51
|
Ahmed Z, Ikram M, Khan I, Bashir K, Shah AJ, Hussain Z, Khan T. LC-ESI-MS/MS-based molecular networking, antioxidant, anti-glioma activity and molecular docking studies of Clematis graveolens. PLANT METHODS 2024; 20:111. [PMID: 39054477 PMCID: PMC11271027 DOI: 10.1186/s13007-024-01221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024]
Abstract
Clematis graveolens Lindl., an indigenous climbing plant found in the Himalayan areas, is used by local communities for the treatment of neck tumors. The objective of this work is to examine the comprehensive metabolomic profile, antioxidant capability, in vitro and in silico anti-glioma effects on U-87 human glioma cell lines of the crude extract and fractions from C. graveolens. Liquid chromatography coupled with mass spectroscopy (LC-MS/MS) was used to establish detailed metabolite profiling of C. graveolens. The assessment of cell cytotoxicity was conducted using MTT cell viability assay on U-87 and BHK-21. Through molecular docking studies, the mode of inhibition and binding interaction between identified compounds and target proteins were also determined to evaluate the in vitro results. The use of LC-MS/MS-based global natural products social (GNPS) molecular networking analysis resulted in the identification of 27 compounds. The crude extract, ethyl acetate fraction, and chloroform fraction exhibited significant inhibitory activity against the U-87 cell lines, with IC50 values of 112.0, 138.1, and 142.7 µg/mL, respectively. The ethyl acetate fraction exhibited significant inhibitory concentration for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity and the metal chelation activity with IC50 value of 39.50 µg/mL, 32.27 µg/mL, and 53.46 µg/mL, respectively. The crude extract showed maximum total phenolic, and total flavonoid concentration measuring 338.7 µg GAE/mg, and 177.04 µg QE/mg, respectively. The findings of this study indicate that C. graveolens consists of a diverse range of active phytoconstituents that possess antioxidant and anti-glioma properties.
Collapse
Affiliation(s)
- Zubair Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, 22060, Abbottabad, KP, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, 22060, Abbottabad, KP, Pakistan
| | - Ishaq Khan
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, 25000, Peshawar, Pakistan
- Texas A&M Health Science Centre, Joe H. Reynolds Medical Build 159, College Station, 77843, Texas, USA
| | - Kashif Bashir
- Department of Pharmaceutical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, 22600, Haripur, Pakistan
| | - Abdul Jabbar Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, 22060, Abbottabad, KP, Pakistan
| | - Zahid Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad campus, 22060, Abbottabad, KP, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, 22060, Abbottabad, KP, Pakistan.
| |
Collapse
|
52
|
Phong Lam V, Loi DN, Shin J, Mi LK, Park J. Optimization of salicylic acid concentrations for increasing antioxidant enzymes and bioactive compounds of Agastache rugosa in a plant factory. PLoS One 2024; 19:e0306340. [PMID: 39052558 PMCID: PMC11271957 DOI: 10.1371/journal.pone.0306340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Salicylic acid (SA) plays a crucial role as a hormone in plants and belongs to the group of phenolic compounds. Our objective was to determine the optimal concentration of SA for enhancing the production of bioactive compounds in Agastache rugosa plants while maintaining optimal plant growth. The plants underwent SA soaking treatments at different concentrations (i.e., 0, 100, 200, 400, 800, and 1600 μmol mol-1) for 10 min at 7 days after they were transplanted. We observed that elevated levels of SA at 800 and 1600 μmol mol-1 induced oxidative stress, leading to a significant reduction across many plant growth variables, including leaf length, width, number, area, shoot fresh weight (FW), stem FW and length, and whole plant dry weights (DW) compared with that in the control plants. Additionally, the treatment with 1600 μmol mol-1 SA resulted in the lowest values of flower branch number, FW and DW of flowers, and DW of leaf, stem, and root. Conversely, applying 400 μmol mol-1 SA resulted in the greatest increase of chlorophyll (Chl) a and b, total Chl, total flavonoid, total carotenoid, and SPAD values. The photosynthetic rate and stomatal conductance decreased with increased SA concentrations (i.e., 800 and 1600 μmol mol-1). Furthermore, the higher SA treatments (i.e., 400, 800, and 1600 μmol mol-1) enhanced the phenolic contents, and almost all SA treatments increased the antioxidant capacity. The rosmarinic acid content peaked under 200 μmol mol-1 SA treatment. However, under 400 μmol mol-1 SA, tilianin and acacetin contents reached their highest levels. These findings demonstrate that immersing the roots in 200 and 400 μmol mol-1 SA enhances the production of bioactive compounds in hydroponically cultivated A. rugosa without compromising plant growth. Overall, these findings provide valuable insights into the impact of SA on A. rugosa and its potential implications for medicinal plant cultivation and phytochemical production.
Collapse
Affiliation(s)
- Vu Phong Lam
- Department of Horticultural Science, Chungnam National University, Daejeon, South Korea
- Department of Agronomy, Tay Bac University, Son La, Vietnam
| | - Dao Nhan Loi
- Department of Agronomy, Tay Bac University, Son La, Vietnam
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| | - Juhyung Shin
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| | - Lee Kyeong Mi
- Department of Horticultural Science, Chungnam National University, Daejeon, South Korea
| | - Jongseok Park
- Department of Horticultural Science, Chungnam National University, Daejeon, South Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
53
|
Yang X, Wang Y, Li J, Tai Y, Yang K, Lv J, Sun J, Zhang H. From waste to wonder: exploring the hypoglycemic and anti-oxidant properties of corn processing by-products. Front Chem 2024; 12:1433501. [PMID: 39104778 PMCID: PMC11299435 DOI: 10.3389/fchem.2024.1433501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction: The industrial processing of corn (Zeamays L.) generates by-products such as corn silk, straw peels, and straw core, which contribute to adverse environmental impacts. Our study aimed to investigate sustainable approaches for mitigating these effects by evaluating the hypoglycemic potential and mechanisms of ethyl acetate fractions derived from these corn derivatives. Methods: We employed glucose consumption assays, high glucose stress tests, UPLC-QE-Orbitrap-MS analysis, molecular docking, and simulations to assess their components and efficacy. Antioxidant capacities were evaluated using DPPH, FRAP, ABTS, and •OH scavenging assays. Results: Notably, the ethyl acetate fraction extracted from straw peels (SPE) exhibited a high concentration of flavonoids and phenolic compounds along with pronounced hypoglycemic activity and antioxidant capacity. SPE significantly enhanced glucose consumption in insulin-resistant HepG2 cells while protecting HUVECs against damage caused by high glucose levels. Molecular docking analyses confirmed the interaction between active compounds and α-glucosidase as well as α-amylase, while molecular dynamic simulations indicated stability at their binding sites. Discussion: In conclusion, the hypoglycemic and antioxidative properties observed in corn by-products such as straw peels, corn silk, and straw core can be attributed to the inhibition of α-glucosidase and α-amylase activities, coupled with their rich phenolic and flavonoid content. These findings highlight the potential of these by-products for applications in healthcare management and their sustainable utilization, demonstrating significant value in the use of agricultural residues.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuelong Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingfeng Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuxing Tai
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Kunping Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
54
|
Hassan AAA, Jin YH, Mah JH. Effects of Lactic Acid Bacteria on Reducing the Formation of Biogenic Amines and Improving the Formation of Antioxidant Compounds in Traditional African Sourdough Flatbread Fermentation. Antioxidants (Basel) 2024; 13:844. [PMID: 39061912 PMCID: PMC11274339 DOI: 10.3390/antiox13070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the safety and functionality of traditional African sourdough flatbread (kisra), based on the content of biogenic amines (BAs) and antioxidant compounds and their improvement using lactic acid bacteria (LAB) species. The primary BAs detected in naturally fermented kisra were tyramine, histamine, putrescine, and cadaverine, with putrescine being the most abundant after baking. In vitro BA production of microorganisms isolated from kisra sourdough revealed that the Enterococcus genus contributed to tyramine accumulation, whereas presumptive yeasts may contribute to putrescine and cadaverine accumulation. The use of LAB species, including Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Levilactobacillus brevis, and Weissella cibaria, significantly reduced putrescine content to less than about 23% of that of naturally fermented kisra, and eliminated tyramine, histamine, and cadaverine formation. Meanwhile, DPPH scavenging activity, total polyphenolic content, and tannin content in naturally fermented kisra were 85.16%, 1386.50 µg/g, and 33.16 µg/g, respectively. The use of LAB species did not affect the DPPH scavenging activity or tannin content but significantly increased the total phenolic content by up to 20% compared to naturally fermented kisra. Therefore, fermentation with LAB starter cultures might be a promising approach to improve the safety related to BAs as well as the functionality of kisra bread.
Collapse
Affiliation(s)
| | | | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (A.A.A.H.); (Y.H.J.)
| |
Collapse
|
55
|
Roy J, Rahman A, Mosharaf MK, Hossain MS, Talukder MR, Ahmed M, Haque MA, Shozib HB, Haque MM. Augmentation of physiology and productivity, and reduction of lead accumulation in lettuce grown in lead contaminated soil by rhizobacteria-assisted rhizoengineeing. CHEMOSPHERE 2024; 360:142418. [PMID: 38795913 DOI: 10.1016/j.chemosphere.2024.142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Microbial-assisted rhizoengineering is a promising biotechnology for improving crop productivity. In this study, lettuce roots were bacterized with two lead (Pb) tolerant rhizobacteria including Pseudomonas azotoformans ESR4 and P. poae ESR6, and a consortium consisted of ESR4 and ESR6 to increase productivity, physiology and antioxidants, and reduce Pb accumulation grown in Pb-contaminated soil i.e., 80 (Pb in native soil), 400 and 800 mg kg-1 Pb. In vitro studies showed that these strains and the consortium produced biofilms, synthesized indole-3-acetic acid and NH3, and solubilized phosphate challenging to 0, 100, 200 and 400 mg L-1 of Pb. In static conditions and 400 mg L-1 Pb, ESR4, ESR6 and the consortium adsorbed 317.0, 339.5 and 357.4 mg L-1 Pb, respectively, while 384.7, 380.7 and 373.2 mg L-1 Pb, respectively, in shaking conditions. Fourier transform infrared spectroscopy results revealed that several functional groups [Pb-S, M - O, O-M-O (M = metal ions), S-S, PO, CO, -NH, -NH2, C-C-O, and C-H] were involved in Pb adsorption. ESR4, ESR6 and the consortium-assisted rhizoengineering (i) increased leaf numbers and biomass production, (ii) reduced H2O2 production, malondialdehyde, electrolyte leakages, and transpiration rate, (iii) augmented photosynthetic pigments, photosynthetic rate, water use efficiency, total antioxidant capacity, total flavonoid content, total phenolic content, and minerals like Ca2+ and Mg2+ in comparison to non-rhizoengineering plants grown in Pb-contaminated soil. Principal component analysis revealed that higher pigment production and photosynthetic rate, improved water use efficiency and increased uptake of Ca2+ were interlinked to increased productivity by bacterial rhizoengineering of lettuce grown in different levels of Pb exposures. Surprisingly, Pb accumulation in lettuce roots and shoots was remarkably decreased by rhizoengineering than in non-rhizoengineering. Thus, these bacterial strains and this consortium could be utilized to improve productivity and reduce Pb accumulation in lettuce.
Collapse
Affiliation(s)
- Joty Roy
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashikur Rahman
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Khaled Mosharaf
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Saddam Hossain
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Raihan Talukder
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Minhaz Ahmed
- Department of Agroforestry and Environment, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Amdadul Haque
- Department of Agro-processing, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Habibul Bari Shozib
- Grain Quality and Nutrition Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Md Manjurul Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
56
|
Iltaf M, Niaz SI, Majeed MK, Saleem M, Shah M, Ali M, Shakeel Abbas S, Amin A. DFT, GC-MS analysis and biological evaluation of Limbarda crithmoides L. Dumort essential oil; an important edible halophyte grown in Pakistan. Nat Prod Res 2024:1-8. [PMID: 38946520 DOI: 10.1080/14786419.2024.2362426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Antimicrobial resistance is a major health burden in Pakistan, and therefore new herbal medicine-based therapeutic regimens are being largely investigated. Limbarda crithmoides essential oil was extracted by using hydrodistillation method. Chemical profiling of essential was evaluated by using FTIR and GC-MS analysis. A total of 20 components were identified including, p-xylene, o-xylene, β-linalool, acetophenole and 3-isopropylphenyl methylcarbamate. The HOMO and LUMO analysis in DFT investigations presented that 3-isopropylphenyl methylcarbamate, p-xylene and o-xylene posess a substantial capacity to transfer charge through molecules. The antimicrobial potential of essential oil showed moderate inhibition against E. coli (MIC = 6.25 mg/mL), whereras a significant inhibition Staphylococos aureus was recorded (MIC = 3.12 mg/mL). Further, significant antioxidant activities were recorded in DPPH radical scavenging (IC50 = 80.5 µg/mL), H2O2 (64 ± 1.2%) and FRAP (60.3 µg ferrous equivalents) assays. It was therefore concluded that Limbarda crithmoides essential oil has potential antioxidant and anti-antimicrobial properties and can be used for further investigations.
Collapse
Affiliation(s)
- Muhammad Iltaf
- Institute of Chemical Sciences (ICS), Gomal University, D.I.Khan, KPK, Pakistan
| | - Shah Iram Niaz
- Institute of Chemical Sciences (ICS), Gomal University, D.I.Khan, KPK, Pakistan
| | - Muhammad Kashif Majeed
- Erik Jonsson School of Engineering and Computer Science, University of TX at Dallas, Richardson, TX, USA
| | - Muhammad Saleem
- Gomal Centre of Biochemistry and Biotechnology (GCBB), Gomal University, D.I.Khan, KPK, Pakistan
| | - Mubarak Shah
- Institute of Chemical Sciences (ICS), Gomal University, D.I.Khan, KPK, Pakistan
| | - Muhammad Ali
- Institute of Chemical Sciences (ICS), Gomal University, D.I.Khan, KPK, Pakistan
| | - Syed Shakeel Abbas
- NPRL, Department of Pharmacognosy, Faculty of Pharmacognosy, Gomal University D.I.Khan, KPK, Pakistan
| | - Adnan Amin
- NPRL, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, D.I.Khan, KPK, Pakistan
| |
Collapse
|
57
|
MR Z, SN G, RR M, AA M, NL V, UG G, SM M, TF A. Characterization of Rhodiola heterodonta (Crassulaceae): Phytocomposition, Antioxidant and Antihyperglycemic Activities. Prev Nutr Food Sci 2024; 29:135-145. [PMID: 38974598 PMCID: PMC11223926 DOI: 10.3746/pnf.2024.29.2.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Plant extracts have been widely used in traditional medicine to prevent diabetes. The present study aimed to examine the antihyperglycemic properties of an ethanolic extract from Rhodiola heterodonta roots. In vitro evaluation revealed that treatment with the R. heterodonta extract resulted in significant reactive oxygen species inhibition, glucose binding, glucose transporter activation, and suppression of α-amylase and α-glucosidase. Moreover, the treatment with 100 mg/kg of R. heterodonta extract dramatically decreased glucose levels in glucose-, alloxan-, or adrenaline-induced diabetic rats. The information gathered in this study bridges the knowledge gap between traditional healers in Uzbekistan who utilize R. heterodonta and its potential for future medication development.
Collapse
Affiliation(s)
- Zaripova MR
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Tashkent 100125, Uzbekistan
| | - Gayibova SN
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Tashkent 100125, Uzbekistan
| | - Makhmudov RR
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Tashkent 100125, Uzbekistan
| | - Mamadrahimov AA
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Tashkent 100125, Uzbekistan
| | - Vypova NL
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Tashkent 100125, Uzbekistan
| | - Gayibov UG
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Tashkent 100125, Uzbekistan
| | - Miralimova SM
- Institute of Microbiology, Academy of Science of Uzbekistan, Tashkent 100128, Uzbekistan
| | - Aripov TF
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Tashkent 100125, Uzbekistan
| |
Collapse
|
58
|
Polyiam P, Thukhammee W. A Comparison of Phenolic, Flavonoid, and Amino Acid Compositions and In Vitro Antioxidant and Neuroprotective Activities in Thai Plant Protein Extracts. Molecules 2024; 29:2990. [PMID: 38998943 PMCID: PMC11243576 DOI: 10.3390/molecules29132990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024] Open
Abstract
The leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean are considered rich sources of plant protein with high levels of branched-chain amino acids. Furthermore, they contain beneficial phytochemicals such as antioxidants and anti-inflammatory agents. Additionally, there are reports suggesting that an adequate consumption of amino acids can reduce nerve cell damage, delay the onset of memory impairment, and improve sleep quality. In this study, protein isolates were prepared from the leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean. The amino acid profile, dietary fiber content, phenolic content, and flavonoid content were evaluated. Pharmacological properties, such as antioxidant, anticholinesterase, monoamine oxidase, and γ-aminobutyric acid transaminase (GABA-T) activities, were also assessed. This study found that concentrated protein from mung beans has a higher quantity of essential amino acids (52,161 mg/100 g protein) compared to concentrated protein from sunflower sprouts (47,386 mg/100 g protein), Azolla spp. (42,097 mg/100 g protein), cashew nut (26,710 mg/100 g protein), and mulberry leaves (8931 mg/100 g protein). The dietary fiber content ranged from 0.90% to 3.24%, while the phenolic content and flavonoid content ranged from 0.25 to 2.29 mg/g and 0.01 to 2.01 mg/g of sample, respectively. Sunflower sprout protein isolates exhibited the highest levels of dietary fiber (3.24%), phenolic content (2.292 ± 0.082 mg of GAE/g), and flavonoids (2.014 mg quercetin/g of sample). The biological efficacy evaluation found that concentrated protein extract from sunflower sprouts has the highest antioxidant activity; the percentages of inhibition of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical were 20.503 ± 0.288% and 18.496 ± 0.105%, respectively. Five plant-based proteins exhibited a potent inhibition of acetylcholinesterase (AChE) enzyme activity, monoamine oxidase (MAO) inhibition, and GABA-T ranging from 3.42% to 24.62%, 6.14% to 20.16%, and 2.03% to 21.99%, respectively. These findings suggest that these plant protein extracts can be used as natural resources for developing food supplements with neuroprotective activity.
Collapse
Affiliation(s)
- Pontapan Polyiam
- Department of Physiology, Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukhammee
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
59
|
Singai C, Pitchakarn P, Taya S, Phannasorn W, Wongpoomchai R, Wongnoppavich A. Chemopreventive Potential of Phyllanthus emblica Fruit Extract against Colon and Liver Cancer Using a Dual-Organ Rat Carcinogenesis Model. Pharmaceuticals (Basel) 2024; 17:818. [PMID: 39065670 PMCID: PMC11280025 DOI: 10.3390/ph17070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Humans are frequently exposed to various carcinogens capable of inducing cancer in multiple organs. Phyllanthus emblica (P. emblica) is known for its strong antioxidant properties and potential in cancer prevention. However, its effectiveness against combined carcinogens remains relatively unexplored. This study aimed to assess the chemopreventive potential of the ethanolic extract of P. emblica fruits against preneoplastic lesions in the liver and colon using a rat model. Rats were administered with diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH) to induce hepato- and colon carcinogenesis, respectively. The ethanolic extract of P. emblica fruit at 100 and 500 mg/kg bw significantly reduced the number of preneoplastic lesions in the liver by 74.7% and 55.6%, respectively, and in the colon by 39.2% and 40.8%, respectively. Similarly, the extract decreased the size of preneoplastic lesions in the liver by 75.2% (100 mg/kg bw) and 70.6% (500 mg/kg bw). Furthermore, the extract significantly reduced the cell proliferation marker in the liver by 70.3% (100 mg/kg bw) and 61.54% (500 mg/kg bw), and in the colon by 62.7% (100 mg/kg bw) and 60.5% (500 mg/kg bw). The ethanolic extract also enhanced liver antioxidant enzyme activities and demonstrated free radical scavenging in DPPH, ABTS, and FRAP assays. Additionally, the dichloromethane fraction of P. emblica showed significant cancer prevention potential by reducing intracellular ROS and NO production by 61.7% and 35.4%, respectively, in RAW 264.7 macrophages. It also exhibited antimutagenic effects with a reduction of 54.0% against aflatoxin B1 and 52.3% against 2-amino-3,4-dimethylimidazo[4,5-f]quinoline-induced mutagenesis in Salmonella typhimurium. Finally, this study highlights the chemopreventive activity of P. emblica fruit extract against the initiation of early-stage carcinogenic lesions in the liver and colon in rats treated with dual carcinogens.
Collapse
Affiliation(s)
- Chonikarn Singai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| | - Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Warunyoo Phannasorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| |
Collapse
|
60
|
Younis M, Akhtar S, Ismail T, Qamar M, Sattar DES, Saeed W, Mubarak MS, Bartkiene E, Rocha JM. Lactic Acid Fermentation Ameliorates Intrinsic Toxicants in Brassica campestris L. Leaves Harvested at Different Growth Stages. Foods 2024; 13:1826. [PMID: 38928768 PMCID: PMC11203322 DOI: 10.3390/foods13121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Brassica campestris (syn. Brassica rapa) is often known as mustard and is grown worldwide owing to its health-promoting characteristics associated with the presence of nutrients and phytochemicals. Along with the nutritional components, B. campestris also contains anti-nutrients (phytates, oxalates, tannins, alkaloids, saponins) that can cause adverse severe health effects to consumers, including rashes, nausea, headaches, bloating and nutritional deficiencies. In the present study, heating (blanching) and fermentation (Lactiplantibacillus plantarum) treatments were applied to reduce the load of the anti-nutrients of B. campestris leaves harvested at three different growth stages: the first stage (fourth week), the second stage (sixth week) and the third stage (eighth week). Results revealed that fermentation treatment using Lp. plantarum increases the ash (5.4 to 6%), protein (9 to 10.4%) and fiber (9.6 to 10.7%) contents, whereas moisture (0.91 to 0.82%), fat (9.9 to 9.1%) and carbohydrate (64.5 to 64.2%) contents decreased among B. campestris samples, and the trend was similar for all three stages. Blanching and fermentation lead to the reduction in phytates (46, 42%), saponins (34, 49%), tannins (1, 10%), oxalates (15, 7%) and alkaloids (10, 6%), separately as compared to raw samples of B. campestris leaves. In contrast, fermentation had no considerable effect on phytochemical contents (total phenolic and total flavonoids) and antioxidant potential (DPPH and FRAP). The action of blanching followed by fermentation caused more decline in the aforementioned toxicants load as compared to blanching or fermentation alone. Structural modifications in blanching and the biochemical conversions in fermentation lead to enhanced stability of nutrients and antioxidant potential. Taken together, these findings suggest blanching followed by fermentation treatments as a reliable, cost-effective and safer approach to curtail the anti-nutrient load without affecting the proximate composition, phytochemical attributes and antioxidant activity.
Collapse
Affiliation(s)
- Muhammad Younis
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Y.); (T.I.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Saeed Akhtar
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Y.); (T.I.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Tariq Ismail
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Y.); (T.I.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Muhammad Qamar
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Y.); (T.I.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Dur-e-shahwar Sattar
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Y.); (T.I.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Wisha Saeed
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Y.); (T.I.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | | | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
61
|
Kibet S, Mudalungu CM, Ochieng BO, Mokaya HO, Kimani NM, Tanga CM. Nutritional composition of edible wood borer beetle larvae in Kenya. PLoS One 2024; 19:e0304944. [PMID: 38843212 PMCID: PMC11156320 DOI: 10.1371/journal.pone.0304944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Exploration of edible insects as sustainable alternative nutrient-dense sources such as nutraceuticals have attracted more and more global attention recently. However, research on wood borer beetles have largely been overlooked. This study assessed the entomo-chemical properties of Titoceres jaspideus (Cerambycidae) and Passalus punctiger (Passalidae), which are widely consumed in many African countries, including Kenya. The crude protein content of the beetle larvae ranged between 27.5-39.8 mg BSA/g. In comparison with those of cereals, amino acids such as lysine (7.9-9.9 mg/g), methionine (0.48-0.64 mg/g) and threonine (2.31-2.55 mg/g) were considerably high in the larvae. Methyl-5Z,8Z,11Z,14Z-eicosatetraenoate and methyl-9Z-octadecenoate were the predominant polyunsaturated and monounsaturated fatty acids, respectively. High total phenols (>4.4 mg GAE/g), flavonoids (>3.6 mg QE/g) and anti-oxidative activities (>67%) were recorded for both larvae. This implies that increasing the consumption of wood-borer beetle larvae would positively impact the state of the natural environment and reduce the problem of malnutrition in the society. Thus, applying these strategies to develop insect food in a more familiar form can help to make insect-enriched foods more appealing to consumers, facilitating their widespread adoption as a sustainable and nutritious food source.
Collapse
Affiliation(s)
- Shadrack Kibet
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - Cynthia M. Mudalungu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- School of Chemistry and Material Science, The Technical University of Kenya, Nairobi, Kenya
| | - Brian O. Ochieng
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Hosea O. Mokaya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Njogu M. Kimani
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
62
|
Aayush K, Sharma K, Singh GP, Chiu I, Chavan P, Shandilya M, Roy S, Ye H, Sharma S, Yang T. Development and characterization of edible and active coating based on xanthan gum nanoemulsion incorporating betel leaf extract for fresh produce preservation. Int J Biol Macromol 2024; 270:132220. [PMID: 38754654 DOI: 10.1016/j.ijbiomac.2024.132220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Developing an edible and active coating, incorporating environmentally-friendly antimicrobial agents into edible polymers, provides an eco-friendly alternative to conventional packaging and exhibits significant potential in preserving the quality of postharvest food. Herein, we aim to develop a novel edible and active coating based on xanthan gum (XG) nanoemulsion (NE) incorporating betel leaf extract (BLE) for the preservation of fresh produce. The total phenolic content, total flavonoid content, and antioxidant capacity of the methanol extract of BLE at various concentrations were characterized. Further development of the active coating at different formulations of Tween 80 (1 % and 3 % w/v), XG (0.1 % to 0.5 % w/v), and BLE (1 % to 5 % w/v) was characterized by physical stability, viscosity, and antimicrobial properties. Results showed that the active coating at 1 % BLE showed significant antimicrobial properties against diverse bacterial and fungal foodborne pathogens (e.g., B. cereus, S. aureus) and fungal cultures (e.g., C. albicans). The study also examined the shelf-life of tomatoes coated with the BLE-XG NE solution, stored at 4 °C for 27 days. Analyses of weight retention, soluble solids, pH, texture, sensory attributes, and microbial populations showed that the coating effectively preserved tomato quality, highlighting its potential to preserve fresh produce and enhance food security.
Collapse
Affiliation(s)
- Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Kanika Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Gurvendra Pal Singh
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Mamta Shandilya
- School of Physics and Material Science, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India; Department of Food Technology and Nutrition, School of Agricultural, Lovely Professional University, Phagwara 144411, India
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India.
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
63
|
Bhavikatti SK, Zainuddin SLA, Ramli RB, Nadaf SJ, Dandge PB, Khalate M, Karobari MI. Insights into the antioxidant, anti-inflammatory and anti-microbial potential of Nigella sativa essential oil against oral pathogens. Sci Rep 2024; 14:11878. [PMID: 38789533 PMCID: PMC11126586 DOI: 10.1038/s41598-024-62915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
Oral disorders can exert systemic ramifications beyond their localized effects on dental tissues, implicating a wide array of physiological conditions. The utilization of essential oils (EOs) for protection of oral health represents a longstanding practice. Consequently, in this investigation, essential oil derived from Nigella sativa seeds (NSEO) underwent isolation via the hydro-distillation process, followed by a comprehensive evaluation of its antioxidant, anti-inflammatory, anti-fungal, antibacterial activities, and cytocompatibility. The isolated NSEO manifested as a pale-yellow substance and was found to harbor a diverse spectrum of bioactive constituents, including steroids, triterpenoids, flavonoids, phenols, proteins, alkaloids, tannin, sesquiterpenoid hydrocarbons, monoterpenoid alcohol, and monoterpenoid ketone (thymoquinone). Notably, the total phenolic content (TPC) and total flavonoid content (TFC) of NSEO were quantified at 641.23 μg GAE/gm and 442.25 μg QE/g, respectively. Furthermore, NSEO exhibited concentration-dependent inhibition of protein denaturation, HRBC membrane stabilization, and hemolysis inhibition. Comparative analysis revealed that NSEO and chlorhexidine (CHX) 0.2% displayed substantial inhibition of hemolysis compared to aspirin. While NSEO and CHX 0.2% demonstrated analogous antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, NSEO showcased heightened efficacy against Lactobacillus acidophilus and Candida albicans. Additionally, NSEO exhibited pronounced effects against periodontal pathogens such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia. Importantly, no cytotoxicity was observed on human gingival fibroblast cell lines. These findings underscore the potential of NSEO as a potent antibacterial and antifungal agent in the management of oral microbial pathogens, thereby offering avenues for the development of innovative therapies targeting diverse oral inflammatory conditions. Nevertheless, further investigations are imperative to unlock its full therapeutic repertoire.
Collapse
Affiliation(s)
- Shaeesta Khaleelahmed Bhavikatti
- Department of Periodontics, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
- Department of Dental Research, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Siti Lailatul Akmar Zainuddin
- Department of Periodontics, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia.
- Faculty of Dentistry, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150, Melaka, Malaysia.
| | - Rosmaliza Binti Ramli
- Basic and Medical Sciences Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu16150, Kelantan, Malaysia
| | - Sameer J Nadaf
- Bharati Vidyapeeth College of Pharmacy, Palus, 416310, Maharashtra, India
| | - Padma B Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004, Maharastra, India
| | - Masidd Khalate
- Department of Biotechnology, Shivaji University, Kolhapur, 416004, Maharastra, India
| | - Mohmed Isaqali Karobari
- Department of Dental Research, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India.
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
64
|
Góral-Kowalczyk M, Grządka E, Orzeł J, Góral D, Skrzypek T, Kobus Z, Nawrocka A. Green Synthesis of Iron Nanoparticles Using an Aqueous Extract of Strawberry ( Fragaria × ananassa Duchesne) Leaf Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2515. [PMID: 38893778 PMCID: PMC11174040 DOI: 10.3390/ma17112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In this study, we analysed the potential use of dried strawberry leaves and calyces for the production of nanoparticles using inorganic iron compounds. We used the following iron precursors FeCl3 × 6H2O, FeCl2 × 4H2O, Fe(NO3)3 × 9H2O, Fe2(SO4)3 × H2O, FeSO4 × 7H2O, FeCl3 anhydrous. It was discovered that the content of polyphenols and flavonoids in dried strawberries and their antioxidant activity in DPPH and FRAP were 346.81 µM TE/1 g and 331.71 µM TE/1 g, respectively, and were similar to these of green tea extracts. Microimages made using TEM techniques allowed for the isolation of a few nanoparticles with dimensions ranging from tens of nanometres to several micrometres. The value of the electrokinetic potential in all samples was negative and ranged from -21,300 mV to -11,183 mV. XRF analyses confirmed the presence of iron ranging from 0.13% to 0.92% in the samples with a concentration of 0.01 mol/dm3. FT-IR spectra analyses showed bands characteristic of nanoparticles. In calorimetric measurements, no increase in temperature was observed in any of the tests during exposure to the electromagnetic field. In summary, using the extract from dried strawberry leaves and calyxes as a reagent, we can obtain iron nanoparticles with sizes dependent on the concentration of the precursor.
Collapse
Affiliation(s)
- Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Elżbieta Grządka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Jolanta Orzeł
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland;
| | - Zbigniew Kobus
- Department of Technology Fundamentals, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Agnieszka Nawrocka
- Department of Physical Properties of Plant Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| |
Collapse
|
65
|
Rahmanzadeh-Ishkeh S, Shirzad H, Tofighi Z, Fattahi M, Ghosta Y. Exogenous melatonin prolongs raspberry postharvest life quality by increasing some antioxidant and enzyme activity and phytochemical contents. Sci Rep 2024; 14:11508. [PMID: 38769439 PMCID: PMC11106078 DOI: 10.1038/s41598-024-62111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
There is a growing trend towards enhancing the post-harvest shelf life and maintaining the nutritional quality of horticultural products using eco-friendly methods. Raspberries are valued for their diverse array of phenolic compounds, which are key contributors to their health-promoting properties. However, raspberries are prone to a relatively short post-harvest lifespan. The present study aimed to investigate the effect of exogenous melatonin (MEL; 0, 0.001, 0.01, and 0.1 mM) on decay control and shelf-life extension. The results demonstrated that MEL treatment significantly reduced the fruit decay rate (P ≤ 0.01). Based on the findings, MEL treatment significantly increased titratable acidity (TA), total phenolics content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC). Furthermore, the MEL-treated samples showed increased levels of rutin and quercetin content, as well as antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential (FRAP). Additionally, the samples exhibited higher levels of phenylalanine ammonia-lyase (PAL) and catalase (CAT) enzymes compared to the control samples. Moreover, the levels of pH, total soluble solids (TSS), and IC50 were decreased in the MEL-treated samples (P ≤ 0.01). The highest amount of TA (0.619 g/100 ml juice), rutin (16.722 µg/ml juice) and quercetin (1.467 µg/ml juice), and PAL activity (225.696 nm/g FW/min) was observed at 0.001 mM treatment, while, the highest amount of TAC (227.235 mg Cy-g/100 ml juice) at a concentration of 0.01 mM and CAT (0.696 u/g FW) and TAL activities (9.553 nm/100 g FW) at a concentration of 0.1 mM were obtained. Considering the lack of significant differences in the effects of melatonin concentrations and the low dose of 0.001 mM, this concentration is recommended for further research. The hierarchical cluster analysis (HCA) and principal component analysis (PCA) divided the treatments into three groups based on their characteristics. Based on the Pearson correlation between TPC, TFC, TAC, and TAA, a positive correlation was observed with antioxidant (DPPH and FRAP) and enzyme (PAL and CAT) activities. The results of this study have identified melatonin as an eco-friendly compound that enhances the shelf life of raspberry fruits by improving phenolic compounds, as well as antioxidant and enzyme activities.
Collapse
Affiliation(s)
| | - Habib Shirzad
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Zahra Tofighi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Fattahi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
66
|
Arrieche D, Olea AF, Jara-Gutiérrez C, Villena J, Pardo-Baeza J, García-Davis S, Viteri R, Taborga L, Carrasco H. Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1409. [PMID: 38794478 PMCID: PMC11125100 DOI: 10.3390/plants13101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Pintoa chilensis is a shrub with yellow flowers that reach up to two meters high, endemic of the Atacama Region in Chile. This species grows under special environmental conditions such as low altitude, arid areas, and directly sun-exposed habitats. In the present study, ethanolic extract was obtained from fruits of P. chilensis, and then partitioned in solvents of increasing polarity to obtain five fractions: hexane (HF), dichloromethane (DF), ethyl acetate (AF), and the residual water fraction (QF). The antioxidant activity of extracts was evaluated by using the DPPH, ABTS, and FRAP methods. The results show that the antioxidant capacity of P. chilensis is higher than that reported for other plants growing in similar environments. This effect is attributed to the highest content of flavonoids and total phenols found in P. chilensis. On the other hand, the cell viability of a breast cancer cell line (MCF-7) and a non-tumor cell line (MCF-10A) was assessed in the presence of different extract fractions. The results indicate that the hexane fraction (HF) exhibits the highest cytotoxicity on both cell lines (IC50 values equal to 35 and 45 µg/mL), whereas the dichloromethane fraction (DF) is the most selective one. The GC-MS analysis of the dichloromethane fraction (DF) shows the presence of fatty acids, sugars, and polyols as major components.
Collapse
Affiliation(s)
- Dioni Arrieche
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Javier Pardo-Baeza
- Programa de Conservación de Flora Nativa del Norte de Chile, Biorestauración Consultores, Copiapó 1530000, Chile;
| | - Sara García-Davis
- Instituto Universitario de Bio—Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain;
| | - Rafael Viteri
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Guayaquil 092301, Ecuador;
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Héctor Carrasco
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| |
Collapse
|
67
|
Ikhane AO, Sithole SZ, Cele ND, Osunsanmi FO, Mosa RA, Opoku AR. In Vitro Antioxidant and In Silico Evaluation of the Anti-β-Lactamase Potential of the Extracts of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881. Antioxidants (Basel) 2024; 13:608. [PMID: 38790713 PMCID: PMC11117491 DOI: 10.3390/antiox13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cyanobacteria in recent times have been touted to be a suitable source for the discovery of novel compounds, including antioxidants and antibiotics, due to their large arsenal of metabolites. This study presents the in vitro antioxidant and in silico evaluation of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881, isolated from freshwater ponds around the campus of the University of Zululand, South Africa. The isolates were confirmed using 16S rRNA. Various crude extracts of the isolated microbes were prepared through sequential extraction using hexane, dichloromethane, and 70% ethanol. The chemical constituents of the crude extracts were elucidated by FTIR and GC-MS spectroscopy. The antioxidant potential of the extracts was determined by the free radical (DPPH, ABTS, •OH, and Fe2+) systems. Molecular docking of the major constituents of the extracts against β-lactamase was also evaluated. GC-MS analysis indicated the dominating presence of n-alkanes. The extracts exhibited varying degrees of antioxidant activity (scavenging of free radicals; an IC50 range of 8-10 µg/mL was obtained for ABTS). A good binding affinity (-6.6, -6.3 Kcal/mol) of some the organic chemicals (diglycerol tetranitrate, and 2,2-dimethyl-5-(3-methyl-2-oxiranyl)cyclohexanone) was obtained following molecular docking. The evaluated antioxidant activities, coupled with the obtained docking score, potentiates the antimicrobial activity of the extracts.
Collapse
Affiliation(s)
- Albert O. Ikhane
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Siphesihle Z. Sithole
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Nkosinathi D. Cele
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Foluso O. Osunsanmi
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Rebamang A. Mosa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0028, South Africa;
| | - Andrew R. Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| |
Collapse
|
68
|
Raposo F, Borja R, Gutiérrez-González JA. A comprehensive and critical review of the unstandardized Folin-Ciocalteu assay to determine the total content of polyphenols: The conundrum of the experimental factors and method validation. Talanta 2024; 272:125771. [PMID: 38394752 DOI: 10.1016/j.talanta.2024.125771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The Folin-Ciocalteu method can be considered to be the most widely used in laboratories around the world, to quantify the total polyphenols content. Many different variations found in this assay have been reported in the scientific literature. In this review, the full experimental conditions influencing the Folin-Ciocalteu assay have been comparatively assessed and discussed. Furthermore, few studies relating to the method validation have been evaluated according to the results of selectivity, linearity, precision, trueness, limit of determination, limit of quantification and robustness. In general, the results derived from the reviewed literature are widely variable according to both, the experimental factors selected and the performance parameters reported, making difficult the comparison of the overall results published.
Collapse
Affiliation(s)
- Francisco Raposo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), Campus Universitario Pablo de Olavide, Carretera de Utrera km 1, Edificio 46, 41013 Seville, Spain.
| | - Rafael Borja
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), Campus Universitario Pablo de Olavide, Carretera de Utrera km 1, Edificio 46, 41013 Seville, Spain
| | - Julio A Gutiérrez-González
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), Campus Universitario Pablo de Olavide, Carretera de Utrera km 1, Edificio 46, 41013 Seville, Spain
| |
Collapse
|
69
|
Kebal L, Djebli N, Pokajewicz K, Mostefa N, Wieczorek PP. Antioxidant Activity and Effectiveness of Fig Extract in Counteracting Carbon Tetrachloride-Induced Oxidative Damage in Rats. Molecules 2024; 29:1997. [PMID: 38731494 PMCID: PMC11085187 DOI: 10.3390/molecules29091997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Figs are the edible fruits of the fig tree, Ficus carica L., that have been used for centuries for human consumption and in traditional medicine, to treat skin problems, inflammation, and gastrointestinal disorders. Our previous study investigated the presence of phenolic compounds in aqueous extracts of two Algerian popular fig varieties, azendjar (Az) and taamriouth (Ta), as well as their in vitro antioxidant activity. In this study, we assessed hydroethanolic extracts of these fig varieties. The total phenolic content was measured, along with the phenolic profile. Rutin was determined to be the dominant phenolic compound, followed by vanillic acid, 3,4-dihydroxybenzoic acid, quercetin, 4-hydroxybenzoic acid, rosmarinic acid (in Az only), and cinnamic acid. The antioxidant activity of the extracts was evaluated both in vitro (DPPH and FRAP assays) and in vivo, in rats intoxicated with carbon tetrachloride. In all assays, the fig extract-especially the dark-peeled fig variety azendjar-showed antioxidant potency. The administration of fig extract resulted in a reduction in liver damage, expressed by both different biochemical markers and histopathological study (less degraded liver architecture, reduced fibrosis, and only mild inflammation). A dose-dependent therapeutic effect was observed. The extract from the dark-peeled fig variety, Az, was characterized by a higher phenolic content and a stronger antioxidant activity than the extract from the light-peeled variety-Ta. Our study justifies the use of figs in traditional healing and shows the potential of using fig extracts in natural medicines and functional foods.
Collapse
Affiliation(s)
- Leila Kebal
- Laboratory of Pharmacognosy and Api-Phytotherapy, Department of Biology, Faculty of Nature and Life Sciences, University of Mostaganem (UMAB), Mostaganem 2700, Algeria
| | - Noureddine Djebli
- Laboratory of Pharmacognosy and Api-Phytotherapy, Department of Biology, Faculty of Nature and Life Sciences, University of Mostaganem (UMAB), Mostaganem 2700, Algeria
| | - Katarzyna Pokajewicz
- Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Opole, Pl. Kopernika 11a, 45-040 Opole, Poland
| | - Nadjet Mostefa
- Laboratory of Pharmacognosy and Api-Phytotherapy, Department of Biology, Faculty of Nature and Life Sciences, University of Mostaganem (UMAB), Mostaganem 2700, Algeria
| | - Piotr P. Wieczorek
- Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Opole, Pl. Kopernika 11a, 45-040 Opole, Poland
| |
Collapse
|
70
|
Aziz MI, Hasan MM, Ullah R, Bari A, Khan MA, Hasnain SZU, Baloch R, Akram M, Obaid A, Ullah A, Abbas K, Amin A. Potential role of Citrus bergamia flower essential oil against oral pathogens. BMC Complement Med Ther 2024; 24:157. [PMID: 38609946 PMCID: PMC11010433 DOI: 10.1186/s12906-024-04457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Oral bacterial infections are difficult to treat due to emergence of resistance against antibiotic therapy. Essential oils are considered emerging alternate therapy against bacterial infections and biofilms. We investigated Citrus bergemia flower essential oil against oral pathogens. METHODS The essential oil was analsyed using Gas Chromatography(GC-MS), in silico investigations, antioxidant, antimicrobial, antibiofilm and antiquorum sensing assays. RESULTS Gas Chromatography analysis confirmed presence of 17 compounds including 1,6-Octadien-3-ol,3,7-dimethyl, 48.17%), l-limonene (22.03%) and p-menth-1-ol, 8-ol (7.31%) as major components. In silico analysis showed compliance of all tested major components with Lipinski's rule, Bioavailability and antimicrobial activity using PASS (prediction of activity spectrum of substances). Molecular docking with transcriptional regulators 3QP5, 5OE3, 4B2O and 3Q3D revealed strong interaction of all tested compounds except 1,6-Octadien-3-ol,3,7-dimethyl. All tested compounds presented significant inhibition of DPPH (2,2-diphenyl-1-picrylhydrazyl) (IC50 0.65 mg/mL), H2O2 (hydrogen peroxide) (63.5%) and high FRAP (ferrous reducing antioxidant power) value (239.01 µg). In antimicrobial screening a significant activity (MIC 0.125 mg/mL) against Bacillus paramycoides and Bacillus chungangensis was observed. Likewise a strong antibiofilm (52.1 - 69.5%) and anti-QS (quorum sensing) (4-16 mm) activity was recorded in a dose dependent manner. CONCLUSION It was therefore concluded that C. bergemia essential oil posess strong antioxidant, antimicrobial and antibiofilm activities against tested oral pathogens.
Collapse
Affiliation(s)
- Muhammad Imran Aziz
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Syed Zia Ul Hasnain
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakaria University, Multan, Pakistan
| | - Rabia Baloch
- Allama Iqbal Teaching Hospital, Dera Ghazi Khan, Pakistan
| | - Muhammad Akram
- Pakistan Council for Scientific and Industrial Research (PCSIR), Peshawar, Pakistan
| | - Aqsa Obaid
- NPRL, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, 29050, D.I. Khan, Pakistan
- Department of Chemistry, Qurtaba University, D.I.Khan Campus, D.I.Khan, Pakistan
| | - Aziz Ullah
- Pukyong National University, Yangso-Ro, 48513, Busan, Republic of Korea
| | - Khizar Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakaria University, Multan, Pakistan
| | - Adnan Amin
- NPRL, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, 29050, D.I. Khan, Pakistan.
| |
Collapse
|
71
|
Iqbal R, Azhar I, Akhtar MF, Mahmood ZA, Hamid I, Saleem A, Basheer E, El-Saber Batiha G, El-Gazzar AM, Mahmoud MH. Combination therapy with Hordeum vulgare, Elettaria cardamomum, and Cicer arietinum exhibited anti-diabetic potential through modulation of oxidative stress and proinflammatory cytokines. Heliyon 2024; 10:e26126. [PMID: 38384558 PMCID: PMC10879019 DOI: 10.1016/j.heliyon.2024.e26126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Poly-herbal therapies for chronic diseases like diabetes mellitus (DM) have been practiced in south Asia for centuries. One of such therapies comprises of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum that have shown encouraging therapeutic potential in the treatment of diabetes and obesity. Therefore, poly-herbal granules (PHGs) of this formula were developed and investigated for their anti-diabetic and anti-obesity potential in obese-diabetic rats. The developed PHGs were chemical characterized and the virtual molecular docking was performed by Discovery studio visualizer (DSV) software. For in-vivo experiment, obesity in rats was induced with high-fat high-sugar diet. After that, diabetes was induced by alloxan monohydrate 150 mg/kg i.p. injection. The diseased rats were treated with PHGs at 250, 500 and 750 mg/kg/day for four weeks. GC-MS analysis of PHGs demonstrated the presence of 1,3-Benzenedicarboxylic acid bis(2-ethylhexyl) ester and 1,2-Benzenedicarboxylic acid di-isooctyl ester and phenol, 2,4-bis(1,1-dimethylethyl). Molecular docking of these compounds demonstrated higher binding energies with receptor than metformin against α-amylase and α-glucosidase. PHGs exhibited a decline in body weight, HbA1c, hyperlipidemia, hyperglycemia, and insulin resistance in diseased rats. The histopathological examination revealed that PHGs improved the alloxan-induced damage to the pancreas. Furthermore, PHGs increased the SOD, CAT and GSH while and the decreased the level of MDA in the liver, kidney and pancreas of diseased rats. Additionally, the PHGs had significantly downregulated the TNF-α and NF-κB while upregulated the expression of NrF-2. The current study demonstrated that the PHGs exhibited anti-diabetic and anti-obesity potential through amelioration of oxidative stress, NF-κB, TNF-α, and NrF-2 due to the presence of different phytochemicals.
Collapse
Affiliation(s)
- Rabia Iqbal
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Iqbal Azhar
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Zafar Alam Mahmood
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Hamid
- Cadson College of Pharmacy, Kharian, University of the Punjab, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Ahmed M. El-Gazzar
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohamed H. Mahmoud
- Department of Biochemistry, college of science, King Saud University, Kingdom of Saudi Arabia
| |
Collapse
|
72
|
Zandona E, Vranković L, Pedisić S, Vukušić Pavičić T, Dobrinčić A, Marušić Radovčić N, Lisak Jakopović K, Blažić M, Barukčić Jurina I. Production of Acid and Rennet-Coagulated Cheese Enriched by Olive ( Olea europaea L.) Leaf Extract-Determining the Optimal Point of Supplementation and Its Effects on Curd Characteristics. Foods 2024; 13:616. [PMID: 38397592 PMCID: PMC10887763 DOI: 10.3390/foods13040616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigated the potential of olive leaf extract (OLE), as a functional ingredient, to improve cheese properties, because it is rich in phenols. Milk and dairy products are poor in phenolic compounds. The main objective was to determine the most effective coagulation method and timing of OLE supplementation to maximize retention in the cheese matrix. Experimental cheeses were produced using the rennet and acid coagulation methods, with OLE added either directly to the cheese milk or to the curd phase. Three OLE effective concentrations corresponding to 25%, 50%, and 75% inhibition of DPPH reagent (EFC25, EFC50, and EFC75, respectively) were added, i.e., 11.5 mg GAE L-1, 16.6 mg GAE L-1, and 26.3 mg GAE L-1, respectively. The results showed that OLE significantly increased the concentration of total phenols, total flavonoids, and antioxidant activity in all cheese samples and in the residual whey, especially at higher effective concentrations (EFC 50 and EFC 75). Rennet-coagulated cheese to which OLE was added prior to coagulation (EM 25, EM 50, EM 75) exhibited higher hardness, gumminess, and chewiness but lower elasticity, suggesting alterations in the paracasein matrix. OLE did not adversely affect acidity, water activity, or cheese yield. However, higher EFC resulted in significant colour changes (∆E* > 3.0). In conclusion, the enrichment of cheesemaking milk with OLE and the application of the rennet coagulation method are the most suitable to optimise the production of OLE-enriched cheese. This research shows the potential to improve the nutritional value of cheese while maintaining its desired characteristics.
Collapse
Affiliation(s)
- Elizabeta Zandona
- Department of Food Technology, Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, 47000 Karlovac, Croatia; (E.Z.); (M.B.)
| | - Lucija Vranković
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia (S.P.); (T.V.P.); (A.D.); (N.M.R.); (K.L.J.)
| | - Sandra Pedisić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia (S.P.); (T.V.P.); (A.D.); (N.M.R.); (K.L.J.)
| | - Tomislava Vukušić Pavičić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia (S.P.); (T.V.P.); (A.D.); (N.M.R.); (K.L.J.)
| | - Ana Dobrinčić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia (S.P.); (T.V.P.); (A.D.); (N.M.R.); (K.L.J.)
| | - Nives Marušić Radovčić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia (S.P.); (T.V.P.); (A.D.); (N.M.R.); (K.L.J.)
| | - Katarina Lisak Jakopović
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia (S.P.); (T.V.P.); (A.D.); (N.M.R.); (K.L.J.)
| | - Marijana Blažić
- Department of Food Technology, Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, 47000 Karlovac, Croatia; (E.Z.); (M.B.)
- Gastronomy Department, Aspira University of Applied Sciences, Mike Tripala 6, 21000 Split, Croatia
| | - Irena Barukčić Jurina
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia (S.P.); (T.V.P.); (A.D.); (N.M.R.); (K.L.J.)
| |
Collapse
|
73
|
Ndayambaje M, Wahnou H, Sow M, Chgari O, Habyarimana T, Karkouri M, Limami Y, Naya A, Oudghiri M. Exploring the multifaceted effects of Ammi visnaga: subchronic toxicity, antioxidant capacity, immunomodulatory, and anti-inflammatory activities. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:150-165. [PMID: 38037686 DOI: 10.1080/15287394.2023.2289430] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ammi visnaga (A. visnaga) is an annual herb that has been used in traditional medicine to treat various ailments attributed to the presence of its bioactive compounds. The purpose of this study was to identify and examine the phytochemical properties of the hydroalcoholic extract of A. visnaga using in vitro and in vivo models. Our findings demonstrated that the extract contained a variety of beneficial components, including phenols, flavonoids, tannins, coumarins, saponins, khellin, and visnagin. The total polyphenolic content and total flavonoid content were 23.26 mg/GAE/g dry weight and 13.26 mg/GAE/g dry weight, respectively. In vitro tests demonstrated that the extract possessed antioxidant properties as evidenced by the ability to scavenge free radicals, including DPPH, ABTS, nitric oxide (NO), phosphomolybdate, and ferric-reducing antioxidant power (FRAP). Further, the extract was found to inhibit hydrogen peroxide (H2O2)-induced hemolysis. In a 90-d in vivo study, female Wistar rats were administered 1 g/kg of A. visnaga extract orally resulting in a significant increase in total white blood cell count. Although morphological changes were observed in the liver, no marked alterations were noted in kidneys and spleen. In a female Swiss albino mice model of acetic acid-induced vascular permeability, A. visnaga significantly inhibited extravasations of Evans blue at doses of 0.5 or 1 g/kg with inhibition percentages of 51 and 65%, respectively, blocking tissue necrosis. The extract also demonstrated potential immunomodulatory properties in mice by enhancing antibody production in response to antigens. In silico molecular docking studies demonstrated a strong affinity between khellin or visnagin and immunomodulatory proteins, NF-κB, p52, and TNF-α. These findings suggest that A. visnaga may be considered a beneficial antioxidant with immunomodulatory properties and might serve as a therapeutic agent to combat certain diseases.
Collapse
Affiliation(s)
- Martin Ndayambaje
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Marieme Sow
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oumaima Chgari
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | | | - Mehdi Karkouri
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Abdallah Naya
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
74
|
Oh J, Hong S, Ko SH, Kim HS. Evaluation of Antioxidant Effects of Pumpkin ( Cucurbita pepo L.) Seed Extract on Aging- and Menopause-Related Diseases Using Saos-2 Cells and Ovariectomized Rats. Antioxidants (Basel) 2024; 13:241. [PMID: 38397839 PMCID: PMC10886273 DOI: 10.3390/antiox13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Aging and menopause are associated with oxidative stress and inflammation. Here, we evaluated the antioxidant properties of pumpkin (Cucurbita pepo L.) seed extract and assessed its ameliorative effects on aging- and menopause-related diseases using Saos-2 cells and ovariectomized rats. The seed extract had bioactive components that exhibited antioxidant activity. The extract increased the alkaline phosphatase (ALP) activity of Saos-2 cells. The oral administration of the extract to ovariectomized rats for 12 weeks decreased their body weight, fat weight, and cardiac risk indices. It also contributed to reductions in the levels of reactive oxygen species, oxidative stress, and inflammation, as assessed by measuring the serum levels of malondialdehyde and analyzing gene expression in rats. Furthermore, the administration of the extract also promoted an enhancement of the transcription of nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (Ho-1), and catalase (Cat), involved in antioxidant activity; endothelial nitric oxide synthase (eNos), involved in vasculoprotective activity; and PR/SET domain 16 (Prdm16) and peroxisome proliferator-activated receptor-gamma coactivator (Pgc1α), involved in brown adipogenesis and thermogenesis. Our results using ovariectomized rats show that pumpkin seed extract may have ameliorative effects on menopause-related diseases by increasing ALP activity, evaluating the antioxidant system, ameliorating oxidative stress and thermogenesis, and enhancing lipid profiles.
Collapse
Affiliation(s)
| | | | - Seong-Hee Ko
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hyun-Sook Kim
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| |
Collapse
|
75
|
Siripongvutikorn S, Pumethakul K, Yupanqui CT, Seechamnanturakit V, Detarun P, Utaipan T, Sirinupong N, Chansuwan W, Wittaya T, Samakradhamrongthai RS. Phytochemical Profiling and Antioxidant Activities of the Most Favored Ready-to-Use Thai Curries, Pad-Ka-Proa (Spicy Basil Leaves) and Massaman. Foods 2024; 13:582. [PMID: 38397559 PMCID: PMC10887624 DOI: 10.3390/foods13040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Food is one of the factors with the highest impact on human health. Today, attention is paid not only to food properties such as energy provision and palatability but also to functional aspects including phytochemical, antioxidant properties, etc. Massaman and spicy basil leaf curries are famous Thai food dishes with a good harmony of flavor and taste, derived from multiple herbs and spices, including galangal rhizomes, chili pods, garlic bulbs, peppers, shallots, and coriander seeds, that provide an array of health benefits. The characterization of phytochemicals detected by LC-ESI-QTOF-MS/MS identified 99 components (Masaman) and 62 components (spicy basil leaf curry) such as quininic acid, hydroxycinnamic acid, luteolin, kaempferol, catechin, eugenol, betulinic acid, and gingerol. The cynaroside and luteolin-7-O-glucoside found in spicy basil leaf curry play a key role in antioxidant activities and were found at a significantly higher concentration than in Massaman curry. Phenolic and flavonoid compounds generally exhibit a bitter and astringent taste, but all the panelists scored both curries higher than 7 out of 9, confirming their acceptable flavor. Results suggest that the Massaman and spicy basil leaves contain various phytochemicals at different levels and may be further used as functional ingredients and nutraceutical products.
Collapse
Affiliation(s)
- Sunisa Siripongvutikorn
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Kanyamanee Pumethakul
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Chutha Takahashi Yupanqui
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Vatcharee Seechamnanturakit
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Preeyabhorn Detarun
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Tanyarath Utaipan
- Department of Science, Faculty of Science and Technology, Pattani Campus, Prince of Songkla University, Muang, Rusamilae 94000, Pattani, Thailand;
| | - Nualpun Sirinupong
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Worrapanit Chansuwan
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Thawien Wittaya
- Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | | |
Collapse
|
76
|
Rafey HA, El-Shazly M, Khalid T, Alam T, Niaz SI, Farooq O. Integrated computational and experimental evaluation of phenolic constituents of Apricot fruit L. for antiqourum sensing, antibiofilm, antioxidant, and 15-lox inhibitory properties. J Biomol Struct Dyn 2024:1-9. [PMID: 38345035 DOI: 10.1080/07391102.2024.2309334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2025]
Abstract
The present study investigated the antioxidant profile together with the antibacterial potential of Apricot L. with the aim to find a functional food based anti-infective lead. Additionally the study evaluated the biofilm and QS inhibitory potential of the plant using Pseudomonas aeruginosa (ATCC 15442) and Chromo bacterium Violaceum (DSM 30191) respectively. Several fractions of the peel of Apricot were subjected to initial antimicrobial and antibiofilm screening. Among all the fractions, methanol and ethyl acetate fractions displayed significant antimicrobial activity against the strains selected with MIC values 1.25 mg/dL and 1.68 mg/dL respectively. Similarly, while evaluating antiqourum-sensing potential, methanol extract showed remarkable zone of inhibition (14mm) with Violaceum inhibition (58%) while aqueous part presented moderately good inhibition (32%) with zone of inhibition of (4mm). N-hexane fraction was least active in this regard. In case of free radicals scavenging aptitudes, Ethanolic fraction displayed the highest free radicals scavenging potential (IC50μg/mL 13.76 ± 23.61) while Aqueous and ethyl acetate part exhibited moderate to good antioxidant behaviors with IC50μg/mL of 26.74 ± 22.00 and 19.49 ± 2.91 respectively. Then the selected compounds were screened for putative binding sites and molecular docking studies followed by enzyme inhibition assays. The negative binding energies and close proximity to residues in the binding pocket of selected targets including human α- soybean lox (PDB ID 1IK3), quorum sensing regulators LasR (2UV0) were observed which indicated high affinity and tight binding capacity of compounds 1 and 5 towards the active sites of LasR 2UV0 and 15-lipoxygenase. The physicochemical characteristics and toxicity expectation were computationally accomplished. Bioactivity prediction study revealed that all of the selected Phytoconstituents displayed incredible Bioactivity score. None of the selected chemical compound was found to be toxic as discovered by toxicity studies. Compound 4 exhibited the highest inhibition of 15-lipoxygenase in vitro (69%, at 0.037 mM final concentration) and that is accompanied by compound 5 (60%) whereas in the biofilm inhibition assay, compound 1 was most active (IC50 0.05 mM), followed by compound 3 (IC50 0.07 mM). It was therefore determined that compounds 1 and 3 had the highest biofilm inhibitory activity, whereas compounds 4 and 5 were potent 15-lipoxygenase inhibitors with potentially anti-inflammatory properties. Future investigations are suggested for the characterization and formulation development.
Collapse
Affiliation(s)
- Hafiz Abdul Rafey
- Faculty of Pharmaceutical and Allied Health Sciences, Shifa College of Pharmaceutical Sciences (SCPS), Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Mohamed El-Shazly
- Pharmacognosy, Natural Products Chemistry and Food Chemistry, Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Tooba Khalid
- Faculty of Pharmaceutical and Allied Health Sciences, Shifa College of Pharmaceutical Sciences (SCPS), Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tanveer Alam
- Sabanci University Nanotechnology Research and Application Center, Istanbul, Turkey
| | - Shah Iram Niaz
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Omer Farooq
- Faculty of Pharmaceutical and Allied Health Sciences, Shifa College of Pharmaceutical Sciences (SCPS), Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
77
|
Hagaggi NSA, Abdul-Raouf UM, Radwan TAA. Variation of antibacterial and antioxidant secondary metabolites and volatiles in leaf and callus extracts of Phulai (Acacia Modesta Wall.). BMC PLANT BIOLOGY 2024; 24:93. [PMID: 38321418 PMCID: PMC10848437 DOI: 10.1186/s12870-024-04747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Acacia species are economically significant as medicinal plants that have been utilized since ancient times. Acacia modesta has been reported to possess potent antibacterial and antioxidant properties, but its growth rate is slow. In this study, we hypothesized that inducing callus in vitro from A. modesta could enhance the production of antibacterial and antioxidant secondary metabolites, thereby circumventing the issues of slow growth and excessive harvesting of the plant. RESULTS The callus was induced from axillary buds on MS medium supplemented with 1 mg/L of 2,4-D and 1 mg/L of BAP. The secondary metabolites, volatile compounds, antibacterial activity, and antioxidant activity of the callus and parent plant leaf extracts were evaluated. The results revealed that the content of phenolics and flavonoids, the number of volatile compounds, and the antibacterial and antioxidant activities of the callus extract were significantly enhanced (P ≤ 0.05) compared to the leaf extract. The antibacterial and antioxidant effects were strongly correlated with the total phenolic and flavonoid content in the extracts. CONCLUSIONS Our findings suggest that in vitro callus culture increases the production of phenolics, flavonoids, and volatile compounds. This subsequently enhances the antibacterial and antioxidant properties of A. modesta.
Collapse
Affiliation(s)
- Noura Sh A Hagaggi
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| | - Usama M Abdul-Raouf
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Tarek A A Radwan
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| |
Collapse
|
78
|
Fedeli R, Cruz C, Loppi S, Munzi S. Hormetic Effect of Wood Distillate on Hydroponically Grown Lettuce. PLANTS (BASEL, SWITZERLAND) 2024; 13:447. [PMID: 38337980 PMCID: PMC10856926 DOI: 10.3390/plants13030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The addition of biostimulants to nutrient solutions of hydroponically grown crops to speed up plant growth and improve plant yield and quality has been attracting more and more attention. This study investigated the effects of wood distillate (WD) addition to hydroponically grown lettuce (Lactuca sativa L.) plants. Two concentrations of WD, 0.2% and 0.5%, were added to the nutrient solution, and biometric (i.e., leaf fresh weight, root fresh weight, root length and root surface area), photosynthetic (i.e., chlorophyll a, chlorophyll b, and carotenoid content) and biochemical (i.e., electrolyte leakage, total polyphenols, total flavonoids, and total antioxidant power content) parameters were evaluated. The effects of WD were hormetic, as the 0.2% concentration stimulated biometric and biochemical parameters, while the 0.5% concentration inhibited plant growth. Based on these results, it can be suggested that the addition of 0.2% WD to the nutrient solution has a stimulating effect on the growth of lettuce plants, and could be a successful strategy to boost the yield of crops grown hydroponically.
Collapse
Affiliation(s)
- Riccardo Fedeli
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (C.C.); (S.M.)
| | - Stefano Loppi
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy;
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80138 Napoli, Italy
| | - Silvana Munzi
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (C.C.); (S.M.)
- Centro Interuniversitário de Historia das Ciências e da Tecnologia Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
79
|
Palaniyappan S, Sridhar A, Arumugam M, Ramasamy T. Bioactive Analysis of Antibacterial Efficacy and Antioxidant Potential of Aloe barbadensis Miller Leaf Extracts and Exploration of Secondary Metabolites Using GC-MS Profiling. Appl Biochem Biotechnol 2024; 196:729-773. [PMID: 37184725 DOI: 10.1007/s12010-023-04565-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Aloe barbadensis Miller (ABM) is a traditional medicinal plant all over the world. Numerous studies were conducted to exhibit its medicinal properties and most of them were concentrated on its metabolites against human pathogens. The current research work evaluates the attributes of different polar-based extracts (ethanol, methanol, ethyl acetate, acetone, hexane, and petroleum ether) of dried Aloe barbadensis leaf (ABL) to investigate its phytochemical constituents, antioxidant potential (DPPH, ABTS), phenolic, tannin, flavonoid contents, identification of bioactive compounds, and functional groups by gas chromatography-mass spectrometry (GC-MS) and fourier transform infrared spectroscopy (FT-IR) respectively, and comparing antibacterial efficacy against human pathogens, aquatic bacterial pathogens, and zoonotic bacteria associated with fish and human. The present results showed that the methanolic extract of ABL showed higher antioxidant activity (DPPH-59.73 ± 2.01%; ABTS-74.1 ± 1.29%), total phenolic (10.660 ± 1.242 mg GAE/g), tannin (7.158 ± 0.668 mg TAE/g), and flavonoid content (49.545 ± 1.928 µg QE/g) than that of other solvent extracts. Non-polar solvents hexane and petroleum ether exhibited lesser activity among the extracts. In the case of antibacterial activity, higher inhibition zone was recorded in methanol extract of ABL (25.00 ± 0.70 mm) against Aeromonas salmonicida. Variations in antibacterial activity were observed depending on solvents and extracts. In the current study, polar solvents revealed higher antibacterial activity when compared to the non-polar and the mid-polar solvents. Diverse crucial bioactive compounds were detected in GC-MS analysis. The vital compounds were hexadecanoic acid (30.69%) and 2-pentanone, 4-hydroxy-4-methyl (23.77%) which are responsible for higher antioxidant and antibacterial activity. Similar functional groups were identified in all the solvent extracts of ABL with slight variations in the FT-IR analysis. Polar-based solvent extraction influenced the elution of phytocompounds more than that of the other solvents used in this study. The obtained results suggested that the ABM could be an excellent source for antioxidant and antibacterial activities and can also serve as a potential source of effective bioactive compounds to combat human as well as aquatic pathogens.
Collapse
Affiliation(s)
- Sivagaami Palaniyappan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
80
|
Kongolo Kalemba MR, Makhuvele R, Njobeh PB. Phytochemical screening, antioxidant activity of selected methanolic plant extracts and their detoxification capabilities against AFB 1 toxicity. Heliyon 2024; 10:e24435. [PMID: 38312698 PMCID: PMC10835242 DOI: 10.1016/j.heliyon.2024.e24435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a secondary metabolite produced principally by Aspergillus parasiticus and A. flavus. It is one of the most potent and commonly occurring dietary carcinogen with its carcinogenic potential being linked to the formation of DNA adducts and reactive oxygen species (ROS). Plant extracts contain a plethora of biologically active phytochemicals that act against ROS. This study aimed to assess the phytochemical content and antioxidant activity of methanolic extracts of some medicinal plants and investigate their detoxification potentials against AFB1. Phytochemical screening together with total phenolic content (TPC), total flavonoid content (TFC), and antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+)) assays) were performed on nine methanolic plant extracts. Extracts were incubated with AFB1 for 24 and 48 h and liquid chromatography mass spectrometry (LC-MS) analysis done to assess their AFB1 detoxification activities. The TPC of the extracts ranged from 88.92 ± 6.54 to 210.19 ± 7.90 mg GAE/g, while TFC ranged between 4.01 ± 0.94 and 32.48 ± 1.02 mg QE/g. Radical scavenging activities of extracts varied from 4.18 ± 1.37 to 251.53 ± 9.30 μg/mL and 8.36 ± 1.65 to 279.22 ± 8.33 μg/mL based on DPPH and ABTS+ assays, respectively. Six of the plant extracts showed a time-dependent detoxification activity against AFB1 after 48 h ranging from 20.17 to 38.13 %. C. dentata bark extract showed the highest percentage of AFB1 reduction, with mean percentages of 43.57 and 70.96 % at 24 and 48 h, respectively. This was followed by C. asiatica leaves and A. melegueta seeds with a maximum of 40.81 and 38.13 %, respectively after 48 h. These extracts also possessed high TPC, TFC, and antioxidant activities compared to all the other extracts. Findings from this study demonstrate the abundance of bioactive compounds with antioxidant activity playing a role in potent AFB1 detoxification activity.
Collapse
Affiliation(s)
- Mavie Rose Kongolo Kalemba
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028, South Africa
| | - Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028, South Africa
- Toxicology and Ethnoveterinary Medicine, ARC-Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028, South Africa
| |
Collapse
|
81
|
Uy NP, Kim H, Ku J, Lee S. Regional Variations in Peucedanum japonicum Antioxidants and Phytochemicals. PLANTS (BASEL, SWITZERLAND) 2024; 13:377. [PMID: 38337910 PMCID: PMC10857489 DOI: 10.3390/plants13030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Peucedanum japonicum has long been a staple in East Asian cuisine. In the context of traditional medicine, various members of the Peucedanum genus have been investigated for potential medicinal properties. In laboratory settings, some compounds derived from this plant have shown antioxidant and anti-inflammatory properties-characteristics often associated with potential medicinal applications. This study aimed to determine which part of the P. japonicum plants cultivated on two Korean islands contains the most antioxidant compounds. This determination was made through assessments of total polyphenol content and total flavonoid content, coupled with evaluation of antioxidant activity via DPPH and ABTS assays. The results showed that the aerial parts contain a richer array of bioactive compounds and demonstrate superior antioxidant activity compared to their root counterparts in the plants from both islands. To characterize the phytochemicals underpinning this bioactivity, LC-MS/MS and HPLC analyses were carried out. These methods detected varying amounts of chlorogenic acid, peucedanol 7-O-glucoside, rutin, and peucedanol, with good separation and retention times. This study addresses the lack of research on the antioxidant activity of different parts of P. japonicum. The findings hold significance for traditional medicine, dietary supplements, and the development of functional foods. Understanding antioxidant distribution aids in the development of medicinal and nutritional applications, influences agricultural practices, and contributes to regional biodiversity-conservation efforts. The study's geographical scope provides insights into how location impacts the concentration of bioactive compounds in plants. Overall, the results contribute valuable data for future research in plant biology, biochemistry, and related fields.
Collapse
Affiliation(s)
- Neil Patrick Uy
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Jajung Ku
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea;
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
- Natural Product Institute of Science and Technology, Anseong 17546, Republic of Korea
| |
Collapse
|
82
|
Aksenova MA, Nechaeva TL, Goncharuk EA, Zubova MY, Kazantseva VV, Lapshin PV, Frolov A, Zagoskina NV. Changes in the Antioxidant Potential of Camellia sinensis Cultures under the Influence of Phenolic Precursors. Molecules 2024; 29:474. [PMID: 38257387 PMCID: PMC10820049 DOI: 10.3390/molecules29020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The viability, productivity and survival of higher plants under the adverse factors influence are largely determined by the functional activity of the antioxidant system. The aim of our work was to investigate changes in formation of high-molecular (superoxide dismutase and peroxidase) and low-molecular (phenolics, including flavanols and proanthocyanidins) antioxidants in callus culture of Camellia sinensis under influence of phenolic precursors (L-phenylalanine-3 mM, trans-cinnamic acid-1 mM, naringenin-0.5 mM). According to the data obtained, the effect of precursors on tea callus cultures did not lead to significant increasing of superoxide dismutase and peroxidase activity in most cases. However, it led to the increased accumulation of the total phenolics content, as well as flavanols and proanthocyanidins contents. For C. sinensis callus cultures, the most promising regulator of phenolic compounds was L-phenylalanine, in the presence of which its content increased almost twice. Thus, the exogenous effect of various precursors is possible to use for the targeted regulation of certain phenolics classes accumulation in plant cells.
Collapse
Affiliation(s)
- Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (M.Y.Z.); k.v.- (V.V.K.); (P.V.L.); (A.F.); (N.V.Z.)
| | | | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (M.Y.Z.); k.v.- (V.V.K.); (P.V.L.); (A.F.); (N.V.Z.)
| | | | | | | | | | | |
Collapse
|
83
|
Muzzafar MA, Ali SW, Iqbal M, Saeed M, Ahmad M, Tariq MR, Yusuf AM, Murtaza A, Ahmed A, Yaqub S, Riaz M. Comparative evaluation of ethylene oxide, electron beam and gamma irradiation treatments on commonly cultivated red chilli cultivars (Kunri and Hybrid) of Sindh, Pakistan. Heliyon 2024; 10:e23476. [PMID: 38169832 PMCID: PMC10758780 DOI: 10.1016/j.heliyon.2023.e23476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Chillies are considered a universal ingredient for imparting flavor and pungency to foods. Pakistan stood in the top twenty countries worldwide by producing 82 thousand Tons of chillies during 2022-23. Chilli fungal contamination and aflatoxin production during drying is a common problem during post-harvest process. Gasses treatment and Ionizing radiations are efficient methods for reducing toxigenic and pathogenic microbial growth in food items. The current study was designed to compare the effects of ethylene oxide (ETO), gamma (GB) & electron beam (EB) treatments on two red chilli local cultivars (Kunri and Hybrid) of Pakistan. After treatment, the chilli samples were analyzed for aflatoxins, physicochemical, quality & safety attributes. All results were subjected to Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), dendrogram and ANOVA to check the correlations, grouping and level of significance within the varieties and treatments. The results showed that moisture and water activity mainly designated PC-2 directions and are slightly positively correlated. Conversely, both fat and proteins have a negative correlation with moisture, ash and water activity. Besides, carotenoids and ABTS assay mainly designated PC-2 directions and are slightly positively correlated. Color, flavonoids and TPC also possess positive correlations among them. ETO depicts effectiveness in the reduction of E. coli but is not effective in saving antioxidant potential such as total flavonoids. Similarly, gamma irradiations showed strong reduction trends in fungal and pathogenic count, however same trend was observed in ascorbic acid too. Besides, the electron beam with dosage levels of 12 and 15 kGy has shown effectiveness against Aspergillus spp., aflatoxins and pathogenic microbial load in addition to saving antioxidant potential (phenolics and flavonoids), physicochemical parameters and color values compared to other applied methods especially in Kunri variety. It was evident from the research that varietal combination in addition to applied treatment must be specially considered while designing a treatment for chillies.
Collapse
Affiliation(s)
| | | | - Munawar Iqbal
- College of Statistical Sciences, University of the Punjab, Lahore, Pakistan
| | - Maryam Saeed
- Department of Food Sciences, University of the Punjab, Lahore, Pakistan
| | - Mateen Ahmad
- Department of Food Sciences, University of the Punjab, Lahore, Pakistan
- Institute of Human Nutrition and Dietetics, Gulab Devi Educational Complex, Lahore, Pakistan
| | | | - Abdikhaliq Mursal Yusuf
- Department of Food Sciences, University of the Punjab, Lahore, Pakistan
- Kaalo Aid and Development Organisation, Puntland state, Somalia
| | - Ayesha Murtaza
- Department of Food Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Aftab Ahmed
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Riaz
- Department of Food Safety & Quality Management, Bahauddin Zakaryia University, Multan, Pakistan
| |
Collapse
|
84
|
Zhao Y, Yu F. Efficient Production of High-Quality Infrared-Assisted Spouted Bed-Dried Areca taro Based on the Drying Temperature and Cutting Size Control. Foods 2024; 13:260. [PMID: 38254561 PMCID: PMC10815171 DOI: 10.3390/foods13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The purpose of this study was to apply infrared-assisted spouted bed drying (IRSBD) technology for Areca taro drying and to investigate the effects of different parameters on its drying quality. Specifically, in order to determine the suitable conditions for IRSBD, the effects of different drying temperatures (45 °C, 50 °C, 55 °C, and 60 °C) and cutting sizes (6 × 6 × 6 mm, 8 × 8 × 8 mm, 10 × 10 × 10 mm, and 12 × 12 × 12 mm) on the drying characteristics, temperature uniformity, and quality properties (including colour, rehydration ratio, total phenol content, total flavonoid content, and antioxidant activity) of Areca taro were studied. The results showed that the optimal drying condition was the sample with a cutting size of 10 × 10 × 10 mm and drying at 50 °C, which yielded the dried sample with the best colour, highest total phenol and flavonoid contents, maximum antioxidant capacity, and rehydration ratio.
Collapse
Affiliation(s)
- Yitong Zhao
- Haide College, Ocean University of China, Qingdao 266100, China;
| | - Fanqianhui Yu
- Haide College, Ocean University of China, Qingdao 266100, China;
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
85
|
Ștefănescu BE, Socaci SA, Fărcaș AC, Nemeș SA, Teleky BE, Martău GA, Călinoiu LF, Mitrea L, Ranga F, Grigoroaea D, Vodnar DC, Socaciu C. Characterization of the Chemical Composition and Biological Activities of Bog Bilberry ( Vaccinium uliginosum L.) Leaf Extracts Obtained via Various Extraction Techniques. Foods 2024; 13:258. [PMID: 38254559 PMCID: PMC10814626 DOI: 10.3390/foods13020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This investigation aimed to assess the chemical composition and biological activities of bog bilberry (Vaccinium uliginosum L.) leaves. Hydroethanolic extracts were obtained using four extraction techniques: one conventional (CE) and three alternative methods; ultrasound (UAE), microwave (MAE) and high-pressure (HPE) extractions. Spectrophotometric analysis was conducted to determine their chemical content, including the total phenolic content (TPC) and total flavonoid content (TFC). Furthermore, their antioxidative and antimicrobial properties were evaluated. HPLC (high performance liquid chromatography) analysis identified and quantified 17 phenolic compounds, with chlorogenic acid being the predominant compound, with the lowest level (37.36 ± 0.06 mg/g) for the bog bilberry leaf extract obtained by CE and the highest levels (e.g., HPE = 44.47 ± 0.08 mg/g) for the bog bilberry leaf extracts obtained by the alternative methods. Extracts obtained by HPE, UAE and MAE presented TPC values (135.75 ± 2.86 mg GAE/g; 130.52 ± 1.99 mg GAE/g; 119.23 ± 1.79 mg GAE/g) higher than those obtained by the CE method (113.07 ± 0.98 mg GAE/g). Regarding the TFC values, similar to TPC, the highest levels were registered in the extracts obtained by alternative methods (HPE = 43.16 ± 0.12 mg QE/g; MAE = 39.79 ± 0.41 mg QE/g and UAE = 33.89 ± 0.35 mg QE/g), while the CE extract registered the lowest level, 31.47 ± 0.28 mg QE/g. In the case of DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activity, the extracts from HPE, UAE and MAE exhibited the strongest radical scavenging capacities of 71.14%, 63.13% and 60.84%, respectively, whereas the CE extract registered only 55.37%. According to Microbiology Reader LogPhase 600 (BioTek), a common MIC value of 8.88 mg/mL was registered for all types of extracts against Staphylococcus aureus (Gram-positive bacteria) and Salmonella enterica (Gram-negative bacteria). Moreover, the alternative extraction methods (UAE, HPE) effectively inhibited the growth of Candida parapsilosis, in comparison to the lack of inhibition from the CE method. This study provides valuable insights into bog bilberry leaf extracts, reporting a comprehensive evaluation of their chemical composition and associated biological activities, with alternative extraction methods presenting greater potential for the recovery of phenolic compounds with increased biological activities than the conventional method.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Silvia Amalia Nemeș
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Bernadette Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Floricuța Ranga
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Dan Grigoroaea
- Călimani National Park Administration, Șaru Dornei, 727515 Suceava, Romania;
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Carmen Socaciu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| |
Collapse
|
86
|
Ginovyan M, Javrushyan H, Karapetyan H, Koss-Mikołajczyk I, Kusznierewicz B, Grigoryan A, Maloyan A, Bartoszek A, Avtandilyan N. Hypericum alpestre extract exhibits in vitro and in vivo anticancer properties by regulating the cellular antioxidant system and metabolic pathway of L-arginine. Cell Biochem Funct 2024; 42:e3914. [PMID: 38269521 DOI: 10.1002/cbf.3914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024]
Abstract
Conventional treatment methods are not effective enough to fight the rapid increase in cancer cases. The interest is increasing in the investigation of herbal sources for the development of new anticancer therapeutics. This study aims to investigate the antitumor capacity of Hypericum alpestre (H. alpestre) extract in vitro and in vivo, either alone or in combination with the inhibitors of the l-arginine/polyamine/nitric oxide (NO) pathway, and to characterize its active phytochemicals using advanced chromatographic techniques. Our previous reports suggest beneficial effects of the arginase inhibitor NG-hydroxy-nor- l-arginine and NO inhibitor NG-nitro-Larginine methyl ester in the treatment of breast cancer via downregulation of polyamine and NO synthesis. Here, the antitumor properties of H. alpestre and its combinations were explored in vivo, in a rat model of mammary gland carcinogenesis induced by subcutaneous injection of 7,12-dimethylbenz[a]anthracene. The study revealed strong antiradical activity of H. alpestre aerial part extract in chemical (DPPH/ABTS) tests. In the in vitro antioxidant activity test, the H. alpestre extract demonstrated pro-oxidant characteristics in human colorectal (HT29) cells, which were contingent upon the hemostatic condition of the cells. The H. alpestre extract expressed a cytotoxic effect on HT29 and breast cancer (MCF-7) cells measured by the MTT test. According to comet assay results, H. alpestre extract did not exhibit genotoxic activity nor possessed antigenotoxic properties in HT29 cells. Overall, 233 substances have been identified and annotated in H. alpestre extract using the LC-Q-Orbitrap HRMS system. In vivo experiments using rat breast cancer models revealed that the H. alpestre extract activated the antioxidant enzymes in the liver, brain, and tumors. H. alpestre combined with chemotherapeutic agents attenuated cancer-like histological alterations and showed significant reductions in tumor blood vessel area. Thus, either alone or in combination with Nω -OH-nor- l-arginine and Nω -nitro- l-arginine methyl ester, H. alpestre extract exhibits pro- and antioxidant, antiangiogenic, and cytotoxic effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Grigoryan
- Department of Human and Animal Physiology, YSU, Yerevan, Armenia
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, USA
| | | | | |
Collapse
|
87
|
Moorthy K, Chang KC, Huang HC, Wu WJ, Chiang CK. Evaluating Antioxidant Performance, Biosafety, and Antimicrobial Efficacy of Houttuynia cordata Extract and Microwave-Assisted Synthesis of Biogenic Silver Nano-Antibiotics. Antioxidants (Basel) 2023; 13:32. [PMID: 38247457 PMCID: PMC10812406 DOI: 10.3390/antiox13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
From the traditional Chinese medicine point of view, although Houttuynia cordata extract (HCE) possesses an incredible amount of phytonutrients and exhibits antioxidant activities, excessive doses of HCE can cause danger to organisms and lead to death. In this study, we first examine HCE's overall phenolic and flavonoid content, antioxidant efficacy, and antibacterial activity. Results show that HCE is suitable as a bio-reducing agent for the microwave-assisted synthesis of silver nanoparticles (HCE-AgNPs) with enhanced antioxidant and antimicrobial performance. Under an optimized microwave condition (i.e., 100 °C for 10 min), the HCE-stabilized AgNPs were confirmed with a UV-visible peak at 430 nm and 19.7 ± 4.2 nm in size. Physicochemical properties of HCE-AgNPs were extensively characterized by zeta-potential, FT-IR, XRD, and XPS measurements. Compared to the HC extract counterpart, HCE-AgNPs display superior antioxidant activity, higher DPPH scavenging efficiency, and enhanced broad-spectrum bactericidal activity to inhibit the growth of all tested bacterial strains at doses of 2 μg/mL. Biosafety evaluation indicated that HCE-AgNPs are noncytotoxic on human red blood cells. These data show that the microwave synthesis of AgNPs exhibits a great antioxidant ability, superior antibacterial activity, and a trivial hemolytic effect, providing another bactericidal therapy strategy to address the increasing healthcare-associated infections.
Collapse
Affiliation(s)
- Kavya Moorthy
- Department of Chemistry, National Dong Hwa University, Shoufeng 97401, Taiwan;
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (H.-C.H.); (W.-J.W.)
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Hsiao-Chi Huang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (H.-C.H.); (W.-J.W.)
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (H.-C.H.); (W.-J.W.)
| | - Cheng-Kang Chiang
- Department of Chemistry, National Dong Hwa University, Shoufeng 97401, Taiwan;
| |
Collapse
|
88
|
Sharma H, Yang H, Sharma N, An SSA. Trachyspermum ammi Bioactives Promote Neuroprotection by Inhibiting Acetylcholinesterase, Aβ-Oligomerization/Fibrilization, and Mitigating Oxidative Stress In Vitro. Antioxidants (Basel) 2023; 13:9. [PMID: 38275629 PMCID: PMC10812417 DOI: 10.3390/antiox13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a large category of progressive neurological disorders with diverse clinical and pathological characteristics. Among the NDs, Alzheimer's disease (AD) is the most widespread disease, which affects more than 400 million people globally. Oxidative stress is evident in the pathophysiology of nearly all NDs by affecting several pathways in neurodegeneration. No single drug can manage multi-faceted diseases like NDs. Therefore, an alternative therapeutic strategy is required, which can affect several pathophysiological pathways at a time. To achieve this aim, hexane and ethyl acetate extract from Trachyspermum ammi (Carom) were prepared, and GC/MS identified the bioactive compounds. For the cell-based assays, oxidative stress was induced in SH-SY5Y neuroblastoma cells using hydrogen peroxide to evaluate the neuroprotective potential of the Carom extracts/bioactives. The extracts/bioactives provided neuroprotection in the cells by modulating multiple pathways involved in neurodegeneration, such as alleviating oxidative stress and mitochondrial membrane potential. They were potent inhibitors of acetylcholine esterase enzymes and displayed competitive/mixed-type inhibition. Additionally, anti-Aβ1-42 fibrilization/oligomerization and anti-glycation activities were also analyzed. The multi-faceted neuroprotection shown via Carom/Carvacrol makes it a prospective contender in drug development for NDs.
Collapse
Affiliation(s)
| | | | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
89
|
Akbarzadeh SS, Pourfakhraei E, Zargar M, Kashanchi M, Aghaei SS. Introducing of high rich lysine, arginine, and unsaturated fatty acids microalga as a food supplement. World J Microbiol Biotechnol 2023; 40:43. [PMID: 38105384 DOI: 10.1007/s11274-023-03839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Microalgae are powerful source for nutritionally valuable components as proteins, carbohydrates and especially unsaturated fatty acids. Microalgae may be employed in pharmaceutical, food, cosmetic, health industries, and biofuels. In this study for looking at high-level unsaturated fatty acids species, from 31 strains, by comparing growth curves, the best strain with a high growth rate and lipid content was selected by red Nile staining. It was determined by molecular identification that this strain belongs to the genus Chlorella sp. and is deposited into the Agricultural Biotechnology Research Institute of Iran Culture collection with culture collection number ABRIICC 30,041. Biomass analysis after growth optimization by response surface methodology showed that the selected strain had a specific growth rate of 0.216 ± 0.008 d-1, biomass productivity of 142.58 ± 4.41 mg/Ld, and lipid content of 13.9 ± 0.26% with a high level of unsaturated fatty acids of 53.15%. It also included 51.3 ± 0.53% protein with a very high quality essential amino acids of 40.36%, the most lysine (8.77%) and arginine (13.31%) has been reported until now, and 26.9 ± 0.23% carbohydrates in photoautotroph condition. By MTT assay, there is no effect of cytotoxicity. This research introduces a potent native strain comparable with commercial strains that can be a hopeful source for food supplements and valuable bioactive ingredients in functional foods.
Collapse
Affiliation(s)
| | - Elaheh Pourfakhraei
- Industrial and Environmental Biotechnology Department, Research Institute of Applied Science, ACECR, Shahid Beheshti University, Tehran, Iran.
| | - Mohsen Zargar
- Production and Recycling of Materials and Energy Research Center, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Mona Kashanchi
- Industrial and Environmental Biotechnology Department, Research Institute of Applied Science, ACECR, Shahid Beheshti University, Tehran, Iran
| | - Seyed Soheil Aghaei
- Production and Recycling of Materials and Energy Research Center, Qom Branch, Islamic Azad University, Qom, Iran
| |
Collapse
|
90
|
Boateng ID. Recent advances incombined Avant-garde technologies (thermal-thermal, non-thermal-non-thermal, and thermal-non-thermal matrix) to extract polyphenols from agro byproducts. J Food Drug Anal 2023; 31:552-582. [PMID: 38526817 PMCID: PMC10962677 DOI: 10.38212/2224-6614.3479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/02/2023] [Indexed: 03/27/2024] Open
Abstract
Because food byproducts (waste) are rich in phytoconstituents, valorizing them is crucial for global food security. However, conventional extraction (CE), including decoction, maceration, Soxhlet, etc., for agro byproducts' polyphenol extraction are time-consuming and rely significantly on vast volumes of potentially aggressive solvents. Hence, Avantgarde extraction technologies, including non-thermal (high hydrostatic pressure (HHPE), pulsed-electric field (PEF), high voltage electrical discharges (HVED), etc.) and thermal extraction (supercritical fluid (SCF), subcritical water extraction (SWE), microwave-assisted extraction (MAE), etc.), as well as their thermal combinations (SCF-PLE, SCCO2-SWE, SCCO2-MAE, etc.), non-thermal combinations (HHPE + UAE, PEF + UAE, HVED + UAE, etc.) and combined thermalnon-thermal (MAE-UAE, etc.) are increasingly replacing CE. However, a review of combined Avant-garde extraction escalation technologies (non-thermal/thermal extraction matrix) for extracting polyphenols from agro-byproducts is limited. Hence, this manuscript reviewed Avant-garde extraction technologies (non-thermal/thermal extraction matrix) for extracting phenolics from agro-byproducts in the last 5 years. The key factors affecting polyphenols' extraction from the byproduct, the recent applications of Avant-garde technologies, and their principle were reviewed using databases from Web of Science and Lens.org. The results demonstrated that combined Avant-garde extraction escalation technologies increase extractability, resulting in polyphenols with higher extraction rates, fewer contaminants, and preservation of thermosensitive components. Therefore, combined Avant-garde extraction technologies should be explored over the next five years. Implementing an integrated process and the strategic sequencing of diverse Avant-garde extraction technologies are important. Thus, further investigation is required to explore the sequencing process and its potential impact on the extraction of phenolics from agro-byproducts.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, 65211,
USA
- Certified Group, 199 W Rhapsody Dr, San Antonio, TX, 78216,
USA
- Kumasi Cheshire Home, Off Edwenase Road, Kumasi,
Ghana
- Organization of African Academic Doctors, PO Box 25305-00100, Nairobi,
Kenya
| |
Collapse
|
91
|
Umar H, Aliyu MR, Usman AG, Ghali UM, Abba SI, Ozsahin DU. Prediction of cell migration potential on human breast cancer cells treated with Albizia lebbeck ethanolic extract using extreme machine learning. Sci Rep 2023; 13:22242. [PMID: 38097683 PMCID: PMC10721884 DOI: 10.1038/s41598-023-49363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Cancer is one of the major causes of death in the modern world, and the incidence varies considerably based on race, ethnicity, and region. Novel cancer treatments, such as surgery and immunotherapy, are ineffective and expensive. In this situation, ion channels responsible for cell migration have appeared to be the most promising targets for cancer treatment. This research presents findings on the organic compounds present in Albizia lebbeck ethanolic extracts (ALEE), as well as their impact on the anti-migratory, anti-proliferative and cytotoxic potentials on MDA-MB 231 and MCF-7 human breast cancer cell lines. In addition, artificial intelligence (AI) based models, multilayer perceptron (MLP), extreme gradient boosting (XGB), and extreme learning machine (ELM) were performed to predict in vitro cancer cell migration on both cell lines, based on our experimental data. The organic compounds composition of the ALEE was studied using gas chromatography-mass spectrometry (GC-MS) analysis. Cytotoxicity, anti-proliferations, and anti-migratory activity of the extract using Tryphan Blue, MTT, and Wound Heal assay, respectively. Among the various concentrations (2.5-200 μg/mL) of the ALEE that were used in our study, 2.5-10 μg/mL revealed anti-migratory potential with increased concentrations, and they did not show any effect on the proliferation of the cells (P < 0.05; n ≥ 3). Furthermore, the three data-driven models, Multi-layer perceptron (MLP), Extreme gradient boosting (XGB), and Extreme learning machine (ELM), predict the potential migration ability of the extract on the treated cells based on our experimental data. Overall, the concentrations of the plant extract that do not affect the proliferation of the type cells used demonstrated promising effects in reducing cell migration. XGB outperformed the MLP and ELM models and increased their performance efficiency by up to 3% and 1% for MCF and 1% and 2% for MDA-MB231, respectively, in the testing phase.
Collapse
Affiliation(s)
- Huzaifa Umar
- Near East University, Operational Research Centre in Healthcare, TRNC Mersin 10, 99138, Nicosia, Turkey.
| | - Maryam Rabiu Aliyu
- Department of Energy System Engineering, Cyprus International University, Northern Cyprus via Mersin 10, 99258, Nicosia, Turkey
| | - Abdullahi Garba Usman
- Near East University, Operational Research Centre in Healthcare, TRNC Mersin 10, 99138, Nicosia, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, TRNC, Mersin 10, 99138, Nicosia, Turkey
| | - Umar Muhammad Ghali
- Department of Chemistry, Faculty of Natural and Applied Sciences, Firat University, Merkezi, 23199, Elazig, Turkey
| | - Sani Isah Abba
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Dilber Uzun Ozsahin
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
92
|
Lee HJ, Lee HJ, Ismail A, Sethukali AK, Park D, Baek KH, Jo C. Effect of plasma-activated organic acids on different chicken cuts inoculated with Salmonella Typhimurium and Campylobacter jejuni and their antioxidant activity. Poult Sci 2023; 102:103126. [PMID: 37832189 PMCID: PMC10585309 DOI: 10.1016/j.psj.2023.103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Lactic acid, gallic acid, and their mixture (1% each) were prepared (LA, GA, and LGA) and plasma-activated organic acids (PAOA) were produced through exposure to plasma for 1 h (PAL, PAG, and PLGA). Chicken breast and drumstick were immersed in the prepared solutions for 10 min and analyzed their antibacterial effect against Salmonella Typhimurium and Campylobacter jejuni and antioxidant activity during 12 d of storage. As a result, PAOA inactivated approximately 6.37 log CFU/mL against S. Typhimurium and 2.76, 1.86, and 3.04 log CFU/mL against C. jejuni (PAL, PAG, and PLGA, respectively). Moreover, PAOA had bactericidal effect in both chicken parts inoculated with pathogens, with PAL and PLGA displaying higher antibacterial activity compared to PAG. Meanwhile, PAOA inhibited lipid oxidation in chicken meats, and PAG and PLGA had higher oxidative stability during storage compared to PAL. This can be attributed to the superior antioxidant properties of GA and LGA, including higher total phenolic contents, ABTS+ reducing activity, and DPPH radical scavenging activity, when compared to LA. In particular, when combined with plasma treatment, LGA showed the greatest improvement in antioxidant activity compared to other organic acids. In summary, PLGA not only had a synergistic bactericidal effect against pathogens on chicken, but also improved oxidative stability during storage. Therefore, PLGA can be an effective method for controlling microorganisms without adverse effect on lipid oxidation for different chicken cuts.
Collapse
Affiliation(s)
- Hag Ju Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Azfar Ismail
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Anand Kumar Sethukali
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Dongbin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Ki Ho Baek
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, Changwon 51508, South Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea.
| |
Collapse
|
93
|
Zakaria ZA, Sahmat A, Hizami Azmi A, Zainol ASN, Omar MH, Balan T, Abdul Kadir A, Abdullah S, Azizah R, Sulistyorini L. Liver protective effect of chloroform extract of Bauhinia purpurea leaves is attributed partly to its antioxidant action and the presence of flavonoids. PHARMACEUTICAL BIOLOGY 2023; 61:1152-1161. [PMID: 37559390 PMCID: PMC10416740 DOI: 10.1080/13880209.2023.2241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/29/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Bauhinia purpurea L. (Fabaceae) is used in the Ayurvedic system to treat various oxidative-related ailments (e.g., wounds, ulcers etc.). Therefore, it is believed that the plant also has the potential to alleviate oxidative-related liver damage. OBJECTIVE This study elucidates the hepatoprotective activity of chloroform extract of B. purpurea leaves (CEBP) in paracetamol (PCM)-induced liver injury (PILI) rats. MATERIALS AND METHODS Male Sprague-Dawley rats (n = 6) were pre-treated once daily (p.o.) with CEBP (50-500 mg/kg) for seven consecutive days before being administered (p.o.) a hepatotoxic agent, 3 g/kg PCM. Liver enzyme levels were determined from the collected blood, while the collected liver was used to determine the activity of endogenous antioxidant enzymes and for histopathological examination. CEBP was also subjected to radical scavenging assays and phytochemical analysis. RESULTS CEBP significantly (p < 0.05) reversed the toxic effect of PCM by increasing the serum levels of AST and ALT, and the activity of endogenous catalase (CAT) and superoxide dismutase (SOD) while reducing the liver weight/body weight (LW/BW) ratio. Other than low TPC value and radical scavenging activity, CEBP had a high antioxidant capacity when evaluated using the oxygen radical absorbance capacity (ORAC) assay. UHPLC-ESI-MS analysis of CEBP showed the presence of flavonoids. DISCUSSION AND CONCLUSIONS CEBP exerts its hepatoprotective activity through a non-free radical scavenging pathway that involves activation of the endogenous enzymatic antioxidant defense system. Further study is needed to identify the responsible bioactive compounds before the plant can be developed as a future alternative hepatoprotective medicament for clinical use.
Collapse
Affiliation(s)
- Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
- Department of Environmental Health, Faculty of Public Health, Campus C Universitas Airlangga, Jalan Mulyorejo Surabaya, East Java, Indonesia
| | - Adibah Sahmat
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Azfar Hizami Azmi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Amal Syahirah Nur Zainol
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Maizatul Hasyima Omar
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, Malaysia
| | - Tavamani Balan
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Arifah Abdul Kadir
- Department of Veterinary Pre-clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Syahriel Abdullah
- Institute of Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | - Roro Azizah
- Department of Environmental Health, Faculty of Public Health, Campus C Universitas Airlangga, Jalan Mulyorejo Surabaya, East Java, Indonesia
| | - Lilis Sulistyorini
- Department of Environmental Health, Faculty of Public Health, Campus C Universitas Airlangga, Jalan Mulyorejo Surabaya, East Java, Indonesia
| |
Collapse
|
94
|
Javed M, Reddy B, Sheoran N, Ganesan P, Kumar A. Unraveling the transcriptional network regulated by miRNAs in blast-resistant and blast-susceptible rice genotypes during Magnaporthe oryzae interaction. Gene 2023; 886:147718. [PMID: 37595851 DOI: 10.1016/j.gene.2023.147718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The plant pathogen Magnaporthe oryzae poses a significant threat to global food security, and its management through the cultivation of resistant varieties and crop husbandry practices, including fungicidal sprays, has proven to be inadequate. To address this issue, we conducted small-RNA sequencing to identify the roles of miRNAs and their target genes in both resistant (PB1637) and susceptible (PB1) rice genotypes. We confirmed the expression of differentially expressed miRNAs using stem-loop qRT-PCR analysis and correlated them with rice patho-phenotypic and physio-biochemical responses. Our findings revealed several noteworthy differences between the resistant and susceptible genotypes. The resistant genotype exhibited reduced levels of total chlorophyll and carotenoids compared to the susceptible genotype. However, it showed increased levels of total protein, callose, H2O2, antioxidants, flavonoids, and total polyphenols. Additionally, among the defense-associated enzymes, guaiacol peroxidase and polyphenol oxidase responses were higher in the susceptible genotypes. In our comparative analysis, we identified 27 up-regulated and 43 down-regulated miRNAs in the resistant genotype, while the susceptible genotype exhibited 44 up-regulated and 62 down-regulated miRNAs. Furthermore, we discovered eight up-regulated and five down-regulated miRNAs shared between the resistant and susceptible genotypes. Notably, we also identified six novel miRNAs in the resistant genotype and eight novel miRNAs in the susceptible genotype. These novel miRNAs, namely Chr8_26996, Chr12_40110, and Chr12_41899, were found to negatively correlate with the expression of predicted target genes, including Cyt-P450 monooxygenase, serine carboxypeptidase, and zinc finger A20 domain-containing stress-associated protein, respectively. The results of our study on miRNA and transcriptional responses provide valuable insights for the development of future rice lines that are resistant to blast disease. By understanding the roles of specific miRNAs and their target genes in conferring resistance, we can enhance breeding strategies and improve crop management practices to ensure global food security.
Collapse
Affiliation(s)
- Mohammed Javed
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India.
| |
Collapse
|
95
|
Sassa-Deepaeng T, Yodthong W, Khumpirapang N, Anuchapreeda S, Okonogi S. Effects of plant-based copper nanoparticles on the elimination of ciprofloxacin. Drug Discov Ther 2023; 17:320-327. [PMID: 37839876 DOI: 10.5582/ddt.2023.01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Ciprofloxacin (CIP) is frequently detected in the environment and causes the emergence of drug-resistant bacteria. High levels of CIP in the environment are also harmful to humans and animals. Therefore, effective elimination of CIP is required. In this study, plant-based copper nanoparticles (CuNPs) have been fabricated for the purpose of eliminating CIP. Aqueous extracts of 6 plants were compared for their phytochemicals and reducing activity. Among all the extracts, Garcinia mangostana extract (GM) was the most potent with the highest total phenolic compounds, flavonoids, tannins, terpenoids, and reducing activity. CuNPs synthesized using GM (GM-CuNPs) were characterized using UV-VIS spectroscopy and dynamic light scattering. The results showed that the maximum absorption of GM-CuNPs was at 340 nm. The average size of GM-CuNPs is in the nanoscale range of 159.2 ± 61 nm, with a narrow size distribution and a negative zeta potential of - 4.13 ± 6.97 mV. The stability of GM-CuNPs is not solely due to their zeta potential but also phytochemicals in the extract. GM-CuNPs at 25 mM showed the highest efficiency of 95% in removing CIP from aqueous medium pH 6-7 at 25-35°C within 20 min. The results indicated that the electrostatic attraction between the negative charge of GM-CuNPs and the positive charge of CIP controlled the drug adsorption on the nanoparticles. In conclusion, the developed GM-CuNPs have excellent CIP removal efficiency. These synthesized GM-CuNPs are expected to be environmentally friendly for the removal of antibiotics and other drugs.
Collapse
Affiliation(s)
- Tanongsak Sassa-Deepaeng
- Agricultural Biochemistry Research Unit, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang, Thailand
| | - Wachira Yodthong
- Lampang Inland Fisheries Research and Development Center, Lampang, Thailand
| | - Nattakanwadee Khumpirapang
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
96
|
Arjsri P, Srisawad K, Semmarath W, Umsumarng S, Rueankham L, Saiai A, Rungrojsakul M, Katekunlaphan T, Anuchapreeda S, Dejkriengkraikul P. Suppression of inflammation-induced lung cancer cells proliferation and metastasis by exiguaflavanone A and exiguaflavanone B from Sophora exigua root extract through NLRP3 inflammasome pathway inhibition. Front Pharmacol 2023; 14:1243727. [PMID: 38026959 PMCID: PMC10667455 DOI: 10.3389/fphar.2023.1243727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective: Non-small cell lung cancer (NSCLC) is recognized for its aggressive nature and propensity for high rates of metastasis. The NLRP3 inflammasome pathway plays a vital role in the progression of NSCLC. This study aimed to investigate the effects of S. exigua extract and its active compounds on NLRP3 regulation in NSCLC using an in vitro model. Methods: S. exigua was extracted using hexane, ethyl acetate and ethanol to obtain S. exigua hexane fraction (SE-Hex), S. exigua ethyl acetate fraction (SE-EA), and S. exigua ethanol fraction (SE-EtOH) respectively. The active compounds were identified using column chromatography and NMR analysis. A549 cells were primed with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) for activated NLRP3 inflammasome. The anti-inflammatory properties were determined using ELISA assay. The anti-proliferation and anti-metastasis properties against LPS-ATP-induced A549 cells were determined by colony formation, cell cycle, wound healing, and trans-well migration and invasion assays. The inflammatory gene expressions and molecular mechanism were determined using RT-qPCR and Western blot analysis, respectively. Results: SE-EA exhibited the greatest anti-inflammation properties compared with other two fractions as evidenced by the significant inhibition of IL-1β, IL-18, and IL-6, cytokine productions from LPS-ATP-induced A549 cells in a dose-dependent manner (p < 0.05). The analysis of active compounds revealed exiguaflavanone A (EGF-A) and exiguaflavanone B (EGF-B) as the major compounds present in SE-EA. Then, SE-EA and its major compound were investigated for the anti-proliferation and anti-metastasis properties. It was found that SE-EA, EGF-A, and EGF-B could inhibit the proliferation of LPS-ATP-induced A549 cells through cell cycle arrest induction at the G0/G1 phase and reducing the expression of cell cycle regulator proteins. Furthermore, SE-EA and its major compounds dose-dependently suppressed migration and invasion of LPS-ATP-induced A549 cells. At the molecular level, SE-EA, EGF-A, and EGF-B significantly downregulated the mRNA expression of IL-1β, IL-18, IL-6, and NLRP3 in LPS-ATP-induced A549 cells. Regarding the mechanistic study, SE-EA, EGF-A, and EGF-B inhibited NLRP3 inflammasome activation through suppressing NLRP3, ASC, pro-caspase-1(p50 form), and cleaved-caspase-1(p20 form) expressions. Conclusion: Targeting NLRP3 inflammasome pathway holds promise as a therapeutic approach to counteract pro-tumorigenic inflammation and develop novel treatments for NSCLC.
Collapse
Affiliation(s)
- Punnida Arjsri
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Warathit Semmarath
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sonthaya Umsumarng
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
- Division of Veterinary Preclinical Sciences, Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Lapamas Rueankham
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Aroonchai Saiai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Methee Rungrojsakul
- Department of Traditional Chinese Medicine, Faculty of Science, Chandrakasem Rajabhat University, Bangkok, Thailand
| | - Trinnakorn Katekunlaphan
- Department of Chemistry, Faculty of Science, Chandrakasem Rajabhat University, Bangkok, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
97
|
Ko CY, Wu CH, Nguyen TKN, Chen LW, Wu JSB, Huang WC, Shen SC. Alleviative Effect of Ficus formosana Extract on Peripheral Neuropathy in Ovariectomized Diabetic Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3774. [PMID: 37960130 PMCID: PMC10649879 DOI: 10.3390/plants12213774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
In diabetes mellitus, Ficus formosana has been reported to ameliorate blood sugar levels and inhibit inflammation through its polyphenol and flavonoid contents. However, its effect on diabetic peripheral neuropathy (DPN) remains unknown. This study aimed to investigate the effect of Ficus formosana extract (FFE) on DPN in ovariectomized diabetic mice. Ovariectomized female C57BL/6J mice fed a high-fat diet plus streptozotocin injections to induce type 2 diabetes were orally administered FEE at 20 or 200 mg/kg BW daily, for 6 weeks. To evaluate the pain responses in the paws of the mice, a von Frey filament test and a thermal hyperalgesia test were performed. Additionally, the intraepidermal and sciatic nerve sections were examined, along with an assessment of inflammation- and pain response-related mRNA expression in the paws of the mice. The results showed that the oral administration of both 20 and 200 mg/kg BW FEE significantly alleviated the hypersensitivity of the paw and the abnormal proliferation and rupture of the C fiber, and reduced the mRNA expression of interleukin-1β, interleukin-6, interferon-γ, cyclooxygenase-2, and voltage-gated sodium channel 1.8 in the sciatic nerve of ovariectomized diabetic mice. We propose that FFE ameliorates peripheral neuropathy by suppressing oxidative damage in ovariectomized diabetic mice.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
- School of Public Health, Fujian Medical University, Fuzhou 350122, China
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei 10617, Taiwan;
| | - Thi Kim Ngan Nguyen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10617, Taiwan; (T.K.N.N.); (L.-W.C.)
| | - Li-Wen Chen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10617, Taiwan; (T.K.N.N.); (L.-W.C.)
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10617, Taiwan; (T.K.N.N.); (L.-W.C.)
| |
Collapse
|
98
|
Giménez-Berenguer M, Gutiérrez-Pozo M, Serna-Escolano V, Giménez MJ, Zapata PJ. Influence of Artichoke Antioxidant Activity in Their Susceptibility to Suffer Frost Injury. Antioxidants (Basel) 2023; 12:1960. [PMID: 38001813 PMCID: PMC10669309 DOI: 10.3390/antiox12111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In the northern hemisphere countries, artichoke harvest occurs in winter months; consequently, they are exposed to cold temperatures. This can lead to frost injury, such as triggering the blistering of the cuticle and detachment of outer bracts, which eventually could display brown or black discolouration. This can cause major economic and production losses. As far as we know, no literature is available about this problem in artichokes. Thus, the main aim of this study was to evaluate the effect of total phenolic content and the antioxidant potential of 'Blanca de Tudela' artichokes in their capacity to tolerate frost injury when they are exposed to low temperatures. Several factors were analysed, including floral head order, weight and size of artichokes, total phenolic content, phenolic profile and total antioxidant activity. Results showed that tertiary heads, which are the smallest in size, exhibited a greater amount of total phenolic content and antioxidant activity. As a result, these characteristics offered enhanced protection to the artichoke against frosting temperatures. In contrast, the largest artichokes, especially the primary heads, were more susceptible to suffer frostbite. Therefore, artichokes with robust antioxidant systems, characterized by elevated phenolic content, are crucial to reduce their susceptibility to frost injury.
Collapse
Affiliation(s)
| | | | | | - María José Giménez
- Department of Food Technology, Escuela Politécnica Superior de Orihuela, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Alicante, Spain; (M.G.-B.); (M.G.-P.); (V.S.-E.); (P.J.Z.)
| | | |
Collapse
|
99
|
Raj FJ, Jagadeesan G, Mathews Paul B, Thangaraj P, Kilimas R. Evaluation of Pharmacological Potential of Miliusa nilagirica Bedd. Leaves Using In Vitro Antidiabetic and Antioxidant Assays. Appl Biochem Biotechnol 2023; 195:6790-6808. [PMID: 36930407 DOI: 10.1007/s12010-023-04396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Miliusa nilagirica, a rare tree species of Western Ghats, belongs to the Annonaceae family, a family with potential antioxidant and antidiabetic properties. This study is designed vividly to establish the relationship between the constituent phytochemicals and their hyperglycemic effects through the antioxidant traits of M. nilagirica in vitro. Phytochemical tests were conducted on dry powdered leaves and extracts of various methods to determine the existence of various constituents. The antidiabetic potential of leaf extracts was estimated by using the α-amylase inhibitory model and the antioxidant potential was estimated with various assays. The quantitative phytochemical screening of leaf parts shows the presence of carbohydrates (88.74 ± 0.65 mg GE/g sample), proteins (82.17 ± 2.52 mg BSAE/g sample), phenolics (40.44 ± 0.43 GAE/100 g), and flavonoids (66.05 ± 0.48 mg RE/g extract). Methanol extract of Soxhlet of M. nilagirica registered the strongest antioxidant activity in all assays, 75.66% inhibition (DPPH assay), 795.01 µmol/g (ABTS˙+ radical scavenging), 994.33 µmol/g (FRAP assay), 362.02 mg AAE/g extract (TAC assay), 47% inhibition (NO scavenging assay). In vitro α-amylase inhibition showed a highly noticeable reduction in ethyl acetate extract from Soxhlet (75.19%). HPLC and FTIR analyses on the extracts added strengths to the obtained results on the potentiality of M. nilagirica. From the results, it is evident that phytochemicals from M. nilagirica can be studied further, isolated, and incorporated as an alternative to synthetic supplements for hyperglycemia.
Collapse
Affiliation(s)
- Francis Jegan Raj
- Department of Botany, St. Joseph College (Autonomous), Tamil Nadu, Tiruchirappalli, India, 620002
| | - Gayathri Jagadeesan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Tamil Nadu, Coimbatore, India, 641046
| | - Benedict Mathews Paul
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Tamil Nadu, Coimbatore, India, 641046
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Tamil Nadu, Coimbatore, India, 641046.
| | - Rajan Kilimas
- Department of Botany, St. Joseph College (Autonomous), Tamil Nadu, Tiruchirappalli, India, 620002.
| |
Collapse
|
100
|
Widoyanti AAE, Chaikong K, Rangsinth P, Saengratwatchara P, Leung GPH, Prasansuklab A. Valorization of Nam Wah Banana ( Musa paradisiaca L.) Byproducts as a Source of Bioactive Compounds with Antioxidant and Anti-inflammatory Properties: In Vitro and In Silico Studies. Foods 2023; 12:3955. [PMID: 37959074 PMCID: PMC10649638 DOI: 10.3390/foods12213955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Nam Wah banana (Musa paradisiaca L.) is the most common banana cultivar in Thailand. Large amounts of its non-consumable byproducts are considered undervalued and thrown as waste. Exploring the potential utilization and application of banana byproducts for human benefit can add to their value and minimize the risk of threats. This study aimed to investigate phytochemicals, antioxidant and anti-inflammatory activities, and toxicity of Nam Wah banana byproducts. Five banana plant parts, including the midrib, leaf, peduncle, unripe and ripe peels, were extracted using hexane, ethyl acetate, ethanol, and water. Among the extracts tested, the ethyl acetate leaf extract showed the strongest antioxidant capacity and anti-inflammatory activity, probably through the inhibition of inducible nitric oxide synthase (iNOS) and 15-lipoxygenase (15-LOX). Positive correlations existed between the activities and the total phenolic/flavonoid content of banana byproducts. An in silico docking analysis demonstrated that flavonoid glycosides in banana byproducts, such as kaempferol-3-O-rutinoside and rutin, may bind to inducible iNOS, whereas omega-3-polyunsaturated fatty acids, such as eicosapentaenoic acid, may bind to 15-LOX and cyclooxygenase-2 (COX-2). The extracts showed either low or no toxicity. These findings suggest that banana byproducts are a natural source of antioxidant and anti-inflammatory compounds. It is recommended that additional investigations be conducted to explore their potential therapeutic applications in treating disorders linked with oxidative stress or inflammation. This research has the potential to enhance the value of banana byproducts.
Collapse
Affiliation(s)
- Ansella Amanda Epifani Widoyanti
- Graduate Program in Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Kamonwan Chaikong
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.C.); (P.S.)
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; (P.R.); (G.P.-H.L.)
| | - Patcharaporn Saengratwatchara
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.C.); (P.S.)
- Faculty of Pharmacy, Payap University, Chiangmai 50000, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; (P.R.); (G.P.-H.L.)
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-ageing (Neur-Age Natura) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|