51
|
Agin-Liebes G, Zeifman RJ, Mitchell JM. Self-compassion mediates treatment effects in MDMA-assisted therapy for posttraumatic stress disorder. Eur J Psychotraumatol 2025; 16:2485513. [PMID: 40331914 PMCID: PMC12064107 DOI: 10.1080/20008066.2025.2485513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 05/08/2025] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a severe condition often complicated by co-occurring disorders, such as major depression, alcohol use disorder, and substance use disorders. A well-powered phase 3 randomized, placebo-controlled trial has shown that MDMA-assisted therapy (MDMA-AT) may be an effective treatment for severe PTSD. However, the psychological mechanisms driving the therapeutic effects of MDMA-AT remain unclear. One potential mechanism is self-compassion, which is commonly conceptualized as a balance between compassionate self-responding (CS) - encompassing self-kindness, common humanity, and mindfulness - and uncompassionate self-responding (UCS) - encompassing self-judgment, isolation, and over-identification.Objective: This secondary analysis aimed to explore whether MDMA-AT enhances aspects of self-compassion and if changes in self-compassion mediate the therapy's effectiveness in reducing PTSD severity, depressive, and alcohol and substance use symptoms.Method: Eighty-two adults diagnosed with severe PTSD participated in a double-blind trial comparing three sessions of either MDMA-AT or placebo combined with therapy. Measures of PTSD severity, depressive symptoms, alcohol and substance use, and self-compassion were collected at baseline and 18 weeks later.Results: MDMA-AT led to statistically significant improvements in both UCS and CS. Significant improvements were also observed across all six subscales of the Self-Compassion Scale, including self-kindness, self-judgment, common humanity, isolation, mindfulness, and over-identification, most with large effect sizes. Changes in UCS and CS significantly and fully mediated the effects of MDMA-AT compared to placebo plus therapy in reducing PTSD severity and depressive symptoms. Findings were not significant for alcohol and substance use outcomes.Conclusions: These findings suggest that self-compassion may play a critical role in the therapeutic effects of MDMA-AT. Further research is needed to investigate the role of self-compassion in MDMA-AT to refine and develop more targeted, effective interventions for individuals with PTSD and co-occurring depression.
Collapse
Affiliation(s)
- Gabrielle Agin-Liebes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Richard J. Zeifman
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, USA
- Centre for Psychedelic Research, Imperial College London, London, UK
| | - Jennifer M. Mitchell
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
52
|
Chen F, Guo S, Li Y, Lu Y, Liu L, Chen S, An J, Zhang G. Fusobacterium nucleatum-driven CX3CR1 + PD-L1 + phagocytes route to tumor tissues and reshape tumor microenvironment. Gut Microbes 2025; 17:2442037. [PMID: 39710592 DOI: 10.1080/19490976.2024.2442037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
The intracellular bacterium Fusobacterium nucleatum (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1+ PMNs in CRC patients. Moreover, Fn accumulates in tumor tissues of tumor-bearing mice via intragingival infection and intravenous injection. Mechanistically, Fn can survive inside PMNs by reducing intracellular ROS levels and producing H2S. Specifically, the lysozyme inhibitor Fn1792 as a novel virulence factor of Fn suppressed apoptosis of phagocytes by inducing CX3CR1 expression. Furthermore, Fn-driven CX3CR1+PD-L1+ phagocytes transfer intracellular Fn to tumor cells, which recruit PMNs/MΦs through the CXCL2/8-CXCR2 and CCL5/CCR5 axes. Consequently, CX3CR1+PD-L1+ PMNs infiltration promotes CRC metastasis and weakens the efficacy of immunotherapy. Treatment with the doxycycline eradicated intracellular Fn, thereby reducing the CX3CR1+PD-L1+ PMNs populations and slowing Fn-promoted tumor growth and metastasis in mice. These results suggest phagocytes as Fn-presenting cells use mutualistic strategies to home to tumor tissues and induce immunosuppression, and treatment with ROS-enhanced antibiotics can inhibit Fn-positive tumor progression.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Songhe Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongfan Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shengxin Chen
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Jun An
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
53
|
Xu K, Yu M, Sun Q, Zhang L, Qian X, Su D, Gong J, Shang J, Lin Y, Li X. Cost-effectiveness of PD-1 inhibitors combined with chemotherapy for first-line treatment of oesophageal squamous cell carcinoma in China: a comprehensive analysis. Ann Med 2025; 57:2482019. [PMID: 40131366 PMCID: PMC11938309 DOI: 10.1080/07853890.2025.2482019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/20/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Programmed death-1 (PD-1) inhibitors combined with chemotherapy have become a standard first-line treatment for advanced oesophageal squamous cell carcinoma (ESCC). Given the high costs associated with immunotherapy, evaluating the cost-effectiveness of different PD-1 inhibitors in the Chinese healthcare setting is essential for guiding treatment decisions and policy development. METHODS A cost-effectiveness analysis was conducted comparing six PD-1 inhibitors-sintilimab, toripalimab, tislelizumab, camrelizumab, serplulimab, and pembrolizumab-combined with chemotherapy for first-line treatment of advanced ESCC. A partitioned survival model was used to calculate incremental cost-effectiveness ratios (ICERs) from healthcare system perspective, with a willingness-to-pay (WTP) threshold set at $36,598.19 per quality-adjusted life year (QALY). Sensitivity analyses were performed to evaluate the robustness of the results. RESULTS The ICERs for toripalimab, camrelizumab, pembrolizumab, serplulimab, sintilimab, and tislelizumab were $32,356.79/QALY, $48,410.64/QALY, $312,743.54/QALY, $121,200.84/QALY, $29,663.42/QALY, and $35,304.33/QALY, respectively. Sintilimab, toripalimab, and tislelizumab were below the WTP threshold. Among all regimens, the top three in life years (LYs) gained were toripalimab, serplulimab, and tislelizumab. Sensitivity analysis showed that utility values and drug prices were key factors influencing ICERs. Probabilistic analysis indicated that toripalimab, sintilimab, and tislelizumab had the highest probabilities of being cost-effective, at 83.1%, 81.4%, and 70.0%, respectively. CONCLUSION Sintilimab, toripalimab, and tislelizumab are the most cost-effective PD-1 inhibitors when combined with chemotherapy for the first-line treatment of advanced ESCC in China, with ICERs below the WTP threshold. While all six PD-1 inhibitors demonstrated clinical benefits, pembrolizumab and serplulimab were less favourable from a cost-effectiveness standpoint. Sensitivity analysis confirmed that drug prices and utility values are significant determinants of cost-effectiveness.
Collapse
Affiliation(s)
- Kai Xu
- Department of Pharmacy, The Second People’s Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Man Yu
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qingli Sun
- Department of Pharmacy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Lingli Zhang
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Xiaodan Qian
- Department of Pharmacy, The Second People’s Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Dan Su
- Department of Pharmacy, The Second People’s Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Jinhong Gong
- Department of Pharmacy, The Second People’s Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Jingjing Shang
- Department of Pharmacy, The Second People’s Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Yingtao Lin
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Clinical Medical Research Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xin Li
- Department of Pharmacy, The Second People’s Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Health Policy, School of Health Policy and Management, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
54
|
Moutsoglou D, Ramakrishnan P, Vaughn BP. Microbiota transplant therapy in inflammatory bowel disease: advances and mechanistic insights. Gut Microbes 2025; 17:2477255. [PMID: 40062406 PMCID: PMC11901402 DOI: 10.1080/19490976.2025.2477255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Microbiota transplant therapy is an emerging therapy for inflammatory bowel disease, but factors influencing its efficacy and mechanism remain poorly understood. In this narrative review, we outline key elements affecting therapeutic outcomes, including donor factors (such as age and patient relationship), recipient factors, control selection, and elements impacting engraftment and its correlation with clinical response. We also examine potential mechanisms through inflammatory bowel disease trials, focusing on the interplay between the microbiota, host, and immune system. Finally, we briefly explore potential future directions for microbiota transplant therapy and promising emerging treatments.
Collapse
Affiliation(s)
- Daphne Moutsoglou
- Gastroenterology Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Byron P. Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
55
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
56
|
Yang J, Tamberou C, Arnee E, Squara PA, Boukhlal A, Nguyen JL, Volkman HR, Fiévez S, Lepoutre-Bourguet M, Ren J, Ben Romdhane H, Crépey P, Robineau O. All-cause healthcare resource utilization and costs among community-managed adults with long-COVID in France, 2020-2023. J Med Econ 2025; 28:535-543. [PMID: 40162934 DOI: 10.1080/13696998.2025.2485626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND The clinical and economic burden of long COVID is poorly understood. We aim to assess all-cause healthcare resource utilization (HCRU) and costs in the primary care setting among adults with long COVID in France. METHODS A retrospective cohort study using the electronic healthcare records (EHRs) of confirmed and/or probable COVID-19 patients from The Health Improvement Network (THIN) data between March 2020 and December 2022 was conducted. Long COVID was identified per World Health Organization (WHO) definition as suggestive symptoms present ≥3 months following acute SARS-CoV-2 infection. Patients' characteristics, HCRU, direct healthcare and indirect costs (National Health Insurance-based prices) were summarized. Costs between patients with previous SARS-CoV-2 infection who developed long COVID, patients with previous SARS-CoV-2 infection who did not develop long COVID (COVID only), and contemporaneous controls without SARS-CoV-2 infection were compared (Non-COVID). RESULTS Long COVID developed among 30,122 (11.6%) adults; mean (SD) age was 50 (17) years, 63.6% were female and 27.5% had a Charlson Comorbidity Index score >2. During the post-infection follow-up (mean = 13 months), 97.3% of patients had general practitioner consultations (GP) and 62.4% had nursing care. Costs were highest during the first post-diagnosis year with per patient per year costs of €2,443 (total cost of €52 million), including costs for GP (€208) and specialist (€170) consultations, outpatient procedures (€413), retail pharmacy use (€595), biological testing (€147), and medical device usage (€172). Patients with long COVID had additional costs of €163 and €176 when compared to patients in the COVID only and Non-COVID cohorts, respectively. LIMITATIONS Since the THIN database is generated from GP EHRs, there is the possibility of measurement/documentation errors and missing values which could compromise the validity and accuracy of certain results. CONCLUSION Long COVID was associated with non-negligible HCRU, direct and indirect costs to the French healthcare system. These findings reinforce the importance of optimizing long-term resource allocation for patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Jingyan Yang
- Global Access and Value, Pfizer Inc., New York, NY, USA
- Institute for Social and Economic Research and Policy, Columbia University, New York, NY, USA
| | | | - Elise Arnee
- Real-World Evidence, GERS DATA, Paris, France
| | | | | | | | | | | | | | - Jinma Ren
- Statistics Group, Pfizer Inc., Collegeville, PA, USA
| | | | - Pascal Crépey
- EHESP, CNRS, Inserm, University of Rennes, Rennes, France
| | - Olivier Robineau
- Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
- Centre hospitalier Gustave Dron, EA2694, Centre Hospitalier de Tourcoing, University Lille, Tourcoing, France
| |
Collapse
|
57
|
Lereim RR, Dunn C, Aamdal E, Chauhan SK, Straume O, Guren TK, Kyte JA. Plasma protein dynamics during ipilimumab treatment in metastatic melanoma: associations with tumor response, adverse events and survival. Oncoimmunology 2025; 14:2440967. [PMID: 39703053 DOI: 10.1080/2162402x.2024.2440967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
The immune checkpoint inhibitor ipilimumab provides long term survival in some metastatic melanoma patients, but the majority has no benefit, and may experience serious side effects. Here, we investigated the dynamics of plasma cytokine concentrations and their potential utility for predicting treatment response, adverse events and overall survival (OS) in patients with metastatic melanoma undergoing ipilimumab monotherapy. A cohort of 148 patients was examined, with plasma samples collected prior to treatment initiation and at the end of the first and second treatment cycles. Concentrations of 48 plasma proteins were measured using a multiplex immunoassay. The results revealed a general increase in cytokine levels following the first ipilimumab dose, consistent with immune activation. Patients not responding to treatment exhibited significantly elevated baseline levels of G-CSF, IL-2RA, MIP-1a, and SCF, compared to tumor responders (p < 0.05). Furthermore, high levels of IL-2RA, IFNγ, PDGF-bb and MIG were linked to inferior OS, while high concentrations of MIF and RANTES were associated with improved OS (p < 0.05). A multivariate model containing CRP, LDH, ECOG, IL-2RA and PDGF-bb identified a subgroup of patients with poor OS. Patients who experienced severe immune-related adverse events within three months of treatment initiation had higher baseline concentrations of several cytokines, indicating a potential association between preexisting inflammation and adverse events. These findings indicate that the first dose of ipilimumab induces a systemic response with increased levels of circulating cytokines and suggest candidate biomarkers for clinical response, immune-mediated toxicity and survival. Further studies in independent patient cohorts are required to confirm the findings.
Collapse
Affiliation(s)
| | - Claire Dunn
- Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
| | - Elin Aamdal
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Oddbjørn Straume
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tormod Kyrre Guren
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
58
|
Ren M, Pang Z, Tu Y, Wang A, Xu T, Yu X, Niu G. Alongshan virus: An emerging arboviral challenge in regional health security. Virulence 2025; 16:2492360. [PMID: 40233926 PMCID: PMC12001551 DOI: 10.1080/21505594.2025.2492360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
The Alongshan virus (ALSV), classified within the Flaviviridae family and belonging to the Jingmenvirus group, is a segmented RNA virus that was first identified in China in 2017. Since then, it has been reported in several Eurasian countries. Although no confirmed fatal cases have been documented, the potential public health risks associated with ALSV are significant and warrant serious attention. The emergence of ALSV has not only broadened the array of tick-borne diseases but has also enriched the research landscape surrounding segmented flaviviruses. Despite these advancements, our understanding of ALSV is still nascent, and its complex infection pathways remain largely unexplored. This review seeks to offer an in-depth examination of ALSV, addressing its biological properties, molecular features, epidemiological data, clinical presentations, and diagnostic methodologies. Our objective is to promote progress in the formulation of preventive, diagnostic, and therapeutic measures for this emerging segmented flavivirus.
Collapse
Affiliation(s)
- Meixi Ren
- College of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Zheng Pang
- Tianjin Customs Port Out-Patient Department, Tianjin International Travel Healthcare Center, Tianjin, China
| | - Yingxin Tu
- College of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Anan Wang
- College of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Tao Xu
- College of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaoli Yu
- College of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Guoyu Niu
- College of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
59
|
Jiang H, Ren S, Zhang S, Luo X, He R, Wang SF, Yan JD, Zhou S, Yin C, Xiao Y, Li Z. Analyzing factors influencing hospitalization costs for five common cancers in China using neural network models. J Med Econ 2025; 28:615-624. [PMID: 40241623 DOI: 10.1080/13696998.2025.2494459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Malignant tumors are a major global health crisis, causing 25% of deaths in China, with lung, liver, thyroid, breast, and colon cancers being the most common. Understanding the factors influencing hospitalization costs for these cancers is crucial for public health and economics. This study aimed to identify key cost factors and develop a neural network model for predicting hospitalization costs, thereby providing tools to ease the financial burden on patients and healthcare systems. METHODS Data on hospitalization costs for 30,893 cancer patients from secondary or higher-level hospitals in Zhuhai, Guangdong Province, between 2017 and 2022, were analyzed. Neural network classification and feature importance analysis were used to determine the main factors influencing costs and to develop predictive models. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC), with a 95% confidence interval (CI) calculated for the AUROC value. RESULTS The key factors influencing hospitalization costs for lung cancer are metastasis and malignant solid tumor (MST), with correlation coefficients of 0.126 and 0.086, respectively, both showing statistical significance (p < 0.05). For colon cancer, the key factors influencing hospitalization costs are mortality and coronary disease (CD), with correlation coefficients of 0.092 and 0.090, respectively, both demonstrating statistical significance (p < 0.05). The AUROC value for the lung cancer model is 0.9078 (95% CI = 0.8975-0.9186), and the AUROC value for the colon cancer model is 0.9017 (95% CI = 0.8848-0.9196). CONCLUSION This study confirmed the strong clinical applicability of the neural network predictive model in analyzing hospitalization costs for lung and colon cancer and revealed the factors that influence hospitalization costs for these cancers.
Collapse
Affiliation(s)
- Hong Jiang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Statistical office, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Sinuo Ren
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Shengbo Zhang
- Department of General Surgery, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xudan Luo
- Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA, USA
| | - Rui He
- Grammar and Cognition Lab, Department of Translation & Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Shuai Fei Wang
- Statistical office, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jian Dong Yan
- Statistical office, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Shan Zhou
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zhihuan Li
- Statistical office, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
- China Resources Power Intelligent Security Laboratory, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| |
Collapse
|
60
|
Briante R, Zhai Q, Mohanty S, Zhang P, O’Connor A, Misker H, Wang W, Tan C, Abuhay M, Morgan J, Theolis R, Ponath P, Arathoon R. Successful targeting of multidrug-resistant tumors with bispecific antibodies. MAbs 2025; 17:2492238. [PMID: 40248904 PMCID: PMC12013451 DOI: 10.1080/19420862.2025.2492238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Multidrug resistance (MDR) hinders efficacious cancer chemotherapy. Overexpression of the P-glycoprotein (P-gp) efflux pump (EP) on cancer cells is a primary cause of MDR since it expels numerous anticancer drugs. Small molecule intracellular P-gp antagonists have been investigated clinically to redress MDR but have failed primarily due to adverse effects on P-gp in normal tissue. We used a new approach to counteract P-gp with bispecific antibodies (BsAbs) that simultaneously bound P-gp and CD47 in cis on MDR cells but not normal tissue. Affinities of the individual arms of the BsAbs were low enough to minimize normal tissue binding, but, when the two targets were co-located on MDR cancer cells, both arms of the BsAb engaged with effective avidity. Proof-of-concept was shown in three different MDR xenograft tumor models with a non-humanized chimeric BsAb (targeting P-gp and CD47) that potently restored tumor sensitivity to paclitaxel. Fully humanized variants were successfully developed and characterized. Significant anti-tumor efficacy was observed with the BsAbs both when combined with paclitaxel and as single agents in the absence of paclitaxel. Treatment of MDR cancers with BsAbs using this novel approach has several distinct advantages over prior efforts with small molecule antagonists, including 1) invoking a direct immune attack on the tumors, 2) multimodal mechanisms of action, 3) tumor-specific targeting (with reduced toxicity to normal tissue), and 4) broad applicability as single agents and compatibility with other therapeutics.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- Animals
- Drug Resistance, Neoplasm/drug effects
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- CD47 Antigen/immunology
- Paclitaxel/pharmacology
- Neoplasms/drug therapy
- Neoplasms/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Female
Collapse
Affiliation(s)
- Raffaella Briante
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Qianting Zhai
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | | | - Pingping Zhang
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Alissa O’Connor
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Hiwot Misker
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Willie Wang
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Cindy Tan
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Mastewal Abuhay
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Jessica Morgan
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Richard Theolis
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Paul Ponath
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Robert Arathoon
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| |
Collapse
|
61
|
Xin H, Wang W, Wang X, Huang J, Di Y, Du J, Cao X, Feng B, Shen L, He Y, Guo T, Li Z, Liang J, Wang Z, Zhu P, Gao L. The performance of computer-aided detection for chest radiography in tuberculosis screening: a population-based retrospective cohort study. Emerg Microbes Infect 2025; 14:2470998. [PMID: 40260691 PMCID: PMC12039420 DOI: 10.1080/22221751.2025.2470998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 04/24/2025]
Abstract
From 2020 to 2022, a pulmonary tuberculosis (PTB) active case finding project based on chest X-ray (CXR) examination was conducted targeting individuals aged ≥65 years old in Jiangshan County, Quzhou City. The current study used computer-aided detection (CAD) software (JF CXR-1 v2) to retrospectively analyze the CXR images and to estimate its potential capacity for identifying PTB cases. The information of notified microbiologically confirmed PTB among the participants were exported from the Tuberculosis Information Management System. A total of 49,919 subjects participated in the 2020 examinations. Of these, 40,741 and 39,185 completed the follow-up surveys in 2021 and 2022, respectively. The pooled prevalence of suspected PTB reported by radiologists was 1.21% (1579/129,776), compared with 12.43% (16,129/129,776) reported by CAD. Of 101 bacteriologically confirmed PTB cases notified over three years, radiologists and CAD reported 45.54% (46/101) and 83.16% (84/101) as suspected cases, respectively. Among subjects with abnormal CAD (CAD score>0.35), the majority of the notified confirmed PTB patients (63/84) had their CAD scores >75% quantiles (as>0.75). With 3 years' results, their CAD scores exhibited dynamic changes along with disease progression or treatment with median scores peaking in the year of diagnosis. This intriguing finding suggests that CAD for CXR reading assisted radiologists in PTB screening by reducing workload and improving case finding. The CAD primary score may have the potential to identify high-risk individuals and early PTB patients, adding a new dimension to our understanding of disease progression.
Collapse
Affiliation(s)
- Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei Wang
- Quzhou City Center for Diseases Control and Prevention, People’s Republic of China
| | - Xiaomeng Wang
- Zhejiang Provincial Center for Diseases Control and Prevention, People’s Republic of China
| | - Juanjuan Huang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuanzhi Di
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xuefang Cao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Boxuan Feng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Lingyu Shen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yijun He
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Tonglei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Zihan Li
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Jianguo Liang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhen Wang
- Zhejiang Provincial Center for Diseases Control and Prevention, People’s Republic of China
| | - Ping Zhu
- Quzhou City Center for Diseases Control and Prevention, People’s Republic of China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
62
|
Nepal S, Shi N, Hoyd R, Spakowicz DJ, Orwoll E, Shikany JM, Napoli N, Tabung FK. Role of insulinemic and inflammatory dietary patterns on gut microbial composition and circulating biomarkers of metabolic health among older American men. Gut Microbes 2025; 17:2497400. [PMID: 40296253 PMCID: PMC12045561 DOI: 10.1080/19490976.2025.2497400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic low-grade inflammation and hyperinsulinemia are linked with metabolic dysfunction and dysbiosis. This study investigated the role of dietary inflammatory and insulinemic potential on gut microbiome and circulating health biomarkers in older men. Data from the Osteoporotic Fractures in Men (MrOS) study were analyzed. Reversed Empirical Dietary Inflammatory Pattern (rEDIP), Empirical Dietary Index for Hyperinsulinemia (rEDIH), and Healthy Eating Index (HEI)-2020 scores were computed from food frequency questionnaire data. Stool samples were profiled using 16S rRNA sequencing. Elastic net regression identified diet-associated microbial profiles and multivariable-adjusted linear regression assessed diet-biomarker associations. Higher rEDIP, rEDIH, and HEI-2020 scores were positively associated with gut microbiota alpha diversity. Specific genera, including Intestinibacter and Lachnospira, associated positively, while Dielma, Peptococcus, Feacalitalea, and Negativibaccilus associated inversely with healthier dietary patterns. When evaluating changes in dietary patterns between baseline and visit 4 ( ~ 14 years), these genera tended to define rEDIP, rEDIH more than HEI-2020. In addition, higher dietary quality was linked to better biomarker profiles, including lower creatinine, sodium, triglycerides, and insulin resistance. Beneficial effects of higher dietary quality on health may be mediated by the ability of diet to regulate gut microbial composition and metabolic biomarker profiles.
Collapse
Affiliation(s)
- Sushma Nepal
- Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ni Shi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rebecca Hoyd
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel J. Spakowicz
- Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eric Orwoll
- Department of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - James M. Shikany
- Division of General Internal Medicine and Population Science, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University, St Louis, MO, USA
| | - Fred K. Tabung
- Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
63
|
Zhang S, Miao L, Tian X, Yang B, Luo B. Opportunities and challenges of immuno-oncology: A bibliometric analysis from 2014 to 2023. Hum Vaccin Immunother 2025; 21:2440203. [PMID: 39885669 PMCID: PMC11792843 DOI: 10.1080/21645515.2024.2440203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
The emergence of immuno-oncology (IO) has led to revolutionary changes in the field of cancer treatment. Despite notable advancements in this field, a thorough exploration of its full depth and extent has yet to be performed. This study provides a comprehensive overview of publications pertaining to IO. Publications on IO from 2014 to 2023 were retrieved by searching the Web of Science Core Collection database (WoSCC). VOSviewer software and Citespace software were used for the visualized analysis. A total of 1,874 articles have been published in the IO domain. The number of publications and citations has been increasing annually. This study also examines the primary research directions within the field of IO. In conclusion, this study offers a comprehensive overview of the opportunities and challenges associated with IO, illuminating the current status of research and indicating potential future trajectories in this rapidly progressing field. This study provides a comprehensive survey of the current research status and hot spots within the field of IO. It will assist researchers in comprehending the current research emphasis and development trends in this field and offers guidance for future research directions.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Tian
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bingxu Yang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Baoping Luo
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
64
|
Ma Y, Zhang M, Wang Z, Cao L, Li Y, Wan Z, Kane Y, Wang G, Li X, Zhang C. Short-term antiretroviral therapy may not correct the dysregulations of plasma virome and cytokines induced by HIV-1 infection. Virulence 2025; 16:2467168. [PMID: 39950859 PMCID: PMC11866967 DOI: 10.1080/21505594.2025.2467168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 02/09/2025] [Indexed: 02/28/2025] Open
Abstract
An expansion of plasma anelloviruses and dysregulation of inflammation was associated with HIV-1 infection. However, how antiretroviral therapy (ART) affects the dynamics of plasma virome and cytokine profile remains largely unknown. To characterize the dynamics of plasma virome and cytokines in HIV-1-infected individuals before and during the first year of ART, a cohort of 26 HIV-1-infected individuals and 19 healthy controls was recruited. Blood samples were collected and subjected to metagenomic analysis and the measurement of 27 cytokines. Metagenomic analysis revealed an increased abundance and prevalence of human pegivirus type 1 (HPgV-1) and a slightly decreased diversity and abundance of anellovirus in plasma of HIV-1-infected individuals after ART. No obvious impact was observed on other plasma commensal viruses. Increased abundance and prevalence of HPgV-1 were further confirmed by RT-qPCR assay in a larger cohort of 114 HIV-1-infected individuals. Notably, most dysregulated cytokines were not fully restored by ART, with extremely abnormal levels of IL-10, GM-CSF, VEGF, and eotaxin, and a significantly increased level of plasma I-FABP. Anelloviruses showed significantly negative correlations with other commensal viruses except HPgV-1 but had positive correlations with several anti-inflammatory and Th1 cytokines. These results suggest that short-term ART may not significantly correct the virome and cytokine dysregulations induced by HIV-1 infection. The results highlight a need for further investigation into the long-term effects of ART on virome and cytokine profiles in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenzhou Wan
- Medical Laboratory,Taizhou Fourth People’s Hospital, Taizhou, China
| | - Yakhouba Kane
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Gang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xin Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
65
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
66
|
Hu W, Feng H, Liu Y, Xu X, Zhou P, Sun Z, Tao X, Yang J, Wu J, Qu C, Liu Z. Recent advances in immunotherapy targeting CETP proteins for atherosclerosis prevention. Hum Vaccin Immunother 2025; 21:2462466. [PMID: 39907207 PMCID: PMC11801355 DOI: 10.1080/21645515.2025.2462466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
Cholesteryl ester transfer protein (CETP) plays a key role in lipoprotein metabolism, and its activity has been linked to the risk of atherosclerosis (AS). CETP inhibitors, such as obicetrapib, represent a novel approach in immunotherapy to reduce the risk of atherosclerotic cardiovascular disease (ASCVD) by targeting lipid metabolism. In addition, CETP vaccines are being explored as a novel strategy for the prevention and treatment of ASCVD by inducing the body to produce antibodies against CETP, which is expected to reduce CETP activity, thereby increasing high-density lipoproteins (HDL) levels. This paper provides a comprehensive overview of the structure of CETP, the mechanisms of lipid transfer and the progress of immunotherapy in the last decade, which provides possible ideas for future development of novel drugs and optimization of immunization strategies.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Han Feng
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ying Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiaoshuang Xu
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ping Zhou
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zhonghua Sun
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xinyu Tao
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiahui Yang
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jun Wu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Qu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
67
|
Mura M, Trignol A, Le Dault E, Tournier JN. Lessons for medical countermeasure development from unforeseen outbreaks. Emerg Microbes Infect 2025; 14:2471035. [PMID: 39976365 PMCID: PMC11894751 DOI: 10.1080/22221751.2025.2471035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
The unanticipated emergence of the COVID-19 pandemic and the rapid spread of the mpox epidemic in 2022 and 2024 brought unforeseen challenges to public health. While distinct in nature, these outbreaks share some similarities and offer valuable insights into responding to novel virus dissemination in vulnerable populations. In light of these two experiences, we aim to discern the prioritization of medical countermeasures (MCM) among antivirals, antibodies, and vaccines. Comparative analysis of MCMs reveals that while antivirals serve essential roles as therapeutic tools, monoclonal antibodies can be used for both prevention and treatment, and vaccines remain of paramount importance for controlling epidemics as mass or targeted prophylaxis. Variability in production processes, administration methods, logistics, and costs distinguish these countermeasures. Vaccines, by inducing long-lasting immunity and ideally promoting herd effects, exhibit substantial advantages over other options. To enhance future pandemic readiness, proactive measures must include ready-to-use vaccine platforms with regulatory approval and manufacturing capacities, as well as prototype vaccines for representative pathogens and preexisting protocols to evaluate their efficacies and side effects. The comparison underscores the challenges of social acceptance and equity, particularly in vaccine production and distribution. As the world faces unknown agents, the three major types of MCMs do not have equal and symmetrical effects in terms of epidemic control. Thus, a vaccine-oriented strategy with a community-centered approach, proves essential for effective pandemic preparedness, encouraging continued innovation in vaccinology.
Collapse
Affiliation(s)
- Marie Mura
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge Cedex, France
| | - Aurélie Trignol
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge Cedex, France
| | - Erwan Le Dault
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge Cedex, France
- Department of Infectious Diseases and Tropical Medicine, Laveran Military Teaching Hospital, Marseille, France
| | - Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge Cedex, France
- École du Val-de-Grâce, Paris, France
| |
Collapse
|
68
|
Lin A, Jiang A, Huang L, Li Y, Zhang C, Zhu L, Mou W, Liu Z, Zhang J, Cheng Q, Wei T, Luo P. From chaos to order: optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy. Gut Microbes 2025; 17:2452277. [PMID: 39826104 DOI: 10.1080/19490976.2025.2452277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The integration of fecal microbiota transplantation (FMT) with immune checkpoint inhibitors (ICIs) presents a promising approach for enhancing cancer treatment efficacy and overcoming therapeutic resistance. This review critically examines the controversial effects of FMT on ICIs outcomes and elucidates the underlying mechanisms. We investigate how FMT modulates gut microbiota composition, microbial metabolite profiles, and the tumor microenvironment, thereby influencing ICIs effectiveness. Key factors influencing FMT efficacy, including donor selection criteria, recipient characteristics, and administration protocols, are comprehensively discussed. The review delineates strategies for optimizing FMT formulations and systematically monitoring post-transplant microbiome dynamics. Through a comprehensive synthesis of evidence from clinical trials and preclinical studies, we elucidate the potential benefits and challenges of combining FMT with ICIs across diverse cancer types. While some studies report improved outcomes, others indicate no benefit or potential adverse effects, emphasizing the complexity of host-microbiome interactions in cancer immunotherapy. We outline critical research directions, encompassing the need for large-scale, multi-center randomized controlled trials, in-depth microbial ecology studies, and the integration of multi-omics approaches with artificial intelligence. Regulatory and ethical challenges are critically addressed, underscoring the imperative for standardized protocols and rigorous long-term safety assessments. This comprehensive review seeks to guide future research endeavors and clinical applications of FMT-ICIs combination therapy, with the potential to improve cancer patient outcomes while ensuring both safety and efficacy. As this rapidly evolving field advances, maintaining a judicious balance between openness to innovation and cautious scrutiny is crucial for realizing the full potential of microbiome modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lihaoyun Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Yu Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Chunyanx Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
69
|
Qi C, Li Z, Tu H, Sun F, Guo W, Di C, He R, Ze X, Zhang L, Gao R, Hu P, Yang W, Li K, Liu J, Pan X, Jin Z, Sun J. 2'-FL and cross-feeding bifidobacteria reshaped the gut microbiota of infants with atopic dermatitis ex vivo and prevented dermatitis in mice post-microbiota transplantation through retinol metabolism activation. Gut Microbes 2025; 17:2474148. [PMID: 40025650 PMCID: PMC11881859 DOI: 10.1080/19490976.2025.2474148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
2'-Fucosyllactose (2'-FL), a predominant human milk oligosaccharide, plays a crucial role in the development of the infant gut microbiota and immune system. However, the microbiota of infants with atopic dermatitis (AD) often has difficulty utilizing 2'-FL. Here, we found that strains from human milk, Bifidobacterium bifidum FN120 and Bifidobacterium longum subsp. longum FN103, utilized 2'-FL for growth by cross-feeding. Through an ex vivo continuous fermentation system, we found that 2'-FL and cross-feeding bifidobacteria synergistically enhanced the production of short-chain fatty acids (SCFAs), particularly acetate and propionate, while reshaping the gut microbiota in infants with AD. The reshaped microbiota was then transplanted into oxazolone-induced mice. We observed that AD symptoms in mice were effectively prevented, with significant changes in the ileum microbiota and increased intestinal SCFA levels. RNA sequencing analysis of Peyer's patches in the small intestine revealed activation of the retinol metabolic pathway. Nontargeted metabolomics analysis revealed a significant increase in plasma retinoate levels, which correlated markedly with AD-related markers. Collectively, our study demonstrated that supplementation with cross-feeding bifidobacteria and 2'-FL reshaped the gut microbiota, activated retinol metabolic pathways, promoted immune tolerance, and thereby prevented AD. Our findings provide novel insights into the therapeutic potential of combining prebiotics and probiotics to modulate the gut - skin axis and support immune tolerance in early life, offering a promising strategy for infantile AD management and prevention.
Collapse
Affiliation(s)
- Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Huayu Tu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Fang Sun
- Pediatrics, Jiaozhou Maternal and Child Health and Family Planning Service Center, Qingdao, China
| | - Wenbo Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Can Di
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Lintao Zhang
- Pediatrics, Jiaozhou Maternal and Child Health and Family Planning Service Center, Qingdao, China
| | - Ruijuan Gao
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Pengyue Hu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Wenjing Yang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Kexin Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jiayi Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xiaonan Pan
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Zilu Jin
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
70
|
Xue J, Allaband C, Zuffa S, Poulsen O, Meadows J, Zhou D, Dorrestein PC, Knight R, Haddad GG. Gut microbiota and derived metabolites mediate obstructive sleep apnea induced atherosclerosis. Gut Microbes 2025; 17:2474142. [PMID: 40025767 PMCID: PMC11881840 DOI: 10.1080/19490976.2025.2474142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia/hypercapnia (IHC), affects predominantly obese individuals, and increases atherosclerosis risk. Since we and others have implicated gut microbiota and metabolites in atherogenesis, we dissected their contributions to OSA-induced atherosclerosis. Atherosclerotic lesions were compared between conventionally-reared specific pathogen free (SPF) and germ-free (GF) Apoe-/- mice following a high fat high cholesterol diet (HFHC), with and without IHC conditions. The fecal microbiota and metabolome were profiled using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectrometry (LC-MS/MS) respectively. Phenotypic data showed that HFHC significantly increased atherosclerosis as compared to regular chow (RC) in both aorta and pulmonary artery (PA) of SPF mice. IHC exacerbated lesions in addition to HFHC. Differential abundance analysis of gut microbiota identified an enrichment of Akkermansiaceae and a depletion of Muribaculaceae (formerly S24-7) family members in the HFHC-IHC group. LC-MS/MS showed a dysregulation of bile acid profiles with taurocholic acid, taurodeoxycholic acid, and 12-ketodeoxycholic acid enriched in the HFHC-IHC group, long-chain N-acyl amides, and phosphatidylcholines. Interestingly, GF Apoe-/- mice markedly reduced atherosclerotic formation relative to SPF Apoe-/- mice in the aorta under HFHC/IHC conditions. In contrast, microbial colonization did not show a significant impact on the atherosclerotic progression in PA. In summary, this research demonstrated that (1) IHC acts cooperatively with HFHC to induce atherosclerosis; (2) gut microbiota modulate atherogenesis, induced by HFHC/IHC, in the aorta not in PA; (3) different analytical methods suggest that a specific imbalance between Akkermansiaceae and Muribaculaceae bacterial families mediate OSA-induced atherosclerosis; and (4) derived bile acids, such as deoxycholic acid and lithocholic acid, regulate atherosclerosis in OSA. The knowledge obtained provides novel insights into the potential therapeutic approaches to prevent and treat OSA-induced atherosclerosis.
Collapse
MESH Headings
- Animals
- Gastrointestinal Microbiome/physiology
- Atherosclerosis/etiology
- Atherosclerosis/microbiology
- Atherosclerosis/metabolism
- Sleep Apnea, Obstructive/complications
- Sleep Apnea, Obstructive/microbiology
- Sleep Apnea, Obstructive/metabolism
- Mice
- Male
- Bacteria/classification
- Bacteria/genetics
- Bacteria/metabolism
- Bacteria/isolation & purification
- Diet, High-Fat/adverse effects
- Feces/microbiology
- Mice, Inbred C57BL
- RNA, Ribosomal, 16S/genetics
- Bile Acids and Salts/metabolism
- Metabolome
- Specific Pathogen-Free Organisms
- Disease Models, Animal
- Tandem Mass Spectrometry
- Mice, Knockout, ApoE
- Apolipoproteins E/genetics
Collapse
Affiliation(s)
- Jin Xue
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, San Diego, CA, USA
| | - Orit Poulsen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jason Meadows
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Dan Zhou
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pieter C. Dorrestein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- The Division of Respiratory Medicine, Rady Children’s Hospital, San Diego, CA, USA
| |
Collapse
|
71
|
Xu Y, Gao Z, Liu J, Yang Q, Xu S. Role of gut microbiome in suppression of cancers. Gut Microbes 2025; 17:2495183. [PMID: 40254597 PMCID: PMC12013426 DOI: 10.1080/19490976.2025.2495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/23/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
The pathogenesis of cancer is closely related to the disruption of homeostasis in the human body. The gut microbiome plays crucial roles in maintaining the homeostasis of its host throughout lifespan. In recent years, a large number of studies have shown that dysbiosis of the gut microbiome is involved in the entire process of cancer initiation, development, and prognosis by influencing the host immune system and metabolism. Some specific intestinal bacteria promote the occurrence and development of cancers under certain conditions. Conversely, some other specific intestinal bacteria suppress the oncogenesis and progression of cancers, including inhibiting the occurrence of cancers, delaying the progression of cancers and boosting the therapeutic effect on cancers. The promoting effects of the gut microbiome on cancers have been comprehensively discussed in the previous review. This article will review the latest advances in the roles and mechanisms of gut microbiome in cancer suppression, providing a new perspective for developing strategies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Jiaying Liu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qianqian Yang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| |
Collapse
|
72
|
Zhang J, Zeng F, Li Y, Mu C, Liu C, Wang L, Peng X, He L, Su Y, Li H, Wang A, Feng L, Gao D, Zhang Z, Xu G, Wang Y, Yue R, Si J, Zheng L, Zhang X, He F, Yi H, Tang Z, Li G, Ma K, Li Q. The characterization of technical design of a virus-like structure (VLS) nanodelivery system as vaccine candidate against SARS-CoV-2 variants. Hum Vaccin Immunother 2025; 21:2473183. [PMID: 40045463 PMCID: PMC11901403 DOI: 10.1080/21645515.2025.2473183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The constant mutation of SARS-CoV-2 has led to the continuous appearance of viral variants and their pandemics and has improved the development of vaccines with a broad spectrum of antigens to curb the spread of the virus. The work described here suggested a novel vaccine with a virus-like structure (VLS) composed of combined mRNA and protein that is capable of stimulating the immune system in a manner similar to that of viral infection. This VLS vaccine is characterized by its ability to specifically target dendritic cells and/or macrophages through S1 protein recognition of the DC-SIGN receptor in cells, which leads to direct mRNA delivery to these innate immune cells for activation of robust immunity with a broad spectrum of neutralizing antibodies and immune protective capacity against variants. Research on its composition characteristics and structural features has suggested its druggability. Compared with the current mRNA vaccine, the VLS vaccine was identified as having no cytotoxicity at its effective application dosage, while the results of safety observations in animals revealed fewer adverse reactions during immunization.
Collapse
Affiliation(s)
- Jingjing Zhang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
- Shandong Weigao Litong Biological Products Co, Ltd, Weihai, China
| | - Fengyuan Zeng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Yanmei Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Changyong Mu
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Change Liu
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Lichun Wang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Xiaowu Peng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Liping He
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Yanrui Su
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Hongbing Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - An Wang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Lin Feng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Dongxiu Gao
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Zhixiao Zhang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Gang Xu
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Yixuan Wang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Rong Yue
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Junbo Si
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Lichun Zheng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Xiong Zhang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Fuyun He
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Hongkun Yi
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Zhongshu Tang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Gaocan Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Kaili Ma
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
- Shandong Weigao Litong Biological Products Co, Ltd, Weihai, China
| | - Qihan Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| |
Collapse
|
73
|
Wang X, Peng X, Liu J, Tang S, Yang X, Wang J. The association of plasma TMAO and body composition with the occurrence of PEW in maintenance hemodialysis patients. Ren Fail 2025; 47:2481202. [PMID: 40110587 PMCID: PMC11926894 DOI: 10.1080/0886022x.2025.2481202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION This study aims to explore the relationship between trimethylamine N-oxide (TMAO), body composition, and protein-energy wasting (PEW) in patients undergoing maintenance hemodialysis (MHD). METHODS A total of 127 MHD patients participated in this study. Body composition was measured using the InBody770 multi-frequency body composition analyzer. Plasma TMAO concentrations were assessed by ELISA. Cross-sectional analysis was performed after collecting demographic data, dialysis-related data, laboratory parameters, and body composition data from MHD patients. RESULTS In MHD patients, the PEW group exhibited lower levels of hemoglobin (Hb), albumin (ALB), transferrin (TF), creatinine (Cr), triglycerides (TG), prealbumin (PALB), soft lean mass (SLM), body mass index (BMI), percent of body fat (PBF), arm muscle circumference (AMC), and phase angle (PHA) compared to the non-PEW group, while C-reactive protein (CRP) and trimethylamine-N-oxide (TMAO) levels, as well as Extracellular Water/Total Body Water (ECW/TBW) ratio, were higher in the PEW group than in the non-PEW group. After full adjustment, TMAO and ECW/TBW ratio were independent risk factors for PEW in MHD patients. Further, plasma TMAO levels correlated negatively with Cr, ALB, Hb, BMI, and PHA, and positively with ECW/TBW in MHD patients with PEW. The ROC curve analysis indicated that the area under the curve (AUC) for plasma TMAO in predicting PEW in MHD patients was 0.788. CONCLUSIONS Plasma TMAO levels and certain body composition are associated with the occurrence of PEW in MHD patients. Plasma TMAO levels appear to serve as a potential predictive marker for the onset of PEW.
Collapse
Affiliation(s)
- Xinran Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xinyue Peng
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Jun Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Shiqi Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xinyu Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
74
|
Flock C, Boekels R, Herrmann A, Beig I, Lamkemeyer L, Friederich HC, Nikendei C, Bugaj TJ. Final year medical students' expectations for medical education on climate change and planetary health - a qualitative study. MEDICAL EDUCATION ONLINE 2025; 30:2477670. [PMID: 40116041 PMCID: PMC11934176 DOI: 10.1080/10872981.2025.2477670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVES With the health impacts of climate change becoming increasingly evident, there is a pressing need to prepare and educate future physicians to address these challenges. This study therefore aims to explore in depth the perspectives of final-year medical students (FYMS) on the integration of Planetary Health Education (PHE) into medical curricula (i.e. content, methods, exams). Additionally, it seeks to understand how FYMS perceive the relevance of this topic to their future profession and their perceived responsibility. METHODS FYMS at the Heidelberg University Hospital were invited to participate in this qualitative interview study, resulting in 10 interviews conducted between December 2021 and March 2022. Using a semi-structured guide, students' views on the role of climate change in their future profession and their preferences for integrating climate change into medical curricula were explored. Interviews were audio-recorded and transcribed verbatim. Data analysis followed a structuring qualitative content analysis approach according to Kuckartz, utilizing deductive and inductive methods. Coding was performed using MAXQDA24, with iterative revisions by the authors. RESULTS Participating FYMS recognized the relevance of climate change to their future practice but expressed varying degrees of perceived responsibility in addressing it with patients, e.g. depending on their desired specialization. While often struggling to identify specific content for a PHE-curriculum, FYMS emphasized the wish for knowledge on health impacts of climate change, communication skills and interactive, practice-oriented teaching methods. FYMS also reported several reservations and perceived challenges, e.g. concerning the integration of basic climate science or the introduction of mandatory exams. CONCLUSION This study provides unique insights into FYMS' perceptions of PHE, emphasizing the importance of integrating climate change and health topics into medical curricula and revealing perceived limitations. By aligning educational approaches with students' preferences and especially their concerns, appealing curricula can ultimately foster a more climate-sensitive medical practice.
Collapse
Affiliation(s)
- Charlotte Flock
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Rebecca Boekels
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Alina Herrmann
- Heidelberg Institute for Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Ilsa Beig
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Lisa Lamkemeyer
- Heidelberg Institute for Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
- DZPG (German Centre for Mental Health – Partner Site Heidelberg/Mannheim/Ulm), Germany
| | - Christoph Nikendei
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Johannes Bugaj
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
75
|
Hata A, Uda A, Tanaka S, Weidlich D, Toro W, Schmitt L, Igarashi A, Bischof M. Cost-utility analysis of newborn screening for spinal muscular atrophy in Japan. J Med Econ 2025; 28:44-53. [PMID: 39641309 DOI: 10.1080/13696998.2024.2439734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
AIMS Spinal muscular atrophy (SMA) is a rare genetic disorder characterized by progressive muscle weakness, atrophy, respiratory failure, and in severe cases, infantile death. Early detection and treatment before symptom onset may substantially improve outcomes, allowing patients to achieve age-appropriate motor milestones and longer survival. We assessed the cost-utility of newborn screening (NBS) for SMA in Japan. MATERIALS AND METHODS A cost-utility model (decision tree and Markov model) compared lifetime health effects and costs between "NBS" for SMA (presymptomatic treatment) or "no NBS" (treatment initiated at symptom onset). Model inputs were sourced from literature, local data, and expert opinion. Sensitivity and scenario analyses were conducted to assess model robustness and data validity. RESULTS Based on the 1:10,000 SMA incidence, it was estimated that 43 newborns/year would have SMA, and a total of 39 patients with SMA would initiate presymptomatic treatment after NBS. An estimated 736 quality-adjusted life-years were gained per annual birth cohort with NBS. NBS for SMA was dominant compared with no NBS (i.e. less costly and more effective), with ¥8,856,960,096 reduced total costs with NBS versus no NBS (base-case). Sensitivity and scenario analyses supported cost effectiveness of NBS for SMA versus no NBS. A greater percentage of patients was estimated to enjoy longer survival and be without permanent assisted ventilation with NBS versus no NBS. LIMITATIONS Real-world observations may differ from single-arm clinical trial outcomes. It was assumed that patients with SMA identified via NBS were asymptomatic and would receive treatment prior to symptoms. Best supportive care was not considered, and Japan-specific variations in gene replacement therapy protocol were not fully reflected. CONCLUSION NBS for SMA allows for early identification of patients with SMA and treatment initiation before symptom onset, improving health outcomes and reducing total costs than without NBS.
Collapse
Affiliation(s)
- Akira Hata
- Department of Health Research, Chiba Foundation for Health Promotion and Disease Prevention, Chiba, Japan
| | | | | | | | - Walter Toro
- Novartis Gene Therapies, Inc, Bannockburn, IL, USA
| | | | - Ataru Igarashi
- Department of Public Health, Yokohama City University, Yokohama, Japan
| | | |
Collapse
|
76
|
Zheng X, Liu B, Ni P, Cai L, Shi X, Ke Z, Zhang S, Hu B, Yang B, Xu Y, Long W, Fang Z, Wang Y, Zhang W, Xu Y, Wang Z, Pan K, Zhou K, Wang H, Geng H, Hu H, Liu B. Development and application of an uncapped mRNA platform. Ann Med 2025; 57:2437046. [PMID: 39648715 PMCID: PMC11632943 DOI: 10.1080/07853890.2024.2437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 06/01/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND A novel uncapped mRNA platform was developed. METHODS Five lipid nanoparticle (LNP)-encapsulated mRNA constructs were made to evaluate several aspects of our platform, including transfection efficiency and durability in vitro and in vivo and the activation of humoral and cellular immunity in several animal models. The constructs were eGFP-mRNA-LNP (for enhanced green fluorescence mRNA), Fluc-mRNA-LNP (for firefly luciferase mRNA), SδT-mRNA-LNP (for Delta strain SARS-CoV-2 spike protein trimer mRNA), gDED-mRNA-LNP (for truncated glycoprotein D mRNA coding ectodomain from herpes simplex virus type 2 (HSV2)) and gDFR-mRNA-LNP (for truncated HSV2 glycoprotein D mRNA coding amino acids 1-400). RESULTS Quantifiable target protein expression was achieved in vitro and in vivo with eGFP- and Fluc-mRNA-LNP. SδT-mRNA-LNP, gDED-mRNA-LNP and gDFR-mRNA-LNP induced both humoral and cellular immune responses comparable to those obtained by previously reported capped mRNA-LNP constructs. Notably, SδT-mRNA-LNP elicited neutralizing antibodies in hamsters against the Omicron and Delta strains. Additionally, gDED-mRNA-LNP and gDFR-mRNA-LNP induced potent neutralizing antibodies in rabbits and mice. The mRNA constructs with uridine triphosphate (UTP) outperformed those with N1-methylpseudouridine triphosphate (N1mψTP) in the induction of antibodies via SδT-mRNA-LNP. CONCLUSIONS Our uncapped, process-simplified and economical mRNA platform may have broad utility in vaccines and protein replacement drugs.KEY MESSAGESThe mRNA platform described in our paper uses internal ribosome entry site (IRES) (Rapid, Amplified, Capless and Economical, RACE; Register as BH-RACE platform) instead of caps and uridine triphosphate (UTP) instead of N1-methylpseudouridine triphosphate (N1mψTP) to synthesize mRNA.Through the self-developed packaging instrument and lipid nanoparticle (LNP) delivery system, mRNA can be expressed in cells more efficiently, quickly and economically.Particularly exciting is that potent neutralizing antibodies against Delta and Omicron real viruses were induced with the new coronavirus S protein mRNA vaccine from the BH-RACE platform.
Collapse
Affiliation(s)
- Xiaodi Zheng
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Biao Liu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Peng Ni
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Linkang Cai
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Xiaotai Shi
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Zonghuang Ke
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Siqi Zhang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Bing Hu
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Binfeng Yang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Yiyan Xu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Wei Long
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Yang Wang
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Zhong Wang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Kai Pan
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Kangping Zhou
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Hanming Wang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Hui Geng
- School of Life Science, Huazhong Normal University, Wuhan, China
| | - Han Hu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Binlei Liu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| |
Collapse
|
77
|
Minty M, Germain A, Sun J, Kaglan G, Servant F, Lelouvier B, Misselis E, Neagoe RM, Rossella M, Cardellini M, Burcelin R, Federici M, Fernandez-Real JM, Blasco-Baque V. Identifying the location-dependent adipose tissue bacterial DNA signatures in obese patients that predict body weight loss. Gut Microbes 2025; 17:2439105. [PMID: 39714075 DOI: 10.1080/19490976.2024.2439105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
Recent sets of evidence have described profiles of 16S rDNA sequences in host tissues, notably in fat pads that are significantly overrepresented and can serve as signatures of metabolic disease. However, these recent and original observations need to be further detailed and functionally defined. Here, using state-of-the-art targeted DNA sequencing and discriminant predictive approaches, we describe, from the longitudinal FLORINASH cohort of patients who underwent bariatric surgery, visceral, and subcutaneous fat pad-specific bacterial 16SrRNA signatures. The corresponding Porphyromonadaceae, Campylobacteraceae, Prevotellaceae, Actimomycetaceae, Veillonellaceae, Anaerivoracaceae, Fusobacteriaceae, and the Clostridium family XI 16SrRNA DNA segment profiles are signatures of the subcutaneous adipose depot while Pseudomonadaceae and Micrococcacecae, 16SrRNA DNA sequence profiles characterize the visceral adipose depot. In addition, we have further identified that a specific pre-bariatric surgery adipose tissue bacterial DNA signature predicts the efficacy of body weight loss in obese patients 5-10 years after the surgery. 16SrRNA signatures discriminate (ROC ~ 1) the patients who did not maintain bodyweight loss and those who did. Second, from the 16SrRNA sequences we infer potential pathways suggestive of catabolic biochemical activities that could be signatures of subcutaneous adipose depots that predict body weight loss.
Collapse
Affiliation(s)
- Matthieu Minty
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Alberic Germain
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Jiuwen Sun
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Gracia Kaglan
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | | | | | - Emiri Misselis
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Radu Mircea Neagoe
- Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Târgu Mureș, Romania
| | - Menghini Rossella
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Marina Cardellini
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta'
- Institut d'Investigacio Biomedica de Girona IdibGi, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| |
Collapse
|
78
|
de Arruda NS, Deiques Fleig AH, Rech C, Callegaro CC. Insomnia, cardiorespiratory function and quality of life in individuals with post-COVID-19 fatigue. Sleep Med X 2025; 9:100135. [PMID: 39926186 PMCID: PMC11803148 DOI: 10.1016/j.sleepx.2024.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 02/11/2025] Open
Abstract
Objective This study aimed to compare the prevalence of insomnia, lung function, inspiratory muscle function, functional capacity, and quality of life in individuals with and without post-COVID-19 fatigue. Methods Thirty-four post-COVID-19 individuals participated in the study, 20 with fatigue (32 ± 12 years old, 15% male) and 14 without fatigue (31 ± 12 years old, 42.9% male). The Chalder Fatigue Scale (CFS) was employed to categorize the volunteers into two groups: those with fatigue (score ≥4) and those without fatigue (score <4). The Insomnia Severity Index (ISI) and the Epworth Sleepiness Scale (ESS) were used to assess insomnia and excessive daytime sleepiness, respectively. Pulmonary function was evaluated by spirometry, inspiratory muscle strength was assessed by the maximum inspiratory pressure (MIP), and inspiratory endurance was evaluated by maintaining an inspiratory load of 60% of MIP until fatigue. The 6-min walk test (6MWT) was used to evaluated functional capacity, while the WHOQOL-BREF questionnaire assessed quality of life. Results Individuals with post-COVID-19 fatigue demonstrated a higher prevalence of insomnia (80% vs. 49%) and excessive daytime sleepiness (45% vs. 7%), as well as lower MIP, shorter distance covered in the 6MWT, and lower FEV1/FVC (forced expired volume in the first second divided by forced vital capacity), and FEV1/FVC% of predicted. Additionally, they exhibited poorer quality of life in the physical and environmental domains. CFS demonstrated a direct correlation with ISI (r=0.436, p=0.01) and ESS (r=0.593, p=0.001), as well as an inverse correlation with the distance covered in the 6MWT (r=-0.398, p=0.022) and FEV1 (r=-0.412, p=0.01). ISI was an independent predictor of CFS, with 62% of CFS variance explained by ISI variance. Conclusion Individuals with symptoms of post-COVID-19 fatigue may have a higher prevalence of insomnia, reduced inspiratory muscle strength, functional capacity, and Tiffeneau index, along with impaired quality of life. ISI is an independent predictor of post-COVID-19 fatigue.
Collapse
Affiliation(s)
- Nathalea Spode de Arruda
- Postgraduate Program in Human Communication Disorders, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
- Physiology and Rehabilitation Laboratory, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| | | | - Charles Rech
- Physiology and Rehabilitation Laboratory, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| | - Carine Cristina Callegaro
- Postgraduate Program in Human Communication Disorders, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
- Physiology and Rehabilitation Laboratory, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
- Physiotherapy and Rehabilitation Department, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| |
Collapse
|
79
|
Huang C, Chu LM, Liang B, Wu HL, Li BS, Ren S, Hou ML, Nie HC, Kong LY, Fan LQ, Du J, Zhu WB. Comparative genetic analysis of blood and semen samples in sperm donors from Hunan, China. Ann Med 2025; 57:2447421. [PMID: 39757988 PMCID: PMC11721621 DOI: 10.1080/07853890.2024.2447421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVES At present, most genetic tests or carrier screening are performed with blood samples, and the known carrier rate of disease-causing variants is also derived from blood. For semen donors, what is really passed on to offspring is the pathogenic variant in their sperm. This study aimed to determine whether pathogenic variants identified in the sperm of young semen donors are also present in their blood, and whether matching results for blood are consistent with results for sperm. METHODS We included 40 paired sperm and blood samples from 40 qualified semen donors at the Hunan Province Human Sperm Bank of China. All samples underwent exome sequencing (ES) analysis, and the pathogenicity was assessed according to the American College of Medical Genetics (ACMG) guidelines. Scoring for sperm donation matching, which was based on gene scoring and variant scoring, was also used to assess the consistency of sperm and blood genetic test results. RESULTS A total of 108 pathogenic (P)/likely pathogenic (LP) variants in 82 genes were identified. The highest carrier had 7 variants, and there was also one donor did not carry any P/LP variant. On average, each donor carried 2.7 P/LP variants. Among all the P/LP variants, missense mutation was the dominant type and most of them were located in exonic regions. Chromosome 1 harboured the largest number of variants and no pathogenic copy number variants (CNV) was identified in semen donors. The P/LP variant of all the 40 semen donors was consistent by comparing sperm and blood. Except for one case that was slightly different, the rest simulated matching results for blood were all consistent with results for sperm. CONCLUSIONS It is reasonable to choose either blood or sperm for genetic screening in semen donors.
Collapse
Affiliation(s)
- Chuan Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Li-Ming Chu
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Lan Wu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Bai-Shun Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Shuai Ren
- Basecare Medical Device Co., Ltd, Suzhou, China
| | | | - Hong-Chuan Nie
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | | | - Li-Qing Fan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Juan Du
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-Bing Zhu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
80
|
Agadagba SK, Yau SY, Liang Y, Dalton K, Thompson B. Bidirectional causality of physical exercise in retinal neuroprotection. Neural Regen Res 2025; 20:3400-3415. [PMID: 39688575 PMCID: PMC11974656 DOI: 10.4103/nrr.nrr-d-24-00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/21/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Physical exercise is recognized as an effective intervention to improve mood, physical performance, and general well-being. It achieves these benefits through cellular and molecular mechanisms that promote the release of neuroprotective factors. Interestingly, reduced levels of physical exercise have been implicated in several central nervous system diseases, including ocular disorders. Emerging evidence has suggested that physical exercise levels are significantly lower in individuals with ocular diseases such as glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. Physical exercise may have a neuroprotective effect on the retina. Therefore, the association between reduced physical exercise and ocular diseases may involve a bidirectional causal relationship whereby visual impairment leads to reduced physical exercise and decreased exercise exacerbates the development of ocular disease. In this review, we summarize the evidence linking physical exercise to eye disease and identify potential mediators of physical exercise-induced retinal neuroprotection. Finally, we discuss future directions for preclinical and clinical research in exercise and eye health.
Collapse
Affiliation(s)
- Stephen K. Agadagba
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Suk-yu Yau
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ying Liang
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Kristine Dalton
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin Thompson
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
81
|
Shentu W, Kong Q, Zhang Y, Li W, Chen Q, Yan S, Wang J, Lai Q, Xu Q, Qiao S. Functional abnormalities of the glymphatic system in cognitive disorders. Neural Regen Res 2025; 20:3430-3447. [PMID: 39820293 PMCID: PMC11974647 DOI: 10.4103/nrr.nrr-d-24-01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025] Open
Abstract
Various pathological mechanisms represent distinct therapeutic targets for cognitive disorders, but a balance between clearance and production is essential for maintaining the stability of the brain's internal environment. Thus, the glymphatic system may represent a common pathway by which to address cognitive disorders. Using the established model of the glymphatic system as our foundation, this review disentangles and analyzes the components of its clearance mechanism, including the initial inflow of cerebrospinal fluid, the mixing of cerebrospinal fluid with interstitial fluid, and the outflow of the mixed fluid and the clearance. Each section summarizes evidence from experimental animal models and human studies, highlighting the normal physiological properties of key structures alongside their pathological manifestations in cognitive disorders. The same pathologic manifestations of different cognitive disorders appearing in the glymphatic system and the same upstream influences are main points of interest of this review. We conclude this article by discussing new findings and outlining the limitations identified in current research progress.
Collapse
Affiliation(s)
- Wuyue Shentu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qi Kong
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Yier Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyao Li
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qiulu Chen
- Department of Neurology, Zhejiang Medical & Health Group Hangzhou Hospital, Hangzhou, Zhejiang Province, China
| | - Sicheng Yan
- Department of Neurology, Liuzhou People’s Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Junjun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qilun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qi Xu
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
82
|
Jiao Y, Ren J, Xie S, Yuan N, Shen J, Yin H, Wang J, Guo H, Cao J, Wang X, Wu D, Zhou Z, Qi X. Raffinose-metabolizing bacteria impair radiation-associated hematopoietic recovery via the bile acid/FXR/NF-κB signaling pathway. Gut Microbes 2025; 17:2488105. [PMID: 40192235 PMCID: PMC11980471 DOI: 10.1080/19490976.2025.2488105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Radiation-associated hematopoietic recovery (RAHR) is critical for mitigating lethal complications of acute radiation syndrome (ARS), yet therapeutic strategies remain limited. Through integrated multi-omics analysis of a total body irradiation (TBI) mouse model, we identify Bacteroides acidifaciens-dominated gut microbiota as key mediators of RAHR impairment. 16S ribosomal rRNA sequencing revealed TBI-induced dysbiosis characterized by Bacteroidaceae enrichment, while functional metagenomics identified raffinose metabolism as the most significantly perturbed pathway. Notably, raffinose supplementation (10% w/v) recapitulated radiation-induced microbiota shifts and delayed bone marrow recovery. Fecal microbiota transplantation (FMT) revealed a causative role for raffinose-metabolizing microbiota, particularly Bacteroides acidifaciens, in delaying RAHR progression. Mechanistically, B. acidifaciens-mediated bile acid deconjugation activated FXR, subsequently suppressing NF-κB-dependent hematopoietic recovery. Therapeutic FXR inhibition via ursodeoxycholic acid (UDCA) had been shown to be a viable method for rescuing RAHR. Our results delineated a microbiome-bile acid-FXR axis as a master regulator of post-irradiation hematopoiesis. Targeting B. acidifaciens or its metabolic derivatives could represent a translatable strategy to mitigate radiation-induced hematopoietic injury.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou, China
| | - Jiawei Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shichang Xie
- Key Laboratory of Alkene-Carbon Fibers-Based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China
| | - Nan Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiaqi Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Huafang Yin
- The Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, China
| | - Jian Wang
- The Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, China
| | - Hongjuan Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Depei Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Zhemin Zhou
- Key Laboratory of Alkene-Carbon Fibers-Based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China
- Cancer Institute, Suzhou Medical College, The Second Affiliated Hospital of Soochow University, Suzhou, China
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou Biomedical Industry Innovation Center, Suzhou, China
| | - Xiaofei Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| |
Collapse
|
83
|
Guépin C, Duhem S, Gaud N, Warembourg F, Vaiva G, Leroy A. Adjunct psychomotor trauma exposure in the treatment of post-traumatic stress disorder: a case series. Eur J Psychotraumatol 2025; 16:2480889. [PMID: 40183188 PMCID: PMC11980199 DOI: 10.1080/20008066.2025.2480889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction: Psychotraumatic disorders, particularly post-traumatic stress disorder (PTSD), have been a major public health issue for many years. However, many patients remain resistant to treatment, with significant levels of residual symptoms, a high dropout rate, and poor functional prognosis despite a reduction in psychotraumatic symptoms. The physical impact of trauma might influence treatment response. We have developed an integrative method for patients suffering from post-traumatic stress disorder (PTSD). In this study, we report the cases of 16 successive patients with PTSD treated with adjunct psychomotor trauma exposure.Methods: The data were collected retrospectively from the clinical records of subjects treated with adjunct psychomotor exposure therapy at the Hauts-de-France Regional Center for Psychotrauma. Severity of psychotrauma was reported using PCL-5 before and one month after treatment.Results: A decrease in PCL-5 score was seen in all participants between baseline (45.6 ± 11.6) at the end of treatment (16.6 ± 10.1) (p < .001).Conclusion: Adjunct psychomotor exposure therapy is a promising tool for the treatment of PTSD. Future high-quality randomised controlled trials are necessary.
Collapse
Affiliation(s)
- Claire Guépin
- CHU de Lille, General Psychiatry Department, Regional center for Psychotraumatism Hauts-de-France, Lille, France
| | - Stéphane Duhem
- CHU de Lille, General Psychiatry Department, Regional center for Psychotraumatism Hauts-de-France, Lille, France
| | - Nicolas Gaud
- CHU de Lille, Child & Adolescent Psychiatry Department, Regional center for Psychotraumatism Hauts-de-France, Lille, France
| | - Frédérique Warembourg
- CHU de Lille, General Psychiatry Department, Regional center for Psychotraumatism Hauts-de-France, Lille, France
| | - Guillaume Vaiva
- CHU de Lille, General Psychiatry Department, Regional center for Psychotraumatism Hauts-de-France, Lille, France
- Univ Lille, INSERM, Lille Neuroscience & Cognition Centre (U-1172), Lille, France
- Centre National de Ressources et de Résilience pour les psychotraumatismes (CN2R Lille– Paris), Lille, France
| | - Arnaud Leroy
- CHU de Lille, General Psychiatry Department, Regional center for Psychotraumatism Hauts-de-France, Lille, France
- Univ Lille, INSERM, Lille Neuroscience & Cognition Centre (U-1172), Lille, France
| |
Collapse
|
84
|
Birebent R, Drubay D, Alves Costa Silva C, Marmorino F, Vitali G, Piccinno G, Hurtado Y, Bonato A, Belluomini L, Messaoudene M, Routy B, Fidelle M, Zalcman G, Mazieres J, Audigier-Valette C, Moro-Sibilot D, Goldwasser F, Scherpereel A, Pegliasco H, Ghiringhelli F, Reni A, Barlesi F, Albiges L, Planchard D, Martinez S, Besse B, Segata N, Cremolini C, Zitvogel L, Iebba V, Derosa L. Surrogate markers of intestinal dysfunction associated with survival in advanced cancers. Oncoimmunology 2025; 14:2484880. [PMID: 40189749 PMCID: PMC11980478 DOI: 10.1080/2162402x.2025.2484880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/19/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Deviations in the diversity and composition of the gut microbiota are called "gut dysbiosis". They have been linked to various chronic diseases including cancers and resistance to immunotherapy. Stool shotgun based-metagenomics informs on the ecological composition of the gut microbiota and the prevalence of homeostatic bacteria such as Akkermansia muciniphila (Akk), while determination of the serum addressin MAdCAM-1 instructs on endothelial gut barrier dysfunction. Here we examined patient survival during chemo-immuno-therapy in 955 cancer patients across four independent cohorts of non-small cell lung (NSCLC), genitourinary (GU) and colorectal (CRC) cancers, according to hallmarks of gut dysbiosis. We show that Akk prevalence represents a stable and favorable phenotype in NSCLC and CRC cancer patients. Over-dominance of Akk above the healthy threshold was observed in dismal prognosis in NSCLC and GU and mirrored an immunosuppressive gut ecosystem and excessive intestinal epithelial exfoliation in NSCLC. In CRC, the combination of a lack of Akk and low sMAdCAM-1 levels identified a subset comprising 28% of patients with reduced survival, independent of the immunoscore. We conclude that gut dysbiosis hallmarks deserve integration within the diagnosis toolbox in oncological practice.
Collapse
Affiliation(s)
- Roxanne Birebent
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Damien Drubay
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Office of Biostatistics and Epidemiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Inserm, Université Paris-Saclay, CESP U1018, Oncostat, Villejuif, France
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Federica Marmorino
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giacomo Vitali
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- MetaGenoPolis, INRAe, Université Paris-Saclay, Jouy en Josas, France
| | | | - Yoan Hurtado
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Adele Bonato
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
| | - Lorenzo Belluomini
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Meriem Messaoudene
- Centre Hospitalier de l’Université de Montréal (CHUM), Hematology-Oncology Division, Department of Medicine, Montréal, QC, Canada
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - Bertrand Routy
- Centre Hospitalier de l’Université de Montréal (CHUM), Hematology-Oncology Division, Department of Medicine, Montréal, QC, Canada
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gerard Zalcman
- Thoracic Oncology Department-CIC1425/CLIP2 Paris-Nord, Bichat-Claude Bernard Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Julien Mazieres
- Service de Pneumologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | | | - Denis Moro-Sibilot
- Department of Thoracic Oncology, Centre Hospitalier Universitaire, Grenoble, France
| | - François Goldwasser
- INSERM U1016-CNRS UMR8104-Cochin Institute, Université Paris-Cité, Paris,France
- Department of Medical Oncology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), Paris, France
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic Oncology, University of Lille, University Hospital (CHU), INSERM unit OncoThAI, Lille, France
| | | | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Centre de Recherche INSERM LNC-UMR1241-CTM (Center of Translational and Molecular Medicine), Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Anna Reni
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Fabrice Barlesi
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - Laurence Albiges
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - David Planchard
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - Stéphanie Martinez
- Service des Maladies Respiratoires, Centre Hospitalier d’Aix-en-Provence, Aix-en-Provence, France
| | - Benjamin Besse
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| | - Valerio Iebba
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
85
|
Zheng Y, Sun B, Qu Z. Adverse predictive value of ASPM on lung adenocarcinoma overall survival depended on chemotherapy status. Future Sci OA 2025; 11:2489328. [PMID: 40202190 PMCID: PMC11988246 DOI: 10.1080/20565623.2025.2489328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE Transcriptome and proteome analyses may yield inconsistent predictions regarding tumor prognosis. The clinical and pathological significance of ASPM expression in lung adenocarcinoma (LUAD) remains unclear. This study investigates the expression and prognostic value of ASPM, focusing on its role in chemotherapy outcomes. METHODS We analyzed the prognostic relevance of ASPM using bioinformatics, immunohistochemical staining of LUAD tissue microarrays, and proteomics data. Further, in vitro experiments were conducted to evaluate the effects of ASPM overexpression on cell proliferation and sensitivity to cisplatin. RESULTS Bioinformatics analysis revealed that ASPM's prognostic significance differed between transcriptomic and proteomic datasets. Immunohistochemistry showed that high ASPM expression predicted improved overall survival only in LUAD patients undergoing chemotherapy, not in those without. Proteomics analysis identified ASPM-related signatures enriched in cell cycle and mitosis pathways. In vitro, ASPM overexpression promoted tumor cell proliferation and enhanced cisplatin-induced cytotoxicity. CONCLUSION ASPM exhibits a dual role in LUAD prognosis, acting as a marker for improved chemotherapy outcomes while promoting tumor proliferation. These findings underscore ASPM's potential as a therapeutic target and predictive marker for personalized treatment in LUAD.
Collapse
Affiliation(s)
- Yan Zheng
- The Fifth Hospital of Xiamen, Xiang’an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Baichen Sun
- The Fifth Hospital of Xiamen, Xiang’an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhiling Qu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
86
|
Hoops SL, Moutsoglou D, Vaughn BP, Khoruts A, Knights D. Metagenomic source tracking after microbiota transplant therapy. Gut Microbes 2025; 17:2487840. [PMID: 40229213 PMCID: PMC12005403 DOI: 10.1080/19490976.2025.2487840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Reliable engraftment assessment of donor microbial communities and individual strains is an essential component of characterizing the pharmacokinetics of microbiota transplant therapies (MTTs). Recent methods for measuring donor engraftment use whole-genome sequencing and reference databases or metagenome-assembled genomes (MAGs) to track individual bacterial strains but lack the ability to disambiguate DNA that matches both donor and patient microbiota. Here, we describe a new, cost-efficient analytic pipeline, MAGEnTa, which compares post-MTT samples to a database comprised MAGs derived directly from donor and pre-treatment metagenomic data, without relying on an external database. The pipeline uses Bayesian statistics to determine the likely sources of ambiguous reads that align with both the donor and pre-treatment samples. MAGEnTa recovers engrafted strains with minimal type II error in a simulated dataset and is robust to shallow sequencing depths in a downsampled dataset. Applying MAGEnTa to a dataset from a recent MTT clinical trial for ulcerative colitis, we found the results to be consistent with 16S rRNA gene SourceTracker analysis but with added MAG-level specificity. MAGEnTa is a powerful tool to study community and strain engraftment dynamics in the development of MTT-based treatments that can be integrated into frameworks for functional and taxonomic analysis.
Collapse
Affiliation(s)
- Susan L. Hoops
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
| | - Daphne Moutsoglou
- Gastroenterology Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Byron P. Vaughn
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Division of Gastroenterology, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Division of Gastroenterology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
87
|
Liu Y, Dong K, Yao Y, Lu B, Wang L, Ji G, Zhang H, Zhao Z, Yang X, Huang R, Zhou W, Pan X, Cui X. Construction and validation of renal cell carcinoma tumor cell differentiation-related prognostic classification (RCC-TCDC): an integrated bioinformatic analysis and clinical study. Ann Med 2025; 57:2490830. [PMID: 40248945 PMCID: PMC12010653 DOI: 10.1080/07853890.2025.2490830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a heterogeneous malignancy with diverse gene expression patterns, molecular landscapes, and differentiation characteristics of tumor cells. It is imperative to develop molecular RCC classification based on tumor cell differentiation for precise risk stratification and personalized therapy. METHODS We obtained scRNA-seq profiles from GSE159115 and bulk RNA-seq profiles from TCGA-KIRC cohort. We then performed scRNA-seq cluster analysis, monocle2 pseudotime analysis, and prognostic analysis to obtain tumor cell differentiation-related prognostic genes (TCDGs). Subsequently, we conducted consensus clustering to construct the RCC tumor cell differentiation-related prognostic classification (RCC-TCDC) and implemented prognostic and multi-omics analyses. Moreover, we utilized Lasso regression to help develop a multivariable prognostic model. In addition, we performed correlation analysis and Cmap algorithm for regulatory network establishment and candidate inhibitor prediction. We eventually included 370 kidney neoplasm patients in Xinhua cohort to undergo immunohistochemical staining and scoring for classification and comprehensive statistical analyses, including Chi-square tests, Kaplan-Meier survival analyses, and multivariable Cox regression analysis . RESULTS 32 TCDGs were identifiedand RCC-TCDC was constructed to classify TCGA-KIRC patients into RCC-low differentiation (RCC-LD) (S100A11+ SH3BGRL3+, high risk), RCC-moderate differentiation (TSPAN7+, medium risk), and RCC-high differentiation (RCC-HD) (AQP1+ NPR3+, low risk). Notably, RCC-LD was validated as anindependent risk factor for both OS (p = 0.015, HR = 14.0, 95%CI = 1.67-117.8) and PFS (p = 0.010, HR = 4.0, 95%CI = 1.39-11.7) of RCC patients in Xinhua cohort, taking RCC-HD as reference. CONCLUSIONS We constructed and validated a robust molecular classification system, RCC-TCDC, elucidating three distinct RCC subtypes.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
88
|
Haller R, Cai Y, de Buhr N, Rieder JC, Schlüter D, Baier C, Rohde H, von Köckritz-Blickwede M, Vital M, Winstel V. Transmissible Staphylococcus pseudintermedius thwarts neutrophil extracellular trap-driven containment to promote invasive disease. Emerg Microbes Infect 2025; 14:2482709. [PMID: 40172876 PMCID: PMC12001851 DOI: 10.1080/22221751.2025.2482709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an emerging zoonotic pathogen that causes a variety of clinical diseases in mammalian hosts. While it frequently causes infections in dogs and other domestic animals, accumulating evidence indicates that zoonotic spillover and cross-species transmission events favour local and invasive S. pseudintermedius infections in humans. However, immuno-evasive maneuvers that shape S. pseudintermedius pathogenicity and survival in diseased hosts remain enigmatic. Powered by multi-tech imaging and a mouse model of bloodstream infection, we illustrate that S. pseudintermedius adopted a virulence mechanism from predominant bacterial pathogens to surmount neutrophilic responses and neutrophil extracellular trap (NET)-mediated killing. Specifically, release of NucB, a thermostable nuclease, helps MRSP coping with the antimicrobial and pathogen-immobilizing properties of NETs and even promotes intra-neutrophil survival upon phagocytosis, thereby contributing to S. pseudintermedius pathogenesis and persistence within hepatic abscesses. Combined with the analysis of genetically distinct human clinical isolates, all of which display nuclease activity and features of resistance to NETosis-induced killing, our data highlight how zoonotic staphylococci overcome innate immune responses and concurrently uncover a mechanism that may exacerbate animal-borne MRSP infections in humans.
Collapse
Affiliation(s)
- Rita Haller
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Yiyang Cai
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Nicole de Buhr
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johanna C. Rieder
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Claas Baier
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marius Vital
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
89
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. Gut Microbes 2025; 17:2446423. [PMID: 39800714 PMCID: PMC11730370 DOI: 10.1080/19490976.2024.2446423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
90
|
Chen Y, Zhou C, Zhang X, Chen M, Wang M, Zhang L, Chen Y, Huang L, Sun J, Wang D, Chen Y. Construction of a novel radioresistance-related signature for prediction of prognosis, immune microenvironment and anti-tumour drug sensitivity in non-small cell lung cancer. Ann Med 2025; 57:2447930. [PMID: 39797413 PMCID: PMC11727174 DOI: 10.1080/07853890.2024.2447930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC. METHODS The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases. The least absolute shrinkage and selection operator (LASSO) regression and random survival forest (RSF) were used to screen for prognostically relevant RRRGs. Multivariate Cox regression was used to construct a risk score model. Then, Immune landscape and drug sensitivity were evaluated. The biological functions exerted by the key gene LBH were verified by in vitro experiments. RESULTS Ninety-nine RRRGs were screened by intersecting the results of DEGs and WGCNA, then 11 hub RRRGs associated with survival were identified using machine learning algorithms (LASSO and RSF). Subsequently, an eight-gene (APOBEC3B, DOCK4, IER5L, LBH, LY6K, RERG, RMDN2 and TSPAN2) risk score model was established and demonstrated to be an independent prognostic factor in NSCLC on the basis of Cox regression analysis. The immune landscape and sensitivity to anti-tumour drugs showed significant disparities between patients categorized into different risk score subgroups. In vitro experiments indicated that overexpression of LBH enhanced the radiosensitivity of A549 cells, and knockdown LBH reversed the cytotoxicity induced by X-rays. CONCLUSION Our study developed an eight-gene risk score model with potential clinical value that can be adopted for choice of drug treatment and prognostic prediction. Its clinical routine use may assist clinicians in selecting more rational practices for individuals, which is important for improving the prognosis of NSCLC patients. These findings also provide references for the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Yanliang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Chan Zhou
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Min Chen
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Meifang Wang
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lisha Zhang
- Department of Obstetrics, Tangshan Caofeidian District Hospital, Tangshan, Hebei, China
| | - Yanhui Chen
- Department of Neuroscience and Endocrinology, Tangshan Caofeidian District Hospital, Tangshan, Hebei, China
| | - Litao Huang
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junjun Sun
- Department of Emergency Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, , China
| | - Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yong Chen
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
91
|
Yermukhanova L, Kuzembayev M, Salkhanova A, Narymbayeva N, Tazhiyeva A, Makhanbetkulova DN, Afshar A. Exploring socio-economic dimensions in HIV research: a comprehensive bibliometric analysis (1992-2024). Glob Health Action 2025; 18:2474787. [PMID: 40071324 PMCID: PMC11905308 DOI: 10.1080/16549716.2025.2474787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
The socio-economic burden of HIV infection remains a critical global health concern. This study was conducted to perform a comprehensive bibliometric analysis of the socio-economic burden of HIV infection, highlighting research trends, collaboration networks, and the evolving focus on social determinants of health over the past 32 years. A systematic search was conducted in Scopus and Web of Science Core Collection databases, covering publications from 1992 to 2024. The analysis was performed using RStudio and Biblioshiny, focusing on 1,054 studies from 422 publications. This study revealed a steady annual growth rate of 16.72% in publications on the socio-economic burden of HIV from 1992 to 2024, with the USA and Canada leading in contributions. The University of Toronto emerged as the top institution, while 'social determinants of health' and 'HIV infections' were identified as pivotal research themes. Collaboration networks were predominantly among high-income countries, with limited engagement from high-burden regions like sub-Saharan Africa. Key journals, such as AIDS and Behavior, were identified as central to advancing the field. Thematic analysis highlighted a shift from biomedical to socio-economic factors, emphasizing the need for equitable global collaboration and research addressing disparities in HIV management. This comprehensive analysis provides valuable insights into the evolving landscape of HIV socio-economic burden research, emphasizing the need for increased collaboration with high-burden regions and a continued focus on addressing social determinants of health in HIV management.
Collapse
Affiliation(s)
- Lyudmila Yermukhanova
- Department of Medicine, West-Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Marat Kuzembayev
- Department of Medicine, West-Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Akkumis Salkhanova
- Department of Nutrition, Kazakh Academy of Nutrition, Almaty, Kazakhstan
| | - Nazerke Narymbayeva
- Department of Medicine, Kazakhstan Medical University “KSPH”, Almaty, Kazakhstan
| | - Aigul Tazhiyeva
- Department of Medicine, Kazakh National Medical University Named After S.D. Asfendiyarov, Almaty, Kazakhstan
| | | | - Alireza Afshar
- Department of Medicine, West-Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
92
|
Fines C, McCarthy H, Buckley N. The search for a TNBC vaccine: the guardian vaccine. Cancer Biol Ther 2025; 26:2472432. [PMID: 40089851 PMCID: PMC11913391 DOI: 10.1080/15384047.2025.2472432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
Nearly 20 million people are diagnosed with cancer each year with breast cancer being the most common among women. Triple negative breast cancer (TNBC), defined by its no/low expression of ER and PR and lack of amplification of HER2, makes up 15-20% of all breast cancer cases. While patients overall have a higher response to chemotherapy, this subgroup is associated with the lowest survival rate indicating significant clinical and molecular heterogeneity demanding alternate treatment options. Therefore, new therapies have been explored, with a large focus on utilizing the immune system. A whole host of immunotherapies have been studied including immune checkpoint inhibitors, now standard of care for eligible patients, and possibly the most exciting and promising is that of a TNBC vaccine. While currently there are no approved TNBC vaccines, this review highlights many promising studies and points to an antigen, p53, which we believe is highly relevant for TNBC.
Collapse
Affiliation(s)
- Cory Fines
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Helen McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Niamh Buckley
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
93
|
J LAA, Pa P, Seng CY, Rhee JH, Lee SE. Protein nanocages: A new frontier in mucosal vaccine delivery and immune activation. Hum Vaccin Immunother 2025; 21:2492906. [PMID: 40353600 DOI: 10.1080/21645515.2025.2492906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/15/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Mucosal infectious diseases represent a significant global health burden, impacting millions of people worldwide through pathogens that invade the respiratory, gastrointestinal, and urogenital tracts. Mucosal vaccines provide a promising strategy to combat these diseases by preventing pathogens from entering through the portals as well as within the systemic response compartment. However, challenges such as antigen instability, inefficient delivery, suboptimal immune activation, and the complex biology of mucosal barriers hinder their development. These limitations require integrating specialized adjuvants and delivery systems. Protein nanocages, self-assembling nanoscale structures that can be engineered, may provide an innovative solution for co-delivering antigens and adjuvants. With their remarkable stability, biocompatibility, and design versatility, protein nanocages can potentially overcome existing challenges in mucosal vaccine delivery and enhance protective immune responses. This review highlights the potential of protein nanocages to revolutionize mucosal vaccine development by addressing these challenges.
Collapse
Affiliation(s)
- Lavanya Agnes Angalene J
- Department of Biomedical Sciences, Chonnam National University, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Paopachapich Pa
- Department of Biomedical Sciences, Chonnam National University, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Chheng Y Seng
- Department of Biomedical Sciences, Chonnam National University, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Joon Haeng Rhee
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
| | - Shee Eun Lee
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
94
|
Henley P, Shyaka A. Cultivating resilience and adaptability through hands-on One Health. Glob Health Action 2025; 18:2478694. [PMID: 40103561 PMCID: PMC11924249 DOI: 10.1080/16549716.2025.2478694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
The University of Global Health Equity's (UGHE) One Health Field School (OHFS) in Rwanda exemplifies an experiential approach to education that integrates human, animal, and environmental health. This field-based program engages students in real-world settings such as abattoirs, health centers, and mining sites to confront pressing public health issues, from zoonotic diseases and antimicrobial resistance to food safety and environmental health. Following Kolb's experiential learning model, OHFS equips graduate students to observe, analyze, and apply solutions to complex health challenges, fostering adaptability, resilience, and collaborative problem-solving skills. By bridging classroom theory with practical application, OHFS cultivates leadership and a holistic understanding of health, preparing graduates to navigate the interconnected global health landscape. Through this innovative approach, UGHE aims to train a generation of health professionals capable of addressing crises such as climate change, biodiversity loss, and emerging infectious diseases at the human-animal-environment interface.
Collapse
Affiliation(s)
- Phaedra Henley
- Center for One Health, University of Global Health Equity, Kigali, Rwanda
| | - Anselme Shyaka
- Center for One Health, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
95
|
Liang Y, Du M, Li X, Gao J, Li Q, Li H, Li J, Gao X, Cong H, Huang Y, Li X, Wang L, Cui J, Gan Y, Tu H. Upregulation of Lactobacillus spp. in gut microbiota as a novel mechanism for environmental eustress-induced anti-pancreatic cancer effects. Gut Microbes 2025; 17:2470372. [PMID: 39988618 PMCID: PMC11853549 DOI: 10.1080/19490976.2025.2470372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with limited effective treatment options. Emerging evidence links enriched environment (EE)-induced eustress to PDAC inhibition. However, the underlying mechanisms remain unclear. In this study, we explored the role of gut microbiota in PDAC-suppressive effects of EE. We demonstrated that depletion of gut microbiota with antibiotics abolished EE-induced tumor suppression, while fecal microbiota transplantation (FMT) from EE mice significantly inhibited tumor growth in both subcutaneous and orthotopic PDAC models housed in standard environment. 16S rRNA sequencing revealed that EE enhanced gut microbiota diversity and selectively enriched probiotic Lactobacillus, particularly L. reuteri. Treatment with L. reuteri significantly suppressed PDAC tumor growth and increased natural killer (NK) cell infiltration into the tumor microenvironment. Depletion of NK cells alleviated the anti-tumor effects of L. reuteri, underscoring the essential role of NK cell-mediated immunity in anti-tumor response. Clinical analysis of PDAC patients showed that higher fecal Lactobacillus abundance correlated with improved progression-free and overall survival, further supporting the therapeutic potential of L. reuteri in PDAC. Overall, this study identifies gut microbiota as a systemic regulator of PDAC under psychological stress. Supplementation of psychobiotic Lactobacillus may offer a novel therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yiyi Liang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Gao
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinran Li
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiujie Cui
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
96
|
Li W, Xiao L, Li H, Cui W. Global research trends of immunosenescence and immunotherapy: A bibliometric study. Hum Vaccin Immunother 2025; 21:2469403. [PMID: 39992200 PMCID: PMC11853558 DOI: 10.1080/21645515.2025.2469403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025] Open
Abstract
Immunosenescence refers to the gradual decline in immune system function with age, increasing susceptibility to infections and cancer in the elderly. The advent of novel immunotherapies has revolutionized the field of cancer treatment. However, the majority of patients exhibit poor re-sponses to immunotherapy, with immunosenescence likely playing a significant role. In recent years, significant progress has been made in understanding the interplay between immunosenescence and immunotherapy. Our research aims to explore the prospects and development trends in the field of immunosenescence and immunotherapy using a bibliometric analysis. Relevant articles were collected from the Web of Science Core Collection (WoSCC) (retrieved on July 20, 2024). Primary bibliometric characteristics were analyzed using the R package "Biblio-metrix," and keyword co-occurrence analysis and visualization were conducted using VOSviewer. A total of 213 English-language original research and review articles spanning 35 years were re-trieved for bibliometric analysis. There was a surge in publications in this field starting in 2017. The United States and China contributed the most articles. Frontiers in Immunology was the most productive journal, while the University of California System was the highest contributing institution. Besse Benjamin from France emerged as the most influential researcher in this field. Popular keywords included "nivolumab," "T cells," "dendritic cells," and "regulatory T cells." The "immunosenescence-associated secretory phenotype" has become a new hotspot, with immune checkpoint inhibitors remaining a central theme in this domain. The field of immunosenescence and immunotherapy is entering a phase of rapid development and will continue to hold significant value in future research.
Collapse
Affiliation(s)
- Wendi Li
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Xiao
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cui
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
97
|
Xie Y, Mi X, Xing Y, Dai Z, Pu Q. Past, present, and future of exosomes research in cancer: A bibliometric and visualization analysis. Hum Vaccin Immunother 2025; 21:2488551. [PMID: 40207548 PMCID: PMC11988232 DOI: 10.1080/21645515.2025.2488551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer seriously threatens the lives and health of people worldwide, and exosomes seem to play an important role in managing cancer effectively, which has attracted extensive attention from researchers in recent years. This study aimed to scientifically visualize exosomes research in cancer (ERC) through bibliometric analysis, reviewing the past, summarizing the present, and predicting the future, with a view to providing valuable insights for scholars and policy makers. Researches search and data collection from Web of Science Core Collection and clinical trial.gov. Calculations and visualizations were performed using Microsoft Excel, VOSviewer, Bibliometrix R-package, and CiteSpace. As of December 1, 2024, and March 8, 2025, we identified 8,001 ERC-related publications and 107 ERC-related clinical trials, with an increasing trend in annual publications. Our findings supported that China, Nanjing Medical University, and International Journal of Molecular Sciences were the most productive countries, institutions, and journals, respectively. Whiteside, Theresa L. had the most publications, while Théry, C was the most co-cited scholar. In addition, Cancer Research was the most co-cited journal. Spatial and temporal distribution of clinical trials was the same as for publications. High-frequency keywords were "extracellular vesicle," "microRNA" and "biomarker." Additional, "surface functionalization," "plant," "machine learning," "nanomaterials," "promotes metastasis," "engineered exosomes," and "macrophage-derived exosomes" were promising research topics. Our study comprehensively and visually summarized the structure, hotspots, and evolutionary trends of ERC. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.
Collapse
Affiliation(s)
- Yafei Xie
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xingqi Mi
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yikai Xing
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhangyi Dai
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
98
|
Alizon S, Sofonea MT. SARS-CoV-2 epidemiology, kinetics, and evolution: A narrative review. Virulence 2025; 16:2480633. [PMID: 40197159 PMCID: PMC11988222 DOI: 10.1080/21505594.2025.2480633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Since winter 2019, SARS-CoV-2 has emerged, spread, and evolved all around the globe. We explore 4 y of evolutionary epidemiology of this virus, ranging from the applied public health challenges to the more conceptual evolutionary biology perspectives. Through this review, we first present the spread and lethality of the infections it causes, starting from its emergence in Wuhan (China) from the initial epidemics all around the world, compare the virus to other betacoronaviruses, focus on its airborne transmission, compare containment strategies ("zero-COVID" vs. "herd immunity"), explain its phylogeographical tracking, underline the importance of natural selection on the epidemics, mention its within-host population dynamics. Finally, we discuss how the pandemic has transformed (or should transform) the surveillance and prevention of viral respiratory infections and identify perspectives for the research on epidemiology of COVID-19.
Collapse
Affiliation(s)
- Samuel Alizon
- CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
| | - Mircea T. Sofonea
- PCCEI, University Montpellier, INSERM, Montpellier, France
- Department of Anesthesiology, Critical Care, Intensive Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| |
Collapse
|
99
|
Yuan D, Gao Y, Xia L, Liu H, Wu X, Ding X, Huang Y, Deng C, Li J, Dai W, Liu J, Ma J. Discovery of novel biphenyl compounds bearing hydroxamic acid moiety as the first PD-L1/class I HDACs dual inhibitors. J Enzyme Inhib Med Chem 2025; 40:2461190. [PMID: 39912413 PMCID: PMC11803765 DOI: 10.1080/14756366.2025.2461190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Herein, we firstly reported a series of biphenyl compounds bearing hydroxamic acid moiety as PD-L1/class I HDACs dual inhibitors. Among them, compound 14 displayed the strongest inhibitory activity in vitro against HDAC2 and HDAC3 with IC50 values of 27.98 nM and 14.47 nM, and had an IC50 value of 88.10 nM for PD-1/PD-L1 interaction. Importantly, 14 could upregulate the expression of PD-L1 and CXCL10 in a PD-L1 low-expression cancer cell line (MCF-7), highlighting the potential to enhance efficacy by recruiting T-cell infiltration into TME and improving the response of PD-1/PD-L1 inhibitor associated with PD-L1 low-expression. Besides, we identified another compound, 22, which possessed the strongest inhibitory activity against PD-1/PD-L1 interaction with an IC50 value of 12.47 nM, and effectively inhibited the proliferation of three cancer cell lines. Our results suggest that compounds 14 and 22 can be served as lead compounds of PD-L1/class I HDACs dual inhibitors for further optimisation.
Collapse
Affiliation(s)
- Dandan Yuan
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Yali Gao
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lin Xia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Han Liu
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Xingye Wu
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Xueyan Ding
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Yudan Huang
- School of Medicine, Huaqiao University, Quanzhou, China
| | | | - Jin Li
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Wenqi Dai
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Junjie Ma
- School of Medicine, Huaqiao University, Quanzhou, China
| |
Collapse
|
100
|
Tang S, Long X, Li F, Jiang S, Fu Y, Liu J. Identification of RUVBL2 as a novel biomarker to predict the prognosis and drug sensitivity in multiple myeloma based on ferroptosis genes. Hematology 2025; 30:2467499. [PMID: 39985176 DOI: 10.1080/16078454.2025.2467499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological malignancy with the proliferation of malignant plasma cells. Numerous studies have highlighted the critical role of ferroptosis in MM. However, how to use ferroptosis-related genes (FRGs) for prognostic prediction and treatment guidance in MM remains unknown. METHODS By analysis of GEO databases, the prognostic gene was identified and a therapeutic strategy for MM patients based on FRGs was explored. A total of 12 FRGs were identified, utilizing the STRING database and Cytoscape software, and the PPI networks were constructed to identify hub genes and further functional enrichment analyses. Based on the aforementioned data, this study analyzed the expression of RUVBL2 in MM patients by qRT-PCR and Western blotting. To validate the functional role of RUVBL2 in the MM cells, cellular experiments were ultimately conducted. RESULTS The analysis highlighted six hub genes, including TP53, MCM5, TLR4, RUVBL2, GCLM and ITGA6, and functional enrichment analyses indicating enrichment in DNA replication, regulation of apoptotic signaling pathway and PI3K/AKT signaling pathway. Prognostic analysis indicated that TP53, RUVBL2, and MCM5 are associated with MM prognosis, with RUVBL2 displaying a notable area under the curve (AUC) of 0.823 in ROC analysis. The study first determined that RUVBL2 is highly expressed in MM, siRUVBL2-mediated deletion of RUVBL2 inhibited proliferation, promoted apoptosis and increased the sensitivity of BTZ in MM cells, and also overcame BTZ resistance in CD138+ primary cells from MM patients. CONCLUSIONS Our study first suggested that RUVBL2 may be regarded as potential therapeutic targets and prognostic value in MM.
Collapse
Affiliation(s)
- Sishi Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xinyi Long
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fangfang Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|