51
|
Doretto VF, Salto ABR, Schivoletto S, Zugman A, Oliveira MC, Brañas M, Croci M, Ito LT, Santoro M, Jackowski AP, Bressan RA, Rohde LA, Salum G, Miguel EC, Pan PM. Childhood maltreatment and the structural development of hippocampus across childhood and adolescence. Psychol Med 2025; 54:1-9. [PMID: 39773537 PMCID: PMC11769901 DOI: 10.1017/s0033291724001636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/30/2024] [Accepted: 07/08/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Prior studies suggest that childhood maltreatment is associated with altered hippocampal volume. However, longitudinal studies are currently scarce, making it difficult to determine how alterations in hippocampal volume evolve over time. The current study examined the relationship between childhood maltreatment and hippocampal volumetric development across childhood and adolescence in a community sample. METHODS In this longitudinal study, a community sample of 795 participants underwent brain magnetic resonance imaging (MRI) in three waves spanning ages 6-21 years. Childhood maltreatment was assessed using parent-report and children´s self-report at baseline (6-12 years old). Mixed models were used to examine the relationship between childhood maltreatment and hippocampal volume across time. RESULTS The quadratic term of age was significantly associated with both right and left hippocampal volume development. High exposure to childhood maltreatment was associated with reduced offset of right hippocampal volume and persistent reduced volume throughout adolescence.Critically, the relationship between childhood maltreatment and reduced right hippocampal volume remained significant after adjusting for the presence of any depressive disorder during late childhood and adolescence and hippocampal volume polygenic risk scores. Time-by-CM and Sex-by-CM interactions were not statistically significant. CONCLUSIONS The present study showed that childhood maltreatment is associated with persistent reduction of hippocampal volume in children and adolescents, even after adjusting for the presence of major depressive disorder and genetic determinants of hippocampal structure.
Collapse
Affiliation(s)
- Victoria Fogaça Doretto
- Department of Psychiatry Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Ana Beatriz Ravagnani Salto
- Department of Psychiatry Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Sandra Schivoletto
- Department of Psychiatry Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Andre Zugman
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
- Department of Psychiatry, Laboratório Interdisciplinar Neurociências Clínicas (LiNC), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Melaine Cristina Oliveira
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
- Department of Psychiatry, Laboratório Interdisciplinar Neurociências Clínicas (LiNC), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo Brañas
- Department of Psychiatry Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Marcos Croci
- Department of Psychiatry Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Lucas Toshio Ito
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
- Department of Psychiatry, Laboratório Interdisciplinar Neurociências Clínicas (LiNC), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcos Santoro
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
- Department of Psychiatry, Laboratório Interdisciplinar Neurociências Clínicas (LiNC), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrea P. Jackowski
- Department of Psychiatry, Laboratório Interdisciplinar Neurociências Clínicas (LiNC), Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Education, Information and Communications Technology (ICT) and Learning, Østfold University College, Halden, Norway
| | - Rodrigo A. Bressan
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
- Department of Psychiatry, Laboratório Interdisciplinar Neurociências Clínicas (LiNC), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
- Attention-Deficit/Hyperactivity Disorder and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Giovanni Salum
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
- Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eurípedes Constantino Miguel
- Department of Psychiatry Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Pedro Mario Pan
- Department of Psychiatry Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
- Department of Psychiatry, Laboratório Interdisciplinar Neurociências Clínicas (LiNC), Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
52
|
Dos Santos JCG, de Araujo Neto FR, de Oliveira Seno L, de Abreu Santos DJ, de Oliveira KJ, Aspilcueta-Borquis RR, de Oliveira HN, Tonhati H. Genomic analysis of genotype-environment interaction in age at first calving of Murrah buffaloes. J Anim Breed Genet 2025; 142:57-68. [PMID: 38837529 DOI: 10.1111/jbg.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/24/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Age at first calving (AFC) is a measure of sexual maturity associated with the start of productive life of dairy animals. Additionally, a lower AFC reduces the generation interval and early culling of females. However, AFC has low heritability, making it a trait highly influenced by environmental factors. In this scenario, one way to improve the reproductive performance of buffalo cows is to select robust animals according to estimated breeding value (EBV) using models that include genotype-environment interaction (GEI) with the application of reaction norm models (RNMs). This can be achieved by understanding the genomic basis related to GEI of AFC. Thus, in this study, we aimed to predict EBV considering GEI via the RNM and identify candidate genes related to this component in dairy buffaloes through genome-wide association studies (GWAS). We used 1795 AFC records from three Murrah buffalo herds and formed environmental gradients (EGs) from contemporary group solutions obtained from genetic analysis of 270-day cumulative milk yield. Heritability estimates ranged from 0.15 to 0.39 along the EG. GWAS of the RNM slope parameter identified important genomic regions. The genomic window that explained the highest percentage of genetic variance of the slope (0.67%) was located on BBU1. After functional analysis, five candidate genes were detected, involved in two biological processes. The results suggested the existence of a GEI for AFC in Murrah buffaloes, with reclassification of animals when different environmental conditions were considered. The inclusion of genomic information increased the accuracy of breeding values for the intercept and slope of the reaction norm. GWAS analysis suggested that important genes associated with the AFC reaction norm slope were possibly also involved in biological processes related to lipid metabolism and immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Humberto Tonhati
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal - UNESP, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
53
|
Jopling E, Tracy A, LeMoult J. Attention to social threat predicts diurnal cortisol dynamics during the high school transition. Psychoneuroendocrinology 2025; 171:107226. [PMID: 39481302 DOI: 10.1016/j.psyneuen.2024.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Adolescence is a developmental period marked by significant social shifts accompanied by concurrent changes across biological, cognitive, and emotional domains. Within adolescence, the high school transition is a pivotal time for youth that is ripe with opportunities yet has the potential to disrupt functioning. An increasingly sophisticated understanding of health and developmental biology indicates that the hypothalamic-pituitary-adrenal (HPA) axis plays an important role in transducing social experiences into physiological changes that have long-term impacts on health and wellbeing. There is reason to believe that attentional biases to social threat could impact cortisol, a steroid hormone indexing activity of the HPA axis, during the high school transition. The present study examined associations between attentional biases to socially threatening stimuli, measured using the Affective Posner paradigm, and components of the diurnal cortisol rhythm among youth across the first two days of high school. Participants included 67 youth (N = 504 saliva samples) with a mean age of 12.86 years and a relatively equal split with regard to both sex assigned at birth and gender identity (54 % male; 54 % boys). Findings build upon and extend previous work by demonstrating that greater attentional engagement bias to socially threatening stimuli is associated with a pattern of greater diurnal HPA axis reactivity across the first two days of the high school transition, as evidenced by a steeper cortisol awakening response and a steeper diurnal cortisol slope. This work extends our understanding of the mechanisms through which stress relates to wellbeing in youth by embedding biological development in the life course. Clinically, this work has the potential to inform interventions to protect youth against the biological embedding of stress by identifying a theoretically driven, socio-contextually relevant risk factor to be attenuated - namely, attentional bias to threat.
Collapse
Affiliation(s)
- E Jopling
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA.
| | - A Tracy
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - J LeMoult
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
54
|
Goutal S, Lancien M, Rivier F, Tournier N, Vaillend C. Brain glucose metabolism as a neuronal substrate of the abnormal behavioral response to stress in the mdx mouse, a model of Duchenne muscular dystrophy. Neurobiol Dis 2025; 204:106771. [PMID: 39701189 DOI: 10.1016/j.nbd.2024.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is associated with a range of cognitive and behavioral problems. Brain-related comorbidities show clinical heterogeneity depending on the position of the mutation within the multi-promoter dystrophin (DMD) gene, likely due to the differential impact of mutations on the expression of distinct brain dystrophins. A deficiency of the full-length brain dystrophin, Dp427, has been associated with enhanced stress reactivity, characterized by abnormal fear responses in both patients and mdx mouse model. However, the neural substrates of this phenotype are still unknown. Here, we undertook the first functional imaging study of the mdx mouse brain, following expression of the typical unconditioned fear response expressed by mdx mice after a short scruff restraint and one week later after recovery from stress. We compared the brain glucose metabolism in 12 brain structures of mdx and WT littermate male mice using [18F]FDG PET imaging. Restraint-stress induced a global decrease in [18F]FDG uptake in mdx mice, while no difference was found between genotypes when mice were tested one week later under non-stressful conditions. A subset of brain structures were particularly affected by stress in mdx mice, and we identified abnormal correlations between fear responses and metabolism in specific structures, and altered co-activation of the hypothalamus with several subcortical structures. Our data support the hypothesis that enhanced stress reactivity due to loss of brain Dp427 relies on abnormal activation of the brain fear circuit and deregulation of a hypothalamus-dependent pathway.
Collapse
Affiliation(s)
- Sébastien Goutal
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Marion Lancien
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France; PhyMedExp, CNRS UMR 9214, INSERM U1046, University of Montpellier, CHU de Montpellier, France.
| | - François Rivier
- PhyMedExp, CNRS UMR 9214, INSERM U1046, University of Montpellier, CHU de Montpellier, France.
| | - Nicolas Tournier
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France.
| |
Collapse
|
55
|
Ejiohuo O, Bilska K, Narożna B, Skibińska M, Kapelski P, Dmitrzak-Węglarz M, Szczepankiewicz A, Pawlak J. The implication of ADRA2A and AVPRIB gene variants in the aetiology of stress-related bipolar disorder. J Affect Disord 2025; 368:249-257. [PMID: 39278467 DOI: 10.1016/j.jad.2024.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE Bipolar disorder is a complex and severe mental illness characterised by manic and depressive episodes that can be triggered and exacerbated by psychosocial, environmental, and biological stressors. Genetic variations are a risk factor for bipolar disorder. However, the identification of the exact gene variants and genotypes remains complex. This study, therefore, aims to identify the potential association between genotypes of analysed single nucleotide polymorphisms and the presence of a stressor in bipolar disorder patients. METHOD We analysed 114 single nucleotide polymorphisms (SNPs) from bipolar and stress-related candidate genes in 550 patients with bipolar disorders (60.36 % females and 39.64 % male). We compared SNPs of patients reporting the presence (40.73 %) or absence of stressors (59.27 %) before the first episode using the Persons Chi-square test and Bayes Factor t-test. The genotyping of 114 SNPs was done using TaqMan assays. Statistical analysis was done using Statistica 13.3 software (StatSoft Poland, Krakow, Poland), R programming, and G*Power statistics. RESULT We found significant differences in genotype distribution (p < 0.05) in 6 polymorphisms (AVPRIB/rs28536160, FKBP4/rs2968909, ADRA2A/rs3750625, 5HTR2A/rs6311, 5HTR2A/rs6313, and GLCCI1/rs37972) when comparing BD patient with and without stressor with a small effect of d = 0.2. Of these, two gene variants (ADRA2A/rs3750625/AC and AVPRIB/rs28536160/CT) with minor alleles formed an association with the presence of a stressor prior to the disease onset and favoured the alternative hypothesis using Bayes Factor Analysis t-test for hypothesis testing. CONCLUSION This study presents a novel association of ADRA2A/rs3750625/AC and AVPR1B/rs28536160/CT gene variants in stress-related bipolar disorder with the AC genotype of ADRA2A/rs3750625 constituting a risk genotype and CT of AVPR1B/rs28536160 constituting a protective genotype. However, further functional analysis is required to fully understand their clinical and biological significance and interaction.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland.
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Skibińska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
56
|
Corron LK, McPherson CB, Hill EC, O'Donnell L. Analyzing Patterns of Skeletal Indicators of Developmental Stress Through the Double Lens of Ontogeny and the Life Course Approach in a Contemporary Reference Sample. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e25052. [PMID: 39722198 DOI: 10.1002/ajpa.25052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVES Skeletal indicators of developmental stress are commonly used to assess health, disease, and patterns of morbidity and mortality in past populations. Incorporating information about individual life history, such as adverse life events, allows for a more thorough understanding of their etiology. This paper adopts the double lens of ontogeny and the life course to analyze indicators of developmental stress in relation to known individual pathologies and developmental patterns of the cranium, vertebrae, and long bones. MATERIAL AND METHODS Six skeletal indicators were collected on CT scans or virtual skeletal reconstructions of 1033 contemporary deceased male and female individuals aged between 0 and 20 years from New Mexico: cribra orbitalia, porotic hyperostosis, Harris lines, stunting, vertebral neural canal diameters, and bone mineral density. Autopsy reports provided information on age, sex, disease type, and duration. Polychoric and polyserial correlations, boxplots, balloon plots, factor analyses of mixed data, and cluster analyses were used to explore patterns among indicators, ontogeny, sex, and disease. RESULTS The presence and prevalence of indicators varied depending on age and disease: Harris lines, stunted growth, and cribra orbitalia were common in younger age groups and in cases of long-term or respiratory illnesses, while porotic hyperostosis was more prevalent in adolescent and young adult males. DISCUSSION Skeletal indicators of developmental stress are most likely associated with the timing of adverse life events in relation to the corresponding ontogenetic patterns, developmental sensitivity to stressors, and developmental plasticity/canalization of the different skeletal elements that bear them.
Collapse
Affiliation(s)
- Louise K Corron
- Department of Anthropology, University of Nevada, Reno, Nevada, USA
| | - Cait B McPherson
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ethan C Hill
- Division of Physical Therapy, Department of Orthopaedics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Lexi O'Donnell
- College of Population Health, University of New Mexico, Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
57
|
Al-Jedai AH, Almudaiheem HY, Al-Homood IA, Almaghlouth I, Bahlas SM, Alolaiwi AM, Fatani M, Eshmawi MT, AlOmari BA, Alenzi KA, Albarakati RG, Al Ghanim N. Saudi National Clinical Practice Guidelines for Management of Adult Systemic Lupus Erythematosus. Curr Rheumatol Rev 2025; 21:70-96. [PMID: 38693734 PMCID: PMC12079323 DOI: 10.2174/0115733971275638240429063041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE To provide evidence-based clinical practice recommendations for managing Systemic Lupus Erythematosus (SLE) in Saudi Arabia. METHODS This EULAR-adapted national guideline in which a multidisciplinary task force utilized the modified Delphi method to develop 31 clinical key questions. A systematic literature review was conducted to update the evidence since the EULAR publication. After reaching a consensus agreement, two rounds of voting and group discussion were conducted to generate consolidated recommendations/ statements. RESULTS A significant number of patients in Saudi Arabia experience delays in accessing rheumatologists, highlighting the significance of timely referral to SLE specialists or rheumatologists to ensure accurate diagnosis and prompt treatment. The primary goal of Glucocorticoid (GC) therapy in SLE patients is to establish disease control with a minimum dose and duration. Steroid-sparing agent utilization facilitates steroid-sparing goals. Hydroxychloroquine is recommended for all SLE patients, though physicians must carefully monitor toxicity and prioritize regular medication adherence assessment. SLE management during pregnancy starts from preconception time by assessing disease activity, major organ involvement, hypercoagulability status, and concomitant diseases that may negatively impact maternal and fetal outcomes. Multidisciplinary care with close monitoring may optimize both maternal and fetal outcomes. For patients with antiphospholipid antibodies, low-dose aspirin prophylaxis is recommended. Also, Long-term anticoagulant medications are fundamental to prevent secondary antiphospholipid syndrome due to high thrombosis recurrence. CONCLUSION This Saudi National Clinical Practice guidelines for SLE management provide evidence- based recommendations and guidance for healthcare providers in Saudi Arabia who are managing patients with SLE. These guidelines will help to standardize healthcare service, improve provider education, and perhaps lead to better treatment outcomes for SLE patients.
Collapse
Affiliation(s)
- Ahmed H. Al-Jedai
- Deputyship of Therapeutic Affairs, Ministry of Health, Riyadh, Saudi Arabia
- Colleges of Medicine and Pharmacy, Al Faisal University, Riyadh, Saudi Arabia
| | | | - Ibrahim A. Al-Homood
- Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
- Medicine Department, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Ibrahim Almaghlouth
- Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- College of Medicine Research Center, King Saud University, Riyadh 11461, Saudi Arabia
| | - Sami M. Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulaziz Mohammed Alolaiwi
- Deputyship of Therapeutic Affairs, Ministry of Health, Riyadh, Saudi Arabia
- Department of Rheumatology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Mohammad Fatani
- Hera General Hospital, Ministry of Health, Makkah, Saudi Arabia
| | - Maysa Tariq Eshmawi
- King Abdullah Medical Complex, Jeddah, Saudi Arabia
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bedor A. AlOmari
- Department of Pharmaceutical Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Rayan G. Albarakati
- Department of Obstetrics and Gynecology, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Nayef Al Ghanim
- Department of Rheumatology, King Saud Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
58
|
Charitos IA, Inchingolo AM, Ferrante L, Inchingolo F, Inchingolo AD, Castellaneta F, Cotoia A, Palermo A, Scacco S, Dipalma G. The Gut Microbiota's Role in Neurological, Psychiatric, and Neurodevelopmental Disorders. Nutrients 2024; 16:4404. [PMID: 39771025 PMCID: PMC11677138 DOI: 10.3390/nu16244404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
AIM This article aims to explore the role of the human gut microbiota (GM) in the pathogenesis of neurological, psychiatric, and neurodevelopmental disorders, highlighting its influence on health and disease, and investigating potential therapeutic strategies targeting GM modulation. MATERIALS AND METHODS A comprehensive analysis of the gut microbiota's composition and its interaction with the human body, particularly, its role in neurological and psychiatric conditions, is provided. The review discusses factors influencing GM composition, including birth mode, breastfeeding, diet, medications, and geography. Additionally, it examines the GM's functions, such as nutrient absorption, immune regulation, and pathogen defense, alongside its interactions with the nervous system through the gut-brain axis, neurotransmitters, and short-chain fatty acids (SCFAs). RESULTS Alterations in the GM are linked to various disorders, including Parkinson's disease, multiple sclerosis, depression, schizophrenia, ADHD, and autism. The GM influences cognitive functions, stress responses, and mood regulation. Antibiotic use disrupts GM diversity, increasing the risk of metabolic disorders, obesity, and allergic diseases. Emerging therapies such as probiotics, prebiotics, and microbiota transplantation show promise in modulating the GM and alleviating symptoms of neurological and psychiatric conditions. CONCLUSIONS The modulation of the GM represents a promising approach for personalized treatment strategies. Further research is needed to better understand the underlying mechanisms and to develop targeted therapies aimed at restoring GM balance for improved clinical outcomes.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, “Institute” of Bari, 70124 Bari, Italy;
| | - Angelo Michele Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Laura Ferrante
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Francesco Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Francesca Castellaneta
- U.O.C. Immunohematology and Transfusion Medicine—S.I.M.T. Di Venere Hospital, 70131 Bari, Italy;
| | - Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy;
| | - Andrea Palermo
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Salvatore Scacco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70121 Bari, Italy;
| | - Gianna Dipalma
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| |
Collapse
|
59
|
Wu Z, Hindle MM, Bishop VR, Reid AMA, Miedzinska K, Pérez JH, Krause JS, Wingfield JC, Meddle SL, Smith J. Response strategies to acute and chronic environmental stress in the arctic breeding Lapland longspur (Calcarius lapponicus). Commun Biol 2024; 7:1654. [PMID: 39702772 DOI: 10.1038/s42003-024-07370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The potentially devastating effects of climate change have raised awareness of the need to understand how the biology of wild animals is influenced by extreme-weather events. We investigate how a wild arctic-breeding bird, the Lapland longspur (Calcarius lapponicus), responds to different environmental perturbations and its coping strategies. We explore the transcriptomic response to environmental adversity during the transition from arrival at the breeding grounds to incubation on the Arctic tundra. The effects of an extremely cold spring on arrival and a severe storm during incubation are examined through RNA-seq analysis of pertinent tissues sampled across the breeding cycle. The stress response, circadian rhythms, reproduction, and metabolism are all affected. A key gene of the Hypothalamic-Pituitary-Adrenal axis, FKBP5, was significantly up-regulated in hypothalamus. The genome assembly and gene expression profiles provide comprehensive resources for future studies. Our findings on different coping strategies to chronic and acute stressors will contribute to understanding the interplay between changing environments and genomic regulation.
Collapse
Affiliation(s)
- Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK.
| | - Matthew M Hindle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Valerie R Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Angus M A Reid
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
- Department of Biology, University of South Alabama, Mobile, AL, USA
| | - Jesse S Krause
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Simone L Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| |
Collapse
|
60
|
Hardy M, Chen Y, Baram TZ, Justice NJ. Targeting corticotropin-releasing hormone receptor type 1 (Crhr1) neurons: validating the specificity of a novel transgenic Crhr1-FlpO mouse. Brain Struct Funct 2024; 230:12. [PMID: 39692887 PMCID: PMC11655595 DOI: 10.1007/s00429-024-02879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 12/19/2024]
Abstract
Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory. However, it is unknown whether alterations in CRHR1 signaling contribute to aberrant motivated behaviors observed, for example, in stressful contexts. These questions require tools to manipulate CRHR1 selectively. Here we describe and validate a novel Crhr1-FlpO mouse. Using bacterial artificial chromosome (BAC) transgenesis, we engineered a transgenic mouse that expresses FlpO recombinase in CRHR1-expressing cells. We used two independent methods to assess the specificity of FlpO to CRHR1-expressing cells. First, we injected Crhr1-FlpO mice with Flp-dependent viruses expressing fluorescent reporter molecules. Additionally, we crossed the Crhr1-FlpO mouse with a transgenic Flp-dependent reporter mouse. CRHR1 and reporter molecules were identified using immunocytochemistry and visualized via confocal microscopy in several brain regions in which CRHR1 expression and function is established. Expression of Flp-dependent viral constructs was highly specific to CRHR1-expressing cells in all regions examined (over 90% co-localization). In accord, robust and specific expression of the Flp-dependent transgenic reporter was observed in a reporter mouse, recapitulating endogenous CRHR1 expression. The Crhr1-FlpO mouse enables selective genetic access to CRHR1-expressing cells within the mouse brain. When combined with Cre-lox or site-specific recombinases, the mouse facilitates intersectional manipulations of CRHR1-expressing neurons.
Collapse
Affiliation(s)
- Mason Hardy
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Yuncai Chen
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, USA.
| | - Nicholas J Justice
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, USA
| |
Collapse
|
61
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
62
|
Mârza SM, Munteanu C, Papuc I, Radu L, Diana P, Purdoiu RC. Behavioral, Physiological, and Pathological Approaches of Cortisol in Dogs. Animals (Basel) 2024; 14:3536. [PMID: 39682501 DOI: 10.3390/ani14233536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Cortisol, an essential glucocorticoid hormone, is crucial in regulating the stress response and maintaining physiological and behavioral homeostasis in mammals, including dogs. This review explores cortisol's physiological and behavioral role in canines, focusing on its effects on stress, immune function, and metabolism. Various methods of measuring cortisol levels in dogs, invasive (blood, saliva, urine) and non-invasive (hair, fecal assays), are discussed regarding their accuracy and practical applications. The review also highlights the influence of different environmental factors, such as shelter conditions, human interaction, and music, on cortisol levels in dogs. Furthermore, the clinical and behavioral implications of abnormal cortisol levels are examined, with particular attention to conditions like Cushing's disease and stress-related behavioral issues. The findings emphasize the importance of cortisol monitoring in veterinary practice and animal welfare, proposing future research directions to improve canine health and stress management.
Collapse
Affiliation(s)
- Sorin Marian Mârza
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Camelia Munteanu
- Biology Section, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Ionel Papuc
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Lăcătuş Radu
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Petraru Diana
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Robert Cristian Purdoiu
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
63
|
Catalini A, Minutolo G, Caminiti M, Ancona A, Cosma C, Gallinoro V, Gianfredi V. Physical Activity and Sedentary Behavior on Well-Being and Self-Rated Health of Italian Public Health Medical Residents During the COVID-19 Pandemic: The PHRASI Study. Sports (Basel) 2024; 12:332. [PMID: 39728872 DOI: 10.3390/sports12120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
High workloads and extended work shift greatly limit the opportunities for medical residents to adopt a healthy lifestyle by practicing regular physical exercise. Using data from the Public Health Residents' Anonymous Survey in Italy (PHRASI), this research assessed the associations between physical activity levels and sedentary behavior, well-being, and self-rated health among Italian public health residents (PHRs) during the COVID-19 pandemic. Employing a cross-sectional design, this study utilized the International Physical Activity Questionnaire, the WHO-5 Well-being Index, and the single-item self-rated health to measure physical activity, sedentary behavior, self-rated health, and well-being among PHRs. The study included 379 PHRs. Multiple logistic regressions adjusted for age and sex were applied to explore the associations among the variables of interest. While 74% of PHRs were sufficiently active, 50% reported good well-being. We found a positive association between physical activity (specifically walking and intense activities) and well-being (aOR 1.292, p = 0.032). At the same time, sedentary behavior was negatively associated with self-rated health (aOR 0.948, p = 0.022) and well-being (aOR 0.945, p = 0.005). This study contributes valuable insights into the role of physical activity and sedentary behavior in PHRs' mental health, calling for targeted public health strategies to support their well-being.
Collapse
Affiliation(s)
- Alessandro Catalini
- UOC Igiene degli Alimenti e Nutrizione, Dipartimento di Prevenzione, AST Macerata, 62100 Macerata, Italy
| | - Giuseppa Minutolo
- Food Hygiene, Nutritional Surveillance and Prevention, Department of Prevention, Provincial Healthcare Authority of Palermo, 90129 Palermo, Italy
| | - Marta Caminiti
- School of Hygiene and Preventive Medicine, University of Perugia, 06100 Perugia, Italy
| | - Angela Ancona
- School of Public Health, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Claudia Cosma
- Department of Health Science, University of Florence, 50121 Firenze, Italy
| | - Veronica Gallinoro
- Department of Health Science, University of Florence, 50121 Firenze, Italy
| | - Vincenza Gianfredi
- Department of Biomedical Sciences for Health, University of Milan, via Pascal, 36, 20133 Milan, Italy
| |
Collapse
|
64
|
Gobbini RP, Velardo VG, Sokn C, Liberman AC, Arzt E. SUMO regulation of FKBP51 activity and the stress response. J Cell Biochem 2024; 125:e30411. [PMID: 37098699 DOI: 10.1002/jcb.30411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Glucocorticoids (GCs) actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associated to different diseases including mood disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity. FKBP51 exerts effects on many stress-related pathways and may be an important mediator of emotional behavior. Key proteins involved in the regulation of the stress response and antidepressant action are regulated by SUMOylation, a post-translational modification that has an important role in the regulation of neuronal physiology and disease. In this review, we focus on the role of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Vanina Giselle Velardo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
65
|
Xu DW, Li WY, Shi TS, Wang CN, Zhou SY, Liu W, Chen WJ, Zhu BL, Fei H, Cheng DD, Cui ZM, Jiang B. MiR-184-3p in the paraventricular nucleus participates in the neurobiology of depression via regulation of the hypothalamus-pituitary-adrenal axis. Neuropharmacology 2024; 260:110129. [PMID: 39179173 DOI: 10.1016/j.neuropharm.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.
Collapse
Affiliation(s)
- Da-Wei Xu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Si-Yi Zhou
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei Liu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hao Fei
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Dong-Dong Cheng
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Zhi-Ming Cui
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
66
|
Milheiro J, Carvalho DD, Pires P, Sousa A, Goethel MF, Moreira A, Soares J. Cortisol and insulin behaviors during an ultramarathon event: are they real markers of extreme exertion? J Sports Med Phys Fitness 2024; 64:1250-1259. [PMID: 39268769 DOI: 10.23736/s0022-4707.24.15930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND The current work aimed to describe and compare the cortisol and insulin concentrations behavior and rate of perceived exertion (RPE) during a 115 km ultramarathon race. METHODS Nine ultrarunners (eight males) were evaluated six times (0, 37, 60, 76, 89 and 115 km). At each moment, saliva samples (for cortisol and insulin assessment) and RPE (CR10 scale) were collected. Statistical analysis included correlation, one-way repeated measure ANOVA, and Statistical Parametric Mapping to define discrete and continues changes and compare cortisol, insulin and RPE profiles. RESULTS Our main findings revealed an early peak in cortisol and RPE, accompanied by a decline in insulin responses (402±49 min of the race, P<0.05). Cortisol and insulin only showed magnitude differences with inverse behaviors until ~6% (7 km) of the ultramarathon duration. Cortisol and RPE presented similar behaviors, rising from the beginning of the race and remaining elevated throughout the race (η2=0.91 and η2=1.0, P<0.001). Insulin levels decreased when the race started, remaining below 60% of baseline values from the midpoint to the end of the race (P=0.04). CONCLUSIONS The study showed an imbalance in the catabolic/anabolic hormone profile during an ultramarathon race, with a prominence in catabolic state. It should be considered in the ultramarathon races preparation and participation due to its possible detrimental effect on the athlete's health.
Collapse
Affiliation(s)
- Jaime Milheiro
- CIFID2D, Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal -
- CMEP, Exercise Medical Centre Laboratory, Porto, Portugal -
| | - Diogo D Carvalho
- CIFID2D, Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
- CMEP, Exercise Medical Centre Laboratory, Porto, Portugal
- Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, Porto, Portugal
| | - Paulo Pires
- CMEP, Exercise Medical Centre Laboratory, Porto, Portugal
| | - Ana Sousa
- Research Center for Sports, Exercise and Human Development, University of Maia, ISMAI, Maia, Portugal
| | - Márcio F Goethel
- CIFID2D, Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
- Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, Porto, Portugal
| | - André Moreira
- EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Immunoallergology, São João University Hospital Center, Porto, Portugal
| | - José Soares
- CIFID2D, Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
67
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
68
|
Raghani N, Postwala H, Shah Y, Chorawala M, Parekh P. From Gut to Brain: Unraveling the Intricate Link Between Microbiome and Stroke. Probiotics Antimicrob Proteins 2024; 16:2039-2053. [PMID: 38831225 DOI: 10.1007/s12602-024-10295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a neurological disorder, is intricately linked to the gut microbiota, influencing microbial composition and elevating the risk of ischemic stroke. The neuroprotective impact of short-chain fatty acids (SCFAs) derived from dietary fiber fermentation contrasts with the neuroinflammatory effects of lipopolysaccharide (LPS) from gut bacteria. The pivotal role of the gut-brain axis, facilitating bidirectional communication between the gut and the brain, is crucial in maintaining gastrointestinal equilibrium and influencing cognitive functions. An in-depth understanding of the interplay among the gut microbiota, immune system, and neurological outcomes in stroke is imperative for devising innovative preventive and therapeutic approaches. Strategies such as dietary adjustments, probiotics, prebiotics, antibiotics, or fecal transplantation offer promise in modulating stroke outcomes. Nevertheless, comprehensive research is essential to unravel the precise mechanisms governing the gut microbiota's involvement in stroke and to establish effective therapeutic interventions. The initiation of large-scale clinical trials is warranted to assess the safety and efficacy of interventions targeting the gut microbiota in stroke management. Tailored strategies that reinstate eubiosis and foster a healthy gut microbiota hold potential for both stroke prevention and treatment. This review underscores the gut microbiota as a promising therapeutic target in stroke and underscores the need for continued research to delineate its precise role and develop microbiome-based interventions effectively.
Collapse
Affiliation(s)
- Neha Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| |
Collapse
|
69
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
70
|
Islam J, Rahman MT, Ali M, Kc E, Park YS. Potential hypothalamic mechanisms in trigeminal neuropathic pain: a comparative analysis with migraine and cluster headache. J Headache Pain 2024; 25:205. [PMID: 39587517 PMCID: PMC11587712 DOI: 10.1186/s10194-024-01914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Trigeminal neuropathic pain (TNP), migraine, and cluster headache (CH) profoundly impact the quality of life and present significant clinical challenges due to their complex neurobiological underpinnings. This review delves into the pivotal role of the hypothalamus in the pathophysiology of these facial pain syndromes, highlighting its distinctive functions and potential as a primary target for research, diagnosis, and therapy. While the involvement of the hypothalamus in migraine and CH has been increasingly supported by imaging and clinical studies, the precise mechanisms of its role remain under active investigation. The role of the hypothalamus in TNP, in contrast, is less explored and represents a critical gap in our understanding. The hypothalamus's involvement varies significantly across these conditions, orchestrating a unique interplay of neural circuits and neurotransmitter systems that underlie the distinct characteristics of each pain type. We have explored advanced neuromodulation techniques, such as deep brain stimulation (DBS) and optogenetics, which show promise in targeting hypothalamic dysfunction to alleviate pain symptoms. Furthermore, we discuss the neuroplastic changes within the hypothalamus that contribute to the chronicity of these pains and the implications of these findings for developing targeted therapies. By offering a comprehensive examination of the hypothalamus's roles, this paper aims to bridge existing knowledge gaps and propel forward the understanding and management of facial neuralgias, underscoring the hypothalamus's critical position in future neurological research.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Muhammad Ali
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
71
|
Yamada N, Tominaga K, Tominaga N, Kobayashi A, Niino C, Miyagi Y, Yamagata H, Nakagawa S. Glycosylation changes of vWF in circulating extracellular vesicles to predict depression. Sci Rep 2024; 14:29066. [PMID: 39580509 PMCID: PMC11585580 DOI: 10.1038/s41598-024-80507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
The clinical diagnosis of major depressive disorder (MDD) still depends on subjective information in terms of various symptoms regarding mood. Detecting the characterization of extracellular vesicles (EVs) in blood may result in finding a diagnostic biomarker that reflects the depressive stage of patients with MDD. Here, we report the results on the glycosylation pattern of enriched plasma EVs from patients with MDD. We compared glycosylation patterns by lectin blotting expressed in EVs isolated from the plasma of both patients with MDD and age-matched healthy control participants (HCs) using size-exclusion chromatography. The levels of Wheat germ agglutinin (WGA), N-acetyl glucosamine (GlcNAc), and N-Acetylneuraminic acid (Neu5Ac, sialic acid) - binding lectin, were significantly decreased in patients with MDD in the depressive state compared to HCs and in remission state. Furthermore, proteome analysis revealed that the von Willebrand factor (vWF) was a significant factor recognized by WGA. WGA-binding vWF antigen differentiated patients with MDD versus HCs and the same patients with MDD in a depressive versus remission state. In this study, the change patterns in the glycoproteins contained in plasma EVs support the usability of testing to identify patients who are at increased risk of depression during antidepressant treatment.
Collapse
Affiliation(s)
- Norihiro Yamada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Kana Tominaga
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan.
| | - Naoomi Tominaga
- Division of Clinical Laboratory Sciences, Department of Nursing and Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Chihiro Niino
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Yuta Miyagi
- Division of Clinical Laboratory Sciences, Department of Nursing and Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
- Kokoro Hospital Machida, 2140, Kamioyamadamachi, Machida, 194-0201, Tokyo, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| |
Collapse
|
72
|
Smirnova K, Amstislavskaya T, Smirnova L. BMAL1-Potential Player of Aberrant Stress Response in Q31L Mice Model of Affective Disorders: Pilot Results. Int J Mol Sci 2024; 25:12468. [PMID: 39596543 PMCID: PMC11595136 DOI: 10.3390/ijms252212468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Dysregulation in the stress-response system as a result of genetical mutation can provoke the manifestation of affective disorders under stress conditions. Mutations in the human DISC1 gene is one of the main risk factors of affective disorders. It was known that DISC1 regulates a large number of proteins including BMAL1, which is involved in the regulation of glucocorticoid synthesis in the adrenal glands and the sensitivity of glucocorticoid receptor target genes. Male mice with a point mutation Q31L in the Disc1 gene were exposed to chronic unpredictable stress (CUS), after which the behavioral and physiological stress response assessed. To assess whether there were any changes in BMAL1 in key brain regions involved in the stress response, immunohistochemistry was applied. It was shown that the Q31L mice had an aberrant behavioral response, especially to the 2 weeks of CUS, which was expressed in unchanged motor activity, increased time of social interaction, and alterations in anxiety and fear-related behavior. Q31L males did not show an increase in blood corticosterone levels after CUS and a decrease in body weight. Immunohistochemical analysis in intact Q31L mice revealed a decrease in BMAL1 immunofluorescence in the CA1 hippocampal area and lateral habenula. Thus, the Q31L mutation of the Disc1 gene disrupts behavioral and physiological stress response and the BMAL1 dysregulation may underlie it, so this protein can act as a molecular target for the treatment of affective disorders.
Collapse
Affiliation(s)
- Kristina Smirnova
- Research Institute of Mental Health, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaja, 4, 634014 Tomsk, Russia;
- Research Institute of Neuroscience and Medicine, Timakova 4, 630090 Novosibirsk, Russia;
| | - Tamara Amstislavskaya
- Research Institute of Neuroscience and Medicine, Timakova 4, 630090 Novosibirsk, Russia;
| | - Liudmila Smirnova
- Research Institute of Mental Health, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaja, 4, 634014 Tomsk, Russia;
| |
Collapse
|
73
|
Chen X, Mo X, Zhang Y, He D, Xiao R, Cheng Q, Wang H, Liu L, Li WW, Xie P. A comprehensive analysis of the differential expression in the hippocampus of depression induced by gut microbiota compared to traditional stress. Gene 2024; 927:148633. [PMID: 38838871 DOI: 10.1016/j.gene.2024.148633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Depression, which is a disease of heterogeneous etiology, is characterized by high disability and mortality rates. Gut microbiota are associated with the development of depression. To further explore any differences in the mechanisms of depression induced by gut microbiota and traditional stresses, as well as facilitate the development of microbiota-based interventions, a fecal microbiota transplantation (FMT) depression model was made. This was achieved by transplanting feces from major depressive disorder (MDD) patients into germ-free mice. Second, the mechanisms of the depression induced by gut microbiota were analyzed in comparison with those of the depression caused by different forms of stress. It turned out that mice exhibited depressive-like behavior after FMT. Then, PCR array analysis was performed on the hippocampus of the depressed mice to identify differentially expressed genes (DEGs). The KEGG analysis revealed that the pathways of depression induced by gut microbes are closely associated with immuno-inflammation. To determine the pathogenic pathways of physiological stress and psychological stress-induced depression, raw data was extracted from several databases and KEGG analysis was performed. The results from the analysis revealed that the mechanisms of depression induced by physiological and psychological stress are closely related to the regulation of neurotransmitters and energy metabolism. Interestingly, the immunoinflammatory response was distinct across different etiologies that induced depression. The findings showed that gut microbiota dysbiosis-induced depression was mainly associated with adaptive immunity, while physiological stress-induced depression was more linked to innate immunity. This study compared the pathogenesis of depression caused by gut microbiota dysbiosis, and physiological and psychological stress. We explored new intervention methods for depression and laid the foundation for precise treatment.
Collapse
Affiliation(s)
- Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolong Mo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dian He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Qisheng Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Wen-Wen Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|
74
|
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. BIOLOGY 2024; 13:926. [PMID: 39596881 PMCID: PMC11591812 DOI: 10.3390/biology13110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Heat stress (HS) due to high temperatures has adverse effects on poultry, including decreased feed intake, lower feed efficiency, decreased body weight, and higher mortality. There are complex mechanisms behind heat stress in poultry involving the neuroendocrine system, organ damage, and other physiological systems. HS activates endocrine glands, such as the pituitary, adrenal, thyroid, and gonadal, by the action of the hypothalamus and sympathetic nerves, ultimately causing changes in hormone levels: HS leads to increased corticosterone levels, changes in triiodothyronine and thyroxine levels, decreased gonadotropin levels, reduced ovarian function, and the promotion of catecholamine release, which ultimately affects the normal productive performance of poultry. Meanwhile, heat stress also causes damage to the liver, lungs, intestines, and various immune organs, severely impairing organ function in poultry. Nutrient additives to feed are important measures of prevention and treatment, including natural plants and extracts, probiotics, amino acids, and other nutrients, which are effective in alleviating heat stress in poultry. Future studies need to explore the specific mechanisms through which heat stress impacts the neuroendocrine system in poultry and the interrelationships between the axes and organ damage so as to provide an effective theoretical basis for the development of preventive and treatment measures.
Collapse
Affiliation(s)
| | | | | | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (H.C.); (Y.H.)
| |
Collapse
|
75
|
Katz AR, Huntwork MP, Kolls JK, Hewes JL, Ellsworth CR, Clark RDE, Carlson JC. Impact of psychological stressors on natural killer cell function: A comprehensive analysis based on stressor type, duration, intensity, and species. Physiol Behav 2024; 288:114734. [PMID: 39547436 DOI: 10.1016/j.physbeh.2024.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Patients with natural killer (NK) cell deficiency or dysfunction are more susceptible to infections by Herpesviridae viruses, herpesvirus-related cancers, and macrophage activation syndromes. This review summarizes research on NK cell dysfunction following psychological stress, focusing on stressor type, duration, age of exposure, and species studied. Psychological stressors negatively affect NK cell activity (NKCA) across species. Prolonged stress leads to more significant decreases in NK cell number and function, with rehabilitation efforts proving ineffective in reversing these effects. Early life and prolonged stress exposure particularly increases the risk of infections and cancer due to impaired NKCA. The review also highlights that stress impacts males and females differently, with females exhibiting a more immunosuppressed NK cell phenotype. Notably, mice respond differently compared to humans and other animals, making them unsuitable for NK cell stress-related studies. Most studies measured NKCA using cytolytic assays against K-562 or YAC-1 cells. Although the exact mechanisms of NK cell dysfunction under stress remain unclear, potential causes include reduced release of secretory lysosomes with perforin or granzyme, impaired NK cell synapse formation, decreased expression of synapse-related molecules like CD2 or LFA-1 (CD11a), altered activating receptor expression, and dysregulated signaling pathways, such as decreased Erk1/2 phosphorylation and NFkB signaling. These mechanisms are not mutually exclusive, and future research is needed to clarify these pathways and develop therapeutic interventions for stress-induced immune dysregulation.
Collapse
Affiliation(s)
- Alexis R Katz
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Margaret P Huntwork
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Allergy and Clinical Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jenny L Hewes
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder R Ellsworth
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Robert D E Clark
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - John C Carlson
- Department of Allergy and Immunology, Ochsner Health System, New Orleans, LA 70121, USA
| |
Collapse
|
76
|
Porras A, Rodney-Hernández P, Jackson J, Nguyen CH, Rincón-Cortés M. Sex-dependent effects of early life sensory overstimulation on later life behavioral function in rats. Sci Rep 2024; 14:27650. [PMID: 39532944 PMCID: PMC11557974 DOI: 10.1038/s41598-024-78928-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Children today are immersed in electronic technology shortly after birth as they now begin regularly watching television earlier than they did in the past. Many new programs geared towards infants contain lots of lights, color, and sounds, which may constitute a form of sensory overstimulation (SOS) that leads to cognitive and behavioral changes in children and adolescents. Here, we examined the impact of early life SOS exposure on later life behavioral and cognitive function in rodents by exposing developing male and female rats to excessive audiovisual stimulation from postnatal days (PND) 10-40 and assessing anxiety-like behavior, social motivation, compulsive behavior, and spatial learning/cognition from PND 50-60. To evaluate potential SOS effects on hypothalamic-pituitary-adrenal (HPA)-axis function, levels of the stress hormone corticosterone (CORT) were measured at 3 timepoints (e.g., PND 23, 41, 61) post-SOS exposure. Sensory overstimulated males exhibited reduced anxiety-like and compulsive behavior compared to controls, whereas females exhibited reduced social motivation but enhanced spatial learning/cognition compared to controls. No differences in baseline CORT levels were found at any age tested, suggesting no impact of early life SOS on later life basal HPA-axis function. Our results demonstrate sex-specific effects of early life SOS on distinct behavioral domains in early adult rats.
Collapse
Affiliation(s)
- Abishag Porras
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Paolaenid Rodney-Hernández
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jeffy Jackson
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Christine H Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Millie Rincón-Cortés
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
77
|
Smail MA, Lenz KM. Developmental functions of microglia: Impact of psychosocial and physiological early life stress. Neuropharmacology 2024; 258:110084. [PMID: 39025401 PMCID: PMC12051134 DOI: 10.1016/j.neuropharm.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Microglia play numerous important roles in brain development. From early embryonic stages through adolescence, these immune cells influence neuronal genesis and maturation, guide connectivity, and shape brain circuits. They also interact with other glial cells and structures, influencing the brain's supportive microenvironment. While this central role makes microglia essential, it means that early life perturbations to microglia can have widespread effects on brain development, potentially resulting in long-lasting behavioral impairments. Here, we will focus on the effects of early life psychosocial versus physiological stressors in rodent models. Psychosocial stress refers to perceived threats that lead to stress axes activation, including prenatal stress, or chronic postnatal stress, including maternal separation and resource scarcity. Physiological stress refers to physical threats, including maternal immune activation, postnatal infection, and traumatic brain injury. Differing sources of early life stress have varied impacts on microglia, and these effects are moderated by factors such as developmental age, brain region, and sex. Overall, these stressors appear to either 1) upregulate basal microglia numbers and activity throughout the lifespan, while possibly blunting their responsivity to subsequent stressors, or 2) shift the developmental curve of microglia, resulting in differential timing and function, impacting the critical periods they govern. Either could contribute to behavioral dysfunctions that occur after the resolution of early life stress. Exploring how different stressors impact microglia, as well as how multiple stressors interact to alter microglia's developmental functions, could deepen our understanding of how early life stress changes the brain's developmental trajectory. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Kathryn M Lenz
- Department of Psychology, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Ohio State University, Columbus, OH, USA
| |
Collapse
|
78
|
Kanter NG, Cohen‐Woods S, Balfour DA, Burt MG, Waterman AL, Koczwara B. Hypothalamic-Pituitary-Adrenal Axis Dysfunction in People With Cancer: A Systematic Review. Cancer Med 2024; 13:e70366. [PMID: 39569439 PMCID: PMC11579619 DOI: 10.1002/cam4.70366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/28/2024] [Accepted: 10/13/2024] [Indexed: 11/22/2024] Open
Abstract
PURPOSE Cancer can be a source of significant psychological and physical stress. Prolonged stressful stimuli can influence the stress response, mediated by the hypothalamic-pituitary-adrenal (HPA) axis. However, there is limited literature investigating HPA axis function in patients with cancer. METHODS A systematic literature review of case-control studies was conducted comparing individuals with and without cancer examining the HPA axis function. Databases (MEDLINE, PubMed, Scopus) were searched from inception to May 2023. RESULTS Seventeen studies met eligibility criteria: nine unstimulated-cortisol studies and eight reporting the effect of HPA stimulation or suppression. Sixteen studies reported altered levels of HPA function in cancer patients relative to controls, including 13 reporting increased baseline or hyperactive cortisol responses, and four-decreased baseline cortisol or blunted cortisol responses, two of which had patient groups with now known cortisol-suppressing treatments. HPA dysfunction was observed in patients of both sexes, diverse ages, stages of cancer and cancer treatments. Six papers reported on clinical outcomes with cases experiencing higher levels of fatigue, stress, poor memory, poor well-being and disturbed sleep. There was significant heterogeneity in methodologies across the studies. CONCLUSION HPA dysfunction was common in patients with cancer relative to cancer-free controls. The majority of studies in cancer reported an increased baseline cortisol and increased response to HPA stimulation. There is a need for well-powered studies using standardised methodology examining the mechanisms of HPA dysregulation and their health outcomes, to enable the development of appropriate tools for the diagnosis and management of HPA dysfunction in cancer.
Collapse
Affiliation(s)
- Natalie G. Kanter
- College of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Sarah Cohen‐Woods
- Flinders University Institute for Mental Health and WellbeingFlinders UniversityBedford ParkSouth AustraliaAustralia
- College of Education, Psychology, and Social WorkFlinders UniversityBedford ParkSouth AustraliaAustralia
- Flinders Centre for Innovation in CancerCollege of Medicine and Public Health, Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - David A. Balfour
- College of Education, Psychology, and Social WorkFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Morton G. Burt
- College of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
- Southern Adelaide Diabetes and Endocrine ServicesFlinders Medical CentreBedford ParkSouth AustraliaAustralia
| | - Alison L. Waterman
- College of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Bogda Koczwara
- College of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
- Department of Medical OncologyFlinders Medical CentreBedford ParkSouth AustraliaAustralia
| |
Collapse
|
79
|
Calvino C, Almeida MMD, Reis-Gomes CF, Andrade BDS, Neves GA, Pazos-Moura CC, Trevenzoli IH. Maternal obesity induces sex-specific changes in the endocannabinoid system of the hypothalamus and dorsal hippocampus of offspring associated with anxiety-like behavior in adolescent female rats. Horm Behav 2024; 166:105648. [PMID: 39362071 DOI: 10.1016/j.yhbeh.2024.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Maternal obesity during perinatal period increases the risk of metabolic and behavioral deleterious outcomes in the offspring, since it is critical for brain development, maturation, and reorganization. These processes are highly modulated by the endocannabinoid system (ECS), which comprises the main lipid ligands anandamide and 2-arachidonoylglycerol, cannabinoid receptors 1 and 2 (CB1R and CB2R), and several metabolizing enzymes. The ECS is overactivated in obesity and it contributes to the physiological activity of the hypothalamus-pituitary-adrenal (HPA) axis, promoting stress relief. We have previously demonstrated that maternal high-fat diet during gestation and lactation programmed the food preference for fat in adolescent male offspring and adult male and female offspring. In the present study, we hypothesized that maternal diet-induced obesity would induce sex-specific changes of the ECS in the hypothalamus and dorsal hippocampus of rat offspring associated with dysregulation of the HPA axis and stress-related behavior in adolescence. Rat dams were fed a control (C) or an obesogenic high-fat high-sugar diet (OD) for nine weeks prior to mating and throughout gestation and lactation. Maternal obesity differentially altered the CB1R in the hypothalamus of neonate offspring, with significant increase in male but not in female pups, associated with decreased CB2R prior to obesity development. In adolescence, maternal obesity induced anxiety-like behavior only in adolescent females which was associated with increased content of CB1R in the dorsal hippocampus. Our findings suggest that the early origins of anxiety disorders induced by maternal exposome is associated with dysregulation of the brain ECS, with females being more susceptible.
Collapse
Affiliation(s)
- Camila Calvino
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Clara Figueredo Reis-Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brenda da Silva Andrade
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilda Angela Neves
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
80
|
Kim M, Yoon M, Cho S, Kim MJ, Um MY. Rice bran supplement ameliorates chronic restraint stress-induced depression-like behaviors in mice. Food Funct 2024; 15:10600-10613. [PMID: 39310986 DOI: 10.1039/d4fo00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Depression is emerging as a social and health-related issue worldwide. Rice bran possesses a variety of biological properties; however, its potential efficacy and molecular mechanisms in depression remain unclear. This study investigated the antidepressant effects of rice bran supplement (RBS) in a mouse model of chronic restraint stress (CRS)-induced depression. RBS was administered to mice subjected to CRS for 5 weeks. RBS improved depressive symptoms in CRS-exposed mice, as evidenced by increased sucrose preference and reduced immobility time. It reduced hypothalamic-pituitary-adrenal (HPA) axis-related hormones. Additionally, RBS downregulated the glucocorticoid receptor (GR) pathway and upregulated the ERK-CREB-BDNF pathway in the prefrontal cortex and hippocampus. Furthermore, RBS increased neurotransmitter levels and decreased monoamine oxidase levels in the brain. Molecular docking analysis indicated that γ-oryzanol (ORY) interacts with GR. Moreover, ORY inhibited GR activity in GR-transfected HEK293T cells. The effects of ORY were not significantly altered by treatment with GR antagonist mifepristone or GR siRNA, suggesting ORY functions as a GR antagonist. Additionally, ORY administration improved depressive behaviors in CRS-exposed mice and modulated the imbalance of HPA axis-related hormones in mice. Mechanisms of action in the RBS were partially attributed by ORY, a key component of RBS, suggesting that ORY contributes synergistically to the effect of RBS. Thus, RBS administration could be a promising therapeutic approach to treating CRS-induced depression.
Collapse
Affiliation(s)
- Minji Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Minseok Yoon
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
| | - Suengmok Cho
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min Jung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
| | - Min Young Um
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
81
|
Sarmiento LF, Ríos-Flórez JA, Rincón Uribe FA, Rodrigues Lima R, Kalenscher T, Gouveia A, Nitsch FJ. Do stress hormones influence choice? A systematic review of pharmacological interventions on the HPA axis and/or SAM system. Soc Cogn Affect Neurosci 2024; 19:nsae069. [PMID: 39363151 PMCID: PMC11498176 DOI: 10.1093/scan/nsae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
The hypothalamus-pituitary-adrenal axis (HPA axis) and the sympathetic-adrenal-medullary system (SAM system), two neuroendocrine systems associated with the stress response, have often been implicated to modulate decision-making in various domains. This systematic review summarizes the scientific evidence on the effects of pharmacological HPA axis and SAM system modulation on decision-making. We found 6375 references, of which 17 studies fulfilled our inclusion criteria. We quantified the risk of bias in our results with respect to missing outcome data, measurements, and selection of the reported results. The included studies administered hydrocortisone, fludrocortisone (HPA axis stimulants), yohimbine, reboxetine (SAM system stimulants), and/or propranolol (SAM system inhibitor). Integrating the evidence, we found that SAM system stimulation had no impact on risk aversion, loss aversion or intertemporal choice, while SAM system inhibition showed a tentative reduction in sensitivity to losses. HPA axis stimulation had no effect on loss aversion or reward anticipation but likely a time-dependent effect on decision under risk. Lastly, combined stimulation of both systems exhibited inconsistent results that could be explained by dose differences (loss aversion) and sex differences (risk aversion). Future research should address time-, dose-, and sex-dependencies of pharmacological effects on decision-making.
Collapse
Affiliation(s)
- Luis Felipe Sarmiento
- BiotechMed Center, BME Lab, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Jorge Alexander Ríos-Flórez
- Professor at the Faculty of Law and Forensic Sciences, Tecnológico de Antioquia University Institution, Medellín 050034, Colombia
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural and Biology, Federal University from Pará, Belém 66075-110, Brazil
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225, Germany
| | - Amauri Gouveia
- Laboratory of Neuroscience and Behavior, Federal University from Pará, Belém 66075-110, Brazil
| | - Felix Jan Nitsch
- Marketing Area, INSEAD, Fontainebleau 77300, France
- Paris Brain Institute (ICM), Sorbonne University, Paris 75013, France
| |
Collapse
|
82
|
Kim S, Chaudhary PK, Kim S. Molecular and Genetics Perspectives on Primary Adrenocortical Hyperfunction Disorders. Int J Mol Sci 2024; 25:11341. [PMID: 39518893 PMCID: PMC11545009 DOI: 10.3390/ijms252111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Adrenocortical disorders encompass a broad spectrum of conditions ranging from benign hyperplasia to malignant tumors, significantly disrupting hormone balance and causing a variety of clinical manifestations. By leveraging next-generation sequencing and in silico analyses, recent studies have uncovered the genetic and molecular pathways implicated in these transitions. In this review, we explored the molecular and genetic alterations in adrenocortical disorders, with a particular focus on the transitions from normal adrenal function to hyperfunction. The insights gained are intended to enhance diagnostic and therapeutic strategies, offering up-to-date knowledge for managing these complex conditions effectively.
Collapse
Affiliation(s)
| | | | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (P.K.C.)
| |
Collapse
|
83
|
Zhang Y, Wang S, Hei M. Maternal separation as early-life stress: Mechanisms of neuropsychiatric disorders and inspiration for neonatal care. Brain Res Bull 2024; 217:111058. [PMID: 39197670 DOI: 10.1016/j.brainresbull.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The establishment of positive early parent-infant relationships provide essential nourishment and social stimulation for newborns. During the early stages of postnatal brain development, events such as synaptogenesis, neuronal maturation and glial differentiation occur in a highly coordinated manner. Maternal separation, as an early-life stress introducer, can disrupt the formation of parent-child bonds and exert long-term adverse effects throughout life. When offspring are exposed to maternal separation, the body regulates the stress of maternal separation through multiple mechanisms, including neuroinflammatory responses, neuroendocrinology, and neuronal electrical activity. In adulthood, early maternal separation has long-term effects, such as the induction of neuropsychiatric disorders such as anxiety, depression, and cognitive dysfunction. This review summarized the application of maternal separation models and the mechanisms of stress system response in neuropsychiatric disorders, serving as both a reminder and inspiration for approaches to improve neonatal care, "from bench to bedside".
Collapse
Affiliation(s)
- Yuan Zhang
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mingyan Hei
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China.
| |
Collapse
|
84
|
Abd Rahman IZ, Adam SH, Hamid AA, Mokhtar MH, Mustafar R, Kashim MIAM, Febriza A, Mansor NI. Potential Neuroprotective Effects of Alpinia officinarum Hance (Galangal): A Review. Nutrients 2024; 16:3378. [PMID: 39408345 PMCID: PMC11478918 DOI: 10.3390/nu16193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: This review aims to provide a detailed understanding of the current evidence on Alpinia officinarum Hance (A. officinarum) and its potential therapeutic role in central nervous system (CNS) disorders. CNS disorders encompass a wide range of disorders affecting the brain and spinal cord, leading to various neurological, cognitive and psychiatric impairments. In recent years, natural products have emerged as potential neuroprotective agents for the treatment of CNS disorders due to their outstanding bioactivity and favourable safety profile. One such plant is A. officinarum, also known as lesser galangal, a perennial herb from the Zingiberaceae family. Its phytochemical compounds such as flavonoids and phenols have been documented to have a powerful antioxidants effect, capable of scavenging free radicals and preventing oxidative damage. Methods: In this review, we critically evaluate the in vitro and in vivo studies and examine the mechanisms by which A. officinarum exerts its neuroprotective effect. Results: Several studies have confirmed that A. officinarum exerts its neuroprotective effects by reducing oxidative stress and cell apoptosis, promoting neurite outgrowth, and modulating neurotransmitter levels and signalling pathways. Conclusions: Although previous studies have shown promising results in various models of neurological disorders, the underlying mechanisms of A. officinarum in Alzheimer's (AD) and Parkinson's disease (PD) are still poorly understood. Further studies on brain tissue and cognitive and motor functions in animal models of AD and PD are needed to validate the results observed in in vitro studies. In addition, further clinical studies are needed to confirm the safety and efficacy of A. officinarum in CNS disorders.
Collapse
Affiliation(s)
- Izzat Zulhilmi Abd Rahman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Ruslinda Mustafar
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ami Febriza
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, South Sulawesi, Indonesia;
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
85
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
86
|
Kaye AD, Islam RK, Tong VT, McKee E, Gonzales JJ, Rais MS, Watson AE, Haas CJ, Chan R, Palowsky Z, Islam KN, Shekoohi S, Varrassi G. Cutaneous Dermatologic Manifestations of Cardiovascular Diseases: A Narrative Review. Cureus 2024; 16:e72336. [PMID: 39583483 PMCID: PMC11585482 DOI: 10.7759/cureus.72336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Cardiovascular diseases represent the largest worldwide cause of morbidity and mortality. Common signs and symptoms of cardiovascular disease are well characterized and taught in medical curricula, allowing clinicians to quickly recognize and diagnose the more acute and emergent cardiovascular diseases. Dermatological features associated with cardiovascular diseases are less understood but very valuable to appreciate in clinical practice. The present investigation evaluates heart conditions such as heart failure, atherosclerosis, infective endocarditis, and Takotsubo cardiomyopathy, highlighting dermatologic signs that indicate underlying cardiovascular pathology and serve as important diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Rahib K Islam
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Victoria T Tong
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Elizabeth McKee
- School of Medicine, University of Mississippi Medical Center, Jackson, USA
| | - Julian J Gonzales
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Mohammed S Rais
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Abigail E Watson
- School of Medicine, Florida State University College of Medicine, Tallahassee, USA
| | - Christopher J Haas
- Department of Dermatology, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Ryan Chan
- School of Medicine, New York Medical College, New York, USA
| | - Zachary Palowsky
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Kazi N Islam
- Department of Agricultural Research Development Program, Central State University, Wilberforce, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
87
|
Singh A, Kishore PS, Khan S. From Microbes to Myocardium: A Comprehensive Review of the Impact of the Gut-Brain Axis on Cardiovascular Disease. Cureus 2024; 16:e70877. [PMID: 39497887 PMCID: PMC11533101 DOI: 10.7759/cureus.70877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide despite advances in medical research and therapeutics. Emerging evidence suggests a significant role of the gut-brain axis, a complex communication network involving the gut microbiota, central nervous system, and cardiovascular system, in modulating cardiovascular health. The gut microbiota influences systemic inflammation, neurohumoral pathways, and metabolic processes, which are critical in the pathogenesis of CVD. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various cardiovascular conditions, including hypertension, atherosclerosis, and heart failure. This comprehensive review aims to elucidate the intricate relationship between the gut microbiome, brain, and cardiovascular system, highlighting the mechanisms by which gut-derived signals affect cardiovascular function. Key microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), and their impact on vascular health and blood pressure regulation are discussed. Furthermore, the review explores potential therapeutic strategies targeting the gut-brain axis, including probiotics, prebiotics, dietary modifications, and pharmacological interventions, to improve cardiovascular outcomes. Despite promising findings, the field faces challenges such as individual variability in microbiome composition, complexities in gut-brain interactions, and the need for robust clinical trials to establish causality. Addressing these challenges through interdisciplinary research could pave the way for innovative, personalized therapeutic approaches. This review provides a comprehensive understanding of the gut-brain-cardiovascular axis, underscoring its potential as a novel target for preventing and treating CVD.
Collapse
Affiliation(s)
- Akhilesh Singh
- Emergency Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | | | - Sharleen Khan
- Ophthalmology, Heritage Institute of Medical Sciences, Varanasi, IND
| |
Collapse
|
88
|
Guo HW, Lai HJ, Long BQ, Xu LX, Wang EHC, Shapiro J, McElwee KJ. Increased CRHR1 expression on monocytes from patients with AA enables a pro-inflammatory response to corticotrophin-releasing hormone. Exp Dermatol 2024; 33:e15182. [PMID: 39367575 DOI: 10.1111/exd.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Stress may play a key role in alopecia areata (AA), though the exact interactions of stress with AA remain undefined. Corticotropin-releasing hormone (CRH), the proximal regulator of the stress axis, has been recognized as an immunomodulatory factor in tissues and peripheral blood mononuclear cells (PBMCs). We used multicolour flow cytometry to identify receptor CRHR1 expression on PBMC subsets in AA patients (n = 54) and controls (n = 66). We found that CRHR1 was primarily expressed by circulating monocytes. CRHR1 expression on monocytes was enhanced in AA compared with controls (3.17% vs. 1.44%, p = 0.002, chi-squared test). AA incidence was correlated to elevated CD14+ monocyte numbers (R = 0.092, p = 0.036) and markedly independently correlated with increased CRHR1 expression (R = 0.215, p = 0.027). High CRHR1 expression was significantly related to chronic AA (disease duration >1 year; p = 0.003, chi-squared test), and large lesion area (AA area >25%; p = 0.049, chi-squared test). We also observed enhanced percentages of active monocytes and reduced CD16+ CD3- NK cell numbers in AA patients' PBMCs (p = 0.010; 0.025, respectively). In vitro CRH treatment of PBMCs and human monocyte cell line THP-1 promoted CD86 upregulation. The findings imply that stress-related factors CRH and CRHR1 contribute to AA development and progression where higher CRHR1 expression is associated with chronic AA and larger lesions.
Collapse
Affiliation(s)
- Hong-Wei Guo
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hui-Jun Lai
- Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bo-Quan Long
- Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li-Xin Xu
- Flow Core Facility, Children and Family Research Institute, Vancouver, British Columbia, Canada
| | - Eddy Hsi Chun Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerry Shapiro
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Skin Sciences, University of Bradford, Bradford, West Yorkshire, UK
| |
Collapse
|
89
|
Lai ETC, Chau AKC, Ho IYY, Hashimoto H, Kim CY, Chiang TL, Chen YM, Marmot M, Woo J. The impact of social isolation on functional disability in older people: A multi-cohort study. Arch Gerontol Geriatr 2024; 125:105502. [PMID: 38876082 DOI: 10.1016/j.archger.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES We assessed the relationship between social isolation and functional disability in older people. DESIGN Comparison of longitudinal cohort studies. SETTING AND PARTICIPANTS Harmonised longitudinal datasets from the United States, England, European countries, Japan, Korea, China and Hong Kong. METHODS Social isolation was operationalised as a composite score with five domains, such as marital status, living alone, and social contact with others. Functional disability was defined as whether the cohort participant had any difficulty in activities of daily living (ADL). In each dataset, we used robust Poisson regression models to obtain the relative risks (RRs) and the corresponding 95 % confidence intervals (CI). We combined the RRs to synthesize a pooled estimate using meta-analysis with random-effects models. RESULTS Overall, the social isolation composite score was not associated with ADL disability (pooled RR = 1.05, 95 % CI [0.97-1.14], n = 40,119). Subgroup analysis suggested social isolation composite score was associated with ADL disability in Asian regions (pooled RR = 1.09, 95 % CI [1.02, 1.16], but not in Western regions (pooled RR = 1.01, 95 % CI [0.96, 1.07]). The relationships between different domains of social isolation and ADL disability were heterogeneous, except that no participation in any social clubs or religious groups was consistently associated with ADL disability (pooled RR = 1.12, 95 % CI [1.04, 1.21]). CONCLUSION Targeting social isolation may prevent decline in functional abilities in older adults, providing an avenue to active and healthy ageing. Nonetheless, interventions tackling social isolation should tailor to the unique cultural and social underpinnings. A limitation of the study is that reverse causality could not be ruled out definitively.
Collapse
Affiliation(s)
- Eric Tsz-Chun Lai
- Institute of Health Equity, Chinese University of Hong Kong, Shatin, Hong Kong; Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Anson Kai Chun Chau
- Institute of Health Equity, Chinese University of Hong Kong, Shatin, Hong Kong; School of Psychology, University of New South Wales, Sydney, Australia
| | - Irene Yuk-Ying Ho
- Institute of Health Equity, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hideki Hashimoto
- Department of Health and Social Behavior, School of Public Health, University of Tokyo, Tokyo, Japan
| | - Chang-Yup Kim
- School of Public Health, Department of Health Policy and Management, Seoul National University, Seoul, South Korea
| | - Tung-Liang Chiang
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ya-Mei Chen
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Michael Marmot
- Department of Epidemiology and Public Health, Institute of Health Equity, University College London, London, UK
| | - Jean Woo
- Institute of Health Equity, Chinese University of Hong Kong, Shatin, Hong Kong; Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
90
|
LaFond M, DeAngelis B, al'Absi M. Hypothalamic pituitary adrenal and autonomic nervous system biomarkers of stress and tobacco relapse: Review of the research. Biol Psychol 2024; 192:108854. [PMID: 39151748 DOI: 10.1016/j.biopsycho.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Tobacco smoking is a risk factor for countless diseases, and smoking relapse remains a major public health concern. Subjective reports of stress by smokers are a common theme for relapse, however, the role of objective stress-related biomarkers in predicting tobacco relapse risk has been less studied. The aim of this manuscript was to review existing literature on the connection between biomarkers of stress and smoking relapse. Overall, trends indicate that blunted hypothalamic-pituitary-adrenal (HPA) responses to acute stress, larger reductions in HPA biomarkers during the initial days of abstinence during cessation (compared to pre-cessation levels), and exaggerated autonomic responses to stress predict increased risk of relapse. In addition, successful cessation is followed by changes in stress biomarkers (e.g., reductions in cortisol and heart rate, HR). This review also identifies potential modifiers, such as methodological differences, biological sex, and chronic stress, to account for heterogeneity of findings within and across studies. In addition, we identify gaps in the literature and suggest future research directions focusing on the roles of genetics and gene expression as well as the influence of neurobiological mechanisms on stress and relapse risk. Future clinical implications of this research include identifying reliable indicators of relapse risk and the potential of pharmacotherapeutic treatments to target stress response systems to correct dysregulation and potentially reduce stress-related risk of relapse.
Collapse
Affiliation(s)
- Madeleine LaFond
- Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Briana DeAngelis
- Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Mustafa al'Absi
- Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
91
|
Gobbi C, Sánchez-Marín L, Flores-López M, Medina-Vera D, Pavón-Morón FJ, Rodríguez de Fonseca F, Serrano A. Sex-dependent effects of acute stress and alcohol exposure during adolescence on mRNA expression of brain signaling systems involved in reward and stress responses in young adult rats. Biol Sex Differ 2024; 15:75. [PMID: 39327618 PMCID: PMC11426001 DOI: 10.1186/s13293-024-00649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Adolescent stress and alcohol exposure increase the risk of maladaptive behaviors and mental disorders in adulthood, with distinct sex-specific differences. Understanding the mechanisms underlying these early events is crucial for developing targeted prevention and treatment strategies. METHODS Male and female Wistar rats were exposed to acute restraint stress and intermittent alcohol during adolescence. We assessed lasting effects on plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, and mRNA expression of genes related to corticotropin releasing hormone (CRH), neuropeptide Y (NPY), corticoid, opioid, and arginine vasopressin systems in the amygdala and hypothalamus. RESULTS The main findings are as follows: (1) blood alcohol concentrations (BAC) increased after the final alcohol administration, but stressed males had lower BAC than non-stressed males; (2) Males gained significantly more weight than females; (3) Stressed females showed higher ACTH levels than non-stressed females, with no changes in males; (4) Stress increased CORT levels in males, while stressed, alcohol-treated females had lower CORT levels than non-stressed females; (5) CRH: Females had lower Crhr1 levels in the amygdala, while alcohol reduced Crhr2 levels in males but not females. Significant interactions among sex, stress, and alcohol were found in the hypothalamus, with distinct patterns between sexes; (6) NPY: In the amygdala, stress reduced Npy and Npy1r levels in males but increased them in females. Alcohol decreased Npy2r levels in males, with varied effects in females. Similar sex-specific patterns were observed in the hypothalamus; (7) Corticoid system: Stress and alcohol had complex, sex-dependent effects on Pomc, Nr3c1, and Nr3c2 in both brain regions; (8) Opioid receptors: Stress and alcohol blunted the elevated expression of Oprm1, Oprd1, and Oprk1 in the amygdala of males and the hypothalamus of females; (8) Vasopressin: Stress and alcohol interacted significantly to affect Avp and Avpr1a expression in the amygdala, with stronger effects in females. In the hypothalamus, alcohol increased Avp levels in females. CONCLUSIONS This study demonstrates that adolescent acute stress and alcohol exposure induce lasting, sex-specific alterations in systems involved in reward and stress responses. These findings emphasize the importance of considering sex differences in the prevention and management of HPA dysfunction and psychiatric disorders.
Collapse
Grants
- PI19/00886, PI20/01399, PI22/00427 and PI22/01833 Instituto de Salud Carlos III (ISCIII), Ministerio de Ciencia e Innovación and European Regional Development Funds-European Union (ERDF-EU)
- PI19/00886, PI20/01399, PI22/00427 and PI22/01833 Instituto de Salud Carlos III (ISCIII), Ministerio de Ciencia e Innovación and European Regional Development Funds-European Union (ERDF-EU)
- PI19/00886, PI20/01399, PI22/00427 and PI22/01833 Instituto de Salud Carlos III (ISCIII), Ministerio de Ciencia e Innovación and European Regional Development Funds-European Union (ERDF-EU)
- PT20-00101 Plataforma de biobanco y biomodelos animales y 3D de Málaga
- PT20-00101 Plataforma de biobanco y biomodelos animales y 3D de Málaga
- RD21/0009/0003 Programa RICORS RIAPAD
- RD21/0009/0003 Programa RICORS RIAPAD
- PNSD 2022/020 Ministerio de Sanidad, Delegación de Gobierno para el Plan Nacional sobre Drogas
Collapse
Affiliation(s)
- Carlotta Gobbi
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Laura Sánchez-Marín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, 29010, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain.
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, 29010, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain.
- Unidad de Gestión Clínica de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain.
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| |
Collapse
|
92
|
Savvidis C, Ragia D, Delicou S, Xydaki A, Rizzo M, Ilias I. Adrenal Insufficiency in Patients with Beta Thalassemia: A Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1571. [PMID: 39459358 PMCID: PMC11509364 DOI: 10.3390/medicina60101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Adrenal insufficiency (AI) can be a significant concern in patients with transfusion-dependent homozygous beta thalassemia (bThal) due to the chronic disease burden and frequent blood transfusions that these patients require. The prevalence of AI in this population remains unclear, with studies often lacking control groups for comparison. This meta-analysis aimed to estimate the proportion of patients with transfusion-dependent bThal who exhibit evidence of AI. Materials and Methods: A systematic review following PRISMA guidelines identified 19 studies for analysis. Results: Despite the variability in the diagnostic methods used to ascertain AI, the meta-analysis revealed that approximately one-third of patients had evidence of AI, with the prevalence rising to 50% in studies focused on adults with bThal. Conclusions: These findings suggest an increased risk of AI in patients with bThal compared to the general population. Clinicians should consider tailored management strategies, including glucocorticoid coverage during surgical procedures, to mitigate the risk of adrenal crises in this vulnerable patient group. Further research is needed to optimize adrenal surveillance and management in patients with bThal.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology, Hippocration General Hospital, GR-11527 Athens, Greece; (C.S.); (D.R.)
| | - Dimitra Ragia
- Department of Endocrinology, Hippocration General Hospital, GR-11527 Athens, Greece; (C.S.); (D.R.)
| | - Sophia Delicou
- Thalassemia and Sickle Cell Unit, Expertise Center of Hemoglobinopathies and Their Complications, Hippocration General Hospital, GR-11527 Athens, Greece; (S.D.); (A.X.)
| | - Aikaterini Xydaki
- Thalassemia and Sickle Cell Unit, Expertise Center of Hemoglobinopathies and Their Complications, Hippocration General Hospital, GR-11527 Athens, Greece; (S.D.); (A.X.)
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90133 Palermo, Italy;
| | - Ioannis Ilias
- Department of Endocrinology, Hippocration General Hospital, GR-11527 Athens, Greece; (C.S.); (D.R.)
| |
Collapse
|
93
|
Mallardo M, Mazzeo F, Lus G, Signoriello E, Daniele A, Nigro E. Impact of Lifestyle Interventions on Multiple Sclerosis: Focus on Adipose Tissue. Nutrients 2024; 16:3100. [PMID: 39339700 PMCID: PMC11434938 DOI: 10.3390/nu16183100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination in the central nervous system (CNS), affecting individuals globally. The pathological mechanisms underlying MS remain unclear, but current evidence suggests that inflammation and immune dysfunction play a critical role in the pathogenesis of MS disease. Adipose tissue (AT) is a dynamic multifunctional organ involved in various immune diseases, including MS, due to its endocrine function and the secretion of adipokines, which can influence inflammation and immune responses. Physical activity represents an efficacious non-pharmacological strategy for the management of a spectrum of conditions that not only improves inflammatory and immune functions but also directly affects the status and function of AT. Additionally, the exploration of nutritional supplementation represents an important field of MS research aimed at enhancing clinical symptoms and is closely tied to the regulation of metabolic responses, including adipokine secretion. This review, therefore, aims to elucidate the intricate relationship between lifestyle and MS by providing an overview of the latest published data about the involvement of AT and the main adipokines, such as adiponectin, leptin, and tumor necrosis factor α (TNFα) in the pathogenesis of MS. Furthermore, we explore whether physical activity and dietary management could serve as useful strategies to improve the quality of life of MS patients.
Collapse
Affiliation(s)
- Marta Mallardo
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences (DiSEGIM), University of Naples "Parthenope", 80035 Naples, Italy
| | - Giacomo Lus
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Elisabetta Signoriello
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Aurora Daniele
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ersilia Nigro
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
- Department of Pharmaceutical, Biological, Environmental Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy
| |
Collapse
|
94
|
Kurbatfinski S, Dosani A, Dewey DM, Letourneau N. Proposed Physiological Mechanisms Underlying the Association between Adverse Childhood Experiences and Mental Health Conditions: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1112. [PMID: 39334644 PMCID: PMC11430311 DOI: 10.3390/children11091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Adverse childhood experiences (ACEs; e.g., physical abuse) can impact lifelong mental health both directly and intergenerationally, with effects transmitted from the parent to the child. Several physiological mechanisms have been proposed to explain the impacts of ACEs on mental health. The purpose of this narrative review was to synthesize and critique the peer-reviewed literature on physiological mechanisms proposed to underlie the impacts of ACEs on mental health, specifically: (1) hypothalamic-pituitary-adrenal axis functioning, (2) inflammation, (3) genetic inheritance and differential susceptibility, (4) epigenetics, (5) brain structure and function, (6) oxidative stress, and (7) metabolic profiles. We searched Google Scholar using variations of the terms "adverse childhood experiences", "mechanisms", and "mental health" to locate relevant peer-reviewed literature. We also mined citations of the identified literature to find additional important sources. The role of inflammation in the etiology of mental health conditions among those exposed to ACEs appeared promising, followed by hypothalamic-pituitary-adrenal axis functioning, brain structure and function, genetics, epigenetics, metabolism, and lastly, oxidative stress. Replication studies that examine the associations among ACEs, genetic inheritance and differential susceptibility, epigenetics, oxidative stress, and metabolism are required to better define links with mental health.
Collapse
Affiliation(s)
- Stefan Kurbatfinski
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (S.K.); (A.D.); (D.M.D.)
- Owerko Centre, Alberta Children's Hospital Research Institute, Calgary, AB T2N 1N4, Canada
| | - Aliyah Dosani
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (S.K.); (A.D.); (D.M.D.)
- Faculty of Health, Community and Education, School of Nursing and Midwifery, Mount Royal University, Calgary, AB T3E 6K6, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Deborah M. Dewey
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (S.K.); (A.D.); (D.M.D.)
- Owerko Centre, Alberta Children's Hospital Research Institute, Calgary, AB T2N 1N4, Canada
- Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Letourneau
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (S.K.); (A.D.); (D.M.D.)
- Owerko Centre, Alberta Children's Hospital Research Institute, Calgary, AB T2N 1N4, Canada
- Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
95
|
Moon N, Morgan CP, Marx-Rattner R, Jeng A, Johnson RL, Chikezie I, Mannella C, Sammel MD, Epperson CN, Bale TL. Stress increases sperm respiration and motility in mice and men. Nat Commun 2024; 15:7900. [PMID: 39261485 PMCID: PMC11391062 DOI: 10.1038/s41467-024-52319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Semen quality and fertility has declined over the last 50 years, corresponding to ever-increasing environmental stressors. However, the cellular mechanisms involved and their impact on sperm functions remain unknown. In a repeated sampling human cohort study, we identify a significant effect of prior perceived stress to increase sperm motility 2-3 months following stress, timing that expands upon our previous studies revealing significant stress-associated changes in sperm RNA important for fertility. We mechanistically examine this post-stress timing in mice using an in vitro stress model in the epididymal epithelial cells responsible for sperm maturation and find 7282 differentially H3K27me3 bound DNA regions involving genes critical for mitochondrial and metabolic pathways. Further, prior stress exposure significantly changes the composition and size of epithelial cell-secreted extracellular vesicles that when incubated with mouse sperm, increase mitochondrial respiration and sperm motility, adding to our prior work showing impacts on embryo development. Together, these studies identify a time-dependent, translational signaling pathway that communicates stress experience to sperm, ultimately affecting reproductive functions.
Collapse
Affiliation(s)
- Nickole Moon
- Department of Psychiatry, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Christopher P Morgan
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Ruth Marx-Rattner
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Alyssa Jeng
- Department of Psychiatry, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, 80045, USA
| | - Rachel L Johnson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ijeoma Chikezie
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Carmen Mannella
- Department of Physiology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Mary D Sammel
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, 80045, USA
| | - Tracy L Bale
- Department of Psychiatry, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
96
|
Dubrovskii VN, Maslakova KY, Savchenko EA. Influence of Anticholinesterase Drugs on Activity and Properties of Na +,K +-ATPase in Rat Erythrocytes under Stress Caused by Intense Physical Exercise. Bull Exp Biol Med 2024:10.1007/s10517-024-06202-z. [PMID: 39259465 DOI: 10.1007/s10517-024-06202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 09/13/2024]
Abstract
We studied the effect of intramuscular injection of physostigmine and neostigmine on Na+,K+-ATPase activity in erythrocytes of rats subjected to intense physical exercise. Both anticholinesterase drugs had a significant effect on the development of the stress response, which was expressed in a decrease in the manifestation of its individual components such as the concentration of ascorbic acid in the adrenal glands, stress-related erythrocyte polycythemia, and LPO indicators. Anticholinesterase drugs reverse the stress-induced decrease in Na+,K+-ATPase activity, as well as changes in its magnesium-dependent properties. There were no changes in the activity of the studied enzyme in the erythrocyte ghosts. We associate the observed differences with the correction of the functions of the cholinergic components of the hypothalamic-pituitary-adrenal axis leading to the development of a hypoergic type stress reaction.
Collapse
|
97
|
Brunyé TT, Goring SA, Cantelon JA, Eddy MD, Elkin-Frankston S, Elmore WR, Giles GE, Hancock CL, Masud SB, McIntyre J, McKenzie KL, Mitchell KB, O’Donovan MP, Racicot K, Ramsay JW. Trait-level predictors of human performance outcomes in personnel engaged in stressful laboratory and field tasks. Front Psychol 2024; 15:1449200. [PMID: 39315045 PMCID: PMC11418282 DOI: 10.3389/fpsyg.2024.1449200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Personnel performance under stress hinges on various factors, including individual traits, training, context, mental and physiological states, and task demands. This study explored the link between the traits of military personnel and their performance outcomes in five domains: move, shoot, communicate, navigate, and sustain. Methods A total of 387 U.S. Army soldiers participated in this study, undergoing trait assessments covering physical, cognitive, social-emotional, demographic/lifestyle, and health domains. Performance was measured through lab and field events assessing a broad range of individual and team-level skills under conditions demanding resilience to acute cognitive and physical stress exposure. Analysis used feature selection and elastic net regression. Results Analyses revealed complex associations between traits and performance, with physical, cognitive, health-related, social-emotional, and lifestyle traits playing roles in guiding and constraining performance. Measures of resilience, emotion regulation, grit, and mindfulness were identified as relevant predictors of several performance-related outcomes. Discussion Results carry implications for the selection, training, and operational effectiveness of personnel in high-stakes occupations including military and first response. Further research is necessary to explore the mechanisms underlying these associations and inform targeted interventions to boost personnel effectiveness.
Collapse
Affiliation(s)
- Tad T. Brunyé
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Sara Anne Goring
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Julie A. Cantelon
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Marianna D. Eddy
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Seth Elkin-Frankston
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Wade R. Elmore
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
| | - Grace E. Giles
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | | | - Shoaib Bin Masud
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, United States
| | - James McIntyre
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | | | | | | | | | - John W. Ramsay
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
| |
Collapse
|
98
|
Sutton NM, Suski C, Payne K, O'Dwyer JP. Moving beyond the mean: an analysis of faecal corticosterone metabolites shows substantial variability both within and across white-tailed deer populations. CONSERVATION PHYSIOLOGY 2024; 12:coae062. [PMID: 39252885 PMCID: PMC11381565 DOI: 10.1093/conphys/coae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Glucocorticoid (GC) levels have significant impacts on the health and behaviour of wildlife populations and are involved in many essential body functions including circadian rhythm, stress physiology and metabolism. However, studies of GCs in wildlife often focus on estimating mean hormone levels in populations, or a subset of a population, rather than on assessing the entire distribution of hormone levels within populations. Additionally, explorations of population GC data are limited due to the tradeoff between the number of individuals included in studies and the amount of data per individual that can be collected. In this study, we explore patterns of GC level distributions in three white-tailed deer (Odocoileus virginianus) populations using a non-invasive, opportunistic sampling approach. GC levels were assessed by measuring faecal corticosterone metabolite levels ('fCMs') from deer faecal samples throughout the year. We found both population and seasonal differences in fCMs but observed similarly shaped fCM distributions in all populations. Specifically, all population fCM cumulative distributions were found to be very heavy-tailed. We developed two toy models of acute corticosterone elevation in an effort to recreate the observed heavy-tailed distributions. We found that, in all three populations, cumulative fCM distributions were better described by an assumption of large, periodic spikes in corticosterone levels every few days, as opposed to an assumption of random spikes in corticosterone levels. The analyses presented in this study demonstrate the potential for exploring population-level patterns of GC levels from random, opportunistically sampled data. When taken together with individual-focused studies of GC levels, such analyses can improve our understanding of how individual hormone production scales up to population-level patterns.
Collapse
Affiliation(s)
- Nicholas M Sutton
- Department of Biology, Grinnell College, 1116 8th Avenue, Grinnell, IA, 50112, USA
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Cory Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana- Champaign, 1102 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Keegan Payne
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana- Champaign, 1102 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - James P O'Dwyer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL,61801, USA
| |
Collapse
|
99
|
Mpakosi A, Cholevas V, Tzouvelekis I, Passos I, Kaliouli-Antonopoulou C, Mironidou-Tzouveleki M. Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature. Healthcare (Basel) 2024; 12:1767. [PMID: 39273791 PMCID: PMC11395540 DOI: 10.3390/healthcare12171767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Environmental disasters are extreme environmental processes such as earthquakes, volcanic eruptions, landslides, tsunamis, floods, cyclones, storms, wildfires and droughts that are the consequences of the climate crisis due to human intervention in the environment. Their effects on human health have alarmed the global scientific community. Among them, autoimmune diseases, a heterogeneous group of disorders, have increased dramatically in many parts of the world, likely as a result of changes in our exposure to environmental factors. However, only a limited number of studies have attempted to discover and analyze the complex association between environmental disasters and autoimmune diseases. This narrative review has therefore tried to fill this gap. First of all, the activation pathways of autoimmunity after environmental disasters have been analyzed. It has also been shown that wildfires, earthquakes, desert dust storms and volcanic eruptions may damage human health and induce autoimmune responses to inhaled PM2.5, mainly through oxidative stress pathways, increased pro-inflammatory cytokines and epithelial barrier damage. In addition, it has been shown that heat stress, in addition to increasing pro-inflammatory cytokines, may also disrupt the intestinal barrier, thereby increasing its permeability to toxins and pathogens or inducing epigenetic changes. In addition, toxic volcanic elements may accelerate the progressive destruction of myelin, which may potentially trigger multiple sclerosis. The complex and diverse mechanisms by which vector-borne, water-, food-, and rodent-borne diseases that often follow environmental diseases may also trigger autoimmune responses have also been described. In addition, the association between post-disaster stress and the onset or worsening of autoimmune disease has been demonstrated. Given all of the above, the rapid restoration of post-disaster health services to mitigate the flare-up of autoimmune conditions is critical.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia "Agios Panteleimon", 18454 Piraeus, Greece
| | | | - Ioannis Tzouvelekis
- School of Agricultural Technology, Food Technology and Nutrition, Alexander Technological Educational Institute of Thessaloniki, 57400 Thessaloniki, Greece
| | - Ioannis Passos
- Surgical Department, 219, Mobile Army, Surgical Hospital, 68300 Didymoteicho, Greece
| | | | - Maria Mironidou-Tzouveleki
- Department of Pharmacology, School of Medical, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
100
|
Speranza L, Filiz KD, Lippiello P, Ferraro MG, Pascarella S, Miniaci MC, Volpicelli F. Enduring Neurobiological Consequences of Early-Life Stress: Insights from Rodent Behavioral Paradigms. Biomedicines 2024; 12:1978. [PMID: 39335492 PMCID: PMC11429222 DOI: 10.3390/biomedicines12091978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Stress profoundly affects physical and mental health, particularly when experienced early in life. Early-life stress (ELS) encompasses adverse childhood experiences such as abuse, neglect, violence, or chronic poverty. These stressors can induce long-lasting changes in brain structure and function, impacting areas involved in emotion regulation, cognition, and stress response. Consequently, individuals exposed to high levels of ELS are at an increased risk for mental health disorders like depression, anxiety, and post-traumatic stress disorders, as well as physical health issues, including metabolic disorders, cardiovascular disease, and cancer. This review explores the biological and psychological consequences of early-life adversity paradigms in rodents, such as maternal separation or deprivation and limited bedding or nesting. The study of these experimental models have revealed that the organism's response to ELS is complex, involving genetic and epigenetic mechanisms, and is associated with the dysregulation of physiological systems like the nervous, neuroendocrine, and immune systems, in a sex-dependent fashion. Understanding the impact of ELS is crucial for developing effective interventions and preventive strategies in humans exposed to stressful or traumatic experiences in childhood.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Kardelen Dalim Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Silvia Pascarella
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| |
Collapse
|