51
|
Kariuki S, Kering K, Wairimu C, Onsare R, Mbae C. Antimicrobial Resistance Rates and Surveillance in Sub-Saharan Africa: Where Are We Now? Infect Drug Resist 2022; 15:3589-3609. [PMID: 35837538 PMCID: PMC9273632 DOI: 10.2147/idr.s342753] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Introduction Although antimicrobials have traditionally been used to treat infections and improve health outcomes, resistance to commonly used antimicrobials has posed a major challenge. An estimated 700,000 deaths occur globally every year as a result of infections caused by antimicrobial-resistant pathogens. Antimicrobial resistance (AMR) also contributes directly to the decline in the global economy. In 2019, sub-Saharan Africa (SSA) had the highest mortality rate (23.5 deaths per 100,000) attributable to AMR compared to other regions. Methods We searched PubMed for articles relevant to AMR in pathogens in the WHO-GLASS list and in other infections of local importance in SSA. In this review, we focused on AMR rates and surveillance of AMR for these priority pathogens and some of the most encountered pathogens of public health significance. In addition, we reviewed the implementation of national action plans to mitigate against AMR in countries in SSA. Results and Discussion The SSA region is disproportionately affected by AMR, in part owing to the prevailing high levels of poverty, which result in a high burden of infectious diseases, poor regulation of antimicrobial use, and a lack of alternatives to ineffective antimicrobials. The global action plan as a strategy for prevention and combating AMR has been adopted by most countries, but fewer countries are able to fully implement country-specific action plans, and several challenges exist in many settings. Conclusion A concerted One Health approach will be required to ramp up implementation of action plans in the region. In addition to AMR surveillance, effective implementation of infection prevention and control, water, sanitation, and hygiene, and antimicrobial stewardship programs will be key cost-effective strategies in helping to tackle AMR.
Collapse
Affiliation(s)
- Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya,Correspondence: Samuel Kariuki, Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya, Email
| | - Kelvin Kering
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
52
|
Almohayya T, Alhabshan H, Alhouri L, Al Hennawi H, Alshehri A. The Uncommons: A Case of Pancreatitis and Hepatitis Complicating Salmonella Infection. Cureus 2022; 14:e26422. [PMID: 35911340 PMCID: PMC9336206 DOI: 10.7759/cureus.26422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella typhi infection can be associated with serious complications, ranging from self-limited to fulminant organ damage. In particular, liver and pancreatic damage may complicate the course of infection resulting in devastating outcomes. Enteric fever encompasses a tropical disease caused by Salmonellaspecies and can be associated with high morbidity and mortality. Invasive infection rarely presents with acute hepatitis and pancreatitis. Early recognition of associated clinical conundrums can improve prognosis in affected patients. Here, we present a case of acute hepatitis and pancreatitis in an otherwise healthy child.
Collapse
|
53
|
Marchello CS, Birkhold M, Crump JA. Complications and mortality of non-typhoidal salmonella invasive disease: a global systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2022; 22:692-705. [PMID: 35114140 PMCID: PMC9021030 DOI: 10.1016/s1473-3099(21)00615-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/03/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Non-typhoidal salmonella can cause serious, life-threatening invasive infections involving the bloodstream and other normally sterile sites. We aimed to systematically review the prevalence of complications and case-fatality ratio (CFR) of non-typhoidal salmonella invasive disease to provide contemporary global estimates and inform the development of vaccine and non-vaccine interventions. METHODS We did a global systematic review and meta-analysis of studies investigating the complications and mortality associated with non-typhoidal salmonella invasive disease. We searched Embase, MEDLINE, Web of Science, and PubMed for peer-reviewed, primary research articles published from database inception up to June 4, 2021, with no restrictions on language, country, date, or participant demographics. Only studies reporting the proportion of complications or deaths associated with non-typhoidal salmonella invasive disease, confirmed by culture of samples taken from a normally sterile site (eg, blood or bone marrow) were included. We excluded case reports, case series, policy reports, commentaries, editorials, and conference abstracts. Data on the prevalence of complications and CFR were abstracted. The primary outcomes were to estimate the prevalence of complications and CFR of non-typhoidal salmonella invasive disease. We calculated an overall pooled CFR estimate and pooled CFR stratified by UN region, subregion, age group, and by serovar when available with a random-effects meta-analysis. A risk-of-bias assessment was done, and heterogeneity was assessed with Cochran's Q Test, I2, and τ2. This study was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, and is registered with PROSPERO, CRD42020202293. FINDINGS The systematic review returned a total of 8770 records. After duplicates were removed, 5837 titles and abstracts were screened, yielding 84 studies from 35 countries after exclusions. Of these included studies, 77 (91·7%) were hospital-based and 66 (78·6%) were located in Africa or Asia. Among 55 studies reporting non-typhoidal salmonella disease-associated complications, a total of 45 different complications were reported and 1824 complication events were identified among 6974 study participants. The most prevalent complication was septicaemia, occurring in 171 (57·2%) of 299 participants, followed by anaemia in 580 (47·3%) of 1225 participants. From 81 studies reporting the CFR of non-typhoidal salmonella invasive disease, the overall pooled CFR estimate was 14·7% (95% CI 12·2-17·3). When stratified by UN region, the pooled CFR was 17·1% (13·6-21·0) in Africa, 14·0% (9·4-19·4) in Asia, 9·9% (6·4-14·0) in Europe, and 9·6% (0·0-25·1) in the Americas. Of all 84 studies, 66 (78·6%) had an overall high risk of bias, 18 (21·4%) had a moderate risk, and none had a low risk. Substantial heterogeneity (I2>80%) was observed in most (15 [65·2%] of 23) CFR estimates. INTERPRETATION Complications were frequent among individuals with non-typhoidal salmonella invasive disease and approximately 15% of patients died. Clinicians, especially in African countries, should be aware of non-typhoidal salmonella invasive disease as a cause of severe febrile illness. Prompt diagnoses and management decisions, including empiric antimicrobial therapy, would improve patient outcomes. Additionally, investments in improving clinical microbiology facilities to identify non-typhoidal salmonella and research efforts towards vaccine development and non-vaccine prevention measures would prevent non-typhoidal salmonella invasive disease-associated illness and death. FUNDING EU Horizon 2020 research and innovation programme.
Collapse
Affiliation(s)
| | - Megan Birkhold
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
54
|
Wilson CN, Chunga A, Masesa C, Denis B, Silungwe N, Bilima S, Galloway H, Gordon M, Feasey NA. Incidence of invasive non-typhoidal Salmonella in Blantyre, Malawi between January 2011-December 2019. Wellcome Open Res 2022; 7:143. [PMID: 37153453 PMCID: PMC10160792 DOI: 10.12688/wellcomeopenres.17754.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The Malawi-Liverpool Wellcome Trust Clinical Research Programme (MLW) has undertaken sentinel surveillance of bloodstream infection and meningitis at Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi for 20 years. Previously, three epidemics of Salmonella bloodstream infection have been identified. Here we provide updated surveillance data on invasive non-typhoidal Salmonella disease from 2011 – 2019. Methods: Surveillance data describing trends in invasive non-typhoidal Salmonella disease and associated antimicrobial susceptibility profiles are presented for the period January 2011 – December 2019. Results: Between January 2011-December 2019, 128,588 blood cultures and 40,769 cerebrospinal fluid cultures were processed at MLW. Overall, 1.00% of these were positive for S. Typhimurium, 0.10% for S. Enteritidis, and 0.05% positive for other Salmonella species. Estimated minimum incidence of invasive non-typhoidal Salmonella (iNTS) disease decreased from 21/100,000 per year in 2011 to 7/100,000 per year in 2019. Over this period, 26 confirmed cases of Salmonella meningitis were recorded (88.5% S. Typhimurium). Between 2011-2019 there was a substantial decrease in proportion of S. Typhimurium (78.5% to 27.7%) and S. Enteritidis (31.8% in 2011 to 0%) that were multidrug-resistant. Resistance to fluoroquinolones and third-generation generation cephalosporins (3GC) remained uncommon, however 3GC increased amongst Salmonella spp. and S. Typhimurium in the latter part of the period. Conclusions: The total number of iNTS bloodstream infections decreased between 2011-2019. Although the number multidrug resistance (MDR) S. Typhimurium and S. Enteritidis isolates has fallen, the number of MDR isolates of other Salmonella spp. has increased, including 3GC isolates.
Collapse
|
55
|
One Health Perspective of Salmonella Serovars in South Africa Using Pooled Prevalence: Systematic Review and Meta-Analysis. Int J Microbiol 2022; 2022:8952669. [PMID: 35498396 PMCID: PMC9046003 DOI: 10.1155/2022/8952669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Salmonella is a bacterium that is commonly associated with food-borne infections and is regarded as one of the most important pathogens in public health. Salmonella serovars, particularly Typhimurium and Enteritidis, which are widely distributed globally, mainly result in outbreaks commonly linked to the consumption of animal products. This study is a systematic review and meta-analysis of studies reporting the prevalence of Salmonella serovars from one health perspective that included human, environmental, and animal samples in South Africa. PubMed, ScienceDirect, African Journals Online, and Scopus databases were used to conduct extensive searches of articles which were ultimately included or excluded following the Systematic Reviews and Meta-Analysis (PRISMA) guidelines. According to the data obtained in this review, the overall pooled prevalence estimates (PPE) of Salmonella serovars detection were 79.6%, 61.6%, 56.5%, and 43.2% for human, environment, animal, and environment/animal samples in South Africa, respectively. The majority of the studies (50%) used the polymerase chain reaction (PCR) technique for the detection of Salmonella serovars, followed by culture methods (26.7%), while 20% used serotyping. The PPE for nontyphoidal Salmonellae (NTS) was 65.6% and 34.4% for Salmonella Typhimurium and Salmonella Enteritidis, respectively. Our data further shows that 3 serovars, namely, Salmonella Typhimurium, Salmonella Enteriditis, and Salmonella Hadar, have been isolated from animals, humans, and the environment in South Africa. Our results highlight the ongoing spread of Salmonella spp. especially on animals which might end up infecting humans via direct contact with infected animals or eating infected animal products. This calls for deliberate “One Health” epidemiological studies in order to document information on the transmission between humans, animals, and the environment. This will ultimately result in the formulation of a consolidated salmonellosis control policy by the environmental, human, and veterinary health sectors.
Collapse
|
56
|
Sabeq I, Awad D, Hamad A, Nabil M, Aboubakr M, Abaza M, Fouad M, Hussein A, Shama S, Ramadan H, Edris S. Prevalence and molecular characterization of foodborne and human-derived Salmonella strains for resistance to critically important antibiotics. Transbound Emerg Dis 2022; 69:e2153-e2163. [PMID: 35396929 DOI: 10.1111/tbed.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
The primary goals of this cross-sectional study were to screen various food/water, and human samples for the presence of Salmonella species, and to assess the phenotypic and genetic relationship between resistances found in food and human Salmonella isolates to critically important antibiotics. Between November 2019 and May 2021, 501 samples were randomly collected for Salmonella isolation and identification using standard culturing methods, biochemical, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and PCR techniques. Antimicrobial susceptibility testing was performed on confirmed Salmonella species, and PCR was used to investigate the genetic components that confer these resistance traits. Salmonella enterica subspecies enterica was confirmed in 35 (6.99%) of the samples (raw food = 23, ready-to-eat food/drink (REF/D) = 5, human = 7). Seventeen of them were antibiotic-resistant to at least one class, and eight were multidrug-resistant (MDR) isolates (raw food = 7, human = 1). All Salmonella isolates were susceptible to carbapenems, third and fourth-generation cephalosporins, and monobactam antibiotics. Resistance phenotypes to aminoglycosides (48.57%), β-lactams (20%), and tetracycline (17.14%), as well as associated genes such as aadA, blaTEM , blaZ , and tetA, as well as dfrA and sul1, were prevalent in Salmonella isolates. Colistin resistance genotype (mcr1) was detected in three (8.57 %) isolates recovered from egg, cattle mince, and rabbit meat, and the total incidence was 14.29 % when two isolates exhibited resistance phenotypes were considered. Furthermore, four (11.43%) MDR isolates shared the blaTEM and blaZ genes, and one (2.86%) isolate contained three extended spectrum β-lactams producing genes (ESBL), namely blaCTX , blaTEM , and blaZ . The gyrA gene was expressed by one of three foodborne Salmonella isolates (8.57%) with ciprofloxacin resistance phenotypes. To the best of our knowledge, this is the first report from Egypt identifying colistin resistance in Salmonella enterica recovered from cattle minced meat and rabbit meat. Overall, the highest incidence rate of Salmonella enterica was found in cattle-derived products, and it was slightly more prevalent in RTE/D foods than in raw foods. Resistance to critical and clinically important antibiotics, particularly in Salmonella from RTE/D food, suggests that these antibiotics are being abused in the investigated area's veterinary field, and raises the potential of these isolates being transmitted to high-risk humans, which would be a serious problem. Future research using whole-genome sequencing is needed to clarify Salmonella resistance mechanisms to critically important antimicrobial agents or those exhibiting multidrug resistance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Islam Sabeq
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Dina Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Ahmed Hamad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Mohamed Nabil
- Food Hygiene Department, Animal Health Research Institute (Benha Branch), ARC, Qalyubia, Benha, 13511, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Mohamed Abaza
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Mohammed Fouad
- Microbiology and immunology department, Faculty of Medicine, Benha University, Qalyubia, Benha, 13511, Egypt
| | - Amira Hussein
- Department of clinical pathology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Sanaa Shama
- Laboratory unit, Benha Fever Hospital, Qalyubia, Benha, 13511, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| |
Collapse
|
57
|
Andersen CT, Langendorf C, Garba S, Sayinzonga-Makombe N, Mambula C, Mouniaman I, Hanson KE, Grais RF, Isanaka S. Risk of community- and hospital-acquired bacteremia and profile of antibiotic resistance in children hospitalized with severe acute malnutrition in Niger. Int J Infect Dis 2022; 119:163-171. [PMID: 35346836 DOI: 10.1016/j.ijid.2022.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To estimate the prevalence and antibiotic resistance profile of community- and hospital-acquired bacteremia among hospitalized children with severe acute malnutrition in Niger. METHODS A descriptive, longitudinal study was conducted in an intensive nutritional rehabilitation center in Madarounfa, Niger. Children aged 6 to 59 months admitted for inpatient treatment of complicated severe acute malnutrition (n=2187) had blood specimens drawn at admission to assess prevalence of community-acquired bacteremia. Subsequent specimens were drawn per physician discretion to assess incidence of hospital-acquired bacteremia. Antibiotic susceptibility testing was performed on positive blood cultures. RESULTS The prevalence of community-acquired bacteremia at admission was at least 9.1% (95% confidence interval [CI]: 8.1, 10.4%), with non-typhoid Salmonella identified in over half (57.8%) of cases. The cumulative incidence of hospital-acquired bacteremia was estimated at 1.2% (95% CI: 0.8, 1.7%), among which the most common organisms were Klebsiella pneumoniae (19.4%), Acinetobacter baumannii (16.1%), Enterococcus faecalis (12.9%), and Escherichia coli (12.9%). In community-acquired bacteremia, 58% cases were resistant to amoxicillin-clavulanate; 100% of hospital-acquired bacteremia cases were resistant to amoxicillin and amoxicillin-clavulanate. Mortality risk was elevated among children with hospital-acquired bacteremia (risk ratio [RR] = 9.32) and community-acquired bacteremia (RR = 2.67). CONCLUSION Bacteremia was a significant contributor to mortality. Antibiotic resistance poses a challenge to effective clinical management of severe acute malnutrition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sheila Isanaka
- Epicentre, Paris, France; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA; Department of Global Health, Harvard T. H. Chan School of Public Health, Boston, USA.
| |
Collapse
|
58
|
Dieye Y, Hull DM, Wane AA, Harden L, Fall C, Sambe-Ba B, Seck A, Fedorka-Cray PJ, Thakur S. Genomics of human and chicken Salmonella isolates in Senegal: Broilers as a source of antimicrobial resistance and potentially invasive nontyphoidal salmonellosis infections. PLoS One 2022; 17:e0266025. [PMID: 35325007 PMCID: PMC8947133 DOI: 10.1371/journal.pone.0266025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica is the most common foodborne pathogen worldwide. It causes two types of diseases, a self-limiting gastroenteritis and an invasive, more threatening, infection. Salmonella gastroenteritis is caused by several serotypes and is common worldwide. In contrast, invasive salmonellosis is rare in high-income countries (HIC) while frequent in low- and middle-income countries (LMIC), especially in sub-Saharan Africa (sSA). Invasive Nontyphoidal Salmonella (iNTS), corresponding to serotypes other than Typhi and Paratyphi, have emerged in sSA and pose a significant risk to public health. We conducted a whole-genome sequence (WGS) analysis of 72 strains of Salmonella isolated from diarrheic human patients and chicken meat sold in multipurpose markets in Dakar, Senegal. Antimicrobial susceptibility testing combined with WGS data analysis revealed frequent resistance to fluoroquinolones and the sulfamethoxazole-trimethoprim combination that are among the most used treatments for invasive Salmonella. In contrast, resistance to the historical first-line drugs chloramphenicol and ampicillin, and to cephalosporins was rare. Antimicrobial resistance (AMR) was lower in clinical isolates compared to chicken strains pointing to the concern posed by the excessive use of antimicrobials in farming. Phylogenetic analysis suggested possible transmission of the emerging multidrug resistant (MDR) Kentucky ST198 and serotype Schwarzengrund from chicken to human. These results stress the need for active surveillance of Salmonella and AMR in order to address invasive salmonellosis caused by nontyphoidal Salmonella strains and other important bacterial diseases in sSA.
Collapse
Affiliation(s)
- Yakhya Dieye
- Pole of Microbiology, Institut Pasteur, Dakar, Sénégal
- Département Génie Chimique et Biologie Appliquée, École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Dawn M. Hull
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | - Lyndy Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Cheikh Fall
- Pole of Microbiology, Institut Pasteur, Dakar, Sénégal
| | | | | | - Paula J. Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
59
|
Darboe S, Bradbury RS, Phelan J, Kanteh A, Muhammad AK, Worwui A, Yang S, Nwakanma D, Perez-Sepulveda B, Kariuki S, Kwambana-Adams B, Antonio M. Genomic diversity and antimicrobial resistance among non-typhoidal Salmonella associated with human disease in The Gambia. Microb Genom 2022; 8:000785. [PMID: 35302932 PMCID: PMC9176284 DOI: 10.1099/mgen.0.000785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Non-typhoidal Salmonella associated with multidrug resistance cause invasive disease in sub-Saharan Africa. Specific lineages of serovars Typhimurium and Enteritidis have been implicated. Here we characterized the genomic diversity of 100 clinical non-typhoidal Salmonella collected from 93 patients in 2001 from the eastern, and in 2006-2018 from the western regions of The Gambia respectively. A total of 93 isolates (64 invasive, 23 gastroenteritis and six other sites) representing a single infection episode were phenotypically tested for antimicrobial susceptibility using the Kirby-Bauer disc diffusion technique. Whole genome sequencing of 100 isolates was performed using Illumina, and the reads were assembled and analysed using SPAdes. The Salmonella in Silico Typing Resource (SISTR) was used for serotyping. SNP differences among the 93 isolates were determined using Roary, and phylogenetic analysis was performed in the context of 495 African strains from the European Nucleotide Archive. Salmonella serovars Typhimurium (26/64; 30.6 %) and Enteritidis (13/64; 20.3 %) were associated with invasive disease, whilst other serovars were mainly responsible for gastroenteritis (17/23; 73.9 %). The presence of three major serovar Enteritidis clades was confirmed, including the invasive West African clade, which made up more than half (11/16; 68.8 %) of the genomes. Multidrug resistance was confined among the serovar Enteritidis West African clade. The presence of this epidemic virulent clade has potential for spread of resistance and thus important implications for systematic patient management. Surveillance and epidemiological investigations to inform control are warranted.
Collapse
Affiliation(s)
- Saffiatou Darboe
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, The Gambia
| | | | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, UK
| | - Abdoulie Kanteh
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, The Gambia
| | - Abdul-Khalie Muhammad
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, The Gambia
| | - Archibald Worwui
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, The Gambia
| | - Shangxin Yang
- University of California, Los Angeles, California, USA
| | - Davis Nwakanma
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, The Gambia
| | | | | | - Brenda Kwambana-Adams
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, The Gambia
- University College London, London, UK
| | - Martin Antonio
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, The Gambia
| |
Collapse
|
60
|
Zhang Z, Sun Z, Tian L. Antimicrobial Resistance Among Pathogens Causing Bloodstream Infections: A Multicenter Surveillance Report Over 20 Years (1998–2017). Infect Drug Resist 2022; 15:249-260. [PMID: 35115793 PMCID: PMC8800585 DOI: 10.2147/idr.s344875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/13/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose Bloodstream infections (BSIs) are a common consequence of infectious diseases and cause high morbidity and mortality. Appropriate antibiotic use is critical for patients’ treatment and prognosis. Long-term monitoring and analysis of antimicrobial resistance are important in guiding physicians to choose appropriate antibiotics and understand the changes in antimicrobial resistance and infection control. Here, we report a retrospective study on the trends of antimicrobial resistance in the common BSI-associated pathogens. Methods The identification of strains and antimicrobial susceptibility tests were performed in each anticipating hospital independently. Data from the Hubei Province Antimicrobial Resistance Surveillance System (HBARSS) from 1998 to 2017 were retrospectively analyzed using WHONET 5.6 software. Results Data from HBARSS (1998–2017) revealed that 40,518 Gram-positive bacteria and 26,568 Gram-negative bacteria caused BSIs, the most common of which were Staphylococcus aureus and Escherichia coli. Salmonella typhi was a predominant BSI-associated pathogen in 1998–2003. Antimicrobial susceptibility data showed that the resistance rates of E. coli and Klebsiella pneumoniae to cefotaxime were significantly higher than those to ceftazidime. The proportion of strains of special antimicrobial resistance phenotypes including difficult-to-treat resistance (DTR), carbapenem-resistant (CR), extended-spectrum cephalosporin resistant (ECR) and fluoroquinolone resistant (FQR) in E. coli was 0.18%, 0.26%, 13.95%, 22.78% while in K. pneumoniae was 11.95%, 14.00%, 31.91% and 11.40%, respectively. In 2013–2017, K. pneumoniae showed resistance levels reaching 15.8% and 17.5% to imipenem and meropenem, respectively, and Acinetobacter baumannii showed high resistance rates ranging from 60 to 80% to common antibiotics. The detection rate of Salmonella typhi resistance to third-generation cephalosporins and fluoroquinolones was less than 5%. Control of methicillin-resistant Staphylococcus aureus (MRSA) remains a major challenge, and in 2009–2017, the MRSA detection rate was 40–50%. Conclusion Prevalence of CR K. pneumoniae has increased significantly in recent years. Resistance rates of A. baumannii to common antimicrobial agents have increased exponentially, reaching high levels. MRSA remains a challenge to control. For K. pneumoniae, DTR, CR, ECR and FQR were antimicrobial resistance phenotypes that could not be ignored while for E. coli DTR and CR were rare antimicrobial resistance phenotypes. CR K. pneumoniae, A. baumannii and MRSA present major challenges for controlling BSIs.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Lei Tian
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
- Correspondence: Lei Tian, Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China, Email
| |
Collapse
|
61
|
Siggins MK, MacLennan CA. An adsorption method to prepare specific antibody-depleted normal human serum as a source of complement for human serum bactericidal assays for Salmonella. Vaccine 2021; 39:7503-7509. [PMID: 34794820 DOI: 10.1016/j.vaccine.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
Serum bactericidal assays (SBA) are valuable for assessing the functional activity of natural and vaccine-induced antibodies against many Gram-negative bacteria, such as meningococcus and Salmonella. However, SBA often require an exogenous source of complement and the presence of pre-existing naturally acquired antibodies limits the use of human complement for this purpose. To remove pre-existing Salmonella-specific antibodies, in the context of SBA for Salmonella vaccine research, we incubated human sera with preparations of Salmonella. By incubating at 4 °C, pre-existing antibodies were adsorbed onto the Salmonella bacteria with only minimal complement deposition. We assessed the effects of adsorption on specific antibody levels, complement activity and the bactericidal activity of sera using flow cytometry, SBA and haemolytic assays. Adsorption removed Salmonella-specific antibodies and bactericidal activity against Salmonella from whole serum but was not detrimental to serum complement activity, even after five adsorption cycles. Bactericidal activity could be reconstituted in the adsorbed serum by the addition of exogenous specific antibodies. Sera preadsorbed with Salmonella are suitable as a source of human complement to measure the bactericidal activity of Salmonella antibodies. The adsorption method can be used to deplete, simply and rapidly, specific antibodies from serum to prepare a source of human complement for use in SBA for vaccine research and assessment.
Collapse
Affiliation(s)
- Matthew K Siggins
- The Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom; National Heart and Lung Institute, St Mary's Hospital, Faculty of Medicine, Imperial College London, W2 1PG, United Kingdom.
| | - Calman A MacLennan
- The Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom; The Jenner Institute, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom; Bill & Melinda Gates Foundation, 62 Buckingham Gate, London SW1E 6AJ, United Kingdom.
| |
Collapse
|
62
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
63
|
Epidemiological Investigation of Salmonella enterica Isolates in Children with Diarrhea in Chengdu, China. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.119034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Children with the immature intestinal immune system are prone to Salmonella infection through the fecal-oral route causing diarrhea. Non-typhoid Salmonella (NTS) is difficult to treat and eliminate due to its zoonosis. Salmonella typhi, including typhoid and paratyphoid A, B, and C, only infect humans and cause invasive infectious diseases. Salmonella typhi infection is serious and requires antibiotic treatment. The bacterial resistance caused by conventional antibacterial drugs brings great difficulties to treatment. Objectives: This study aimed to investigate the epidemiology of S. enterica in children with diarrhea in Chengdu, China. Methods: Fresh stool specimens or rectal swabs from 6656 children aged 1 day to 13 years with diarrhea were collected, cultured, identified, and tested for antimicrobial susceptibility. Analytical Profile index 20E was used for biochemical identification, and the Kirby-Bauer method was used for the bacterial sensitivity test. The whole process was conducted in accordance with the fourth edition of the National Clinical Examination procedures, and the drug sensitivity test was conducted in accordance with the Clinical and Laboratory Standards Institute 2020 guidelines. Results: A total of 649 Salmonella strains were isolated from 6656 children with suspected Salmonella infection, among which the isolation rates of NTS and S. typhi were 8.92% and 0.83%, respectively. The infection rate of S. typhimurium was the highest every year (74.88%). Salmonella infections are on the rise, especially typhimurium, Dublin, Typhi, and London. Paratyphi is unstable, presenting a phenomenon of transition and replacement (the male to female ratio:1.12:1). The infection rate was the lowest within 1 day and 6 months (P < 0.05). Salmonella mainly infected children under 3 years of age, and the positive rate was reported as 88.29%. Within June-September, the infection rate of Salmonella was the highest, with a positive rate of 72.73%. The isolated 649 Salmonella strains had good susceptibility to cefotaxime and ciprofloxacin (87.67% and 79.20%, respectively), almost no susceptibility to ampicillin, and a drug resistance rate of 92.91%. Conclusions: The typhoid and paratyphoid vaccines should be considered together, and vaccines should focus on children under 3 years of age. Antibiotics should be rationally selected according to the drug sensitivity test and disease condition.
Collapse
|
64
|
Kanteh A, Sesay AK, Alikhan NF, Ikumapayi UN, Salaudeen R, Manneh J, Olatunji Y, Page AJ, Mackenzie G. Invasive atypical non-typhoidal Salmonella serovars in The Gambia. Microb Genom 2021; 7:000677. [PMID: 34812716 PMCID: PMC8743563 DOI: 10.1099/mgen.0.000677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Invasive non-typhoidal Salmonella (iNTS) disease continues to be a significant public health problem in sub-Saharan Africa. Common clinical misdiagnosis, antimicrobial resistance, high case fatality and lack of a vaccine make iNTS a priority for global health research. Using whole genome sequence analysis of 164 invasive Salmonella isolates obtained through population-based surveillance between 2008 and 2016, we conducted genomic analysis of the serovars causing invasive Salmonella diseases in rural Gambia. The incidence of iNTS varied over time. The proportion of atypical serovars causing disease increased over time from 40 to 65 % compared to the typical serovars Enteritidis and Typhimurium that decreased from 30 to 12 %. Overall iNTS case fatality was 10%, but case fatality associated with atypical iNTS alone was 10 %. Genetic virulence factors were identified in 14/70 (20 %) typical serovars and 45/68 (66 %) of the atypical serovars and were associated with: invasion, proliferation and/or translocation (Clade A); and host colonization and immune modulation (Clade G). Among Enteritidis isolates, 33/40 were resistant to four or more of the antimicrobials tested, except ciprofloxacin, to which all isolates were susceptible. Resistance was low in Typhimurium isolates, but all 16 isolates were resistant to gentamicin. The increase in incidence and proportion of iNTS disease caused by atypical serovars is concerning. The increased proportion of atypical serovars and the high associated case fatality may be related to acquisition of specific genetic virulence factors. These factors may provide a selective advantage to the atypical serovars. Investigations should be conducted elsewhere in Africa to identify potential changes in the distribution of iNTS serovars and the extent of these virulence elements.
Collapse
Affiliation(s)
- Abdoulie Kanteh
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Abdul Karim Sesay
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | | | - Usman Nurudeen Ikumapayi
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Rasheed Salaudeen
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Jarra Manneh
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Yekini Olatunji
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Andrew J. Page
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| | - Grant Mackenzie
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
- Murdoch Children’s Research Institute, Royal Children’s Hospital Flemington Road, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
65
|
Non-Typhoidal Salmonella Infection in Children: Influence of Antibiotic Therapy on Postconvalescent Excretion and Clinical Course-A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10101187. [PMID: 34680768 PMCID: PMC8532930 DOI: 10.3390/antibiotics10101187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Although published recommendations are available, the use of antibiotics in non-typhoidal Salmonella (NTS) infections in children is still controversially debated in clinical practice. Patients might even be put at risk, with necessary antibiotic therapy being withheld due to the widespread concern of prolonged post-convalescent shedding. The authors conducted a systematic review to assess whether antibiotic treatment influences fecal excretion or the clinical course in children with NTS infection. (2) Methods: The review was carried out following the PRISMA guidelines. In a Medline database search, studies assessing the influence of antibiotic therapy on excretion and/or the clinical course of NTS infections were selected. Studies reporting on adults only were not considered. Out of 532 publications which were identified during the systematic literature search, 14 publications were finally included (3273 patients in total). Quality and bias assessment was performed using the Newcastle-Ottawa scale (NOS) or the Cochrane risk-of bias tool (ROB-2). (3) Results: Four early studies from decades ago demonstrated a prolongation of intestinal NTS excretion in children after antibiotic treatment, whereas most studies published more recently observed no significant influence, which might be due to having used more “modern” antibiotic regimes (n = 7 studies). Most studies did not describe significant differences regarding the severity and duration of symptoms between untreated patients and those treated with antibiotics. Quality and bias were mainly moderate (NOS) or variable (ROB-2), respectively. (4) Conclusions: There is no substantial evidence of prolonged excretion of NTS in pediatric patients after treatment with newer antimicrobials. Consequently, clinicians should not withhold antibiotics in NTS infection for children at risk, such as for very young children, children with comorbidities, and those with suspected invasive disease due to concerns about prolonged post-convalescent bacterial excretion. In the majority of cases with uncomplicated NTS diarrhea, clinicians should refrain from applying antibiotics.
Collapse
|
66
|
Kariuki S, Wairimu C, Mbae C. Antimicrobial Resistance in endemic enteric infections in Kenya and the region, and efforts towards addressing the challenges. J Infect Dis 2021; 224:S883-S889. [PMID: 34550365 PMCID: PMC8687050 DOI: 10.1093/infdis/jiab457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Resistance to commonly available antimicrobials is a major threat to the fight against endemic bacterial diseases in sub-Saharan Africa, with a majority of the population unable to afford alternative effective antimicrobial options for management of these diseases. Diseases such as typhoid, cholera, and invasive nontyphoidal Salmonella are among the key enteric infections endemic in most parts of sub-Saharan Africa, especially in displaced populations and among the urban populations living in overcrowded informal settlements. Here, we explore the prevalence and the genomic epidemiology of these infections and the growing problem of multidrug resistance, including emerging resistance to the last line of treatment for these infections. Prevalence rates to commonly available antimicrobials, including ampicillin, chloramphenicol, cotrimoxazole, and tetracycline, now range between 65% and 80%, while 15%–20% of recently studied isolates show reduced susceptibility to fluoroquinolones and emerging resistance to extended-spectrum β-lactams mediated by the CTX-M-15 gene carried on a highly mobile genetic element. The high prevalence of multidrug-resistant isolates including resistance to reserve antibiotics, calls for enhanced control and management options. It will be important for governments in the region to enhance the implementation of national action plans, as guided by the global action plan championed by the World Health Organization, to combat the threat of antimicrobial resistance. However, to yield meaningful results, these efforts will require a strong commitment and enhancement at all levels of healthcare in order. In addition, the use of World Health Organization–approved vaccines in the short to medium term and improvement of water and sanitation in the long term will reduce the burden of disease and antimicrobial resistance in the region.
Collapse
Affiliation(s)
- Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Correspondence: Samuel Kariuki, Centre for Microbiology Research, Kenya Medical Research Institute, Kenya, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya (); ()
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
67
|
Di Benedetto R, Alfini R, Carducci M, Aruta MG, Lanzilao L, Acquaviva A, Palmieri E, Giannelli C, Necchi F, Saul A, Micoli F. Novel Simple Conjugation Chemistries for Decoration of GMMA with Heterologous Antigens. Int J Mol Sci 2021; 22:10180. [PMID: 34638530 PMCID: PMC8508390 DOI: 10.3390/ijms221910180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (R.D.B.); (R.A.); (M.C.); (M.G.A.); (L.L.); (A.A.); (E.P.); (C.G.); (F.N.); (A.S.)
| |
Collapse
|
68
|
Servadio JL, Muñoz-Zanzi C, Convertino M. Estimating case fatality risk of severe Yellow Fever cases: systematic literature review and meta-analysis. BMC Infect Dis 2021; 21:819. [PMID: 34399718 PMCID: PMC8365934 DOI: 10.1186/s12879-021-06535-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Case fatality risk (CFR), commonly referred to as a case fatality ratio or rate, represents the probability of a disease case being fatal. It is often estimated for various diseases through analysis of surveillance data, case reports, or record examinations. Reported CFR values for Yellow Fever vary, offering wide ranges. Estimates have not been found through systematic literature review, which has been used to estimate CFR of other diseases. This study aims to estimate the case fatality risk of severe Yellow Fever cases through a systematic literature review and meta-analysis. METHODS A search strategy was implemented in PubMed and Ovid Medline in June 2019 and updated in March 2021, seeking reported severe case counts, defined by fever and either jaundice or hemorrhaging, and the number of those that were fatal. The searches yielded 1,133 studies, and title/abstract review followed by full text review produced 14 articles reporting 32 proportions of fatal cases, 26 of which were suitable for meta-analysis. Four studies with one proportion each were added to include clinical case data from the recent outbreak in Brazil. Data were analyzed through an intercept-only logistic meta-regression with random effects for study. Values of the I2 statistic measured heterogeneity across studies. RESULTS The estimated CFR was 39 % (95 % CI: 31 %, 47 %). Stratifying by continent showed that South America observed a higher CFR than Africa, though fewer studies reported estimates for South America. No difference was seen between studies reporting surveillance data and studies investigating outbreaks, and no difference was seen among different symptom definitions. High heterogeneity was observed across studies. CONCLUSIONS Approximately 39 % of severe Yellow Fever cases are estimated to be fatal. This study provides the first systematic literature review to estimate the CFR of Yellow Fever, which can provide insight into outbreak preparedness and estimating underreporting.
Collapse
Affiliation(s)
- Joseph L Servadio
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, 420 Delaware St SE, Minneapolis, 55401, MN, USA.
| | - Claudia Muñoz-Zanzi
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, 420 Delaware St SE, Minneapolis, 55401, MN, USA
| | - Matteo Convertino
- Nexus Group and Gi-CORE, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
69
|
T-Cell Cytokine Response in Salmonella Typhimurium-Vaccinated versus Infected Pigs. Vaccines (Basel) 2021; 9:vaccines9080845. [PMID: 34451970 PMCID: PMC8402558 DOI: 10.3390/vaccines9080845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccination with the live attenuated vaccine Salmoporc is an effective measure to control Salmonella Typhimurium (STM) in affected swine populations. However, the cellular immune response evoked by the Salmoporc vaccine including differences in vaccinated pigs versus non-vaccinated pigs upon STM infection have not been characterized yet. To investigate this, tissue-derived porcine lymphocytes from different treatment groups (vaccination-only, vaccination and infection, infection-only, untreated controls) were stimulated in vitro with heat-inactivated STM and abundances of IFN-γ, TNF-α and/or IL-17A-producing T-cell subsets were compared across organs and treatment groups. Overall, our results show the induction of a strong CD4+ T-cell response after STM infection, both locally and systemically. Low-level induction of STM-specific cytokine-producing CD4+ T cells, notably for the IFN-γ/TNF-α co-producing phenotype, was detected after vaccination-only. Numerous significant contrasts in cytokine-producing T-cell phenotypes were observed after infection in vaccinated and infected versus infected-only animals. These results suggest that vaccine-induced STM-specific cytokine-producing CD4+ T cells contribute to local immunity in the gut and may limit the spread of STM to lymph nodes and systemic organs. Hence, our study provides insights into the underlying immune mechanisms that account for the efficacy of the Salmoporc vaccine.
Collapse
|
70
|
Schultz BM, Melo-Gonzalez F, Salazar GA, Porto BN, Riedel CA, Kalergis AM, Bueno SM. New Insights on the Early Interaction Between Typhoid and Non-typhoid Salmonella Serovars and the Host Cells. Front Microbiol 2021; 12:647044. [PMID: 34276584 PMCID: PMC8282409 DOI: 10.3389/fmicb.2021.647044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a common source of food and water-borne infections, causing a wide range of clinical ailments in both human and animal hosts. Immunity to Salmonella involves an interplay between different immune responses, which are rapidly initiated to control bacterial burden. However, Salmonella has developed several strategies to evade and modulate the host immune responses. In this sense, the main knowledge about the pathogenicity of this bacterium has been obtained by the study of mouse models with non-typhoidal serovars. However, this knowledge is not representative of all the pathologies caused by non-typhoidal serovars in the human. Here we review the most important features of typhoidal and non-typhoidal serovars and the diseases they cause in the human host, describing the virulence mechanisms used by these pathogens that have been identified in different models of infection.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A Salazar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
71
|
Reverse vaccinology approach for the identifications of potential vaccine candidates against Salmonella. Int J Med Microbiol 2021; 311:151508. [PMID: 34182206 DOI: 10.1016/j.ijmm.2021.151508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Salmonella is a leading cause of foodborne pathogen which causes intestinal and systemic diseases across the world. Vaccination is the most effective protection against Salmonella, but the identification and design of an effective broad-spectrum vaccine is still a great challenge, because of the multi-serotypes of Salmonella. Reverse vaccinology is a new tool to discovery and design vaccine antigens combining human immunology, structural biology and computational biology with microbial genomics. In this study, reverse vaccinology, an in-silico approach was established to screen appropriate immunogen targets by calculating the immunogenicity score of 583 non-redundant outer membrane and secreted proteins of Salmonella. Herein among 100 proteins identified with top-ranked scores, 15 representative antigens were selected randomly. Applying the sequence conservation test, four proteins (FliK, BcsZ, FhuA and FepA) remained as potential vaccine candidates for in vivo evaluation of immunogenicity and immunoprotection. All four candidates were capable to trigger the immune response and stimulate the production of antiserum in mice. Furthermore, top-ranked proteins including FliK and BcsZ provided wide antigenic coverage among the multi-serotype of Salmonella. The S. Typhimurium LT2 challenge model used in mice immunized with FliK and BcsZ showed a high relative percentage survival (RPS) of 52.74 % and 64.71 % respectively. In conclusion, this study constructed an in-silico pipeline able to successfully pre-screen the vaccine targets characterized by high immunogenicity and protective immunity. We show that reverse vaccinology allowed screening of appropriate broad-spectrum vaccines for Salmonella.
Collapse
|
72
|
Neisseria meningitidis Factor H Binding Protein Surface Exposure on Salmonella Typhimurium GMMA Is Critical to Induce an Effective Immune Response against Both Diseases. Pathogens 2021; 10:pathogens10060726. [PMID: 34207575 PMCID: PMC8229706 DOI: 10.3390/pathogens10060726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
GMMA, outer membrane vesicles resulting from hyperblebbing mutated bacterial strains, are a versatile vaccine platform for displaying both homologous and heterologous antigens. Periplasmic expression is a popular technique for protein expression in the lumen of the blebs. However, the ability of internalized antigens to induce antibody responses has not been extensively investigated. Herein, the Neisseria meningitidis factor H binding protein (fHbp) was heterologously expressed in the lumen of O-antigen positive (OAg+) and O-antigen negative (OAg−) Salmonella Typhimurium GMMA. Only the OAg− GMMA induced an anti-fHbp IgG response in mice if formulated on Alum, although it was weak and much lower compared to the recombinant fHbp. The OAg− GMMA on Alum showed partial instability, with possible exposure of fHbp to the immune system. When we chemically conjugated fHbp to the surface of both OAg+ and OAg− GMMA, these constructs induced a stronger functional response compared to the fHbp immunization alone. Moreover, the OAg+ GMMA construct elicited a strong response against both the target antigens (fHbp and OAg), with no immune interference observed. This result suggests that antigen localization on GMMA surface can play a critical role in the induction of an effective immune response and can encourage the development of GMMA based vaccines delivering key protective antigens on their surface.
Collapse
|
73
|
Fiorino F, Pettini E, Koeberling O, Ciabattini A, Pozzi G, Martin LB, Medaglini D. Long-Term Anti-Bacterial Immunity against Systemic Infection by Salmonella enterica Serovar Typhimurium Elicited by a GMMA-Based Vaccine. Vaccines (Basel) 2021; 9:495. [PMID: 34065899 PMCID: PMC8150838 DOI: 10.3390/vaccines9050495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Salmonella Typhimurium (STm) represents the most prevalent cause of invasive non-typhoidal Salmonella (iNTS) disease, and currently no licensed vaccine is available. In this work we characterized the long-term anti-bacterial immunity elicited by a STm vaccine based on Generalized Modules of Membrane Antigens (GMMA) delivering O:4,5 antigen, using a murine model of systemic infection. Subcutaneous immunization of mice with STmGMMA/Alhydrogel elicited rapid, high, and persistent antigen-specific serum IgG and IgM responses. The serum was bactericidal in vitro. O:4,5-specific IgG were also detected in fecal samples after immunization and positively correlated with IgG observed in intestinal washes. Long-lived plasma cells and O:4,5-specific memory B cells were detected in spleen and bone marrow. After systemic STm challenge, a significant reduction of bacterial load in blood, spleen, and liver, as well as a reduction of circulating neutrophils and G-CSF glycoprotein was observed in STmGMMA/Alhydrogel immunized mice compared to untreated animals. Taken together, these data support the development of a GMMA-based vaccine for prevention of iNTS disease.
Collapse
Affiliation(s)
- Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Oliver Koeberling
- GSK Vaccines Institute for Global Health S.r.l., 53100 Siena, Italy;
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Laura B. Martin
- GSK Vaccines Institute for Global Health S.r.l., 53100 Siena, Italy;
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| |
Collapse
|
74
|
Kariuki S, Owusu-Dabo E. Research on Invasive Nontyphoidal Salmonella Disease and Developments Towards Better Understanding of Epidemiology, Management, and Control Strategies. Clin Infect Dis 2021; 71:S127-S129. [PMID: 32725224 PMCID: PMC7388720 DOI: 10.1093/cid/ciaa315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During the 11th International Conference on Typhoid and Other Invasive Salmonelloses held in Hanoi, Vietnam, a number of papers were presented on the burden of disease, epidemiology, genomics, management, and control strategies for invasive nontyphoidal Salmonella (iNTS) disease, which is increasingly becoming an important public health threat in low- and middle-income countries, but especially in sub-Saharan Africa (sSA). Although there were minor variations in characteristics of iNTS in different settings (urban vs rural, country to country), it was observed that iNTS has gained greater recognition as a major disease entity in children younger than 5 years. Renewed efforts towards greater understanding of the burden of illness, detection and diagnostic strategies, and management and control of the disease in communities in sSA through the introduction of vaccines will be important.
Collapse
Affiliation(s)
- Samuel Kariuki
- Kenya Medical Research Institute, Centre for Microbiology Research, Nairobi, Kenya
| | - Ellis Owusu-Dabo
- Kwame Nkrumah University of Science and Technology (KNUST), School of Public Health, Kumasi, Ghana
| |
Collapse
|
75
|
Perez-Sepulveda BM, Predeus AV, Fong WY, Parry CM, Cheesbrough J, Wigley P, Feasey NA, Hinton JCD. Complete Genome Sequences of African Salmonella enterica Serovar Enteritidis Clinical Isolates Associated with Bloodstream Infection. Microbiol Resour Announc 2021; 10:e01452-20. [PMID: 33766909 PMCID: PMC7996468 DOI: 10.1128/mra.01452-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/21/2021] [Indexed: 11/23/2022] Open
Abstract
We report the complete genome sequencing and annotation of four Salmonella enterica serovar Enteritidis isolates, two that are representative of the Central/Eastern African clade (CP255 and D7795) and two of the Global Epidemic clade (A1636 and P125109).
Collapse
Affiliation(s)
- Blanca M Perez-Sepulveda
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alexander V Predeus
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Wai Yee Fong
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christopher M Parry
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - John Cheesbrough
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Paul Wigley
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas A Feasey
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Jay C D Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
76
|
Detection and Characterization of Salmonella enterica Serotypes by Simple PCR Technologies. Methods Mol Biol 2021. [PMID: 32894495 DOI: 10.1007/978-1-0716-0791-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Polymerase chain reaction (PCR) is a molecular-based technology that has revolutionized diagnostics and characterization of pathogens, and thus affecting how we understand disease landscape. This technology has been found amenable to application on various strategies for management and control of infectious diseases. The main advantage with PCR technologies, when applied optimally, is the high sensitivity and short-turn-around time for results, thus rendering the strategy attractive to researchers in infectious diseases and public health. In this chapter, we describe PCR approaches that are innovative and easy to deploy in a laboratory with medium range infrastructure investment.
Collapse
|
77
|
Assessment of Hygienic Practices in Beef Cattle Slaughterhouses and Retail Shops in Bishoftu, Ethiopia: Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052729. [PMID: 33800319 PMCID: PMC7967449 DOI: 10.3390/ijerph18052729] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Understanding the potential drivers of microbial meat contamination along the entire meat supply chain is needed to identify targets for interventions to reduce the number of meatborne bacterial outbreaks. We assessed the hygienic practices in cattle slaughterhouses (28 employees) and retail shops (127 employees) through face-to-face interviews and direct personal observations. At the slaughterhouses, stunning, de-hiding and evisceration in vertical position, carcass washing and separate storage of offal were the identified good practices. Lack of hot water baths, absence of a chilling room, infrequent hand washing, insufficiently trained staff and irregular medical check-up were practices that lead to unhygienic handling of carcasses. At the retail shops, cleaning equipment using soap and hot water (81%), storing unsold meat in refrigerators (92%), concrete floors and white painted walls and ceilings were good practices. Adjacently displaying offal and meat (39%), lack of a cold chain, wrapping meat with plastic bags and newspapers, using a plastic or wooden cutting board (57%), infrequent washing of equipment and floors, and inadequately trained employees were practices that could result in unhygienic handling of beef. Our study identified unhygienic practices both at the slaughterhouses and retail shops that can predispose the public to meatborne infections, which could be improved through training and implementation of quality control systems.
Collapse
|
78
|
Galen JE, Wahid R, Buskirk AD. Strategies for Enhancement of Live-Attenuated Salmonella-Based Carrier Vaccine Immunogenicity. Vaccines (Basel) 2021; 9:162. [PMID: 33671124 PMCID: PMC7923097 DOI: 10.3390/vaccines9020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
The use of live-attenuated bacterial vaccines as carriers for the mucosal delivery of foreign antigens to stimulate the mucosal immune system was first proposed over three decades ago. This novel strategy aimed to induce immunity against at least two distinct pathogens using a single bivalent carrier vaccine. It was first tested using a live-attenuated Salmonella enterica serovar Typhi strain in clinical trials in 1984, with excellent humoral immune responses against the carrier strain but only modest responses elicited against the foreign antigen. Since then, clinical trials with additional Salmonella-based carrier vaccines have been conducted. As with the original trial, only modest foreign antigen-specific immunity was achieved in most cases, despite the incorporation of incremental improvements in antigen expression technologies and carrier design over the years. In this review, we will attempt to deconstruct carrier vaccine immunogenicity in humans by examining the basis of bacterial immunity in the human gastrointestinal tract and how the gut detects and responds to pathogens versus benign commensal organisms. Carrier vaccine design will then be explored to determine the feasibility of retaining as many characteristics of a pathogen as possible to elicit robust carrier and foreign antigen-specific immunity, while avoiding over-stimulation of unacceptably reactogenic inflammatory responses.
Collapse
Affiliation(s)
- James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Amanda D. Buskirk
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment II, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA;
| |
Collapse
|
79
|
Isolation and Characterization of Gram-Negative Bacterial Species from Pasteurized Dairy Products: Potential Risk to Consumer Health. J FOOD QUALITY 2021. [DOI: 10.1155/2021/8876926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pathogenic bacterial contaminants of dairy products cause economic and human life losses if not destroyed by pasteurization. Gram-negative bacteria are among such major contaminants. Contamination persists because of faulty pasteurization or occurs during postpasteurization processing. Many factors, including presence of asymptomatic healthy carriers, existence of broad-range host pathogens, and resistance of pathogens to ordinary disinfectants, hamper the control of such pathogens. Here, samples of pasteurized dairy products were subjected to enrichment/selective cultures to test for possible Salmonella contamination, followed by growth on/in various media to test for phenotypic properties and some virulence characteristics of isolates (catalase, urease, oxidase, gelatinase, etc.). Isolates were characterized by phenotypic and genotypic tests for identification and resistance to clinically relevant antibiotics, including disk diffusion and for β-lactamase production. All milk samples harbored Gram-negative bacilli, which constitute a public health hazard. All of the isolates exhibited intermediate-level or higher resistance to ≥2 clinically relevant antibiotics, while some were susceptible. None tested positive for phenotypic gelatin hydrolysis but exhibited alpha- or beta-hemolysis. Sequence alignments of 16S rRNA gene partial sequences suggested up to 99% sequence similarities to subspecies of Salmonella enterica. Most isolates were also β-lactamase producers, especially blaTEM. In conclusion, high contamination rates were found in all Ethiopian pasteurized milk samples. The reasons for this burden of contamination need to be elucidated for meaningful and targeted control. Larger studies are needed, specifically to reveal points of entry of potential pathogens into dairy products. Information from this work will help to address and control previously unrecognized health hazards associated with consumption of pasteurized dairy products.
Collapse
|
80
|
Ssemakalu CC, Ulaszewska M, Elias S, Spencer AJ. Solar inactivated Salmonella Typhimurium induces an immune response in BALB/c mice. Heliyon 2021; 7:e05903. [PMID: 33553721 PMCID: PMC7855330 DOI: 10.1016/j.heliyon.2021.e05903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonella is contracted through the consumption of untreated water and contaminated food. The contraction and spread of water-related Salmonella in resource-poor communities can be reduced by using solar disinfection (SODIS) to treat the water before its consumption. SODIS is a water sanitizing technique that relies on natural sunshine. It is a cost-effective, inexpensive, environmentally, and user-friendly means of treating microbiologically contaminated water. This water disinfection method has saved many lives in communities vulnerable to water-related infections worldwide. At present, the success of SODIS has mainly been attributed to permanent inactivation of water pathogens ability to grow. However, little to no information exists as to whether immune responses to the solar inactivated pathogens are induced in SODIS water consumers. This study assessed the potential for solar inactivated S. Typhimurium to induce an immune response in mice. Results show that solar inactivated S. Typhimurium can induce bactericidal antibodies against S. Typhimurium. Furthermore, an increase in the secretion of interferon-gamma (IFN-γ) was observed in mice given the solar inactivated S. Typhimurium. These findings suggest that solar inactivated S. Typhimurium induces a humoral and cellular immune response. However, the level of protection afforded by these responses requires further investigation.
Collapse
Affiliation(s)
- Cornelius C Ssemakalu
- Cell Biology Research Unit, Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1911, South Africa
| | - Marta Ulaszewska
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Sean Elias
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Alexandra J Spencer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
81
|
Qu Z, McMahon BH, Perkins DJ, Hyman JM. Staged progression epidemic models for the transmission of invasive nontyphoidal Salmonella (iNTS) with treatment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1529-1549. [PMID: 33757197 PMCID: PMC11064643 DOI: 10.3934/mbe.2021079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We develop and analyze a stage-progression compartmental model to study the emerging invasive nontyphoidal Salmonella (iNTS) epidemic in sub-Saharan Africa. iNTS bloodstream infections are often fatal, and the diverse and non-specific clinical features of iNTS make it difficult to diagnose. We focus our study on identifying approaches that can reduce the incidence of new infections. In sub-Saharan Africa, transmission and mortality are correlated with the ongoing HIV epidemic and severe malnutrition. We use our model to quantify the impact that increasing antiretroviral therapy (ART) for HIV infected adults and reducing malnutrition in children would have on mortality from iNTS in the population. We consider immunocompromised subpopulations in the region with major risk factors for mortality, such as malaria and malnutrition among children and HIV infection and ART coverage in both children and adults. We parameterize the progression rates between infection stages using the branching probabilities and estimated time spent at each stage. We interpret the basic reproduction number R0 as the total contribution from an infinite infection loop produced by the asymptomatic carriers in the infection chain. The results indicate that the asymptomatic HIV+ adults without ART serve as the driving force of infection for the iNTS epidemic. We conclude that the worst disease outcome is among the pediatric population, which has the highest infection rates and death counts. Our sensitivity analysis indicates that the most effective strategies to reduce iNTS mortality in the studied population are to improve the ART coverage among high-risk HIV+ adults and reduce malnutrition among children.
Collapse
Affiliation(s)
- Zhuolin Qu
- Department of Mathematics, University of Texas at San Antonio, San Antonio 78202, TX, USA
| | - Benjamin H. McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Douglas J. Perkins
- University of New Mexico, Center for Global Health, Department of Internal Medicine, NM, USA
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
| | - James M. Hyman
- Department of Mathematics, Tulane University, New Orleans 70112, LA, USA
| |
Collapse
|
82
|
High genetic similarity of Salmonella Enteritidis as a predominant serovar by an independent survey in 3 large-scale chicken farms in China. Poult Sci 2021; 100:100941. [PMID: 33607315 PMCID: PMC7900599 DOI: 10.1016/j.psj.2020.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022] Open
Abstract
Salmonella Enteritidis (SE) are important zoonotic pathogens, and can be easily transferred to humans by contaminated animal products. Epidemic surveys of SE are necessary in current modern large-scale chicken farms. In this study, Salmonella strains were isolated from possibly infected samples collected at 3 independent farms, and their serotype, drug resistances, virulence genes, and genetic similarity were analyzed by molecular genetic analysis technologies including multilocus sequence typing (MLST), clustered regularly interspaced short palindromic repeats (CRISPR), pulsed-field gel electrophoresis (PFGE), and whole-genome sequencing (WGS). A total of 346 Salmonella strains were isolated from 3,598 samples (9.61%); 329 isolates were identified as SE (95.09%) and 308 isolates were multidrug resistant (93.62%). Virulotyping based on 6 virulence genes showed high similarity in SE isolates of each farm, with the exception of 2 isolates. All SE isolates were found to be the same ST11 type by MLST, and 22 strains of 150 SE isolates selected at random were found to belong to 1 cluster by PFGE and the same SET1 type by CRISPR. WGS results further revealed that these isolates belonged to the same clonal cluster, with high genetic similarity of 99.80 to 100.00%. All these results indicated that these SE isolates were overwhelmingly dominant and demonstrated high genetic similarity, which revealed that the same SE clone might be transmitted in these farms.
Collapse
|
83
|
Osborn J, Roberts T, Guillen E, Bernal O, Roddy P, Ongarello S, Sprecher A, Page AL, Ribeiro I, Piriou E, Tamrat A, de la Tour R, Rao VB, Flevaud L, Jensen T, McIver L, Kelly C, Dittrich S. Prioritising pathogens for the management of severe febrile patients to improve clinical care in low- and middle-income countries. BMC Infect Dis 2020; 20:117. [PMID: 32041536 PMCID: PMC7011354 DOI: 10.1186/s12879-020-4834-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/28/2020] [Indexed: 11/26/2022] Open
Abstract
Background Severe febrile illness without a known source (SFWS) is a challenge for clinicians when deciding how to manage a patient, particularly given the wide spectrum of potential aetiologies that contribute to fever. These infections are difficult to distinguish clinically, and accurate diagnosis requires a plethora of diagnostics including blood cultures, imaging techniques, molecular or serological tests, and more. When laboratory services are available, a limited test menu hinders clinical decision-making and antimicrobial stewardship, leading to empiric treatment and suboptimal patient outcomes. To specifically address SFWS, this work aimed to identify priority pathogens for a globally applicable panel for fever causing pathogens. Method A pragmatic two-pronged approach combining currently available scientific data in an analytical hierarchy process and systematically gathered expert input, was designed to address the lack of comprehensive global aetiology data. The expert re-ranked list was then further adapted for a specific use case to focus on community acquired infections in whole blood specimens. The resulting list was further analysed to address different geographical regions (Asia, Africa, and Latin America), and Cohen kappa scores of agreement were calculated. Results The expert ranked prioritized pathogen list generated as part of this two-pronged approach included typhoidal Salmonella, Plasmodium species and Mycobacterium tuberculosis as the top 3 pathogens. This pathogen list was then further adapted for the SFWS use case to develop a final pathogen list to inform product development. Subsequent analysis comparing the relevance of the SFWS pathogen list to multiple populations and geographical regions showed that the SFWS prioritized list had considerable utility across Africa and Asia, but less so for Latin America. In addition, the list showed high levels of agreement across different patient sub-populations, but lower relevance for neonates and symptomatic HIV patients. Conclusion This work highlighted once again the challenges of prioritising in global health, but it also shows that taking a two-pronged approach, combining available prevalence data with expert input, can result in a broadly applicable priority list. This comprehensive utility is particularly important in the context of product development, where a sufficient market size is essential to achieve a sustainable commercialized diagnostic product to address SFWS.
Collapse
|
84
|
Wilson CN, Pulford CV, Akoko J, Perez Sepulveda B, Predeus AV, Bevington J, Duncan P, Hall N, Wigley P, Feasey N, Pinchbeck G, Hinton JCD, Gordon MA, Fèvre EM. Salmonella identified in pigs in Kenya and Malawi reveals the potential for zoonotic transmission in emerging pork markets. PLoS Negl Trop Dis 2020; 14:e0008796. [PMID: 33232324 PMCID: PMC7748489 DOI: 10.1371/journal.pntd.0008796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/18/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Salmonella is a major cause of foodborne disease globally. Pigs can carry and shed non-typhoidal Salmonella (NTS) asymptomatically, representing a significant reservoir for these pathogens. To investigate Salmonella carriage by African domestic pigs, faecal and mesenteric lymph node samples were taken at slaughter in Nairobi, Busia (Kenya) and Chikwawa (Malawi) between October 2016 and May 2017. Selective culture, antisera testing and whole genome sequencing were performed on samples from 647 pigs; the prevalence of NTS carriage was 12.7% in Busia, 9.1% in Nairobi and 24.6% in Chikwawa. Two isolates of S. Typhimurium ST313 were isolated, but were more closely related to ST313 isolates associated with gastroenteritis in the UK than bloodstream infection in Africa. The discovery of porcine NTS carriage in Kenya and Malawi reveals potential for zoonotic transmission of diarrhoeal strains to humans in these countries, but not for transmission of clades specifically associated with invasive NTS disease in Africa.
Collapse
Affiliation(s)
- Catherine N. Wilson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- International Livestock Research Institute, Nairobi, Kenya
| | - Caisey V. Pulford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Blanca Perez Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jessica Bevington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Duncan
- Ministry of Agriculture, Food Security, Irrigation and Water Development, Malawi Government
| | - Neil Hall
- Earlham Institute, Norwich, United Kingdom
| | - Paul Wigley
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas Feasey
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gina Pinchbeck
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Melita A. Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
85
|
Ke Y, Lu W, Liu W, Zhu P, Chen Q, Zhu Z. Non-typhoidal Salmonella infections among children in a tertiary hospital in Ningbo, Zhejiang, China, 2012-2019. PLoS Negl Trop Dis 2020; 14:e0008732. [PMID: 33017418 PMCID: PMC7561262 DOI: 10.1371/journal.pntd.0008732] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/15/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022] Open
Abstract
Background Non-typhoidal Salmonella (NTS), a common cause of diarrheal enterocolitis, may also cause severe invasive diseases. Limited information on NTS infections in children is available in China. Methods We performed a retrospective study of children admitted to the Ningbo Women and Children’s Hospital with culture-confirmed NTS infections between January 2012 and December 2019. Clinical and microbiological information were collected. We compared demographic, clinical and antibiotic resistance variables of invasive NTS (iNTS) infections and non-invasive NTS (non-iNTS) infections, and explored associations between hospitalizations for pediatric NTS infections and temperature and rainfall. Results A total of 166 pediatric hospitalizations due to NTS infection were identified during the 8-year study period. Most of the 166 children were <5 years old (93.4%). The primary serotype was Salmonella Typhimurium (62.6%). Of 166 children with NTS infections, 11 had invasive infection. Compared to 155 children with non-iNTS infections, we found that iNTS infections were more likely to occur in infants ≤6 months or children with an underlying medical condition of leukemia at admission, but iNTS infections less often presented with a symptom of diarrhea (P <0.05 in all cases). The resistance rates of non-iNTS isolates to ceftazidime, ceftriaxone, cefepime, and aztreonam were significantly higher than those of iNTS isolates (P <0.05 in all cases). In addition, compared with iNTS isolates, non-iNTS isolates were significantly associated with resistance to ≥4 CLSI (Clinical and Laboratory Standard Institute) classes (P = 0.041, OR: 0.089, 95% CI: 0.009–0.901) and ≥2 first-line treatment agents (P = 0.040, OR: 0.159, 95% CI: 0.028–0.916). On the other hand, we found that seasonal NTS hospitalizations were positively associated with average seasonal temperature (r = 0.961, P = 0.039) and average monthly rainfall (r = 0.921, P <0.001). Conclusion Non-iNTS accounts for the majority of infections in this study; infants ≤6 months and children with underlying medical conditions of leukemia are more likely to have invasive infection. The rates of antibiotic resistance in the iNTS isolates are generally lower than those in the non-iNTS isolates. On the other hand, high temperatures and heavy rainfall are positively associated with NTS hospitalizations among children in Ningbo. Non-typhoidal Salmonella (NTS) infection is a foodborne disease with a global heavy burden. NTS usually causes diarrheal enterocolitis in humans and may also cause severe invasive NTS (iNTS) infections. Antimicrobial agents are not recommended for non-severe NTS diarrhea, but they are recommended for people at risk of severe or invasive infection. However, the recognition of iNTS infection among children is difficult before culture. We studied children who had NTS infections in a tertiary pediatric hospital in Ningbo and found that iNTS infections were more likely to occur in infants ≤6 months or children with an underlying medical condition of leukemia at admission, while diarrhea was more common in children with non-iNTS infections. The high rates of antibiotic resistance among children with NTS in Ningbo calls for continuous NTS surveillance. On the other hand, high temperatures and heavy rainfall were positively associated with NTS hospitalizations among children. These findings may help us to improve measures for the prevention, diagnosis and treatment of NTS infections among children.
Collapse
Affiliation(s)
- Yefang Ke
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Wenbo Lu
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Wenyuan Liu
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Pan Zhu
- Neonatal Intensive Care Unit, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Qunying Chen
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Zhe Zhu
- Department of Blood Transfusion, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- * E-mail:
| |
Collapse
|
86
|
Askoura M, Hegazy WAH. Ciprofloxacin interferes with Salmonella Typhimurium intracellular survival and host virulence through repression of Salmonella pathogenicity island-2 (SPI-2) genes expression. Pathog Dis 2020; 78:5743416. [PMID: 32083661 DOI: 10.1093/femspd/ftaa011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 01/12/2023] Open
Abstract
Current study aims to characterize the influence of sub-minimum inhibitory concentration (sub-MIC) of ciprofloxacin on Salmonella intracellular survival and host virulence. Herein, Salmonella resistance patterns to various antibiotics were in agreement with those reported in previous studies. Moreover, intracellular survival of both ciprofloxacin-sensitive and -resistant Salmonella was markedly reduced upon treatment with sub-MIC of ciprofloxacin as determined by gentamicin protection assay. These findings were further confirmed using immunostaining indicating an inhibitory effect of sub-MIC of ciprofloxacin on Salmonella intracellular survival. RT-qPCR revealed that expression of genes encoding Salmonella type three secretion system (TTSS) decreased upon bacterial exposure to sub-MIC of ciprofloxacin. Furthermore, bacterial exposure to sub-MIC of ciprofloxacin significantly reduced expression of both sifA and sifB, which are important for Salmonella filaments formation within the host. Treatment of Salmonella with sub-MIC of ciprofloxacin reduced bacterial capacity to kill mice infection models. A lower mortality rate was observed in mice injected with Salmonella treated with sub-MIC of ciprofloxacin as compared with mice inoculated with untreated bacteria. Collectively, current findings indicate that, in addition to its bactericidal potential, sub-MIC of ciprofloxacin could inhibit Salmonella intracellular survival, virulence genes expression as well as host pathogenesis, providing another mechanism for ciprofloxacin in limiting Salmonella host infection.
Collapse
Affiliation(s)
- Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Wael Abdel Halim Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmaceutics, College of Pharmacy, University of Florida, USA
| |
Collapse
|
87
|
Micoli F, Alfini R, Di Benedetto R, Necchi F, Schiavo F, Mancini F, Carducci M, Palmieri E, Balocchi C, Gasperini G, Brunelli B, Costantino P, Adamo R, Piccioli D, Saul A. GMMA Is a Versatile Platform to Design Effective Multivalent Combination Vaccines. Vaccines (Basel) 2020; 8:E540. [PMID: 32957610 PMCID: PMC7564227 DOI: 10.3390/vaccines8030540] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 01/21/2023] Open
Abstract
Technology platforms are an important strategy to facilitate the design, development and implementation of vaccines to combat high-burden diseases that are still a threat for human populations, especially in low- and middle-income countries, and to address the increasing number and global distribution of pathogens resistant to antimicrobial drugs. Generalized Modules for Membrane Antigens (GMMA), outer membrane vesicles derived from engineered Gram-negative bacteria, represent an attractive technology to design affordable vaccines. Here, we show that GMMA, decorated with heterologous polysaccharide or protein antigens, leads to a strong and effective antigen-specific humoral immune response in mice. Importantly, GMMA promote enhanced immunogenicity compared to traditional formulations (e.g., recombinant proteins and glycoconjugate vaccines), without negative impact to the anti-GMMA immune response. Our findings support the use of GMMA as a "plug and play" technology for the development of effective combination vaccines targeting different bugs at the same time.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Fabiola Schiavo
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | | | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | | | | | - Roberto Adamo
- GSK, 53100 Siena, Italy; (C.B.); (B.B.); (P.C.); (R.A.); (D.P.)
| | - Diego Piccioli
- GSK, 53100 Siena, Italy; (C.B.); (B.B.); (P.C.); (R.A.); (D.P.)
| | - Allan Saul
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| |
Collapse
|
88
|
Zhao Y, Zhang L, Xing F, Zhang R, Huang J. Synchronous Acute Acalculous Cholecystitis and Appendicitis Due to Salmonella Group D: A Rare Case Report From China and Review of the Literature. Front Med (Lausanne) 2020; 7:406. [PMID: 33015080 PMCID: PMC7461861 DOI: 10.3389/fmed.2020.00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 12/07/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) disease is not common as typhoid fever but has become a global public health problem in recent decades. Acute acalculous cholecystitis (AAC) and appendicitis are rare complications of NTS infection, which are usually difficult to be diagnosed with atypical signs. Pathogenesis of NTS-induced AAC and NTS-induced appendicitis is still unclear. Ultrasound is the first choice for diagnosis of these two rare complications, computed tomography can assist in and next-generation sequencing (NGS), as a new technology in clinical medicine, also facilitates diagnosis. We described a case of simultaneous AAC and appendicitis due to NTS in an elderly male and further confirmed the diagnosis using NGS. As far as we know, this is the first Asian case of two complications occurring at the same time. Our aim is to alert physicians to pay attention to this rare condition.
Collapse
Affiliation(s)
- Yan Zhao
- Rheumatology Department, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China.,Microbiology Department, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Lijun Zhang
- Rheumatology Department, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Fanfan Xing
- Microbiology Department, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Ruiping Zhang
- Pathology Department, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Jinxian Huang
- Rheumatology Department, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
89
|
Kariuki S, Mbae C, Van Puyvelde S, Onsare R, Kavai S, Wairimu C, Ngetich R, Clemens J, Dougan G. High relatedness of invasive multi-drug resistant non-typhoidal Salmonella genotypes among patients and asymptomatic carriers in endemic informal settlements in Kenya. PLoS Negl Trop Dis 2020; 14:e0008440. [PMID: 32745137 PMCID: PMC7425985 DOI: 10.1371/journal.pntd.0008440] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/13/2020] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Invasive Non-typhoidal Salmonella (iNTS) disease is a major public health challenge, especially in Sub-Saharan Africa (SSA). In Kenya, mortality rates are high (20-25%) unless prompt treatment is instituted. The most common serotypes are Salmonella enterica serotype Typhimurium (S. Typhimurium) and Salmonella enterica serotype Enteritidis (S. Enteritidis). In a 5 year case-control study in children residing in the Mukuru informal settlement in Nairobi, Kenya, a total of 4201 blood cultures from suspected iNTS cases and 6326 fecal samples from age-matched controls were studied. From the laboratory cultures we obtained a total of 133 S. Typhimurium isolates of which 83(62.4%) came from cases (53 blood and 30 fecal) and 50(37.6%) from controls (fecal). A total of 120 S. Enteritidis consisted of 70(58.3%) from cases (43 blood and 27 fecal) and 50(41.7%) from controls (fecal). The S. Typhimurium population fell into two distinct ST19 lineages constituting 36.1%, as well as ST313 lineage I (27.8%) and ST313 lineage II (36.1%) isolates. The S. Enteritidis isolates fell into the global epidemic lineage (46.6%), the Central/Eastern African lineage (30.5%), a novel Kenyan-specific lineage (12.2%) and a phylogenetically outlier lineage (10.7%). Detailed phylogenetic analysis revealed a high level of relatedness between NTS from blood and stool originating from cases and controls, indicating a common source pool. Multidrug resistance was common throughout, with 8.5% of such isolates resistant to extended spectrum beta lactams. The high rate of asymptomatic carriage in the population is a concern for transmission to vulnerable individuals and this group could be targeted for vaccination if an iNTS vaccine becomes available.
Collapse
Affiliation(s)
- Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Robert Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Susan Kavai
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Ronald Ngetich
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John Clemens
- Office of the Executive Director, International Diarrheal Diseases Research Centre, Dhaka, Bangladesh
| | - Gordon Dougan
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Department of Medicine, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
90
|
Perez-Toledo M, Beristain-Covarrubias N, Channell WM, Hitchcock JR, Cook CN, Coughlan RE, Bobat S, Jones ND, Nakamura K, Ross EA, Rossiter AE, Rooke J, Garcia-Gimenez A, Jossi S, Persaud RR, Marcial-Juarez E, Flores-Langarica A, Henderson IR, Withers DR, Watson SP, Cunningham AF. Mice Deficient in T-bet Form Inducible NO Synthase-Positive Granulomas That Fail to Constrain Salmonella. THE JOURNAL OF IMMUNOLOGY 2020; 205:708-719. [PMID: 32591391 PMCID: PMC7372318 DOI: 10.4049/jimmunol.2000089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-γ and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-γ-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-γ-/- and T-bet-/- mice. In IFN-γ-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-γ reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-γ. T-bet-/- mice induce significant levels of IFN-γ- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-γ-dependent iNOS+ granulomas and prevent dissemination.
Collapse
Affiliation(s)
- Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Nonantzin Beristain-Covarrubias
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William M Channell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica R Hitchcock
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Charlotte N Cook
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruth E Coughlan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Saeeda Bobat
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Nicholas D Jones
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kyoko Nakamura
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ewan A Ross
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica Rooke
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alicia Garcia-Gimenez
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sian Jossi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruby R Persaud
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Edith Marcial-Juarez
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Adriana Flores-Langarica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia; and
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
91
|
Baliban SM, Lu YJ, Malley R. Overview of the Nontyphoidal and Paratyphoidal Salmonella Vaccine Pipeline: Current Status and Future Prospects. Clin Infect Dis 2020; 71:S151-S154. [PMID: 32725233 PMCID: PMC7388718 DOI: 10.1093/cid/ciaa514] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nontyphoidal Salmonella and Salmonella Paratyphi are responsible for significant morbidity and mortality worldwide. To date, no vaccine has been licensed against these organisms. The development of effective vaccines remains an urgent priority. In this review, the rationale for and current status of various vaccine candidates against S. Paratyphi and nontyphoidal Salmonella are presented, with a focus on the research findings from the 2019 International Conference on Typhoid and Other Invasive Salmonelloses. Additionally, other vaccine candidates that are currently undergoing clinical development are highlighted. Future approaches, which may include antigens that are genetically conserved across Salmonella and confer broad, non-serotype-specific protection, are also discussed.
Collapse
Affiliation(s)
- Scott M Baliban
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
92
|
von Ambüren J, Schreiber F, Fischer J, Winter S, van Gumpel E, Simonis A, Rybniker J. Comprehensive Host Cell-Based Screening Assays for Identification of Anti-Virulence Drugs Targeting Pseudomonas aeruginosa and Salmonella Typhimurium. Microorganisms 2020; 8:microorganisms8081096. [PMID: 32707871 PMCID: PMC7463580 DOI: 10.3390/microorganisms8081096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of bacterial pathogens being resistant to antibiotic treatment is increasing worldwide, leading to a severe global health challenge. Simultaneously, the development and approval of new antibiotics stagnated in the past decades, leading to an urgent need for novel approaches to avoid the spread of untreatable bacterial infections in the future. We developed a highly comprehensive screening platform based on quantification of pathogen driven host-cell death to detect new anti-virulence drugs targeting Pseudomonas aeruginosa (Pa) and Salmonella enterica serovar Typhimurium (ST), both known for their emerging antibiotic resistance. By screening over 10,000 small molecules we could identify several substances showing promising effects on Pa and ST pathogenicity in our in vitro infection model. Importantly, we could detect compounds potently inhibiting bacteria induced killing of host cells and one novel comipound with impact on the function of the type 3 secretion system (T3SS) of ST. Thus, we provide proof of concept data of rapid and feasible medium- to high-throughput drug screening assays targeting virulence mechanisms of two major Gram-negative pathogens.
Collapse
Affiliation(s)
- Julia von Ambüren
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Fynn Schreiber
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Julia Fischer
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Sandra Winter
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Edeltraud van Gumpel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Alexander Simonis
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
- Correspondence: (A.S.); (J.R.)
| | - Jan Rybniker
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937 Cologne, Germany
- Correspondence: (A.S.); (J.R.)
| |
Collapse
|
93
|
Piccini G, Montomoli E. Pathogenic signature of invasive non-typhoidal Salmonella in Africa: implications for vaccine development. Hum Vaccin Immunother 2020; 16:2056-2071. [PMID: 32692622 PMCID: PMC7553687 DOI: 10.1080/21645515.2020.1785791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Invasive non-typhoidal Salmonella (iNTS) infections are a leading cause of bacteremia in Sub-Saharan Africa (sSA), thereby representing a major public health threat. Salmonella Typhimurium clade ST313 and Salmonella Enteriditis lineages associated with Western and Central/Eastern Africa are among the iNTS serovars which are of the greatest concern due to their case-fatality rate, especially in children and in the immunocompromised population. Identification of pathogen-associated features and host susceptibility factors that increase the risk for invasive non-typhoidal salmonellosis would be instrumental for the design of targeted prevention strategies, which are urgently needed given the increasing spread of multidrug-resistant iNTS in Africa. This review summarizes current knowledge of bacterial traits and host immune responses associated with iNTS infections in sSA, then discusses how this knowledge can guide vaccine development while providing a summary of vaccine candidates in preclinical and early clinical development.
Collapse
Affiliation(s)
| | - Emanuele Montomoli
- VisMederi srl , Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| |
Collapse
|
94
|
Sodagari HR, Wang P, Robertson I, Habib I, Sahibzada S. Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia. Animals (Basel) 2020; 10:E1192. [PMID: 32674371 PMCID: PMC7401514 DOI: 10.3390/ani10071192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Non-typhoidal Salmonella is a major zoonotic pathogen that plays a significant role in foodborne human salmonellosis worldwide through the consumption of contaminated foods, particularly those of animal origin. Despite a considerable reduction in human salmonellosis outbreaks in developed countries, Australia is experiencing a continuous rise of such outbreaks in humans. This review of the literature highlights the reported non-typhoidal Salmonella outbreaks in humans as well as the occurrence of the pathogen in foods from animal sources throughout Australia. Non-typhoidal Salmonella infections from food animals are more often associated with at-risk people, such as immunocompromised and aged people or children. Although several animal-sourced foods were recognised as the catalysts for salmonellosis outbreaks in Australia, egg and egg-based products remained the most implicated foods in the reported outbreaks. This review further highlights the antimicrobial resistance trends of non-typhoidal Salmonella isolates at the human-food interface, with a focus on clinically important antimicrobials in humans, by collating evidence from previous investigations in Australia. The rise in antimicrobial-resistant Salmonella, especially to antimicrobials commonly prescribed to treat human salmonellosis, has become a significant global public health concern. However, the overall prevalence of antimicrobial resistance in Australia is considerably lower than in other parts of the world, particularly in terms of critically important antimicrobials for the treatment of human salmonellosis. The present review adds to our understanding of the global epidemiology of non-typhoidal Salmonella with emphasis on the past few decades in Australia.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Penghao Wang
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Ian Robertson
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Ihab Habib
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
- Veterinary Medicine Department, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain P.O. Box 1555, UAE
| | - Shafi Sahibzada
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| |
Collapse
|
95
|
Phoba MF, Barbé B, Ley B, Van Puyvelde S, Post A, Mattheus W, Deborggraeve S, Lunguya O, Jacobs J. High genetic similarity between non-typhoidal Salmonella isolated from paired blood and stool samples of children in the Democratic Republic of the Congo. PLoS Negl Trop Dis 2020; 14:e0008377. [PMID: 32614856 PMCID: PMC7331982 DOI: 10.1371/journal.pntd.0008377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/08/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) serotypes Typhimurium and Enteritidis are a major cause of bloodstream infections in children in sub-Saharan Africa but their reservoir is unknown. We compared pairs of NTS blood and stool isolates (with the same NTS serotype recovered in the same patient) for genetic similarity. METHODS Between November 2013 and April 2017, hospital-admitted children (29 days to 14 years) with culture-confirmed NTS bloodstream infections were enrolled in a cross-sectional study at Kisantu Hospital, DR Congo. Stool cultures for Salmonella were performed on a subset of enrolled children, as well as on a control group of non-febrile hospital-admitted children. Pairs of blood and stool NTS isolates were assessed for genetic similarity by multiple-locus variable-number of tandem repeats (MLVA) and genomics analysis. RESULTS A total of 299 children with NTS grown from blood cultures (Typhimurium 68.6%, Enteritidis 30.4%, other NTS 1.0%) had a stool sample processed; in 105 (35.1%) of them NTS was detected (Typhimurium 70.5%, Enteritidis 25.7%, other NTS 3.8%). A total of 87/105 (82.9%) pairs of blood and stool NTS isolates were observed (representing 29.1% of the 299 children). Among 1598 controls, the proportion of NTS stool excretion was 2.1% (p < 0.0001). MLVA types among paired isolates were identical in 82/87 (94.3%) pairs (27.4% of the 299 children; 61/66 (92.4%) in Typhimurium and 21/21 (100%) in Enteritidis pairs). Genomics analysis confirmed high genetic similarity within 41/43 (95.3%) pairs, showing a median SNP difference of 1 (range 0-77) and 1 (range 0-4) for Typhimurium and Enteritidis pairs respectively. Typhimurium and Enteritidis isolates belonged to sequence types ST313 lineage II and ST11 respectively. CONCLUSION Nearly 30% of children with NTS bloodstream infection showed stool excretion of an NTS isolate with high genetic similarity, adding to the evidence of humans as a potential reservoir for NTS.
Collapse
Affiliation(s)
- Marie-France Phoba
- Department of Microbiology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Department of Microbiology, University Hospital of Kinshasa, Democratic Republic of the Congo
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Benedikt Ley
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Annelies Post
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wesley Mattheus
- Department of Human Bacterial Diseases, Sciensano, Brussels, Belgium
| | - Stijn Deborggraeve
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Octavie Lunguya
- Department of Microbiology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Department of Microbiology, University Hospital of Kinshasa, Democratic Republic of the Congo
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
96
|
Park S, Jung B, Kim E, Hong ST, Yoon H, Hahn TW. Salmonella Typhimurium Lacking YjeK as a Candidate Live Attenuated Vaccine Against Invasive Salmonella Infection. Front Immunol 2020; 11:1277. [PMID: 32655567 PMCID: PMC7324483 DOI: 10.3389/fimmu.2020.01277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) causes gastrointestinal infection, which is commonly self-limiting in healthy humans but may lead to invasive infection at extraintestinal sites, leading to bacteremia and focal systemic infections in the immunocompromised. However, a prophylactic vaccine against invasive NTS has not yet been developed. In this work, we explored the potential of a ΔyjeK mutant strain as a live attenuated vaccine against invasive NTS infection. YjeK in combination with YjeA is required for the post-translational modification of elongation factor P (EF-P), which is critical for bacterial protein synthesis. Therefore, malfunction of YjeK and YjeA-mediated EF-P activation might extensively influence protein expression during Salmonella infection. Salmonella lacking YjeK showed substantial alterations in bacterial motility, antibiotics resistance, and virulence. Interestingly, deletion of the yjeK gene increased the expression levels of Salmonella pathogenicity island (SPI)-1 genes but decreased the transcription levels of SPI-2 genes, thereby influencing bacterial invasion and survival abilities in contact with host cells. In a mouse model, the ΔyjeK mutant strain alleviated the levels of splenomegaly and bacterial burdens in the spleen and liver in comparison with the wild-type strain. However, mice immunized with the ΔyjeK mutant displayed increased Th1- and Th2-mediated immune responses at 28 days post-infection, promoting cytokines and antibodies production. Notably, the Th2-associated antibody response was highly induced by administration of the ΔyjeK mutant strain. Consequently, vaccination with the ΔyjeK mutant strain protected 100% of the mice against challenge with lethal invasive Salmonella and significantly relieved bacterial burdens in the organs. Collectively, these results suggest that the ΔyjeK mutant strain can be exploited as a promising live attenuated NTS vaccine.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
97
|
Mbae C, Mwangi M, Gitau N, Irungu T, Muendo F, Wakio Z, Wambui R, Kavai S, Onsare R, Wairimu C, Ngetich R, Njeru F, Van Puyvelde S, Clemens J, Dougan G, Kariuki S. Factors associated with occurrence of salmonellosis among children living in Mukuru slum, an urban informal settlement in Kenya. BMC Infect Dis 2020; 20:422. [PMID: 32552753 PMCID: PMC7302364 DOI: 10.1186/s12879-020-05134-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background In Kenya, typhoid fever and invasive non-typhoidal salmonellosis present a huge burden of disease, especially in poor-resource settings where clean water supply and sanitation conditions are inadequate. The epidemiology of both diseases is poorly understood in terms of severity and risk factors. The aim of the study was to determine the disease burden and spatial distribution of salmonellosis, as well as socioeconomic and environmental risk factors for these infections, in a large informal settlement near the city of Nairobi, from 2013 to 2017. Methods Initially, a house-to-house baseline census of 150,000 population in Mukuru informal settlement was carried out and relevant socioeconomic, demographic, and healthcare utilization information was collected using structured questionnaires. Salmonella bacteria were cultured from the blood and faeces of children < 16 years of age who reported at three outpatient facilities with fever alone or fever and diarrhea. Tests of association between specific Salmonella serotypes and risk factors were conducted using Pearson Chi-Square (χ2) test. Results A total of 16,236 children were recruited into the study. The prevalence of bloodstream infections by Non-Typhoidal Salmonella (NTS), consisting of Salmonella Typhimurium/ Enteriditis, was 1.3%; Salmonella Typhi was 1.4%, and this was highest among children < 16 years of age. Occurrence of Salmonella Typhimurium/ Enteriditis was not significantly associated with rearing any domestic animals. Rearing chicken was significantly associated with high prevalence of S. Typhi (2.1%; p = 0.011). The proportion of children infected with Salmonella Typhimurium/ Enteriditis was significantly higher in households that used water pots as water storage containers compared to using water directly from the tap (0.6%). Use of pit latrines and open defecation were significant risk factors for S. Typhi infection (1.6%; p = 0.048). The proportion of Salmonella Typhimurium/ Enteriditis among children eating street food 4 or more times per week was higher compared to 1 to 2 times/week on average (1.1%; p = 0.032). Conclusion Typhoidal and NTS are important causes of illness in children in Mukuru informal settlement, especially among children less than 16 years of age. Improving Water, Sanitation and Hygiene (WASH) including boiling water, breastfeeding, hand washing practices, and avoiding animal contact in domestic settings could contribute to reducing the risk of transmission of Salmonella disease from contaminated environments.
Collapse
Affiliation(s)
- Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya.
| | - Moses Mwangi
- Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Naomi Gitau
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Tabitha Irungu
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Fidelis Muendo
- Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Zilla Wakio
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Ruth Wambui
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Susan Kavai
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Robert Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Ronald Ngetich
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Frida Njeru
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Sandra Van Puyvelde
- Department of Medicine, University of Cambridge, Cambridge, UK.,Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - John Clemens
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
98
|
O'Reilly PJ, Pant D, Shakya M, Basnyat B, Pollard AJ. Progress in the overall understanding of typhoid fever: implications for vaccine development. Expert Rev Vaccines 2020; 19:367-382. [PMID: 32238006 DOI: 10.1080/14760584.2020.1750375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Typhoid fever continues to have a substantial impact on human health, especially in Asia and sub-Saharan Africa. Access to safe water, and adequate sanitation and hygiene remain the cornerstone of prevention, but these are not widely available in many impoverished settings. The emergence of antibiotic resistance affects typhoid treatment and adds urgency to typhoid control efforts. Vaccines provide opportunities to prevent and control typhoid fever in endemic settings. AREAS COVERED Literature search was performed looking for evidence concerning the global burden of typhoid and strategies for the prevention and treatment of typhoid fever. Cost of illness, available typhoid and paratyphoid vaccines and cost-effectiveness were also reviewed. The objective was to provide a critical overview of typhoid fever, in order to assess the current understanding and potential future directions for typhoid treatment and control. EXPERT COMMENTARY Our understanding of typhoid burden and methods of prevention has grown over recent years. However, typhoid fever still has a significant impact on health in low and middle-income countries. Introduction of typhoid conjugate vaccines to the immunization schedule is expected to make a major contribution to control of typhoid fever in endemic countries, although vaccination alone is unlikely to eliminate the disease.
Collapse
Affiliation(s)
- Peter J O'Reilly
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre , Oxford, UK
| | - Dikshya Pant
- Department of Paediatrics, Patan Academy of Health Sciences, Patan Hospital , Kathmandu, Nepal
| | - Mila Shakya
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences , Kathmandu, Nepal
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences , Kathmandu, Nepal
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre , Oxford, UK
| |
Collapse
|
99
|
Abstract
In general, foodborne diseases present themselves with gastrointestinal symptoms caused by bacterial, viral, and parasitic pathogens well established to be foodborne. These pathogens are also associated with extraintestinal clinical manifestations. Recent studies have suggested that Escherichia coli and Klebsiella pneumoniae, which both cause common extraintestinal infections such as urinary tract and bloodstream infections, may also be foodborne. The resolution and separation of these organisms into pathotypes versus commensals by modern genotyping methods have led to the identification of key lineages of these organisms causing outbreaks of extraintestinal infections. These epidemiologic observations suggested common- or point-source exposures, such as contaminated food. Here, we describe the spectrum of extraintestinal illnesses caused by recognized enteric pathogens and then review studies that demonstrate the potential role of extraintestinal pathogenic E. coli (ExPEC) and K. pneumoniae as foodborne pathogens. The impact of global food production and distribution systems on the possible foodborne spread of these pathogens is discussed.
Collapse
Affiliation(s)
- Lee W. Riley
- School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
100
|
Luvsansharav UO, Wakhungu J, Grass J, Oneko M, Nguyen V, Bigogo G, Ogola E, Audi A, Onyango D, Hamel MJ, Montgomery JM, Fields PI, Mahon BE. Exploration of risk factors for ceftriaxone resistance in invasive non-typhoidal Salmonella infections in western Kenya. PLoS One 2020; 15:e0229581. [PMID: 32126103 PMCID: PMC7053705 DOI: 10.1371/journal.pone.0229581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
Multidrug-resistant non-typhoidal Salmonella (NTS) infection has emerged as a prominent cause of invasive infections in Africa. We investigated the prevalence of ceftriaxone-resistant invasive NTS infections, conducted exploratory analysis of risk factors for resistance, and described antimicrobial use in western Kenya. We conducted a secondary analysis of existing laboratory, epidemiology, and clinical data from three independent projects, a malaria vaccine trial, a central nervous system (CNS) study, and the International Emerging Infections Program morbidity surveillance (surveillance program) during 2009-2014. We calculated odds ratios (OR) with 95% confidence intervals (CI) for ceftriaxone-resistant NTS infections compared with ceftriaxone-susceptible infections. We surveyed hospitals, pharmacies, and animal drug retailers about the availability and use of antimicrobials. In total, 286 invasive NTS infections were identified in the three projects; 43 NTS isolates were ceftriaxone-resistant. The absolute prevalence of ceftriaxone resistance varied among these methodologically diverse projects, with 18% (16/90) of isolates resistant to ceftriaxone in the vaccine trial, 89% (16/18) in the CNS study, and 6% (11/178) in the surveillance program. Invasive ceftriaxone-resistant infections increased over time. Most ceftriaxone-resistant isolates were co-resistant to multiple other antimicrobials. Having an HIV-positive mother (OR = 3.7; CI = 1.2-11.4) and taking trimethoprim-sulfamethoxazole for the current illness (OR = 9.6, CI = 1.2-78.9) were significantly associated with acquiring ceftriaxone-resistant invasive NTS infection. Ceftriaxone and other antibiotics were widely prescribed; multiple issues related to prescription practices and misuse were identified. In summary, ceftriaxone-resistant invasive NTS infection is increasing and limiting treatment options for serious infections. Efforts are ongoing to address the urgent need for improved microbiologic diagnostic capacity and an antimicrobial surveillance system in Kenya.
Collapse
Affiliation(s)
- Ulzii-Orshikh Luvsansharav
- Epidemic Intelligence Service, Epidemiology Workforce Branch, Division of Scientific Education and Professional Development, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Enteric Diseases Epidemiology Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James Wakhungu
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Julian Grass
- Enteric Diseases Epidemiology Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Martina Oneko
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Von Nguyen
- Epidemic Intelligence Service, Epidemiology Workforce Branch, Division of Scientific Education and Professional Development, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Enteric Diseases Epidemiology Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Godfrey Bigogo
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Eric Ogola
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Allan Audi
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Mary J Hamel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Joel M Montgomery
- Division of Global Health Protection, Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Patricia I Fields
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Barbara E Mahon
- Enteric Diseases Epidemiology Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|