Center, and
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Elizabete Agafonova
- Orthodontics, Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine
- Vantaa Health Center, Vantaa, Finland
| | - Varvara Tiullinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, and
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, and
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Martin Broberg
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, and
| | | | - Jukka Koskela
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, and
- Broad Institute of MIT, Harvard, Cambridge, Massachusetts
| | - Adel Bachour
- Sleep Unit, Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Massachusetts Veterans Epidemiology Research and Information Center, VA Healthcare System, Boston, Massachusetts
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, and
- Broad Institute of MIT, Harvard, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Department of Neurology, Department of Psychiatry
| | - Tuula Palotie
- Orthodontics, Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine
- Department of Plastic Surgery, Cleft Palate and Craniofacial Center, and
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, and
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT, Harvard, Cambridge, Massachusetts
| | - Hanna M. Ollila
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, and
- Broad Institute of MIT, Harvard, Cambridge, Massachusetts
- Center for Genomic Medicine, and
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
79
|
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YDI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, Battle A. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes. Nat Commun 2024; 15:4417. [PMID: 38789417 PMCID: PMC11126610 DOI: 10.1038/s41467-024-48394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
Collapse
Grants
- P30 AG028747 NIA NIH HHS
- R01 DK107786 NIDDK NIH HHS
- R01AG069120 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U01 AG058589 NIA NIH HHS
- U01 HL072518 NHLBI NIH HHS
- P01 HL162607 NHLBI NIH HHS
- UG1 HL139125 NHLBI NIH HHS
- R01 HG010297 NHGRI NIH HHS
- R01 HL079915 NHLBI NIH HHS
- R01 HL149836 NHLBI NIH HHS
- K12 GM123914 NIGMS NIH HHS
- R01 HL112064 NHLBI NIH HHS
- R01 ES021801 NIEHS NIH HHS
- R01HL153805 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG081244 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL139731 NHLBI NIH HHS
- P30 ES007048 NIEHS NIH HHS
- 5K12GM123914 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AG081244 NIA NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01 HL087698 NHLBI NIH HHS
- R01 ES016535 NIEHS NIH HHS
- R35CA209974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35 CA209974 NCI NIH HHS
- R01 HL076647 NHLBI NIH HHS
- R01HL105756 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL092577 NHLBI NIH HHS
- R01HL68959 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL079915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL158668 NHLBI NIH HHS
- P01 ES009581 NIEHS NIH HHS
- R01HL87681 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 ES022845 NIEHS NIH HHS
- R01 HL061768 NHLBI NIH HHS
- R01 HL153805 NHLBI NIH HHS
- P50 CA180905 NCI NIH HHS
- R01HL-120393 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AG058921 NIA NIH HHS
- U01 HL153009 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- R35 HL135818 NHLBI NIH HHS
- I01 BX005295 BLRD VA
- RC2 HL101651 NHLBI NIH HHS
- P01 ES011627 NIEHS NIH HHS
- R01 AG069120 NIA NIH HHS
- R35GM139580 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- HHSN268201800001C NHLBI NIH HHS
- UM1 AI160040 NIAID NIH HHS
- R01 HL087680 NHLBI NIH HHS
- M01 RR000052 NCRR NIH HHS
- R00 ES027870 NIEHS NIH HHS
- R01 AI132476 NIAID NIH HHS
- U01 HL137162 NHLBI NIH HHS
- R01 AI153239 NIAID NIH HHS
- R01 GM152471 NIGMS NIH HHS
- U01 AG052409 NIA NIH HHS
- R01 ES023262 NIEHS NIH HHS
- R01 HL068959 NHLBI NIH HHS
- R03 ES014046 NIEHS NIH HHS
- R01 DK071891 NIDDK NIH HHS
- R35 GM139580 NIGMS NIH HHS
- U01 AI160018 NIAID NIH HHS
- R01 HL157635 NHLBI NIH HHS
- R01 HL087681 NHLBI NIH HHS
- UG3 HL151865 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Surya B Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joshua Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Strober
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R Bleecker
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Juan C Celedon
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Barry I Freedman
- Internal Medicine - Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark T Gladwin
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jill M Johnsen
- Department of Medicine and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington DC, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics, Medicine, and Epidemiology, University of Colorado, Boulder, CO, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | | | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stefan Kaab
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando D Martinez
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Stephen T McGarvey
- Department of Epidemiology & International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Deborah A Meyers
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Courtney G Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Susan Redline
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Dan Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Schwartz
- Departments of Medicine and Immunology, University of Colorado, Boulder, CO, USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas L Smith
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Carol W Greider
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- University Professor Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
- Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
80
|
Daskalakis NP, Iatrou A, Chatzinakos C, Jajoo A, Snijders C, Wylie D, DiPietro CP, Tsatsani I, Chen CY, Pernia CD, Soliva-Estruch M, Arasappan D, Bharadwaj RA, Collado-Torres L, Wuchty S, Alvarez VE, Dammer EB, Deep-Soboslay A, Duong DM, Eagles N, Huber BR, Huuki L, Holstein VL, Logue ΜW, Lugenbühl JF, Maihofer AX, Miller MW, Nievergelt CM, Pertea G, Ross D, Sendi MSE, Sun BB, Tao R, Tooke J, Wolf EJ, Zeier Z, Berretta S, Champagne FA, Hyde T, Seyfried NT, Shin JH, Weinberger DR, Nemeroff CB, Kleinman JE, Ressler KJ. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood. Science 2024; 384:eadh3707. [PMID: 38781393 PMCID: PMC11203158 DOI: 10.1126/science.adh3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Nikolaos P. Daskalakis
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Artemis Iatrou
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Chris Chatzinakos
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| | - Aarti Jajoo
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Clara Snijders
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Christopher P. DiPietro
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ioulia Tsatsani
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | | | - Cameron D. Pernia
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marina Soliva-Estruch
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stefan Wuchty
- Departments of Computer Science, University of Miami, Miami, FL, 33146, USA
- Department of Biology, University of Miami, Miami, FL, 33146, USA
| | - Victor E. Alvarez
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Duc M. Duong
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Nick Eagles
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Bertrand R. Huber
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Louise Huuki
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Vincent L Holstein
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Μark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Justina F. Lugenbühl
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Adam X. Maihofer
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Geo Pertea
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Deanna Ross
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
| | - Mohammad S. E Sendi
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Ran Tao
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - James Tooke
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Erika J. Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine; Miami, FL, 33136, USA
| | | | - Sabina Berretta
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Thomas Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Charles B. Nemeroff
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin; Austin, TX, 78712, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Kerry J. Ressler
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
81
|
Kim A, Zhang Z, Legros C, Lu Z, de Smith A, Moore JE, Mancuso N, Gazal S. Inferring causal cell types of human diseases and risk variants from candidate regulatory elements. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307556. [PMID: 38798383 PMCID: PMC11118635 DOI: 10.1101/2024.05.17.24307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The heritability of human diseases is extremely enriched in candidate regulatory elements (cRE) from disease-relevant cell types. Critical next steps are to infer which and how many cell types are truly causal for a disease (after accounting for co-regulation across cell types), and to understand how individual variants impact disease risk through single or multiple causal cell types. Here, we propose CT-FM and CT-FM-SNP, two methods that leverage cell-type-specific cREs to fine-map causal cell types for a trait and for its candidate causal variants, respectively. We applied CT-FM to 63 GWAS summary statistics (average N = 417K) using nearly one thousand cRE annotations, primarily coming from ENCODE4. CT-FM inferred 81 causal cell types with corresponding SNP-annotations explaining a high fraction of trait SNP-heritability (~2/3 of the SNP-heritability explained by existing cREs), identified 16 traits with multiple causal cell types, highlighted cell-disease relationships consistent with known biology, and uncovered previously unexplored cellular mechanisms in psychiatric and immune-related diseases. Finally, we applied CT-FM-SNP to 39 UK Biobank traits and predicted high confidence causal cell types for 2,798 candidate causal non-coding SNPs. Our results suggest that most SNPs impact a phenotype through a single cell type, and that pleiotropic SNPs target different cell types depending on the phenotype context. Altogether, CT-FM and CT-FM-SNP shed light on how genetic variants act collectively and individually at the cellular level to impact disease risk.
Collapse
Affiliation(s)
- Artem Kim
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zixuan Zhang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Come Legros
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zeyun Lu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam de Smith
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill E Moore
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nicholas Mancuso
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
82
|
Oh W, Jung J, Joo JWJ. MR-GGI: accurate inference of gene-gene interactions using Mendelian randomization. BMC Bioinformatics 2024; 25:192. [PMID: 38750431 PMCID: PMC11094870 DOI: 10.1186/s12859-024-05808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Researchers have long studied the regulatory processes of genes to uncover their functions. Gene regulatory network analysis is one of the popular approaches for understanding these processes, requiring accurate identification of interactions among the genes to establish the gene regulatory network. Advances in genome-wide association studies and expression quantitative trait loci studies have led to a wealth of genomic data, facilitating more accurate inference of gene-gene interactions. However, unknown confounding factors may influence these interactions, making their interpretation complicated. Mendelian randomization (MR) has emerged as a valuable tool for causal inference in genetics, addressing confounding effects by estimating causal relationships using instrumental variables. In this paper, we propose a new statistical method, MR-GGI, for accurately inferring gene-gene interactions using Mendelian randomization. RESULTS MR-GGI applies one gene as the exposure and another as the outcome, using causal cis-single-nucleotide polymorphisms as instrumental variables in the inverse-variance weighted MR model. Through simulations, we have demonstrated MR-GGI's ability to control type 1 error and maintain statistical power despite confounding effects. MR-GGI performed the best when compared to other methods using the F1 score on the DREAM5 dataset. Additionally, when applied to yeast genomic data, MR-GGI successfully identified six clusters. Through gene ontology analysis, we have confirmed that each cluster in our study performs distinct functional roles by gathering genes with specific functions. CONCLUSION These findings demonstrate that MR-GGI accurately inferences gene-gene interactions despite the confounding effects in real biological environments.
Collapse
Affiliation(s)
- Wonseok Oh
- Department of Industrial Pharmacy, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Junghyun Jung
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Hollywood, CA, USA
| | - Jong Wha J Joo
- Department of Computer Science and Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea.
- Division of AI Software Convergence, Dongguk University-Seoul, Seoul, 04620, South Korea.
| |
Collapse
|
83
|
Rossen J, Shi H, Strober BJ, Zhang MJ, Kanai M, McCaw ZR, Liang L, Weissbrod O, Price AL. MultiSuSiE improves multi-ancestry fine-mapping in All of Us whole-genome sequencing data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.13.24307291. [PMID: 38798542 PMCID: PMC11118590 DOI: 10.1101/2024.05.13.24307291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Leveraging data from multiple ancestries can greatly improve fine-mapping power due to differences in linkage disequilibrium and allele frequencies. We propose MultiSuSiE, an extension of the sum of single effects model (SuSiE) to multiple ancestries that allows causal effect sizes to vary across ancestries based on a multivariate normal prior informed by empirical data. We evaluated MultiSuSiE via simulations and analyses of 14 quantitative traits leveraging whole-genome sequencing data in 47k African-ancestry and 94k European-ancestry individuals from All of Us. In simulations, MultiSuSiE applied to Afr47k+Eur47k was well-calibrated and attained higher power than SuSiE applied to Eur94k; interestingly, higher causal variant PIPs in Afr47k compared to Eur47k were entirely explained by differences in the extent of LD quantified by LD 4th moments. Compared to very recently proposed multi-ancestry fine-mapping methods, MultiSuSiE attained higher power and/or much lower computational costs, making the analysis of large-scale All of Us data feasible. In real trait analyses, MultiSuSiE applied to Afr47k+Eur94k identified 579 fine-mapped variants with PIP > 0.5, and MultiSuSiE applied to Afr47k+Eur47k identified 44% more fine-mapped variants with PIP > 0.5 than SuSiE applied to Eur94k. We validated MultiSuSiE results for real traits via functional enrichment of fine-mapped variants. We highlight several examples where MultiSuSiE implicates well-studied or biologically plausible fine-mapped variants that were not implicated by other methods.
Collapse
|
84
|
Kunkel D, Sørensen P, Shankar V, Morgante F. Improving polygenic prediction from summary data by learning patterns of effect sharing across multiple phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592745. [PMID: 38766136 PMCID: PMC11100663 DOI: 10.1101/2024.05.06.592745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Polygenic prediction of complex trait phenotypes has become important in human genetics, especially in the context of precision medicine. Recently, Morgante et al. introduced mr.mash, a flexible and computationally efficient method that models multiple phenotypes jointly and leverages sharing of effects across such phenotypes to improve prediction accuracy. However, a drawback of mr.mash is that it requires individual-level data, which are often not publicly available. In this work, we introduce mr.mash-rss, an extension of the mr.mash model that requires only summary statistics from Genome-Wide Association Studies (GWAS) and linkage disequilibrium (LD) estimates from a reference panel. By using summary data, we achieve the twin goal of increasing the applicability of the mr.mash model to data sets that are not publicly available and making it scalable to biobank-size data. Through simulations, we show that mr.mash-rss is competitive with, and often outperforms, current state-of-the-art methods for single- and multi-phenotype polygenic prediction in a variety of scenarios that differ in the pattern of effect sharing across phenotypes, the number of phenotypes, the number of causal variants, and the genomic heritability. We also present a real data analysis of 16 blood cell phenotypes in UK Biobank, showing that mr.mash-rss achieves higher prediction accuracy than competing methods for the majority of traits, especially when the data has smaller sample size.
Collapse
Affiliation(s)
- Deborah Kunkel
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, United States of America
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Vijay Shankar
- Center for Human Genetics, Clemson University, Greenwood, SC, United States of America
| | - Fabio Morgante
- Center for Human Genetics, Clemson University, Greenwood, SC, United States of America
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
85
|
Nievergelt CM, Maihofer AX, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Daskalakis NP, Duncan LE, Polimanti R, Aaronson C, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegoviç E, Babić D, Bacanu SA, Baker DG, Batzler A, Beckham JC, Belangero S, Benjet C, Bergner C, Bierer LM, Biernacka JM, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Brandolino A, Breen G, Bressan RA, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Bækvad-Hansen M, Børglum AD, Børte S, Cahn L, Calabrese JR, Caldas-de-Almeida JM, Chatzinakos C, Cheema S, Clouston SAP, Colodro-Conde L, Coombes BJ, Cruz-Fuentes CS, Dale AM, Dalvie S, Davis LK, Deckert J, Delahanty DL, Dennis MF, Desarnaud F, DiPietro CP, Disner SG, Docherty AR, Domschke K, Dyb G, Kulenović AD, Edenberg HJ, Evans A, Fabbri C, Fani N, Farrer LA, Feder A, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Gelernter J, Geuze E, Gillespie CF, Goleva SB, Gordon SD, Goçi A, Grasser LR, Guindalini C, Haas M, Hagenaars S, Hauser MA, Heath AC, Hemmings SMJ, Hesselbrock V, Hickie IB, Hogan K, Hougaard DM, Huang H, Huckins LM, Hveem K, Jakovljević M, Javanbakht A, Jenkins GD, Johnson J, Jones I, et alNievergelt CM, Maihofer AX, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Daskalakis NP, Duncan LE, Polimanti R, Aaronson C, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegoviç E, Babić D, Bacanu SA, Baker DG, Batzler A, Beckham JC, Belangero S, Benjet C, Bergner C, Bierer LM, Biernacka JM, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Brandolino A, Breen G, Bressan RA, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Bækvad-Hansen M, Børglum AD, Børte S, Cahn L, Calabrese JR, Caldas-de-Almeida JM, Chatzinakos C, Cheema S, Clouston SAP, Colodro-Conde L, Coombes BJ, Cruz-Fuentes CS, Dale AM, Dalvie S, Davis LK, Deckert J, Delahanty DL, Dennis MF, Desarnaud F, DiPietro CP, Disner SG, Docherty AR, Domschke K, Dyb G, Kulenović AD, Edenberg HJ, Evans A, Fabbri C, Fani N, Farrer LA, Feder A, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Gelernter J, Geuze E, Gillespie CF, Goleva SB, Gordon SD, Goçi A, Grasser LR, Guindalini C, Haas M, Hagenaars S, Hauser MA, Heath AC, Hemmings SMJ, Hesselbrock V, Hickie IB, Hogan K, Hougaard DM, Huang H, Huckins LM, Hveem K, Jakovljević M, Javanbakht A, Jenkins GD, Johnson J, Jones I, Jovanovic T, Karstoft KI, Kaufman ML, Kennedy JL, Kessler RC, Khan A, Kimbrel NA, King AP, Koen N, Kotov R, Kranzler HR, Krebs K, Kremen WS, Kuan PF, Lawford BR, Lebois LAM, Lehto K, Levey DF, Lewis C, Liberzon I, Linnstaedt SD, Logue MW, Lori A, Lu Y, Luft BJ, Lupton MK, Luykx JJ, Makotkine I, Maples-Keller JL, Marchese S, Marmar C, Martin NG, Martínez-Levy GA, McAloney K, McFarlane A, McLaughlin KA, McLean SA, Medland SE, Mehta D, Meyers J, Michopoulos V, Mikita EA, Milani L, Milberg W, Miller MW, Morey RA, Morris CP, Mors O, Mortensen PB, Mufford MS, Nelson EC, Nordentoft M, Norman SB, Nugent NR, O'Donnell M, Orcutt HK, Pan PM, Panizzon MS, Pathak GA, Peters ES, Peterson AL, Peverill M, Pietrzak RH, Polusny MA, Porjesz B, Powers A, Qin XJ, Ratanatharathorn A, Risbrough VB, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero KJ, Rung A, Runz H, Rutten BPF, de Viteri SS, Salum GA, Sampson L, Sanchez SE, Santoro M, Seah C, Seedat S, Seng JS, Shabalin A, Sheerin CM, Silove D, Smith AK, Smoller JW, Sponheim SR, Stein DJ, Stensland S, Stevens JS, Sumner JA, Teicher MH, Thompson WK, Tiwari AK, Trapido E, Uddin M, Ursano RJ, Valdimarsdóttir U, Van Hooff M, Vermetten E, Vinkers CH, Voisey J, Wang Y, Wang Z, Waszczuk M, Weber H, Wendt FR, Werge T, Williams MA, Williamson DE, Winsvold BS, Winternitz S, Wolf C, Wolf EJ, Xia Y, Xiong Y, Yehuda R, Young KA, Young RM, Zai CC, Zai GC, Zervas M, Zhao H, Zoellner LA, Zwart JA, deRoon-Cassini T, van Rooij SJH, van den Heuvel LL, Stein MB, Ressler KJ, Koenen KC. Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder. Nat Genet 2024; 56:792-808. [PMID: 38637617 PMCID: PMC11396662 DOI: 10.1038/s41588-024-01707-9] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.
Collapse
Affiliation(s)
- Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chia-Yen Chen
- Biogen Inc.,Translational Sciences, Cambridge, MA, USA
| | - Karmel W Choi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan R I Coleman
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Cindy Aaronson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Soren B Andersen
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
| | - Ole A Andreassen
- Oslo University Hospital, Division of Mental Health and Addiction, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Paul A Arbisi
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | | | - S Bryn Austin
- Boston Children's Hospital, Division of Adolescent and Young Adult Medicine, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Esmina Avdibegoviç
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dragan Babić
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jean C Beckham
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Sintia Belangero
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
| | - Corina Benjet
- Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Center for Global Mental Health, Mexico City, Mexico
| | - Carisa Bergner
- Medical College of Wisconsin, Comprehensive Injury Center, Milwaukee, WI, USA
| | - Linda M Bierer
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Jonathan I Bisson
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elizabeth A Bolger
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Amber Brandolino
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gerome Breen
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King's College London, NIHR Maudsley BRC, London, UK
| | - Rodrigo Affonseca Bressan
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard A Bryant
- University of New South Wales, School of Psychology, Sydney, New South Wales, Australia
| | - Angela C Bustamante
- Department of Internal Medicine, University of Michigan Medical School, Division of Pulmonary and Critical Care Medicine, Ann Arbor, MI, USA
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Sigrid Børte
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Leah Cahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Joseph R Calabrese
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Psychiatry, University Hospitals, Cleveland, OH, USA
| | | | - Chris Chatzinakos
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Sheraz Cheema
- University of Toronto, CanPath National Coordinating Center, Toronto, Ontario, Canada
| | - Sean A P Clouston
- Stony Brook University, Family, Population, and Preventive Medicine, Stony Brook, NY, USA
- Stony Brook University, Public Health, Stony Brook, NY, USA
| | - Lucía Colodro-Conde
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Carlos S Cruz-Fuentes
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Anders M Dale
- Department of Radiology, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Shareefa Dalvie
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Lea K Davis
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Jürgen Deckert
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | | | - Michelle F Dennis
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Frank Desarnaud
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Christopher P DiPietro
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anna R Docherty
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katharina Domschke
- University of Freiburg, Faculty of Medicine, Centre for Basics in Neuromodulation, Freiburg, Denmark
- Department of Psychiatry and Psychotherapy, University of Freiburg, Faculty of Medicine, Freiburg, Denmark
| | - Grete Dyb
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Alma Džubur Kulenović
- Department of Psychiatry, University Clinical Center of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Howard J Edenberg
- Indiana University School of Medicine, Biochemistry and Molecular Biology, Indianapolis, IN, USA
- Indiana University School of Medicine, Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Alexandra Evans
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Chiara Fabbri
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Adriana Feder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Norah C Feeny
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Janine D Flory
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Forbes
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, USA
| | - Melanie E Garrett
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Gelernter
- VA Connecticut Healthcare Center, Psychiatry Service, West Haven, CT, USA
- Department of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, The Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Slavina B Goleva
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
- National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Aferdita Goçi
- Department of Psychiatry, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Lana Ruvolo Grasser
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Camila Guindalini
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Saskia Hagenaars
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Michael A Hauser
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Andrew C Heath
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Victor Hesselbrock
- University of Connecticut School of Medicine, Psychiatry, Farmington, CT, USA
| | - Ian B Hickie
- University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Kelleigh Hogan
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - David Michael Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Laura M Huckins
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kristian Hveem
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
| | - Miro Jakovljević
- Department of Psychiatry, University Hospital Center of Zagreb, Zagreb, Croatia
| | - Arash Javanbakht
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Gregory D Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jessica Johnson
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ian Jones
- Cardiff University, National Centre for Mental Health, Cardiff University Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karen-Inge Karstoft
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - James L Kennedy
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Alaptagin Khan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Nathan A Kimbrel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, USA
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kristi Krebs
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Bruce R Lawford
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Kelli Lehto
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - Daniel F Levey
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Catrin Lewis
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Mark W Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michelle K Lupton
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Iouri Makotkine
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Shelby Marchese
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Marmar
- New York University, Grossman School of Medicine, New York City, NY, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Genetics, Brisbane, Queensland, Australia
| | - Gabriela A Martínez-Levy
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Kerrie McAloney
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Alexander McFarlane
- University of Adelaide, Discipline of Psychiatry, Adelaide, South Australia, Australia
| | | | - Samuel A McLean
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
- Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Divya Mehta
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Jacquelyn Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Elizabeth A Mikita
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Lili Milani
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Rajendra A Morey
- Duke University School of Medicine, Duke Brain Imaging and Analysis Center, Durham, NC, USA
| | - Charles Phillip Morris
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University Hospital-Psychiatry, Psychosis Research Unit, Aarhus, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus University, Centre for Integrated Register-Based Research, Aarhus, Denmark
- Aarhus University, National Centre for Register-Based Research, Aarhus, Denmark
| | - Mary S Mufford
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Elliot C Nelson
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- University of Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Sonya B Norman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- National Center for Post Traumatic Stress Disorder, Executive Division, White River Junction, VT, USA
| | - Nicole R Nugent
- Department of Emergency Medicine, Alpert Brown Medical School, Providence, RI, USA
- Department of Pediatrics, Alpert Brown Medical School, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Brown Medical School, Providence, RI, USA
| | - Meaghan O'Donnell
- Department of Psychiatry, University of Melbourne, Phoenix Australia, Melbourne, Victoria, Australia
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Pedro M Pan
- Universidade Federal de São Paulo, Psychiatry, São Paulo, Brazil
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gita A Pathak
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Edward S Peters
- University of Nebraska Medical Center, College of Public Health, Omaha, NE, USA
| | - Alan L Peterson
- South Texas Veterans Health Care System, Research and Development Service, San Antonio, TX, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, West Haven, CT, USA
| | - Melissa A Polusny
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Care Delivery and Outcomes Research (CCDOR), Minneapolis, MN, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York City, NY, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex O Rothbaum
- Department of Psychological Sciences, Emory University, Atlanta, GA, USA
- Department of Research and Outcomes, Skyland Trail, Atlanta, GA, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Peter Roy-Byrne
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Kenneth J Ruggiero
- Department of Nursing, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Ariane Rung
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Heiko Runz
- Biogen Inc., Research & Development, Cambridge, MA, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | | | - Giovanni Abrahão Salum
- Child Mind Institute, New York City, NY, USA
- Instituto Nacional de Psiquiatria de Desenvolvimento, São Paulo, Brazil
| | - Laura Sampson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sixto E Sanchez
- Department of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Marcos Santoro
- Universidade Federal de São Paulo, Departamento de Bioquímica-Disciplina de Biologia Molecular, São Paulo, Brazil
| | - Carina Seah
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Stellenbosch University, SAMRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Julia S Seng
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Women's and Gender Studies, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Institute for Research on Women and Gender, Ann Arbor, MI, USA
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
| | - Andrey Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christina M Sheerin
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Derrick Silove
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Synne Stensland
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin H Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Developmental Biopsychiatry Research Program, Belmont, MA, USA
| | - Wesley K Thompson
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, Denmark
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA
| | - Arun K Tiwari
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Edward Trapido
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Unnur Valdimarsdóttir
- Karolinska Institutet, Unit of Integrative Epidemiology, Institute of Environmental Medicine, Stockholm, Sweden
- University of Iceland, Faculty of Medicine, Center of Public Health Sciences, School of Health Sciences, Reykjavik, Iceland
| | - Miranda Van Hooff
- University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Eric Vermetten
- ARQ Nationaal Psychotrauma Centrum, Psychotrauma Research Expert Group, Diemen, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University School of Medicine, New York City, NY, USA
| | - Christiaan H Vinkers
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joanne Voisey
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Yunpeng Wang
- Department of Psychology, University of Oslo, Lifespan Changes in Brain and Cognition (LCBC), Oslo, Norway
| | - Zhewu Wang
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Mental Health, Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Monika Waszczuk
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Heike Weber
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Copenhagen University Hospital, Institute of Biological Psychiatry, Mental Health Services, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- University of Copenhagen, The Globe Institute, Lundbeck Foundation Center for Geogenetics, Copenhagen, Denmark
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas E Williamson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
| | - Bendik S Winsvold
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Christiane Wolf
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yan Xia
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Ying Xiong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Mental Health, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Keith A Young
- Central Texas Veterans Health Care System, Research Service, Temple, TX, USA
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, Queensland, Australia
- University of the Sunshine Coast, The Chancellory, Sippy Downs, Queensland, Australia
| | - Clement C Zai
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Gwyneth C Zai
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, General Adult Psychiatry and Health Systems Division, Toronto, Ontario, Canada
| | - Mark Zervas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Lori A Zoellner
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - John-Anker Zwart
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Terri deRoon-Cassini
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| |
Collapse
|
86
|
Ryu J, Barkal S, Yu T, Jankowiak M, Zhou Y, Francoeur M, Phan QV, Li Z, Tognon M, Brown L, Love MI, Bhat V, Lettre G, Ascher DB, Cassa CA, Sherwood RI, Pinello L. Joint genotypic and phenotypic outcome modeling improves base editing variant effect quantification. Nat Genet 2024; 56:925-937. [PMID: 38658794 PMCID: PMC11669423 DOI: 10.1038/s41588-024-01726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
CRISPR base editing screens enable analysis of disease-associated variants at scale; however, variable efficiency and precision confounds the assessment of variant-induced phenotypes. Here, we provide an integrated experimental and computational pipeline that improves estimation of variant effects in base editing screens. We use a reporter construct to measure guide RNA (gRNA) editing outcomes alongside their phenotypic consequences and introduce base editor screen analysis with activity normalization (BEAN), a Bayesian network that uses per-guide editing outcomes provided by the reporter and target site chromatin accessibility to estimate variant impacts. BEAN outperforms existing tools in variant effect quantification. We use BEAN to pinpoint common regulatory variants that alter low-density lipoprotein (LDL) uptake, implicating previously unreported genes. Additionally, through saturation base editing of LDLR, we accurately quantify missense variant pathogenicity that is consistent with measurements in UK Biobank patients and identify underlying structural mechanisms. This work provides a widely applicable approach to improve the power of base editing screens for disease-associated variant characterization.
Collapse
Affiliation(s)
- Jayoung Ryu
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sam Barkal
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Jankowiak
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yunzhuo Zhou
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Matthew Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Quang Vinh Phan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhijian Li
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Manuel Tognon
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Computer Science Department, University of Verona, Verona, Italy
| | - Lara Brown
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael I Love
- Department of Genetics, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vineel Bhat
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, Quebec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Christopher A Cassa
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Richard I Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Luca Pinello
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
87
|
Purdue MP, Dutta D, Machiela MJ, Gorman BR, Winter T, Okuhara D, Cleland S, Ferreiro-Iglesias A, Scheet P, Liu A, Wu C, Antwi SO, Larkin J, Zequi SC, Sun M, Hikino K, Hajiran A, Lawson KA, Cárcano F, Blanchet O, Shuch B, Nepple KG, Margue G, Sundi D, Diver WR, Folgueira MAAK, van Bokhoven A, Neffa F, Brown KM, Hofmann JN, Rhee J, Yeager M, Cole NR, Hicks BD, Manning MR, Hutchinson AA, Rothman N, Huang WY, Linehan WM, Lori A, Ferragu M, Zidane-Marinnes M, Serrano SV, Magnabosco WJ, Vilas A, Decia R, Carusso F, Graham LS, Anderson K, Bilen MA, Arciero C, Pellegrin I, Ricard S, Scelo G, Banks RE, Vasudev NS, Soomro N, Stewart GD, Adeyoju A, Bromage S, Hrouda D, Gibbons N, Patel P, Sullivan M, Protheroe A, Nugent FI, Fournier MJ, Zhang X, Martin LJ, Komisarenko M, Eisen T, Cunningham SA, Connolly DC, Uzzo RG, Zaridze D, Mukeria A, Holcatova I, Hornakova A, Foretova L, Janout V, Mates D, Jinga V, Rascu S, Mijuskovic M, Savic S, Milosavljevic S, Gaborieau V, Abedi-Ardekani B, McKay J, Johansson M, Phouthavongsy L, Hayman L, Li J, Lungu I, Bezerra SM, Souza AG, Sares CTG, Reis RB, Gallucci FP, Cordeiro MD, et alPurdue MP, Dutta D, Machiela MJ, Gorman BR, Winter T, Okuhara D, Cleland S, Ferreiro-Iglesias A, Scheet P, Liu A, Wu C, Antwi SO, Larkin J, Zequi SC, Sun M, Hikino K, Hajiran A, Lawson KA, Cárcano F, Blanchet O, Shuch B, Nepple KG, Margue G, Sundi D, Diver WR, Folgueira MAAK, van Bokhoven A, Neffa F, Brown KM, Hofmann JN, Rhee J, Yeager M, Cole NR, Hicks BD, Manning MR, Hutchinson AA, Rothman N, Huang WY, Linehan WM, Lori A, Ferragu M, Zidane-Marinnes M, Serrano SV, Magnabosco WJ, Vilas A, Decia R, Carusso F, Graham LS, Anderson K, Bilen MA, Arciero C, Pellegrin I, Ricard S, Scelo G, Banks RE, Vasudev NS, Soomro N, Stewart GD, Adeyoju A, Bromage S, Hrouda D, Gibbons N, Patel P, Sullivan M, Protheroe A, Nugent FI, Fournier MJ, Zhang X, Martin LJ, Komisarenko M, Eisen T, Cunningham SA, Connolly DC, Uzzo RG, Zaridze D, Mukeria A, Holcatova I, Hornakova A, Foretova L, Janout V, Mates D, Jinga V, Rascu S, Mijuskovic M, Savic S, Milosavljevic S, Gaborieau V, Abedi-Ardekani B, McKay J, Johansson M, Phouthavongsy L, Hayman L, Li J, Lungu I, Bezerra SM, Souza AG, Sares CTG, Reis RB, Gallucci FP, Cordeiro MD, Pomerantz M, Lee GSM, Freedman ML, Jeong A, Greenberg SE, Sanchez A, Thompson RH, Sharma V, Thiel DD, Ball CT, Abreu D, Lam ET, Nahas WC, Master VA, Patel AV, Bernhard JC, Freedman ND, Bigot P, Reis RM, Colli LM, Finelli A, Manley BJ, Terao C, Choueiri TK, Carraro DM, Houlston R, Eckel-Passow JE, Abbosh PH, Ganna A, Brennan P, Gu J, Chanock SJ. Multi-ancestry genome-wide association study of kidney cancer identifies 63 susceptibility regions. Nat Genet 2024; 56:809-818. [PMID: 38671320 DOI: 10.1038/s41588-024-01725-7] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
Here, in a multi-ancestry genome-wide association study meta-analysis of kidney cancer (29,020 cases and 835,670 controls), we identified 63 susceptibility regions (50 novel) containing 108 independent risk loci. In analyses stratified by subtype, 52 regions (78 loci) were associated with clear cell renal cell carcinoma (RCC) and 6 regions (7 loci) with papillary RCC. Notably, we report a variant common in African ancestry individuals ( rs7629500 ) in the 3' untranslated region of VHL, nearly tripling clear cell RCC risk (odds ratio 2.72, 95% confidence interval 2.23-3.30). In cis-expression quantitative trait locus analyses, 48 variants from 34 regions point toward 83 candidate genes. Enrichment of hypoxia-inducible factor-binding sites underscores the importance of hypoxia-related mechanisms in kidney cancer. Our results advance understanding of the genetic architecture of kidney cancer, provide clues for functional investigation and enable generation of a validated polygenic risk score with an estimated area under the curve of 0.65 (0.74 including risk factors) among European ancestry individuals.
Collapse
Affiliation(s)
- Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Diptavo Dutta
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Timothy Winter
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | | | | | - Paul Scheet
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aoxing Liu
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chao Wu
- Biosample Repository, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Samuel O Antwi
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - James Larkin
- Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | - Stênio C Zequi
- Department of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation INCIT-INOTE, São Paulo, Brazil
- Latin American Renal Cancer Group, São Paulo, Brazil
- Department of Surgery, Division of Urology, São Paulo Federal University, São Paulo, Brazil
| | - Maxine Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ali Hajiran
- Department of Urology, Division of Urologic Oncology, West Virginia University Cancer Institute, Morgantown, WV, USA
| | - Keith A Lawson
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Flavio Cárcano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Brian Shuch
- Department of Urology, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kenneth G Nepple
- Department of Urology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Gaëlle Margue
- Department of Urology, CHU Bordeaux, Bordeaux, France
| | - Debasish Sundi
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Maria A A K Folgueira
- Departments of Radiology and Oncology, Comprehensive Center for Precision Oncology-C2PO, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Nathan R Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Michelle R Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Amy A Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wen-Yi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | | | - Sérgio V Serrano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Ana Vilas
- Department of Pathology, Hospital Pasteur, Montevideo, Uruguay
| | - Ricardo Decia
- Department of Urology, Hospital Pasteur, Montevideo, Uruguay
| | | | - Laura S Graham
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kyra Anderson
- Oncology Clinical Research Support Team, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mehmet A Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Cletus Arciero
- Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Solène Ricard
- Department of Urology, CHU Bordeaux, Bordeaux, France
| | - Ghislaine Scelo
- Observational and Pragmatic Research Institute Pte Ltd, Singapore, Singapore
| | - Rosamonde E Banks
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Naveen S Vasudev
- Department of Oncology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Naeem Soomro
- Department of Urology, Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | - Grant D Stewart
- Department of Urology, Western General Hospital, NHS Lothian, Edinburgh, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Adebanji Adeyoju
- Department of Urology, Stockport NHS Foundation Trust, Stockport, UK
| | - Stephen Bromage
- Department of Urology, Stockport NHS Foundation Trust, Stockport, UK
| | - David Hrouda
- Department of Urology, Imperial College Healthcare NHS Trust, London, UK
| | - Norma Gibbons
- Department of Urology, Imperial College Healthcare NHS Trust, London, UK
| | - Poulam Patel
- Division of Oncology, University of Nottingham, Nottingham, UK
| | - Mark Sullivan
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew Protheroe
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Francesca I Nugent
- Department of Urology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | | | - Xiaoyu Zhang
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lisa J Martin
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Maria Komisarenko
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Timothy Eisen
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sonia A Cunningham
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denise C Connolly
- Cancer Signaling and Microenvironment, Biosample Repository Facility, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Robert G Uzzo
- Department of Urology, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - David Zaridze
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Anush Mukeria
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Oncology, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Anna Hornakova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Dana Mates
- Department of Occupational Health and Toxicology, National Center for Environmental Risk Monitoring, National Institute of Public Health, Bucharest, Romania
| | - Viorel Jinga
- Urology Department, Academy of Romanian Scientists, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Stefan Rascu
- Urology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mirjana Mijuskovic
- Clinic of Nephrology, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Slavisa Savic
- Department of Urology, Clinical Hospital Center Dr Dragisa Misovic Dedinje, Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organisation for Cancer Prevention and Research, Belgrade, Serbia
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | | | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Larry Phouthavongsy
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Lindsay Hayman
- Diagnostic Development Program, Tissue Portal, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jason Li
- Diagnostic Development Program, Tissue Portal, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ilinca Lungu
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Diagnostic Development Program, Tissue Portal, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Aline G Souza
- Departments of Medical Imaging, Hematology and Oncology, Division of Medical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Claudia T G Sares
- Departments of Surgery and Anatomy, Division of Urology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Rodolfo B Reis
- Departments of Surgery and Anatomy, Division of Urology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Fabio P Gallucci
- Surgery Department, Urology Division, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio D Cordeiro
- Surgery Department, Urology Division, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gwo-Shu M Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Anhyo Jeong
- Department of Urology, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Samantha E Greenberg
- Department of Population Sciences, Genetic Counseling Shared Resource, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alejandro Sanchez
- Department of Surgery, Division of Urology, Huntsman Cancer Institute and University of Utah, Salt Lake City, UT, USA
| | | | - Vidit Sharma
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - David D Thiel
- Department of Urology, Mayo Clinic, Jacksonville, FL, USA
| | - Colleen T Ball
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Diego Abreu
- Department of Urology, Hospital Pasteur, Montevideo, Uruguay
| | - Elaine T Lam
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William C Nahas
- Surgery Department, Urology Division, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Viraj A Master
- Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Pierre Bigot
- Department of Urology, CHU Angers, Angers, France
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Leandro M Colli
- Departament of Medical Image, Hematology and Oncology, Division of Medical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Antonio Finelli
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brandon J Manley
- Genitourinary Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dirce M Carraro
- Clinical and Functional Genomics Group, CIPE (International Research Center), A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | | | - Philip H Abbosh
- Department of Nuclear Dynamics and Cancer, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Jian Gu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
88
|
Jia G, Ping J, Guo X, Yang Y, Tao R, Li B, Ambs S, Barnard ME, Chen Y, Garcia-Closas M, Gu J, Hu JJ, Huo D, John EM, Li CI, Li JL, Nathanson KL, Nemesure B, Olopade OI, Pal T, Press MF, Sanderson M, Sandler DP, Shu XO, Troester MA, Yao S, Adejumo PO, Ahearn T, Brewster AM, Hennis AJM, Makumbi T, Ndom P, O'Brien KM, Olshan AF, Oluwasanu MM, Reid S, Butler EN, Huang M, Ntekim A, Qian H, Zhang H, Ambrosone CB, Cai Q, Long J, Palmer JR, Haiman CA, Zheng W. Genome-wide association analyses of breast cancer in women of African ancestry identify new susceptibility loci and improve risk prediction. Nat Genet 2024; 56:819-826. [PMID: 38741014 PMCID: PMC11284829 DOI: 10.1038/s41588-024-01736-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
We performed genome-wide association studies of breast cancer including 18,034 cases and 22,104 controls of African ancestry. Genetic variants at 12 loci were associated with breast cancer risk (P < 5 × 10-8), including associations of a low-frequency missense variant rs61751053 in ARHGEF38 with overall breast cancer (odds ratio (OR) = 1.48) and a common variant rs76664032 at chromosome 2q14.2 with triple-negative breast cancer (TNBC) (OR = 1.30). Approximately 15.4% of cases with TNBC carried six risk alleles in three genome-wide association study-identified TNBC risk variants, with an OR of 4.21 (95% confidence interval = 2.66-7.03) compared with those carrying fewer than two risk alleles. A polygenic risk score (PRS) showed an area under the receiver operating characteristic curve of 0.60 for the prediction of breast cancer risk, which outperformed PRS derived using data from females of European ancestry. Our study markedly increases the population diversity in genetic studies for breast cancer and demonstrates the utility of PRS for risk prediction in females of African ancestry.
Collapse
Affiliation(s)
- Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yu Chen
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Jian Gu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Esther M John
- Departments of Epidemiology & Population Health and of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Katherine L Nathanson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, New York, NY, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Tuya Pal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melissa A Troester
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
| | - Prisca O Adejumo
- Department of Nursing, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Abenaa M Brewster
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anselm J M Hennis
- George Alleyne Chronic Disease Research Centre, University of the West Indies, Bridgetown, Barbados
- Department of Family, Population and Preventive Medicine, Stony Brook University, New York, NY, USA
| | | | - Paul Ndom
- Yaounde General Hospital, Yaounde, Cameroon
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrew F Olshan
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mojisola M Oluwasanu
- Department of Health Promotion and Education, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sonya Reid
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ebonee N Butler
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maosheng Huang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Atara Ntekim
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Huijun Qian
- Department of Statistics and Operation Research, University of North Carolina, Chapel Hill, NC, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
89
|
Mews MA, Naj AC, Griswold AJ, Below JE, Bush WS. Brain and Blood Transcriptome-Wide Association Studies Identify Five Novel Genes Associated with Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305737. [PMID: 38699333 PMCID: PMC11065015 DOI: 10.1101/2024.04.17.24305737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Transcriptome-wide Association Studies (TWAS) extend genome-wide association studies (GWAS) by integrating genetically-regulated gene expression models. We performed the most powerful AD-TWAS to date, using summary statistics from cis -eQTL meta-analyses and the largest clinically-adjudicated Alzheimer's Disease (AD) GWAS. METHODS We implemented the OTTERS TWAS pipeline, leveraging cis -eQTL data from cortical brain tissue (MetaBrain; N=2,683) and blood (eQTLGen; N=31,684) to predict gene expression, then applied these models to AD-GWAS data (Cases=21,982; Controls=44,944). RESULTS We identified and validated five novel gene associations in cortical brain tissue ( PRKAG1 , C3orf62 , LYSMD4 , ZNF439 , SLC11A2 ) and six genes proximal to known AD-related GWAS loci (Blood: MYBPC3 ; Brain: MTCH2 , CYB561 , MADD , PSMA5 , ANXA11 ). Further, using causal eQTL fine-mapping, we generated sparse models that retained the strength of the AD-TWAS association for MTCH2 , MADD , ZNF439 , CYB561 , and MYBPC3 . DISCUSSION Our comprehensive AD-TWAS discovered new gene associations and provided insights into the functional relevance of previously associated variants.
Collapse
|
90
|
Lu Z, Wang X, Carr M, Kim A, Gazal S, Mohammadi P, Wu L, Gusev A, Pirruccello J, Kachuri L, Mancuso N. Improved multi-ancestry fine-mapping identifies cis-regulatory variants underlying molecular traits and disease risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305836. [PMID: 38699369 PMCID: PMC11065034 DOI: 10.1101/2024.04.15.24305836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Multi-ancestry statistical fine-mapping of cis-molecular quantitative trait loci (cis-molQTL) aims to improve the precision of distinguishing causal cis-molQTLs from tagging variants. However, existing approaches fail to reflect shared genetic architectures. To solve this limitation, we present the Sum of Shared Single Effects (SuShiE) model, which leverages LD heterogeneity to improve fine-mapping precision, infer cross-ancestry effect size correlations, and estimate ancestry-specific expression prediction weights. We apply SuShiE to mRNA expression measured in PBMCs (n=956) and LCLs (n=814) together with plasma protein levels (n=854) from individuals of diverse ancestries in the TOPMed MESA and GENOA studies. We find SuShiE fine-maps cis-molQTLs for 16% more genes compared with baselines while prioritizing fewer variants with greater functional enrichment. SuShiE infers highly consistent cis-molQTL architectures across ancestries on average; however, we also find evidence of heterogeneity at genes with predicted loss-of-function intolerance, suggesting that environmental interactions may partially explain differences in cis-molQTL effect sizes across ancestries. Lastly, we leverage estimated cis-molQTL effect-sizes to perform individual-level TWAS and PWAS on six white blood cell-related traits in AOU Biobank individuals (n=86k), and identify 44 more genes compared with baselines, further highlighting its benefits in identifying genes relevant for complex disease risk. Overall, SuShiE provides new insights into the cis-genetic architecture of molecular traits.
Collapse
Affiliation(s)
- Zeyun Lu
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinran Wang
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew Carr
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Artem Kim
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA
| | - Pejman Mohammadi
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaiʻi Cancer Center, University of Hawaiʻi at Mānoa, Honolulu, HI, USA
| | - Alexander Gusev
- Harvard Medical School and Dana-Farber Cancer Institute, Boston, MA, USA
| | - James Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA
| |
Collapse
|
91
|
Kim KH, Hong EP, Lee Y, McLean ZL, Elezi E, Lee R, Kwak S, McAllister B, Massey TH, Lobanov S, Holmans P, Orth M, Ciosi M, Monckton DG, Long JD, Lucente D, Wheeler VC, MacDonald ME, Gusella JF, Lee JM. Posttranscriptional regulation of FAN1 by miR-124-3p at rs3512 underlies onset-delaying genetic modification in Huntington's disease. Proc Natl Acad Sci U S A 2024; 121:e2322924121. [PMID: 38607933 PMCID: PMC11032436 DOI: 10.1073/pnas.2322924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 04/14/2024] Open
Abstract
Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Yukyeong Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Zachariah L. McLean
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Emanuela Elezi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | | | | | - Branduff McAllister
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Thomas H. Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Sergey Lobanov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000Bern 60, Switzerland
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Darren G. Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Jeffrey D. Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA52242
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Vanessa C. Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Marcy E. MacDonald
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - James F. Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| |
Collapse
|
92
|
de Smith AJ, Wahlster L, Jeon S, Kachuri L, Black S, Langie J, Cato LD, Nakatsuka N, Chan TF, Xia G, Mazumder S, Yang W, Gazal S, Eng C, Hu D, Burchard EG, Ziv E, Metayer C, Mancuso N, Yang JJ, Ma X, Wiemels JL, Yu F, Chiang CWK, Sankaran VG. A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. CELL GENOMICS 2024; 4:100526. [PMID: 38537633 PMCID: PMC11019360 DOI: 10.1016/j.xgen.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.
Collapse
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jalen Langie
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tsz-Fung Chan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Guangze Xia
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Soumyaa Mazumder
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Celeste Eng
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Esteban González Burchard
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaomei Ma
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
93
|
Gorman BR, Francis M, Nealon CL, Halladay CW, Duro N, Markianos K, Genovese G, Hysi PG, Choquet H, Afshari NA, Li YJ, Gaziano JM, Hung AM, Wu WC, Greenberg PB, Pyarajan S, Lass JH, Peachey NS, Iyengar SK. A multi-ancestry GWAS of Fuchs corneal dystrophy highlights the contributions of laminins, collagen, and endothelial cell regulation. Commun Biol 2024; 7:418. [PMID: 38582945 PMCID: PMC10998918 DOI: 10.1038/s42003-024-06046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular etiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program followed by multi-ancestry meta-analysis with the previous largest FECD GWAS, for a total of 3970 cases and 333,794 controls. We confirm the previous four loci, and identify eight novel loci: SSBP3, THSD7A, LAMB1, PIDD1, RORA, HS3ST3B1, LAMA5, and COL18A1. We further confirm the TCF4 locus in GWAS for admixed African and Hispanic/Latino ancestries and show an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling, validated through homology, suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and colocalization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.
Collapse
Affiliation(s)
- Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Michael Francis
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Christopher W Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, RI, USA
| | - Nalvi Duro
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, London, UK
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- UCL Great Ormond Street Hospital Institute of Child Health, King's College London, London, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Natalie A Afshari
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana M Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Wen-Chih Wu
- Cardiology Section, Medical Service, Providence VA Medical Center, Providence, RI, USA
| | - Paul B Greenberg
- Ophthalmology Section, Providence VA Medical Center, Providence, RI, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Jonathan H Lass
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
94
|
Kalnapenkis A, Jõeloo M, Lepik K, Kukuškina V, Kals M, Alasoo K, Mägi R, Esko T, Võsa U. Genetic determinants of plasma protein levels in the Estonian population. Sci Rep 2024; 14:7694. [PMID: 38565889 PMCID: PMC10987560 DOI: 10.1038/s41598-024-57966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
The proteome holds great potential as an intermediate layer between the genome and phenome. Previous protein quantitative trait locus studies have focused mainly on describing the effects of common genetic variations on the proteome. Here, we assessed the impact of the common and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins measured in up to 500 individuals. We identified 184 cis and 94 trans signals for 157 protein traits, which were further fine-mapped to credible sets for 101 cis and 87 trans signals for 151 proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 cis and 14 trans associations. CNVs were associated with the levels of 11 proteins (7 cis and 5 trans), examples including a 3q12.1 deletion acting as a hub for multiple trans associations; and a CNV overlapping NAIP, a sensor component of the NAIP-NLRC4 inflammasome which is affecting pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a comprehensive resource of genetic variation affecting the plasma protein levels and provides the interpretation of identified effects.
Collapse
Affiliation(s)
- Anette Kalnapenkis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| | - Maarja Jõeloo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kaido Lepik
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Viktorija Kukuškina
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mart Kals
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
95
|
Riedhammer KM, Nguyen TMT, Koşukcu C, Calzada-Wack J, Li Y, Assia Batzir N, Saygılı S, Wimmers V, Kim GJ, Chrysanthou M, Bakey Z, Sofrin-Drucker E, Kraiger M, Sanz-Moreno A, Amarie OV, Rathkolb B, Klein-Rodewald T, Garrett L, Hölter SM, Seisenberger C, Haug S, Schlosser P, Marschall S, Wurst W, Fuchs H, Gailus-Durner V, Wuttke M, Hrabe de Angelis M, Ćomić J, Akgün Doğan Ö, Özlük Y, Taşdemir M, Ağbaş A, Canpolat N, Orenstein N, Çalışkan S, Weber RG, Bergmann C, Jeanpierre C, Saunier S, Lim TY, Hildebrandt F, Alhaddad B, Basel-Salmon L, Borovitz Y, Wu K, Antony D, Matschkal J, Schaaf CW, Renders L, Schmaderer C, Rogg M, Schell C, Meitinger T, Heemann U, Köttgen A, Arnold SJ, Ozaltin F, Schmidts M, Hoefele J. Implication of transcription factor FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int 2024; 105:844-864. [PMID: 38154558 PMCID: PMC10957342 DOI: 10.1016/j.kint.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.
Collapse
Affiliation(s)
- Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Thanh-Minh T Nguyen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Seha Saygılı
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Vera Wimmers
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Marialena Chrysanthou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeineb Bakey
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Efrat Sofrin-Drucker
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Özlem Akgün Doğan
- Department of Pediatrics, Division of Pediatric Genetics, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Türkiye
| | - Yasemin Özlük
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Mehmet Taşdemir
- Department of Pediatric Nephrology, Istinye University Faculty of Medicine, Istanbul, Türkiye
| | - Ayşe Ağbaş
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Salim Çalışkan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Cecile Jeanpierre
- Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris Cité, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris Cité, INSERM UMR 1163, Paris, France
| | - Tze Y Lim
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Lina Basel-Salmon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Raphael Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel; Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Yael Borovitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Kaman Wu
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dinu Antony
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia Matschkal
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Christian W Schaaf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Manuel Rogg
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Fatih Ozaltin
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye; Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Türkiye; Nephrogenetics Laboratory, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Türkiye; Center for Genomics and Rare Diseases, Hacettepe University, Sihhiye, Ankara, Türkiye.
| | - Miriam Schmidts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany.
| |
Collapse
|
96
|
Mathey CM, Maj C, Eriksson N, Krebs K, Westmeier J, David FS, Koromina M, Scheer AB, Szabo N, Wedi B, Wieczorek D, Amann PM, Löffler H, Koch L, Schöffl C, Dickel H, Ganjuur N, Hornung T, Buhl T, Greve J, Wurpts G, Aygören-Pürsün E, Steffens M, Herms S, Heilmann-Heimbach S, Hoffmann P, Schmidt B, Mavarani L, Andresen T, Sørensen SB, Andersen V, Vogel U, Landén M, Bulik CM, Bygum A, Magnusson PKE, von Buchwald C, Hallberg P, Rye Ostrowski S, Sørensen E, Pedersen OB, Ullum H, Erikstrup C, Bundgaard H, Milani L, Rasmussen ER, Wadelius M, Ghouse J, Sachs B, Nöthen MM, Forstner AJ. Meta-analysis of ACE inhibitor-induced angioedema identifies novel risk locus. J Allergy Clin Immunol 2024; 153:1073-1082. [PMID: 38300190 DOI: 10.1016/j.jaci.2023.11.921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Angioedema is a rare but potentially life-threatening adverse drug reaction in patients receiving angiotensin-converting enzyme inhibitors (ACEis). Research suggests that susceptibility to ACEi-induced angioedema (ACEi-AE) involves both genetic and nongenetic risk factors. Genome- and exome-wide studies of ACEi-AE have identified the first genetic risk loci. However, understanding of the underlying pathophysiology remains limited. OBJECTIVE We sought to identify further genetic factors of ACEi-AE to eventually gain a deeper understanding of its pathophysiology. METHODS By combining data from 8 cohorts, a genome-wide association study meta-analysis was performed in more than 1000 European patients with ACEi-AE. Secondary bioinformatic analyses were conducted to fine-map associated loci, identify relevant genes and pathways, and assess the genetic overlap between ACEi-AE and other traits. Finally, an exploratory cross-ancestry analysis was performed to assess shared genetic factors in European and African-American patients with ACEi-AE. RESULTS Three genome-wide significant risk loci were identified. One of these, located on chromosome 20q11.22, has not been implicated previously in ACEi-AE. Integrative secondary analyses highlighted previously reported genes (BDKRB2 [bradykinin receptor B2] and F5 [coagulation factor 5]) as well as biologically plausible novel candidate genes (PROCR [protein C receptor] and EDEM2 [endoplasmic reticulum degradation enhancing alpha-mannosidase like protein 2]). Lead variants at the risk loci were found with similar effect sizes and directions in an African-American cohort. CONCLUSIONS The present results contributed to a deeper understanding of the pathophysiology of ACEi-AE by (1) providing further evidence for the involvement of bradykinin signaling and coagulation pathways and (2) suggesting, for the first time, the involvement of the fibrinolysis pathway in this adverse drug reaction. An exploratory cross-ancestry comparison implicated the relevance of the associated risk loci across diverse ancestries.
Collapse
Affiliation(s)
- Carina M Mathey
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany; Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Niclas Eriksson
- Uppsala Clinical Research Center, Uppsala, Sweden; Department of Medical Sciences, Clinical Pharmacogenomics and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Julia Westmeier
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | | | - Annika B Scheer
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Nora Szabo
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| | - Dorothea Wieczorek
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| | - Philipp M Amann
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Harald Löffler
- Department of Dermatology, SLK Hospital Heilbronn, Heilbronn, Germany
| | - Lukas Koch
- Department of Dermatology and Venereology, Medical University Graz, Graz, Austria
| | - Clemens Schöffl
- Department of Dermatology and Venereology, Medical University Graz, Graz, Austria
| | - Heinrich Dickel
- Department of Dermatology, Venereology and Allergology, St Josef Hospital, University Medical Center, Ruhr University Bochum, Bochum, Germany
| | - Nomun Ganjuur
- Department of Dermatology, Venereology and Allergology, St Josef Hospital, University Medical Center, Ruhr University Bochum, Bochum, Germany; Institute of Health Care Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Hornung
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Greve
- Department of Otorhinolaryngology-Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Gerda Wurpts
- Department of Dermatology and Allergy, Aachen Comprehensive Allergy Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Emel Aygören-Pürsün
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Laven Mavarani
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Trine Andresen
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Signe Bek Sørensen
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Vibeke Andersen
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark; Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; OPEN, University of Southern Denmark, Odense, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Mikael Landén
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anette Bygum
- Department of Clinical Institute, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christian von Buchwald
- Department of Otorhinolaryngology-Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Pär Hallberg
- Department of Medical Sciences, Clinical Pharmacogenomics and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen Hospital Biobank Unit, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen Hospital Biobank Unit, Rigshospitalet, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christian Erikstrup
- Departments of Clinical Immunology, Aarhus University, Aarhus, Denmark; Departments of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Eva Rye Rasmussen
- Department of Otorhinolaryngology-Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Departments of Private Practice Ølsemaglevej, Køge, Denmark
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jonas Ghouse
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bernhardt Sachs
- Department of Dermatology and Allergy, Aachen Comprehensive Allergy Center, University Hospital RWTH Aachen, Aachen, Germany; Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany; Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany.
| |
Collapse
|
97
|
Yang ML, Xu C, Gupte T, Hoffmann TJ, Iribarren C, Zhou X, Ganesh SK. Sex-specific genetic architecture of blood pressure. Nat Med 2024; 30:818-828. [PMID: 38459180 PMCID: PMC11797078 DOI: 10.1038/s41591-024-02858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
The genetic and genomic basis of sex differences in blood pressure (BP) traits remain unstudied at scale. Here, we conducted sex-stratified and combined-sex genome-wide association studies of BP traits using the UK Biobank resource, identifying 1,346 previously reported and 29 new BP trait-associated loci. Among associated loci, 412 were female-specific (Pfemale ≤ 5 × 10-8; Pmale > 5 × 10-8) and 142 were male-specific (Pmale ≤ 5 × 10-8; Pfemale > 5 × 10-8); these sex-specific loci were enriched for hormone-related transcription factors, in particular, estrogen receptor 1. Analyses of gene-by-sex interactions and sexually dimorphic effects identified four genomic regions, showing female-specific associations with diastolic BP or pulse pressure, including the chromosome 13q34-COL4A1/COL4A2 locus. Notably, female-specific pulse pressure-associated loci exhibited enriched acetylated histone H3 Lys27 modifications in arterial tissues and a female-specific association with fibromuscular dysplasia, a female-biased vascular disease; colocalization signals included Chr13q34: COL4A1/COL4A2, Chr9p21: CDKN2B-AS1 and Chr4q32.1: MAP9 regions. Sex-specific and sex-biased polygenic associations of BP traits were associated with multiple cardiovascular traits. These findings suggest potentially clinically significant and BP sex-specific pleiotropic effects on cardiovascular diseases.
Collapse
Affiliation(s)
- Min-Lee Yang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chang Xu
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Trisha Gupte
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Hoffmann
- Department of Epidemiology & Biostatistics, and Institute for Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
98
|
Chen TT, Kim J, Lam M, Chuang YF, Chiu YL, Lin SC, Jung SH, Kim B, Kim S, Cho C, Shim I, Park S, Ahn Y, Okbay A, Jang H, Kim HJ, Seo SW, Park WY, Ge T, Huang H, Feng YCA, Lin YF, Myung W, Chen CY, Won HH. Shared genetic architectures of educational attainment in East Asian and European populations. Nat Hum Behav 2024; 8:562-575. [PMID: 38182883 PMCID: PMC10963262 DOI: 10.1038/s41562-023-01781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Educational attainment (EduYears), a heritable trait often used as a proxy for cognitive ability, is associated with various health and social outcomes. Previous genome-wide association studies (GWASs) on EduYears have been focused on samples of European (EUR) genetic ancestries. Here we present the first large-scale GWAS of EduYears in people of East Asian (EAS) ancestry (n = 176,400) and conduct a cross-ancestry meta-analysis with EduYears GWAS in people of EUR ancestry (n = 766,345). EduYears showed a high genetic correlation and power-adjusted transferability ratio between EAS and EUR. We also found similar functional enrichment, gene expression enrichment and cross-trait genetic correlations between two populations. Cross-ancestry fine-mapping identified refined credible sets with a higher posterior inclusion probability than single population fine-mapping. Polygenic prediction analysis in four independent EAS and EUR cohorts demonstrated transferability between populations. Our study supports the need for further research on diverse ancestries to increase our understanding of the genetic basis of educational attainment.
Collapse
Affiliation(s)
- Tzu-Ting Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jaeyoung Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Max Lam
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- Division of Psychiatry Research, the Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Research Division Institute of Mental Health Singapore, Singapore, Singapore
| | - Yi-Fang Chuang
- Institute of Public Health and International Health Program, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Ling Chiu
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Chin Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beomsu Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Soyeon Kim
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chamlee Cho
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Injeong Shim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Sanghyeon Park
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Yeeun Ahn
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Aysu Okbay
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hyemin Jang
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
| | - Hee Jin Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
| | - Sang Won Seo
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tian Ge
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yen-Chen Anne Feng
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei City, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
- Department of Public Health and Medical Humanities, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.
| | | | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea.
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
99
|
Chen Z, He Z, Chu BB, Gu J, Morrison T, Sabatti C, Candès E. Controlled Variable Selection from Summary Statistics Only? A Solution via GhostKnockoffs and Penalized Regression. ARXIV 2024:arXiv:2402.12724v1. [PMID: 38463500 PMCID: PMC10925382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Identifying which variables do influence a response while controlling false positives pervades statistics and data science. In this paper, we consider a scenario in which we only have access to summary statistics, such as the values of marginal empirical correlations between each dependent variable of potential interest and the response. This situation may arise due to privacy concerns, e.g., to avoid the release of sensitive genetic information. We extend GhostKnockoffs He et al. [2022] and introduce variable selection methods based on penalized regression achieving false discovery rate (FDR) control. We report empirical results in extensive simulation studies, demonstrating enhanced performance over previous work. We also apply our methods to genome-wide association studies of Alzheimer's disease, and evidence a significant improvement in power.
Collapse
Affiliation(s)
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University
- Department of Medicine (Biomedical Informatics Research), Stanford University
| | - Benjamin B Chu
- Department of Biomedical Data Science, Stanford University
| | - Jiaqi Gu
- Department of Neurology and Neurological Sciences, Stanford University
| | | | - Chiara Sabatti
- Department of Statistics, Stanford University
- Department of Biomedical Data Science, Stanford University
| | - Emmanuel Candès
- Department of Statistics, Stanford University
- Department of Mathematics, Stanford University
| |
Collapse
|
100
|
Chen Y, Liu S, Ren Z, Wang F, Jiang Y, Dai R, Duan F, Han C, Ning Z, Xia Y, Li M, Yuan K, Qiu W, Yan XX, Dai J, Kopp RF, Huang J, Xu S, Tang B, Gamazon ER, Bigdeli T, Gershon E, Huang H, Ma C, Liu C, Chen C. Brain eQTLs of European, African American, and Asian ancestry improve interpretation of schizophrenia GWAS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24301833. [PMID: 38405973 PMCID: PMC10888997 DOI: 10.1101/2024.02.13.24301833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet, the majority of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n=158), Europeans (EUR, n=408), and East Asians (EAS, n=217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs (representing ∼17% of all eQTLs pairs) linked to 1,276 genes (about 10% of all eGenes) and 198,769 SNPs (approximately 16% of all eSNPs) were identified only in the non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare (MAF < 0.05) in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified seven new risk genes ( SFXN2 , RP11-282018.3 , CYP17A1 , VPS37B , DENR , FTCDNL1 , and NT5DC2 ), and three potential novel regulatory variants in known risk genes ( CNNM2 , C12orf65 , and MPHOSPH9 ) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of novel risk genes in SCZ.
Collapse
|