101
|
Li B, Huang L, Lv P, Li X, Liu G, Chen Y, Wang Z, Qian X, Shen Y, Li Y, Fang W. The role of Th17 cells in psoriasis. Immunol Res 2020; 68:296-309. [PMID: 32827097 DOI: 10.1007/s12026-020-09149-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
T helper 17 (Th17) cells have been involved in the pathogenesis of many autoimmune and inflammatory diseases, like psoriasis, multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). However, the role of Th17 cells in psoriasis has not been clarified completely. Th17-derived proinflammatory cytokines including IL-17A, IL-17F, IL-21, IL-22, and IL-26 have a critical role in the pathogenesis of these disorders. In this review, we introduced the signaling and transcriptional regulation of Th17 cells. And then, we demonstrate the immunopathology role of Th17 cells and functions of the related cytokines in the psoriasis to get a better understanding of the inflammatory mechanisms mediated by Th17 cells in this disease.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Peng Lv
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiaoxian Qian
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yixiao Shen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
102
|
Heikelä H, Ruohonen ST, Adam M, Viitanen R, Liljenbäck H, Eskola O, Gabriel M, Mairinoja L, Pessia A, Velagapudi V, Roivainen A, Zhang FP, Strauss L, Poutanen M. Hydroxysteroid (17β) dehydrogenase 12 is essential for metabolic homeostasis in adult mice. Am J Physiol Endocrinol Metab 2020; 319:E494-E508. [PMID: 32691632 DOI: 10.1152/ajpendo.00042.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydroxysteroid 17β dehydrogenase 12 (HSD17B12) is suggested to be involved in the elongation of very long chain fatty acids. Previously, we have shown a pivotal role for the enzyme during mouse development. In the present study we generated a conditional Hsd17b12 knockout (HSD17B12cKO) mouse model by breeding mice homozygous for a floxed Hsd17b12 allele with mice expressing the tamoxifen-inducible Cre recombinase at the ROSA26 locus. Gene inactivation was induced by administering tamoxifen to adult mice. The gene inactivation led to a 20% loss of body weight within 6 days, associated with drastic reduction in both white (83% males, 75% females) and brown (65% males, 60% females) fat, likely due to markedly reduced food and water intake. Furthermore, the knockout mice showed sickness behavior and signs of liver toxicity, specifically microvesicular hepatic steatosis and increased serum alanine aminotransferase (4.6-fold in males, 7.7-fold in females). The hepatic changes were more pronounced in females than males. Proinflammatory cytokines, such as interleukin-6 (IL-6), IL-17, and granulocyte colony-stimulating factor, were increased in the HSD17B12cKO mice indicating an inflammatory response. Serum lipidomics study showed an increase in the amount of dihydroceramides, despite the dramatic overall loss of lipids. In line with the proposed role for HSD17B12 in fatty acid elongation, we observed accumulation of ceramides, dihydroceramides, hexosylceramides, and lactosylceramides with shorter than 18-carbon fatty acid side chains in the serum. The results indicate that HSD17B12 is essential for proper lipid homeostasis and HSD17B12 deficiency rapidly results in fatal systemic inflammation and lipolysis in adult mice.
Collapse
Affiliation(s)
- Hanna Heikelä
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marion Adam
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Heidi Liljenbäck
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, University of Turku, Turku, Finland
| | - Michael Gabriel
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Mairinoja
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Alberto Pessia
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Vidya Velagapudi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Anne Roivainen
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Fu-Ping Zhang
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Leena Strauss
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matti Poutanen
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
103
|
Takahashi Y, Okamura Y, Morimoto N, Mihara K, Maekawa S, Wang HC, Aoki T, Kono T, Sakai M, Hikima JI. Interleukin-17A/F1 from Japanese pufferfish (Takifugu rubripes) stimulates the immune response in head kidney and intestinal cells. FISH & SHELLFISH IMMUNOLOGY 2020; 103:143-149. [PMID: 32437858 DOI: 10.1016/j.fsi.2020.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
In mammals, interleukin (IL)-17A and IL-17F, mainly produced by Th17 cells, are hallmark inflammatory cytokines that play important roles in the intestinal mucosal immune response. In contrast, three mammalian IL-17A and IL-17F counterparts (IL-17A/F1-3) have been identified in teleosts, and most of their functions have been described in the lymphoid organs. However, their function in the intestinal mucosal immune response is poorly understood. In this study, a recombinant (r) tiger puffer fish fugu (Takifugu rubripes) IL-17A/F1 was produced and purified using a mammalian expression system, and was used to stimulate cells isolated from fugu head kidney and intestines. The gene expression levels of TNF-α, IL-1β, IL-6, and β-defensin-like protein-1 (BD-1) genes were evaluated at 0, 3, 6 and 12 h post-stimulation (hps). Phagocytic activity and superoxide anion production were evaluated at the same time points using an NBT assay. The rIL-17A/F1 protein was shown to induce the expression of pro-inflammatory cytokines and antimicrobial peptides in both head kidney and intestinal cells. Expression levels for IL-1β, TNF-α, and IL-6 were all up-regulated between 3 and 12 hps. In addition, stimulation with rIL-17A/F1 enhanced phagocytic activity at 24 hps. Superoxide anion production was increased at 48 hps in the head kidney cells and moderately increased at 48 hps in intestinal cells. This study suggests that fugu IL-17A/F1 plays an important role in promoting the innate immune response and may act as a bridge between innate and adaptive immunity in the head kidney and intestine.
Collapse
Affiliation(s)
- Yoshie Takahashi
- International Course of Agriculture, Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Koshin Mihara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Shun Maekawa
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Takashi Aoki
- Integrated Institute for Regulatory Science, Research Organization for Nao and Life Innovation, Waseda University, 513 Tsurumaki-cho, Sbinjuku-ku, Tokyo, 162-0041, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
104
|
Ge Y, Huang M, Yao YM. Biology of Interleukin-17 and Its Pathophysiological Significance in Sepsis. Front Immunol 2020; 11:1558. [PMID: 32849528 PMCID: PMC7399097 DOI: 10.3389/fimmu.2020.01558] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
The interleukin (IL)-17 family includes six structure-related cytokines (A-F). To date, majority of studies have focused on IL-17A. IL-17A plays a pivotal role in various infectious diseases, inflammatory and autoimmune disorders, and cancer. Several recent studies have indicated that IL-17A is a biomarker as well as a therapeutic target in sepsis. In the current review, we summarize the biological functions of IL-17, including IL-17-mediated responses and signal transduction pathways, with particular emphasis on clinical relevance to sepsis.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Trauma Research Center, Fourth Medical Center and Medical Innovation Research Department of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
105
|
Goepfert A, Lehmann S, Blank J, Kolbinger F, Rondeau JM. Structural Analysis Reveals that the Cytokine IL-17F Forms a Homodimeric Complex with Receptor IL-17RC to Drive IL-17RA-Independent Signaling. Immunity 2020; 52:499-512.e5. [PMID: 32187518 DOI: 10.1016/j.immuni.2020.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Interleukin-17A (IL-17A), IL-17F, and IL-17A/F heterodimers are key cytokines of the innate and adaptive immune response. Dysregulation of the IL-17 pathway contributes to immune pathology, and it is therefore important to elucidate the molecular mechanisms that govern IL-17 recognition and signaling. The receptor IL-17RC is thought to act in concert with IL-17RA to transduce IL-17A-, IL-17F-, and IL-17A/F-mediated signals. We report the crystal structure of the extracellular domain of human IL-17RC in complex with IL-17F. In contrast to the expected model, we found that IL-17RC formed a symmetrical 2:1 complex with IL-17F, thus competing with IL-17RA for cytokine binding. Using biophysical techniques, we showed that IL-17A and IL-17A/F also form 2:1 complexes with IL-17RC, suggesting the possibility of IL-17RA-independent IL-17 signaling pathways. The crystal structure of the IL-17RC:IL-17F complex provides a structural basis for IL-17F signaling through IL-17RC, with potential therapeutic applications for respiratory allergy and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Arnaud Goepfert
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Sylvie Lehmann
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Jutta Blank
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Frank Kolbinger
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Jean-Michel Rondeau
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland.
| |
Collapse
|
106
|
Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exp Med 2020; 217:jem.20190297. [PMID: 31727782 PMCID: PMC7037244 DOI: 10.1084/jem.20190297] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
IL-17, a potent proinflammatory cytokine, has been shown to intimately contribute to the formation, growth, and metastasis of a wide range of malignancies. Recent studies implicate IL-17 as a link among inflammation, wound healing, and cancer. While IL-17-mediated production of inflammatory mediators mobilizes immune-suppressive and angiogenic myeloid cells, emerging studies reveal that IL-17 can directly act on tissue stem cells to promote tissue repair and tumorigenesis. Here, we review the pleotropic impacts of IL-17 on cancer biology, focusing how IL-17-mediated inflammatory response and mitogenic signaling are exploited to equip its cancer-promoting function and discussing the implications in therapies.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
107
|
Zwicky P, Unger S, Becher B. Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. J Exp Med 2020; 217:jem.20191123. [PMID: 31727781 PMCID: PMC7037236 DOI: 10.1084/jem.20191123] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Although many chronic inflammatory diseases share the feature of elevated IL-17 production, therapeutic targeting of IL-17 has vastly different clinical outcomes. Here the authors summarize the recent progress in understanding the protective and pathogenic role of the IL-23/IL-17 axis in preclinical models and human inflammatory diseases. Chronic inflammatory diseases like psoriasis, Crohn’s disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and others are increasingly recognized as disease entities, where dysregulated cytokines contribute substantially to tissue-specific inflammation. A dysregulation in the IL-23/IL-17 axis can lead to inflammation of barrier tissues, whereas its role in internal organ inflammation remains less clear. Here we discuss the most recent developments in targeting IL-17 for the treatment of chronic inflammation in preclinical models and in patients afflicted with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Pascale Zwicky
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
108
|
Azevedo MLV, Malaquias MAS, de Paula CBV, de Souza CM, Júnior VHC, Raboni SM, Halila R, Rosendo G, Gozzo P, do Carmo LAP, Neto PC, Nagashima S, de Noronha L. The role of IL-17A/IL-17RA and lung injuries in children with lethal non-pandemic acute viral pneumonia. Immunobiology 2020; 225:151981. [PMID: 32747026 DOI: 10.1016/j.imbio.2020.151981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 01/12/2023]
Abstract
This study aimed to evaluate IL-17A (interleukin 17A) and IL-17RA (IL-17A receptor) in a pediatric population that died with non-pandemic acute viral pneumonia compared to the non-viral pneumonia group. Necropsy lung samples (n = 193) from children that died after severe acute infection pneumonia were selected and processed for viral antigen detection by immunohistochemistry. After this, they were separated into two groups: virus-positive (n = 68) and virus-negative lung samples (n = 125). Immunohistochemistry was performed to assess the presence of IL-17A and IL-17RA in the lung tissue. The virus-positive group showed stronger immunolabeling for IL-17A and IL-17RA (p = 0.020 and p < 0.001, respectively). The result of this study may suggest that IL-17A and IL-17RA plays an essential role in the maintenance of viral infection and lung injuries. These aspects may increase the severity of the inflammatory response leading to lethal lung injuries in these patients. Children with community-acquired non-pandemic pneumonia that requiring hospitalization could benefit from using IL-17RA/IL-17A monoclonal antibodies to block their injurious effects.
Collapse
Affiliation(s)
- Marina Luise Viola Azevedo
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Mineia Alessandra Scaranello Malaquias
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Caroline Busatta Vaz de Paula
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Cleber Machado de Souza
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Victor Horácio Costa Júnior
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Sonia Mara Raboni
- Virology Laboratory, Infectious Diseases Division, Federal University of Parana - UFPR, R. Padre Camargo, 280 - Alto da Gloria, Curitiba, PR, Brazil.
| | - Renata Halila
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Giuliana Rosendo
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Priscilla Gozzo
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Leticia Arianne Panini do Carmo
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Plínio Cézar Neto
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Seigo Nagashima
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Lucia de Noronha
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil; Department of Medical Pathology, Federal University of Parana - UFPR, R. Padre Camargo, 280 - Alto da Glória, Curitiba, PR, Brazil.
| |
Collapse
|
109
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
110
|
Sato K, Yamamoto H, Nomura T, Kasamatsu J, Miyasaka T, Tanno D, Matsumoto I, Kagesawa T, Miyahara A, Zong T, Oniyama A, Kawamura K, Yokoyama R, Kitai Y, Ishizuka S, Kanno E, Tanno H, Suda H, Morita M, Yamamoto M, Iwakura Y, Ishii K, Kawakami K. Production of IL-17A at Innate Immune Phase Leads to Decreased Th1 Immune Response and Attenuated Host Defense against Infection with Cryptococcus deneoformans. THE JOURNAL OF IMMUNOLOGY 2020; 205:686-698. [PMID: 32561568 DOI: 10.4049/jimmunol.1901238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
IL-17A is a proinflammatory cytokine produced by many types of innate immune cells and Th17 cells and is involved in the elimination of extracellularly growing microorganisms, yet the role of this cytokine in the host defense against intracellularly growing microorganisms is not well known. Cryptococcus deneoformans is an opportunistic intracellular growth fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired immune responses. In the current study, we analyzed the role of IL-17A in the host defense against C. deneoformans infection. IL-17A was quickly produced by γδT cells at an innate immune phase in infected lungs. In IL-17A gene-disrupted mice, clearance of this fungal pathogen and the host immune response mediated by Th1 cells were significantly accelerated in infected lungs compared with wild-type mice. Similarly, killing of this fungus and production of inducible NO synthase and TNF-α were significantly enhanced in IL-17A gene-disrupted mice. In addition, elimination of this fungal pathogen, Th1 response, and expression of IL-12Rβ2 and IFN-γ in NK and NKT cells were significantly suppressed by treatment with rIL-17A. The production of IL-12p40 and TNF-α from bone marrow-derived dendritic cells stimulated with C. deneoformans was significantly suppressed by rIL-17A. In addition, rIL-17A attenuated Th1 cell differentiation in splenocytes from transgenic mice highly expressing TCR for mannoprotein 98, a cryptococcal Ag, upon stimulation with recombinant mannoprotein 98. These data suggest that IL-17A may be involved in the negative regulation of the local host defense against C. deneoformans infection through suppression of the Th1 response.
Collapse
Affiliation(s)
- Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan;
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Toshiki Nomura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tomomitsu Miyasaka
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-0905, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takafumi Kagesawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Akiho Oniyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shigenari Ishizuka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiromi Suda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; and
| | - Masanobu Morita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; and
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; and
| | - Yoichiro Iwakura
- Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuyoshi Kawakami
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.,Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
111
|
Involvement of interleukins-17 and -34 in exacerbated orthodontic root resorption by jiggling force during rat experimental tooth movement. J World Fed Orthod 2020; 9:47-55. [PMID: 32672655 DOI: 10.1016/j.ejwf.2020.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Orthodontically induced root resorption (OIRR) is considered as an undesirable and unpredictable sequel of orthodontic treatment. Recent reports demonstrated that interleukin (IL)-17/IL-34, and T cells secrete inflammatory/osteoclastogenic cytokines, which might stimulate osteoclastogenesis/bone resorption. However, little is known about the role played by IL-17/IL-34 in OIRR. The present study was aimed at investigating the odontoclastic expression pattern of IL-17 and IL-34 in resorbed cementum during different experimental tooth movements in vivo. METHODS Twenty-four 8-week-old male Wistar rats were divided into four groups: control group, optimal force group (10 g), heavy force group (50 g), and jiggling force group (compression and tension, repetition; 10 g). After 7, 14, and 21 days, the expression levels of IL-17 and IL-34 protein in the resorbed cementum were analyzed using immunohistochemical methods. RESULTS On day 21, the immunoreactivity for IL-17 and IL-34 in resorbed roots in the jiggling force group was stronger than that in the heavy force and optimal force groups. Moreover, the number of IL-17-positive and IL-34-positive odontoclasts was significantly increased in the jiggling force group compared with those in the other groups on day 21. CONCLUSIONS These results suggest that jiggling forces might exacerbate OIRR compared with heavy forces, as evidenced by the increased expression of IL-17 and IL-34 in odontoclasts obtained from resorbed roots.
Collapse
|
112
|
Relationship between T cells and microbiota in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:95-129. [PMID: 32475529 DOI: 10.1016/bs.pmbts.2020.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decades, the fields of microbiology and immunology have largely advanced by using germ-free animals and next-generation sequencing. Many studies revealed the relationship among gut microbiota, activation of immune system, and various diseases. Especially, some gut commensals can generate their antigen-specific T cells. It is becoming clear that commensal bacteria have important roles in various autoimmune and inflammatory diseases, such as autism, rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Recently, it was reported that commensals contribute to the cancer immune therapy. However, how commensal-specific T cells contribute to the disease development and cancer treatment are not fully understood yet. In this chapter, we will summarize the decade history of the studies associated with commensal-induced T cells and commensal-causing diseases.
Collapse
|
113
|
Lokau J, Garbers C. Biological functions and therapeutic opportunities of soluble cytokine receptors. Cytokine Growth Factor Rev 2020; 55:94-108. [PMID: 32386776 DOI: 10.1016/j.cytogfr.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
Cytokines control the immune system by regulating the proliferation, differentiation and function of immune cells. They activate their target cells through binding to specific receptors, which either are transmembrane proteins or attached to the cell-surface via a GPI-anchor. Different tissues and individual cell types have unique expression profiles of cytokine receptors, and consequently this expression pattern dictates to which cytokines a given cell can respond. Furthermore, soluble variants of several cytokine receptors exist, which are generated by different molecular mechanisms, namely differential mRNA splicing, proteolytic cleavage of the membrane-tethered precursors, and release on extracellular vesicles. These soluble receptors shape the function of cytokines in different ways: they can serve as antagonistic decoy receptors which compete with their membrane-bound counterparts for the ligand, or they can form functional receptor/cytokine complexes which act as agonists and can even activate cells that would usually not respond to the ligand alone. In this review, we focus on the IL-2 and IL-6 families of cytokines and the so-called Th2 cytokines. We summarize for each cytokine which soluble receptors exist, were they originate from, how they are generated, and what their biological functions are. Furthermore, we give an outlook on how these soluble receptors can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
114
|
Samotij D, Nedoszytko B, Bartosińska J, Batycka-Baran A, Czajkowski R, Dobrucki IT, Dobrucki LW, Górecka-Sokołowska M, Janaszak-Jasienicka A, Krasowska D, Kalinowski L, Macieja-Stawczyk M, Nowicki RJ, Owczarczyk-Saczonek A, Płoska A, Purzycka-Bohdan D, Radulska A, Reszka E, Siekierzycka A, Słomiński A, Słomiński R, Sobalska-Kwapis M, Strapagiel D, Szczerkowska-Dobosz A, Szczęch J, Żmijewski M, Reich A. Pathogenesis of psoriasis in the "omic" era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Postepy Dermatol Alergol 2020; 37:135-153. [PMID: 32489346 PMCID: PMC7262814 DOI: 10.5114/ada.2020.94832] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a common, chronic, inflammatory, immune-mediated skin disease affecting about 2% of the world's population. According to current knowledge, psoriasis is a complex disease that involves various genes and environmental factors, such as stress, injuries, infections and certain medications. The chronic inflammation of psoriasis lesions develops upon epidermal infiltration, activation, and expansion of type 1 and type 17 Th cells. Despite the enormous progress in understanding the mechanisms that cause psoriasis, the target cells and antigens that drive pathogenic T cell responses in psoriatic lesions are still unproven and the autoimmune basis of psoriasis still remains hypothetical. However, since the identification of the Th17 cell subset, the IL-23/Th17 immune axis has been considered a key driver of psoriatic inflammation, which has led to the development of biologic agents that target crucial elements of this pathway. Here we present the current understanding of various aspects in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Dominik Samotij
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Bartosińska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Batycka-Baran
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venereology, Faculty of Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Lawrence W. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Magdalena Górecka-Sokołowska
- Department of Dermatology, Sexually Transmitted Disorders and Immunodermatology, Jurasz University Hospital No. 1, Bydgoszcz, Poland
| | - Anna Janaszak-Jasienicka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Marta Macieja-Stawczyk
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Olsztyn, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Andrzej Słomiński
- Department of Dermatology, Birmingham, AL, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| | - Radomir Słomiński
- Department of Medicine, Division of Rheumatology, University of Alabama, Birmingham, AL, USA
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Justyna Szczęch
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Michał Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
115
|
Chen XK, Gu CL, Fan JQ, Zhang XM. P-STAT3 and IL-17 in tumor tissues enhances the prognostic value of CEA and CA125 in patients with lung adenocarcinoma. Biomed Pharmacother 2020; 125:109871. [PMID: 32187953 DOI: 10.1016/j.biopha.2020.109871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
AIM The present study aimed to examine the capability of p- signal transducer and activator of transcription (STAT)3 and interleukin-17 (IL-17), along with two known tumor markers carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125), for disease prognosis. Moreover, the associations among biomarkers and clinicopathological parameters were evaluated to uncover the potential mechanisms responsible for their correlations with lung adenocarcinoma (LAD) prognosis. METHODS Five LAD-related parameters were used in the study: CEA, CA125, STAT3, p-STAT3, and IL-17. Spearman and chi-square correlation tests were used to explore the relationships between some clinicopathological variables and parameter expression levels and the associations among these five parameters. RESULTS The disease-specific survival decreased with the positive expression of CEA, CA125, p-STAT3, and IL-17, with no significant difference in the expression level of STAT3. Combinations of p-STAT3 and IL-17, CEA and p-STAT3, CEA and IL-17, CA125 and p-STAT3, and CA125 and IL-17 had higher predictive values in LAD prognosis. The correlation analyses indicated the synergic activities of STAT3, p-STAT3, and IL-17 and the coordinated expression of CEA, CA125, p-STAT3, and IL-17. The tumor-node-metastasis (TNM) stage significantly correlated with the levels of CA125 and p-STAT3. CONCLUSIONS Elevated levels of CEA, CA125, p-STAT3, and IL-17 alone and/or combinations of p-STAT3 and IL-17, CEA and p-STAT3, CEA and IL-17, CA125 and p-STAT3, and CA125 and IL-17 were recommended as the prognostic predictors of unfavorable clinical outcomes in patients with postoperative LAD. Also, p-STAT3 and IL-17 combined with CA125 and CEA helped in predicting the overall survival of patients with LAD and informing the TNM stage.
Collapse
Affiliation(s)
- Xiao-Ke Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan-Long Gu
- Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun-Qiang Fan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao-Ming Zhang
- Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
116
|
Nies JF, Panzer U. IL-17C/IL-17RE: Emergence of a Unique Axis in T H17 Biology. Front Immunol 2020; 11:341. [PMID: 32174926 PMCID: PMC7054382 DOI: 10.3389/fimmu.2020.00341] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of IL-17A and its receptor IL-17RA with antibodies has turned out to be a tremendous success in the treatment of several autoimmune conditions. As the IL-17 cytokine family consists of six members (IL-17A to F), it is intriguing to elucidate the biological function of these five other molecules to identify more potential targets. In the past decade, IL-17C has emerged as quite a unique member of this pro-inflammatory cytokine group. In contrast to the well-described IL-17A and IL-17F, IL-17C is upregulated at very early timepoints of several disease settings. Also, the cellular source of the homodimeric cytokine differs from the other members of the family: Epithelial rather than hematopoietic cells were identified as the producers of IL-17C, while its receptor IL-17RE is expressed on TH17 cells as well as the epithelial cells themselves. Numerous investigations led to the current understanding that IL-17C (a) maintains an autocrine loop in the epithelium reinforcing innate immune barriers and (b) stimulates highly inflammatory TH17 cells. Functionally, the IL-17C/RE axis has been described to be involved in the pathogenesis of several diseases ranging from infectious and autoimmune conditions to cancer development and progression. This body of evidence has paved the way for the first clinical trials attempting to neutralize IL-17C in patients. Here, we review the latest knowledge about identification, regulation, and function of the IL-17C/IL-17receptor E pathway in inflammation and immunity, with a focus on the mechanisms underlying tissue injury. We also discuss the rationale for the translation of these findings into new therapeutic approaches in patients with immune-mediated disease.
Collapse
Affiliation(s)
- Jasper F Nies
- Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany
| | - Ulf Panzer
- Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany.,Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
117
|
Yasumatsu K, Nagao JI, Arita-Morioka KI, Narita Y, Tasaki S, Toyoda K, Ito S, Kido H, Tanaka Y. Bacterial-induced maternal interleukin-17A pathway promotes autistic-like behaviors in mouse offspring. Exp Anim 2020; 69:250-260. [PMID: 32009087 PMCID: PMC7220715 DOI: 10.1538/expanim.19-0156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Maternal immune activation (MIA) by an infection is considered to be an important
environmental factor of fetal brain development. Recent animal model on MIA induced by
polyinosinic:polycytidylic acid, a mimic of viral infection, demonstrates that maternal
IL-17A signaling is required for the development of autism spectrum disorder (ASD)-like
behaviors of offspring. However, there is little information on bacterial infection. In
this study, we aim to elucidate the influence of MIA induced by lipopolysaccharide (LPS)
to mimic a bacterial infection on fetal brain development. We demonstrated that
LPS-induced MIA promoted ASD-like behaviors in mouse offspring. We further found that LPS
exposure induced acute phase immune response: elevation of serum IL-17A levels in MIA
mothers, upregulation of Il17a mRNA expression and increase of
IL-17A-producing γδ T cells in the uterus, and upregulation of Il17ra
mRNA expression in the fetal brain. Blocking of IL-17A in LPS-induced MIA ameliorated
ASD-like behaviors in offspring. Our data suggest that bacterial-induced maternal IL-17A
pathway promotes ASD-like behaviors in offspring.
Collapse
Affiliation(s)
- Kanae Yasumatsu
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Jun-Ichi Nagao
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Ken-Ichi Arita-Morioka
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Yuka Narita
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Sonoko Tasaki
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Keita Toyoda
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shoko Ito
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Hirofumi Kido
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Yoshihiko Tanaka
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
118
|
Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exp Med 2020; 217:e20190297. [PMID: 31727782 DOI: 10.1084/jem_20190297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 01/03/2025] Open
Abstract
IL-17, a potent proinflammatory cytokine, has been shown to intimately contribute to the formation, growth, and metastasis of a wide range of malignancies. Recent studies implicate IL-17 as a link among inflammation, wound healing, and cancer. While IL-17-mediated production of inflammatory mediators mobilizes immune-suppressive and angiogenic myeloid cells, emerging studies reveal that IL-17 can directly act on tissue stem cells to promote tissue repair and tumorigenesis. Here, we review the pleotropic impacts of IL-17 on cancer biology, focusing how IL-17-mediated inflammatory response and mitogenic signaling are exploited to equip its cancer-promoting function and discussing the implications in therapies.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
119
|
Zwicky P, Unger S, Becher B. Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. J Exp Med 2020; 217:e20191123. [PMID: 31727781 DOI: 10.1084/jem_20191123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2025] Open
Abstract
Chronic inflammatory diseases like psoriasis, Crohn's disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and others are increasingly recognized as disease entities, where dysregulated cytokines contribute substantially to tissue-specific inflammation. A dysregulation in the IL-23/IL-17 axis can lead to inflammation of barrier tissues, whereas its role in internal organ inflammation remains less clear. Here we discuss the most recent developments in targeting IL-17 for the treatment of chronic inflammation in preclinical models and in patients afflicted with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Pascale Zwicky
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
120
|
Abstract
The involvement of the interleukin (IL)-17 axis in many inflammatory and autoimmune diseases is now well established, and this has led to the development of successful targeted therapies. Its role in systemic lupus erythematosus (SLE) is less described, since SLE is characterized by the impairment of many other immune actors. However, results from animal models and patients strongly suggest that IL-17 and its producing cells are involved in SLE pathogenesis. Circulating levels of IL-17 are increased in lupus, and tissue staining shows the presence of IL-17-producing cells in organ lesions. Through different mechanisms, the IL-17 axis promotes autoantibody production, immune complex deposition, complement activation and then tissue damage. There are also many interactions with other immune and non-immune actors, which account for the broad spectrum of clinical manifestations and disease heterogeneity. SLE treatment faces challenges with many disappointing trials and persistent unmet needs. The identification of subsets of SLE patients with an IL-17-driven disease now constitutes the key priority before starting trials. More preclinical studies are needed to improve the selection of the right patients able to respond and tolerate the many inhibitors that are already available.
Collapse
Affiliation(s)
- M Robert
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Hôpital Edouard Herriot, Lyon, France
| | - P Miossec
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
121
|
Zhang S, Wu L, Chen J, Wei J, Cai H, Ma M, Zhao P, Ming F, Jia J, Li J, Fan Q, Liang Q, Deng J, Zeng M, Zhang L. Effects of porcine IL-17B and IL-17E against intestinal pathogenic microorganism. Mol Immunol 2019; 116:151-159. [DOI: 10.1016/j.molimm.2019.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022]
|
122
|
IL-17 receptor-based signaling and implications for disease. Nat Immunol 2019; 20:1594-1602. [PMID: 31745337 DOI: 10.1038/s41590-019-0514-y] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
IL-17 is a highly versatile pro-inflammatory cytokine crucial for a variety of processes, including host defense, tissue repair, the pathogenesis of inflammatory disease and the progression of cancer. In contrast to its profound impact in vivo, IL-17 exhibits surprisingly moderate activity in cell-culture models, which presents a major knowledge gap about the molecular mechanisms of IL-17 signaling. Emerging studies are revealing a new dimension of complexity in the IL-17 pathway that may help explain its potent and diverse in vivo functions. Discoveries of new mRNA stabilizers and receptor-directed mRNA metabolism have provided insights into the means by which IL-17 cooperates functionally with other stimuli in driving inflammation, whether beneficial or destructive. The integration of IL-17 with growth-receptor signaling in specific cell types offers new understanding of the mitogenic effect of IL-17 on tissue repair and cancer. This Review summarizes new developments in IL-17 signaling and their pathophysiological implications.
Collapse
|
123
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
124
|
Ramakrishnan RK, Al Heialy S, Hamid Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med 2019; 13:1057-1068. [PMID: 31498708 DOI: 10.1080/17476348.2019.1666002] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Asthma is a respiratory disorder typically characterized by T-helper type 2 (Th2) inflammation that is mediated by cytokines, including IL-4, IL-5, and IL-13. Pathophysiologically, airway inflammation involving prominent eosinophilia, elevated IgE synthesis, airway hyperresponsiveness, mucus hypersecretion, and airway remodeling manifest clinically in patients as wheezing, breathlessness, chest tightness and episodic coughing. However, the Th2 paradigm falls short in interpreting the full spectrum of asthma severity. Areas covered: Severe asthmatics represent a distinct phenotype with their mixed pattern of neutrophilic-eosinophilic infiltration and glucocorticoid insensitivity making them refractory to currently available therapies. Th17 cells and their signature cytokine, IL-17, have been implicated in the development of severe asthma. Here, we review the contribution of IL-17 in the pathological features of asthma, gathered from both human and animal studies published in Pubmed during the past 10 years, and briefly discuss the clinical implications of targeting IL-17 imbalance in asthmatic patients. Expert opinion: With advancement in our understanding of the role of IL-17 in asthma pathology, it is clear that IL-17 is a targetable pathway which may lead to improvement in clinical symptoms of asthma. However, further elucidation of the complex interactions unfurled by IL-17 is essential in the empirical development of effective therapeutic options for refractory asthmatics.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- College of Medicine, University of Sharjah , Sharjah , United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah , Sharjah , United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences , Dubai , United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center , Montreal , Quebec , Canada
| | - Qutayba Hamid
- College of Medicine, University of Sharjah , Sharjah , United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center , Montreal , Quebec , Canada
| |
Collapse
|
125
|
Novel sampling procedure to characterize bovine subclinical endometritis by uterine secretions and tissue. Theriogenology 2019; 141:186-196. [PMID: 31557616 DOI: 10.1016/j.theriogenology.2019.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 01/04/2023]
Abstract
Subclinical endometritis (SE) in cattle is defined as clinically unapparent inflammation of the endometrium. It is reported to impair fertility in affected cows and causes economic loss within the dairy industry. A gold standard for diagnosis of SE has not been set. Uterine cytology and histopathology are both applied, but low agreement between these methods has been described. The objective of the present study was to assess the capability of uterine secretions (US) as a new medium for diagnosis of SE. A novel sampling tool was applied to retrieve US as well as cytological, histological and bacteriological samples of the endometrium after a singular passage through the cervix in 108 dairy cows (43-62 days post-partum [dpp]). To assess the quality of the US samples, a proteome analysis of samples from five healthy donors was performed, demonstrating that in vivo sampling of US was feasible and generated samples suitable for diagnostic purposes. Diagnosis of SE was realized by the combination of clinical, cytological, and histopathological findings. Quantitative analysis of pro- and anti-inflammatory cytokines (interleukin (IL)1B, IL6, IL8, IL17A, IL10) in US was conducted using AlphaLISA-technology. RNAlater-fixed endometrial biopsies were used for gene expression analysis of the cytokines IL1B, IL6, IL8, IL10 and tumor necrosis factor alpha (TNFα) as well as the prostaglandin-endoperoxide synthase 2 (PTGS2) and the antimicrobial peptide S100A9 by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Cows were assigned to groups according to their uterine health status. A large group of animals (n = 83) displayed no signs of endometritis (E.NEG). Cytological and histopathological examination revealed low agreement; hence, animals with SE were differentiated into SE(cyto) and SE(histo) groups (n = 7 and n = 13, respectively). One animal in group SE(cyto + histo) as well as four animals with signs of clinical endometritis (CE) were excluded from further analysis. SE(cyto) showed significantly higher median concentrations of IL1B, IL8 and IL17A in US as well as a significantly higher median expression of IL1B, IL8 and IL10 in endometrial biopsies compared to E.NEG. No significant differences were found for IL6 and IL10 in US and IL6, TNFα, PTGS2 and S100A9 in endometrial tissue between these groups. SE(histo) presented no differences concerning the analyzed parameters compared to E.NEG. In conclusion, a method to sample US was successfully established in dairy cows. The cytokines IL1B, IL8 and IL17A are promising candidates in diagnosing cytological endometritis by US. Further assessment of US might contribute to a better understanding of the pathological mechanisms leading to chronic endometrial inflammation and to impaired fertility in affected cows.
Collapse
|
126
|
McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 Family of Cytokines in Health and Disease. Immunity 2019; 50:892-906. [PMID: 30995505 DOI: 10.1016/j.immuni.2019.03.021] [Citation(s) in RCA: 920] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The interleukin 17 (IL-17) family of cytokines contains 6 structurally related cytokines, IL-17A through IL-17F. IL-17A, the prototypical member of this family, just passed the 25th anniversary of its discovery. Although less is known about IL-17B-F, IL-17A (commonly known as IL-17) has received much attention for its pro-inflammatory role in autoimmune disease. Over the past decade, however, it has become clear that the functions of IL-17 are far more nuanced than simply turning on inflammation. Accumulating evidence indicates that IL-17 has important context- and tissue-dependent roles in maintaining health during response to injury, physiological stress, and infection. Here, we discuss the functions of the IL-17 family, with a focus on the balance between the pathogenic and protective roles of IL-17 in cancer and autoimmune disease, including results of therapeutic blockade and novel aspects of IL-17 signal transduction regulation.
Collapse
Affiliation(s)
- Mandy J McGeachy
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Sarah L Gaffen
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
127
|
Huang Q, Kahn CR, Altindis E. Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology 2019; 160:2165-2179. [PMID: 31310273 PMCID: PMC6736053 DOI: 10.1210/en.2019-00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Viruses have developed different mechanisms to manipulate their hosts, including the process of viral mimicry in which viruses express important host proteins. Until recently, examples of viral mimicry were limited to mimics of growth factors and immunomodulatory proteins. Using a comprehensive bioinformatics approach, we have shown that viruses possess the DNA/RNA with potential to encode 16 different peptides with high sequence similarity to human peptide hormones and metabolically important regulatory proteins. We have characterized one of these families, the viral insulin/IGF-1-like peptides (VILPs), which we identified in four members of the Iridoviridae family. VILPs can bind to human insulin and IGF-1 receptors and stimulate classic postreceptor signaling pathways. Moreover, VILPs can stimulate glucose uptake in vitro and in vivo and stimulate DNA synthesis. DNA sequences of some VILP-carrying viruses have been identified in the human enteric virome. In addition to VILPs, sequences with homology to 15 other peptide hormones or cytokines can be identified in viral DNA/RNA sequences, some with a very high identity to hormones. Recent data by others has identified a peptide that resembles and mimics α-melanocyte-stimulating hormone's anti-inflammatory effects in in vitro and in vivo models. Taken together, these studies reveal novel mechanisms of viral and bacterial pathogenesis in which the microbe can directly target or mimic the host endocrine system. These findings also introduce the concept of a system of microbial hormones that provides new insights into the evolution of peptide hormones, as well as potential new roles of microbial hormones in health and disease.
Collapse
Affiliation(s)
- Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts
- Correspondence: Emrah Altindis, PhD, Boston College Biology Department, Higgins Hall 515, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467. E-mail:
| |
Collapse
|
128
|
Abstract
Spondyloarthritis (SpA) is a term that refers to a group of inflammatory diseases that includes psoriatic arthritis, axial SpA and nonradiographic axial SpA, reactive arthritis, enteropathic arthritis and undifferentiated SpA. The disease subtypes share clinical and immunological features, including joint inflammation (peripheral and axial skeleton); skin, gut and eye manifestations; and the absence of diagnostic autoantibodies (seronegative). The diseases also share genetic factors. The aetiology of SpA is still the subject of research by many groups worldwide. Evidence from genetic, experimental and clinical studies has accumulated to indicate a clear role for the IL-17 pathway in the pathogenesis of SpA. The IL-17 family consists of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F, of which IL-17A is the best studied. IL-17A is a pro-inflammatory cytokine that also has the capacity to promote angiogenesis and osteoclastogenesis. Of the six family members, IL-17A has the strongest homology with IL-17F. In this Review, we discuss how IL-17A and IL-17F and their cellular sources might contribute to the immunopathology of SpA.
Collapse
|
129
|
Motoyama M, Yamada H, Motonishi M, Matsunaga H. Elevated anti-gliadin IgG antibodies are related to treatment resistance in schizophrenia. Compr Psychiatry 2019; 93:1-6. [PMID: 31276901 DOI: 10.1016/j.comppsych.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mikuni Motoyama
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hisashi Yamada
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | | | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
130
|
Noack M, Beringer A, Miossec P. Additive or Synergistic Interactions Between IL-17A or IL-17F and TNF or IL-1β Depend on the Cell Type. Front Immunol 2019; 10:1726. [PMID: 31396230 PMCID: PMC6664074 DOI: 10.3389/fimmu.2019.01726] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023] Open
Abstract
Background: IL-17A has effects on several cell types and is a therapeutic target in several inflammatory diseases. IL-17F shares 50% homology and biological activities with IL-17A. It is now of interest to target both cytokines. The objective was to compare the IL-17A and IL-17F effect on cytokine production by RA synoviocytes, and to extend to other cells. Methods: Cells (RA synoviocytes, psoriasis skin fibroblasts, endothelial cells, myoblasts, and hepatocytes) were cultured in the presence or not of: IL-17A, IL-17F, TNF, IL-1β alone or their combinations, IL-17A/TNF, IL-17A/IL-1β, IL-17A/TNF/IL-1β, IL-17F/TNF, IL-17F/IL-1β, and IL-17F/TNF/IL-1β. All experiments were performed in parallel to reduce variability. After 48 h, supernatants were recovered and IL-6 and IL-8 levels were measured by ELISA. Results: IL-17A and IL-17F alone increased significantly IL-6 and IL-8 productions by synoviocytes, with a stronger effect for IL-17A. For IL-6 production, TNF or IL-1β alone had the largest effect on myoblasts (5-fold increase), while for IL-8 production, it was on skin fibroblasts (5-fold increase). The IL-17A/TNF synergistic increase was observed on all cells for IL-6; and for IL-8, except for endothelial cells. For IL-17F/TNF, except with endothelial cells, a synergistic effect was also observed, but less powerful than with IL-17A/TNF. IL-17A/IL-1β or IL-17F/IL-1β effect was cell-type dependent, with an additive effect for synoviocytes (1.6 and 2-fold increase, respectively for IL-6, and 1.8 and 2-fold increase, respectively for IL-8) and a synergistic effect for hepatocytes (3.8 and 4.2-fold increase, respectively for IL-6, and 6 and 2-fold increase, respectively for IL-8). The three-cytokine combination induced an additive effect for synoviocytes and a synergistic effect for skin fibroblasts. Conclusion: IL-17A and IL-17F acted similarly by inducing pro-inflammatory cytokine secretion, with a stronger response intensity with IL-17A. Their activities were potentiated by the combination with TNF and IL-1β, with an effect dependent on the cell type.
Collapse
Affiliation(s)
- Mélissa Noack
- Immunogenomics and Inflammation Research Unit, EA 4130, Edouard Herriot Hospital, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| | - Audrey Beringer
- Immunogenomics and Inflammation Research Unit, EA 4130, Edouard Herriot Hospital, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, EA 4130, Edouard Herriot Hospital, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
131
|
Guo N, Shen G, Zhang Y, Moustafa AA, Ge D, You Z. Interleukin-17 Promotes Migration and Invasion of Human Cancer Cells Through Upregulation of MTA1 Expression. Front Oncol 2019; 9:546. [PMID: 31281798 PMCID: PMC6596356 DOI: 10.3389/fonc.2019.00546] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin-17 (IL-17) has been shown to promote development of prostate, colon, skin, lung, breast, and pancreatic cancer. The purpose of this study was to determine if IL-17 regulates MTA1 expression and its biological consequences. Human cervical cancer HeLa and human prostate cancer DU-145 cell lines were used to test if IL-17 regulates metastasis associated 1 (MTA1) mRNA and protein expression using quantitative reverse transcription-polymerase chain reaction and Western blot analysis, respectively. Cell migration and invasion were studied using wound healing assays and invasion chamber assays. Thirty-four human cervical tissues were stained for IL-17 and MTA1 using immunohistochemical staining. We found that IL-17 increased MTA1 mRNA and protein expression in both cell lines. Cell migration was accelerated by IL-17, which was abolished by knockdown of MTA1 expression with small interference RNA (siRNA). Further, cell invasion was enhanced by IL-17, which was eliminated by MTA1 knockdown. Human cervical intra-epithelial neoplasia (CIN) and cervical cancer tissues had increased number of IL-17-positive cells and MTA1 expression compared to normal cervical tissues. The number of IL-17-positive cells was positively correlated with MTA1 expression. These findings demonstrate that IL-17 upregulates MTA1 mRNA and protein expression to promote HeLa and DU-145 cell migration and invasion.
Collapse
Affiliation(s)
- Na Guo
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ge Shen
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States
| | - Ying Zhang
- Department of Gynecology, Guangyuan First People's Hospital, Guangyuan, China
| | - Ahmed A Moustafa
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States
| | - Dongxia Ge
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States
| | - Zongbing You
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States.,Department of Orthopaedic Surgery, Tulane University, New Orleans, LA, United States.,Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, LA, United States.,Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, United States.,Tulane Center for Aging, Tulane University, New Orleans, LA, United States.,Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| |
Collapse
|
132
|
Xiong H, Wei L, Peng B. The Presence and involvement of interleukin-17 in apical periodontitis. Int Endod J 2019; 52:1128-1137. [PMID: 30859589 DOI: 10.1111/iej.13112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/07/2019] [Indexed: 01/10/2023]
Abstract
Apical periodontitis (AP) is a chronic inflammatory disease characterized by periapical tissue inflammation and destruction of the associated alveolar bone. It is caused by microbial infections within the root canal and the resultant host immune responses in the periapical tissues. The proinflammatory cytokine interleukin (IL)-17 has been shown to play an important role in many inflammatory diseases. There is increasing evidence of the presence of IL-17 in AP, which might be associated with disease pathogenesis. Moreover, several animal studies indicate the potential role of IL-17 in periapical inflammation and the resultant bone resorption in AP. This article reviews recent studies regarding the collective in vitro, in vivo and clinical evidence of the presence and involvement of IL-17 in AP. A search related to IL-17 in apical periodontitis was conducted on PubMed, EMBASE and Web of Science databases using keywords and controlled vocabulary. Two independent reviewers first screened titles and abstracts and then the full texts that were included. A total of 25 papers were identified, of the 25 included articles, 7 involved laboratory studies on cell cultures, 11 involved animal experimentations, and 7 were observational studies using human clinical samples. In conclusion, evidence for the presence of IL-17 in AP from human and animal models is clear. However, there is relatively little information currently available that would highlight the specific role of IL-17 in AP.
Collapse
Affiliation(s)
- H Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
133
|
So A, Inman RD. An overview of biologic disease-modifying antirheumatic drugs in axial spondyloarthritis and psoriatic arthritis. Best Pract Res Clin Rheumatol 2019; 32:453-471. [PMID: 31171315 DOI: 10.1016/j.berh.2018.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/23/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Biologic disease-modifying antirheumatic drugs (bDMARDs) are engineered proteins with high affinity for various proinflammatory immune mediators to reduce inflammation and its sequelae in various rheumatic diseases. These medications, introduced at the advent of the 21st century, have revolutionized the treatment of axial spondyloarthritis (including ankylosing spondylitis) and psoriatic arthritis. Currently approved bDMARDs for axial spondyloarthritis are etanercept, infliximab, adalimumab, golimumab, certolizumab pegol, and secukinumab. For psoriatic arthritis, all of these drugs are approved in addition to ixekizumab, ustekinumab, abatacept, and tofacitinib. Selection of the optimal bDMARD should consider patient comorbidity including uveitis, psoriasis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Anthony So
- Toronto Western Hospital, Suite 1E - 423, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| | - Robert Davies Inman
- Toronto Western Hospital, Suite 1E - 423, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
134
|
Chemin K, Gerstner C, Malmström V. Effector Functions of CD4+ T Cells at the Site of Local Autoimmune Inflammation-Lessons From Rheumatoid Arthritis. Front Immunol 2019; 10:353. [PMID: 30915067 PMCID: PMC6422991 DOI: 10.3389/fimmu.2019.00353] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Infiltration of memory CD4+ T cells in synovial joints of Rheumatoid Arthritis (RA) patients has been reported since decades. Moreover, several genome wide association studies (GWAS) pinpointing a key genetic association between the HLA-DR locus and RA have led to the generally agreed hypothesis that CD4+ T cells are directly implicated in the disease. Still, RA is a heterogeneous disease and much effort has been made to understand its different facets. T cell differentiation is driven by mechanisms including antigen stimulation, co-stimulatory signals and cytokine milieu, all of which are abundant in the rheumatic joint, implying that any T cells migrating into the joint may be further affected locally. In parallel to the characterization and classification of T-cell subsets, the contribution of different effector T cells to RA has been investigated in numerous studies though sometimes with contradictory results. In particular, the frequency of Th1 and Th17 cells has been assessed in the synovial joints with various results that could, at least partly, be explained by the stage of the disease. For regulatory T cells, it is largely accepted that they accumulate in RA synovial fluid and that the equilibrium between regulatory T cells and effector cells is a key factor in controlling inflammation processes involved in RA. Recent phenotypic studies describe the possible implication of a novel subset of peripheral T helper cells (Tph) important for T-B cell cross talk and plasma cell differentiation in the RA joint of ACPA+ (autoantibodies against citrullinated proteins) RA patients. Finally, cytotoxic CD4+ T cells, historically described as increased in the peripheral blood of RA patients have attracted new attention in the last years. In view of the recently identified peripheral T-cell subsets, we will integrate immunological data as well as information on genetic variants and therapeutic strategy outcomes into our current understanding of the width of effector T cells. We will also integrate tissue-resident memory T cell aspects, and discuss similarities and differences with inflammatory conditions in skin (psoriasis) and mucosal organs (Crohn's disease).
Collapse
Affiliation(s)
- Karine Chemin
- Division of Rheumatology, Department of Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Christina Gerstner
- Division of Rheumatology, Department of Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
135
|
Mora-Ruíz MD, Blanco-Favela F, Chávez Rueda AK, Legorreta-Haquet MV, Chávez-Sánchez L. Role of interleukin-17 in acute myocardial infarction. Mol Immunol 2019; 107:71-78. [DOI: 10.1016/j.molimm.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
|
136
|
Shen F, Verma AH, Volk A, Jones B, Coleman BM, Loza MJ, Malaviya R, Moore B, Weinstock D, Elloso MM, Gaffen SL, Ort T. Combined Blockade of TNF-α and IL-17A Alleviates Progression of Collagen-Induced Arthritis without Causing Serious Infections in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:2017-2026. [PMID: 30745461 DOI: 10.4049/jimmunol.1801436] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
The cytokines TNF-α and IL-17A are elevated in a variety of autoimmune diseases, including rheumatoid arthritis. Both cytokines are targets of several biologic drugs used in the clinic, but unfortunately many patients are refractory to these therapies. IL-17A and TNF-α are known to mediate signaling synergistically to drive expression of inflammatory genes. Hence, combined blockade of TNF-α and IL-17A represents an attractive treatment strategy in autoimmune settings where monotherapy is not fully effective. However, a major concern with this approach is the potential predisposition to opportunistic infections that might outweigh any clinical benefits. Accordingly, we examined the impact of individual versus combined neutralization of TNF-α and IL-17A in a mouse model of rheumatoid arthritis (collagen-induced arthritis) and the concomitant susceptibility to infections that are likely to manifest as side effects of blocking these cytokines (oral candidiasis or tuberculosis). Our findings indicate that combined neutralization of TNF-α and IL-17A was considerably more effective than monotherapy in improving collagen-induced arthritis disease even when administered at a minimally efficacious dose. Encouragingly, however, dual cytokine blockade did not cooperatively impair antimicrobial host defenses, as mice given combined IL-17A and TNF-α neutralization displayed infectious profiles and humoral responses comparable to mice given high doses of individual anti-TNF-α or anti-IL-17A mAbs. These data support the idea that combined neutralization of TNF-α and IL-17A for refractory autoimmunity is likely to be associated with acceptable and manageable risks of opportunistic infections associated with these cytokines.
Collapse
Affiliation(s)
- Fang Shen
- Immunology Discovery, Janssen Research and Development, LLC, Spring House, PA 19477
| | - Akash H Verma
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Amy Volk
- Immuno-Toxicology, Janssen Research and Development, LLC, Spring House, PA 19477; and
| | - Brian Jones
- Immunology Discovery, Janssen Research and Development, LLC, Spring House, PA 19477
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Matthew J Loza
- Immunology Biomarker, Janssen Research and Development, LLC, Spring House, PA 19477
| | - Ravi Malaviya
- Immunology Discovery, Janssen Research and Development, LLC, Spring House, PA 19477
| | - Beverley Moore
- Immunology Discovery, Janssen Research and Development, LLC, Spring House, PA 19477
| | - Daniel Weinstock
- Immuno-Toxicology, Janssen Research and Development, LLC, Spring House, PA 19477; and
| | - M Merle Elloso
- Immunology Discovery, Janssen Research and Development, LLC, Spring House, PA 19477
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261;
| | - Tatiana Ort
- Immunology Discovery, Janssen Research and Development, LLC, Spring House, PA 19477;
| |
Collapse
|
137
|
Moos S, Mohebiany AN, Waisman A, Kurschus FC. Imiquimod-Induced Psoriasis in Mice Depends on the IL-17 Signaling of Keratinocytes. J Invest Dermatol 2019; 139:1110-1117. [PMID: 30684554 DOI: 10.1016/j.jid.2019.01.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
The pathology of psoriasis strongly depends on IL-17A. Monoclonal antibodies blocking either the cytokine or its receptor are among the most efficient treatments for psoriatic patients. Keratinocytes can be activated upon exposure to IL-17A and tumor necrosis factor-α and secrete secondary cytokines and chemokines in the inflamed skin. In psoriasis and its imiquimod-induced mouse model, a strong skin infiltration of neutrophils and inflammatory monocytes can be observed. However, to date, it is not clear how exactly those cellular populations are attracted to the skin and how they contribute to the pathogenesis of the disease. To define the crucial cell type responding to IL-17 and initiating the downstream pathology in psoriasis-like dermatitis, we used mice specifically lacking the IL-17 receptor (IL-17RA) in different cell types. Deletion of IL-17RA in T cells or myeloid had no impact on disease development. Only deletion of this receptor in keratinocytes reflected the full-body deletion of IL-17RA, resulting in strongly reduced dermatitis development. Imiquimod treatment of those IL-17 signaling-deficient mice maintained high monocytic infiltration but failed to attract neutrophils into the skin. We conclude that keratinocytes are a critical cellular target for IL-17A-mediated neutrophil attraction and psoriasis development.
Collapse
Affiliation(s)
- Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alma N Mohebiany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
138
|
Robert M, Miossec P. IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to Circulating Bioactive Levels. Front Med (Lausanne) 2019; 5:364. [PMID: 30693283 PMCID: PMC6339915 DOI: 10.3389/fmed.2018.00364] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-17A has a direct contribution in early induction and late chronic stages of various inflammatory diseases. In vitro and in vivo experiments have first characterized its local effects on different cell types and then its systemic effects. For instance, IL-17 axis is now identified as a key driver of psoriasis through its effects on keratinocytes. Similar observations apply for rheumatoid arthritis (RA) where IL-17A triggers changes in the synovium that lead to synovitis and maintain local inflammation. These results have prompted the development of biologics to target this cytokine. However, while convincing studies are reported on the efficacy of IL-17 inhibitors in psoriasis, there are conflicting results in RA. Patient heterogeneity but also the involvement of mediators that regulate IL-17 function may explain these results. Therefore, new tools and concepts are required to identify patients that could benefit from these IL-17 targeted therapies in RA and the development of predictive biomarkers of response has started with the emergence of various bioassays. Current strategies are also focusing on synovial biopsies that may be used to stratify patients. From local to systemic levels, new approaches are developing and move the field of RA management into the era of precision medicine.
Collapse
Affiliation(s)
- Marie Robert
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Hôpital Edouard Herriot, Lyon, France
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
139
|
Darvishi B, Majidzadeh-A K, Ghadirian R, Mosayebzadeh M, Farahmand L. Recruited bone marrow derived cells, local stromal cells and IL-17 at the front line of resistance development to anti-VEGF targeted therapies. Life Sci 2018; 217:34-40. [PMID: 30472294 DOI: 10.1016/j.lfs.2018.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
Although anti-angiogenic agents targeting VEGF have shown affordable beneficial outcomes in several human cancer types, in most pre-clinical and clinical studies, these effects are transient and followed by rapid relapse and tumor regrowth. Recently, it has been suggested that recruited bone marrow derived cells (BMDCs) to the tumor-microenvironment together with stromal cells play an important role in development of resistance to anti-VEGF therapies. Additionally, acquired resistance to anti-VEGF therapies has shown to be mediated partly through overexpression of different pro-angiogenic cytokines and growth factors including G-CSF, IL-6, IL-8, VEGF and FGF by these cells. Alongside, IL-17, a pro-inflammatory cytokine, mostly secreted by infiltrated CD4+ T helper cells, has shown to mediate resistance to anti-VEGF therapies, through recruiting BMDCs and modulating stromal cells activities including endothelial cells, tumor associated macrophages and cancer associated fibroblasts. Here, we examined the role of BMDCs, tumor stromal cells, IL-17 and their negotiation in development of resistance to anti-VEGF targeted therapies.
Collapse
Affiliation(s)
- Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Tasnim Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reihane Ghadirian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Mosayebzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
140
|
Genome-wide identification of interleukin-17 (IL17) in common carp (Cyprinus carpio) and its expression following Aeromonas hydrophila infection. Gene 2018; 686:68-75. [PMID: 30342169 DOI: 10.1016/j.gene.2018.10.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 12/17/2022]
Abstract
Interleukin-17 (IL17) family cytokines are well known for having pro-inflammatory actions as important mediators of mucosal immune responses and are tightly regulated by various kinds of signals. However, most studies of IL17 genes have focused on mammals, and much less is known about IL17 genes in fish species. To better understand the scope and actions of the IL17 gene family in common carp, we characterized seven IL17 gene homologs from genomic and transcriptomic databases that could be classified into three subclasses according to different comparative genomic analyses. Phylogenetic analysis revealed that most IL17s are highly conserved, though recent gene duplication and gene loss events do exist. Through observation, we found that IL17D has undergone gene duplication in common carp and that all the IL17E genes were lost in vertebrates except mammals. The expression patterns of IL17 genes in common carp were examined during early developmental stages and in various healthy tissues, and the results indicated that most IL17 genes are ubiquitously expressed during early development and show particular tissue-specific expression in various healthy tissues, with relatively high levels in the spleen, liver, and kidney. To gain insights into the mucosal actions of inflammatory processes, the expression profiles of IL17 genes in gills from common carp were investigated after experimental challenge with Aeromonas hydrophila. After A. hydrophila infection, most IL17 genes were upregulated at 4 h postinfection in the gill and then gradually declined, while IL17A/F2 and IL17N were generally upregulated at 12 h postinfection, and IL17D2 maintained an increasing tendency. In contrast, IL17D showed the third phenomenon, rising expression, suggesting that immunogenes have different response strategies to bacterial invasion. Overall, the expression of IL17 in unstimulated tissues and toxicity attack test results demonstrated that these genes play critical roles under normal conditions and during bacterial infection. Moreover, this common carp IL17 gene family research provides a genomic resource for future studies on IL17 gene evolution, fish disease management and immune regulation.
Collapse
|
141
|
Quan-San Z, Xiaohong X, Ying L, Zhaojia S. Role of Th17-cell related cytokines in geriatric asthma. J Int Med Res 2018; 47:580-590. [PMID: 30304965 PMCID: PMC6381488 DOI: 10.1177/0300060518803828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the pathogenesis of geriatric asthma through immunoglobulin E (IgE), interleukin-17A (IL-17A), IL-17F, and glucocorticoid receptor-β (GR-β) expression. METHODS We studied 51 geriatric male patients with asthma and 50 young male patients with asthma. We also included 21 normal geriatric males and 21 normal young males. All geriatric and young patients were divided into groups according to pulmonary function. Levels of cytokines, such as IgE, IL-17A, IL-17F, and GR-β, were measured. Pulmonary function was assessed. The results from patients were compared with those from the 42 healthy subjects. RESULTS Serum IgE, IL-17A, IL-17F, and GR-β levels in geriatric patients with moderate or severe asthma were significantly higher than those in young patients with moderate asthma and in the normal population. Geriatric patients with asthma had higher asthma control test scores than did young patients with asthma. CONCLUSION Hormone resistance in geriatric male patients with asthma is more serious than that in young male patients with asthma. Airway inflammation and airway remodeling in geriatric male patients with asthma may be more serious than those in young male patients with asthma, even when there is similar pulmonary function.
Collapse
Affiliation(s)
- Zhang Quan-San
- Qingdao Municipal Hospital Group Emergency Department, Qingdao, China
| | - Xu Xiaohong
- Qingdao Municipal Hospital Group Emergency Department, Qingdao, China
| | - Li Ying
- Qingdao Municipal Hospital Group Emergency Department, Qingdao, China
| | - Sun Zhaojia
- Qingdao Municipal Hospital Group Emergency Department, Qingdao, China
| |
Collapse
|
142
|
Chen X, Chang L, Li X, Huang J, Yang L, Lai X, Huang Z, Wang Z, Wu X, Zhao J, Bellanti JA, Zheng SG, Zhang G. Tc17/IL-17A Up-Regulated the Expression of MMP-9 via NF-κB Pathway in Nasal Epithelial Cells of Patients With Chronic Rhinosinusitis. Front Immunol 2018; 9:2121. [PMID: 30283454 PMCID: PMC6156140 DOI: 10.3389/fimmu.2018.02121] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/28/2018] [Indexed: 01/13/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a common chronic inflammatory disease of the upper airways involving nasal cavity and sinus. Deriving both from its clinical complexity with protean clinical manifestations as well its pathogenetic heterogeneity, the molecular mechanisms contributing to the pathogenesis of CRS remain unclear, and attract a wide interest in the field. Current evidences indicate that IL-17A is highly expressed in chronic rhinosinusitis with nasal polyps (CRSwNP). However, its pathogenetic role in regulation of tissue remodeling of CRSwNP remains unknown. The present study aimed to investigate the cellular origins and functions of IL-17A cytokine in CRSwNP, and further determined whether IL-17A could affect the expression of metalloproteinases (MMPs), the remodeling factors of CRSwNP. The results showed that the expression of IL-17A was upregulated in nasal tissues of patients with CRSwNP compared to those with chronic rhinosinusitis without nasal polyps (CRSsNP) and controls. CD8+ cytotoxic T lymphocytes (Tc) were major IL-17A producers in nasal tissues of CRSwNP. Interleukin (IL)-17-producing CD8+ T cells (Tc17) was significantly higher in nasal tissues of CRSwNP than CRSsNP and controls. Nonetheless, no difference was observed among the IL-17A in peripheral blood lymphocytes of these three groups. Moreover, in the same patients, IL-17A expression was negligible in lymphocytes of peripheral blood when compared with nasal tissues. Increased gene and protein expression of MMP-7 and MMP-9 in patients with CRSwNP compared with controls were observed. In CRSwNP samples, IL-17A receptor (IL-17AR) co-localized with MMP-9 and they were mainly expressed in the epithelial cells. MMP-9 expression was up-regulated both in Primary human nasal epithelial cells (PHNECs) and a nasal epithelial cell line (RPMI 2650) by IL-17A treatment, and diminished by anti-IL-17AR treatment. Furthermore, IL-17A promoted the expression of MMP-9 by activating the NF-κB signal pathway. Thus, our results have revealed a crucial role of IL-17A and Tc cells on pathogenesis and tissue remodeling of CRSwNP.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lihong Chang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xia Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiancong Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Luoying Yang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoping Lai
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zizhen Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhiyuan Wang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xifu Wu
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jun Zhao
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Song Guo Zheng
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Gehua Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
143
|
Suyama K, Sakai D, Hirayama N, Nakamura Y, Matsushita E, Terayama H, Qu N, Tanaka O, Sakabe K, Watanabe M. Effects of interleukin-17A in nucleus pulposus cells and its small-molecule inhibitors for intervertebral disc disease. J Cell Mol Med 2018; 22:5539-5551. [PMID: 30207057 PMCID: PMC6201370 DOI: 10.1111/jcmm.13828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/07/2018] [Indexed: 01/05/2023] Open
Abstract
Intervertebral discs (IVD) degeneration, which is caused by ageing or mechanical stress, leads to IVD disease, including back pain and sciatica. The cytokine interleukin (IL)-17A is elevated in NP cells during IVD disease. Here we explored the pharmacotherapeutic potential of IL-17A for the treatment of IVD disease using small-molecule inhibitors that block binding of IL-17A to the IL-17A receptor (IL-17RA). Treatment of NP cells with IL-17A increased expression of cyclooxygenase-2 (COX-2), IL-6, matrix metalloproteinase (MMP)-3 and MMP-13. These increases were suppressed by an IL-17A-neutralizing antibody, and small molecules that were identified as inhibitors by binding to the IL-17A-binding region of IL-17RA. IL-17A signalling also altered sulphated glycosaminoglycan deposition and spheroid colony formation, while treatment with small-molecule inhibitors of IL-17A attenuated this response. Furthermore, mitogen-activated protein kinase pathways were activated by IL-17A stimulation and induced IL-6 and COX-2 expression, while small-molecule inhibitors of IL-17A suppressed their expression. Taken together, these results show that IL-17A is a valid target for IVD disease therapy and that small-molecule inhibitors that inhibit the IL-17A-IL-17RA interaction may be useful for pharmacotherapy of IVD disease.
Collapse
Affiliation(s)
- Kaori Suyama
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Noriaki Hirayama
- Institute of Advanced Biosciences, Tokai University, Kanagawa, Japan
| | - Yoshihiko Nakamura
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Erika Matsushita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Hayato Terayama
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Ning Qu
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Osamu Tanaka
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Kou Sakabe
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
144
|
Colombo M, Mirandola L, Chiriva-Internati M, Basile A, Locati M, Lesma E, Chiaramonte R, Platonova N. Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Front Immunol 2018; 9:1823. [PMID: 30154786 PMCID: PMC6102368 DOI: 10.3389/fimmu.2018.01823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling is a well-known key player in the communication between adjacent cells during organ development, when it controls several processes involved in cell differentiation. Notch-mediated communication may occur through the interaction of Notch receptors with ligands on adjacent cells or by a paracrine/endocrine fashion, through soluble molecules that can mediate the communication between cells at distant sites. Dysregulation of Notch pathway causes a number of disorders, including cancer. Notch hyperactivation may be caused by mutations of Notch-related genes, dysregulated upstream pathways, or microenvironment signals. Cancer cells may exploit this aberrant signaling to "educate" the surrounding microenvironment cells toward a pro-tumoral behavior. This may occur because of key cytokines secreted by tumor cells or it may involve the microenvironment through the activation of Notch signaling in stromal cells, an event mediated by a direct cell-to-cell contact and resulting in the increased secretion of several pro-tumorigenic cytokines. Up to now, review articles were mainly focused on Notch contribution in a specific tumor context or immune cell populations. Here, we provide a comprehensive overview on the outcomes of Notch-mediated pathological interactions in different tumor settings and on the molecular and cellular mediators involved in this process. We describe how Notch dysregulation in cancer may alter the cytokine network and its outcomes on tumor progression and antitumor immune response.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Maurizio Chiriva-Internati
- Kiromic Biopharma Inc., Houston, TX, United States.,Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
145
|
Brembilla NC, Senra L, Boehncke WH. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Front Immunol 2018; 9:1682. [PMID: 30127781 PMCID: PMC6088173 DOI: 10.3389/fimmu.2018.01682] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a frequent chronic inflammatory skin disease, nowadays considered a major global health problem. Several new drugs, targeting the IL-23/IL-17A pathway, have been recently licensed or are in clinical development. These therapies represent a major improvement of the way in which psoriasis is managed, since they show an unprecedented efficacy on skin symptoms of psoriasis. This has been made possible, thanks to an increasingly more accurate pathogenic view of psoriasis. Today, the belief that Th17 cells mediate psoriasis is moving to the concept of psoriasis as an IL-17A-driven disease. New questions arise at the horizon, given that IL-17A is part of a newly described family of cytokines, which has five distinct homologous: IL-17B, IL-17C, IL-17D, IL-17E, also known as IL-25 and IL-17F. IL-17 family cytokines elicit similar effects in target cells, but simultaneously trigger different and sometimes opposite functions in a tissue-specific manner. This is complicated by the fact that IL-17 cytokines show a high capacity of synergisms with other inflammatory stimuli. In this review, we will summarize the current knowledge around the cytokines belonging to the IL-17 family in relation to skin inflammation in general and psoriasis in particular, and discuss possible clinical implications. A comprehensive understanding of the different roles played by the IL-17 cytokines is crucial to appreciate current and developing therapies and to allow an effective pathogenesis- and mechanisms-driven drug design.
Collapse
Affiliation(s)
| | - Luisa Senra
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
146
|
Saini C, Tarique M, Ramesh V, Khanna N, Sharma A. γδ T cells are associated with inflammation and immunopathogenesis of leprosy reactions. Immunol Lett 2018; 200:55-65. [PMID: 30006101 DOI: 10.1016/j.imlet.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Leprosy reactions appear episodically in leprosy patients, which lead to high inflammation, morbidity and peripheral nerve damage. The role of Th17 cell has been well studied in leprosy reactions but the role of γδ or unconventional T cells which is an other major source of IL-17 in many diseases, not studied in leprosy reactional episodes. OBJECTIVE The aim of the present study to elucidate the role of γδ T cells in leprosy reactions. METHODOLOGY A total of 40 untreated non-reaction and reactions patients were recruited. PBMCs were isolated and stimulated with M. leprae sonicated antigen (MLSA) for 48 h and immuno-phenotyping was done using flow cytometry. Moreover, γδ T cells were isolated by Magnetic beads technology and mRNA expression of IL-17, IFN-γ, TGF-β and FOXP3 were analyzed by real-time PCR (qPCR) and cytokine was estimated in the culture supernatant by ELISA. RESULTS γδ T cells were significantly increased in both Reversal reaction (RR) and Erythema nodosum leprosum (ENL) reaction patients. These cells produced significant amount of IL-17 and IFN-γ. Furthermore, CD3+TCRγδ+ T cells expressed transient FOXP3 with a low amount of TGF-β in both reactions as compared to stable patients. Moreover, low TGF-β producing TCR-γδ cells were associated with low phosphorylation of STAT5A. CONCLUSION This study will add to our understanding of the immunological features that mediate and regulate the pathogenesis of leprosy and may helpful to reduce the immuno-pathogenesis of leprosy reaction by targeting these cells.
Collapse
Affiliation(s)
- Chaman Saini
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Mohd Tarique
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - V Ramesh
- Dermatology and Venereology SJH, New Delhi, 110029, India
| | - Neena Khanna
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
147
|
Sud V, Abboud A, Tohme S, Vodovotz Y, Simmons RL, Tsung A. IL-17A - A regulator in acute inflammation: Insights from in vitro, in vivo and in silico studies. Cytokine 2018; 139:154344. [PMID: 29954675 DOI: 10.1016/j.cyto.2018.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/23/2022]
Abstract
Acute inflammation following sterile injury is both inevitable and necessary to restore homeostasis and promote tissue repair. However, when excessive, inflammation can jeopardize the viability of organs and cause detrimental systemic effects. Identifying key-regulators of the immune cascade induced by surgery is vital to attenuating excessive inflammation and its subsequent effects. In this review, we describe the emerging role of IL-17A as a key-regulator in acute inflammation. The role of IL-17A in chronic disease states, such as rheumatoid arthritis, psoriasis and cancer has been well documented, but its significance in acute inflammation following surgery, sepsis, or traumatic injury has not been well studied. We aim to highlight the role of IL-17A in acute inflammation caused by trauma, liver ischemia, and organ transplantation, as well as in post-operative surgical infections. Further investigation of the roles of this cytokine in acute inflammation may stimulate novel therapies or diagnostic modalities.
Collapse
Affiliation(s)
- Vikas Sud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
148
|
Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol 2018; 833:531-544. [PMID: 29935175 DOI: 10.1016/j.ejphar.2018.06.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Ischemic stroke is a devastating and debilitating medical condition with limited therapeutic options. However, accumulating evidence indicates a central role of inflammation in all aspects of stroke including its initiation, the progression of injury, and recovery or wound healing. A central target of inflammation is disruption of the blood brain barrier or neurovascular unit. Here we discuss recent developments in identifying potential molecular targets and immunomodulatory approaches to preserve or protect barrier function and limit infarct damage and functional impairment. These include blocking harmful inflammatory signaling in endothelial cells, microglia/macrophages, or Th17/γδ T cells with biologics, third generation epoxyeicosatrienoic acid (EET) analogs with extended half-life, and miRNA antagomirs. Complementary beneficial pathways may be enhanced by miRNA mimetics or hyperbaric oxygenation. These immunomodulatory approaches could be used to greatly expand the therapeutic window for thrombolytic treatment with tissue plasminogen activator (t-PA). Moreover, nanoparticle technology allows for the selective targeting of endothelial cells for delivery of DNA/RNA oligonucleotides and neuroprotective drugs. In addition, although likely detrimental to the progression of ischemic stroke by inducing inflammation, oxidative stress, and neuronal cell death, 20-HETE may also reduce susceptibility of onset of ischemic stroke by maintaining autoregulation of cerebral blood flow. Although the interaction between inflammation and stroke is multifaceted, a better understanding of the mechanisms behind the pro-inflammatory state at all stages will hopefully help in developing novel immunomodulatory approaches to improve mortality and functional outcome of those inflicted with ischemic stroke.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA; Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
149
|
Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing T reg cells through modification of the intestinal microbiota. Nat Immunol 2018; 19:755-765. [PMID: 29915298 DOI: 10.1038/s41590-018-0134-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
The cytokines IL-17A and IL-17F have 50% amino-acid identity and bind the same receptor; however, their functional differences have remained obscure. Here we found that Il17f-/- mice resisted chemically induced colitis, but Il17a-/- mice did not, and that Il17f-/- CD45RBhiCD4+ T cells induced milder colitis in lymphocyte-deficient Rag2-/- mice, accompanied by an increase in intestinal regulatory T cells (Treg cells). Clostridium cluster XIVa in colonic microbiota capable of inducing Treg cells was increased in both Il17f-/- mice and mice given transfer Il17f-/- T cells, due to decreased expression of a group of antimicrobial proteins. There was substantial production of IL-17F, but not of IL-17A, not only by naive T cells but also by various colon-resident cells under physiological conditions. Furthermore, antibody to IL-17F suppressed the development of colitis, but antibody to IL-17A did not. These observations suggest that IL-17F is an effective target for the treatment of colitis.
Collapse
|
150
|
Mebratu YA, Tesfaigzi Y. IL-17 Plays a Role in Respiratory Syncytial Virus-induced Lung Inflammation and Emphysema in Elastase and LPS-injured Mice. Am J Respir Cell Mol Biol 2018; 58:717-726. [PMID: 29314865 PMCID: PMC6002655 DOI: 10.1165/rcmb.2017-0265oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is associated with enhanced progression of chronic obstructive pulmonary disease (COPD) and COPD exacerbations. However, little is known about the role of IL-17 in RSV-induced lung injury. We first investigated the role of RSV infection in enhancing mucous cell hyperplasia (MCH) and airspace enlargement in the lungs of mice injured with elastase and LPS (E/LPS). Mice injured with E/LPS had an enhanced and prolonged neutrophilic response to RSV that was associated with decreased levels of type I IFN and increased levels of IL-17, IL-23, CXCL-1, granulocyte colony stimulating factor (GCSF), CXCL-5, and matrix metalloproteinase (MMP)-9. In addition, extent of MCH and mean weighted alveolar space were increased significantly in the lungs of E/LPS-injured mice infected with RSV compared with E/LPS-only or RSV-only controls. Interestingly, immunodepletion of IL-17 before viral infection diminished the RSV-driven MCH and airspace enlargement in the E/LPS-injured animals, suggesting that IL-17 may be a therapeutic target for MCH and airspace enlargement when enhanced by RSV infection.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|