101
|
The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun 2017; 8:864. [PMID: 29021522 PMCID: PMC5636879 DOI: 10.1038/s41467-017-00910-z] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/07/2017] [Indexed: 12/29/2022] Open
Abstract
Obesity and elevated circulating cholesterol are risk factors for breast cancer recurrence, while the use of statins, cholesterol biosynthesis inhibitors widely used for treating hypercholesterolemia, is associated with improved disease-free survival. Here, we show that cholesterol mediates the metastatic effects of a high-fat diet via its oxysterol metabolite, 27-hydroxycholesterol. Ablation or inhibition of CYP27A1, the enzyme responsible for the rate-limiting step in 27-hydroxycholesterol biosynthesis, significantly reduces metastasis in relevant animal models of cancer. The robust effects of 27-hydroxycholesterol on metastasis requires myeloid immune cell function, and it was found that this oxysterol increases the number of polymorphonuclear-neutrophils and γδ-T cells at distal metastatic sites. The pro-metastatic actions of 27-hydroxycholesterol requires both polymorphonuclear-neutrophils and γδ-T cells, and 27-hydroxycholesterol treatment results in a decreased number of cytotoxic CD8+T lymphocytes. Therefore, through its actions on γδ-T cells and polymorphonuclear-neutrophils, 27-hydroxycholesterol functions as a biochemical mediator of the metastatic effects of hypercholesterolemia.High cholesterol is a risk factor for breast cancer recurrence. Here the authors show that cholesterol promotes breast cancer metastasis via its metabolite 27-hydroxycholesterol (27HC) that acts on immune myeloid cells residing at the distal metastatic sites, thus promoting an immune suppressive environment.
Collapse
|
102
|
Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis 2017; 16:188. [PMID: 28969682 PMCID: PMC5625595 DOI: 10.1186/s12944-017-0579-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023] Open
Abstract
Due to the fact that one of the main causes of worldwide deaths are directly related to atherosclerosis, scientists are constantly looking for atherosclerotic factors, in an attempt to reduce prevalence of this disease. The most important known pro-atherosclerotic factors include: elevated levels of LDL, low HDL levels, obesity and overweight, diabetes, family history of coronary heart disease and cigarette smoking. Since finding oxidized forms of cholesterol – oxysterols – in lesion in the arteries, it has also been presumed they possess pro-atherosclerotic properties. The formation of oxysterols in the atherosclerosis lesions, as a result of LDL oxidation due to the inflammatory response of cells to mechanical stress, is confirmed. However, it is still unknown, what exactly oxysterols cause in connection with atherosclerosis, after gaining entry to the human body e.g., with food containing high amounts of cholesterol, after being heated. The in vivo studies should provide data to finally prove or disprove the thesis regarding the pro-atherosclerotic prosperities of oxysterols, yet despite dozens of available in vivo research some studies confirm such properties, other disprove them. In this article we present the current knowledge about the mechanism of formation of atherosclerotic lesions and we summarize available data on in vivo studies, which investigated whether oxysterols have properties to cause the formation and accelerate the progress of the disease. Additionally we will try to discuss why such different results were obtained in all in vivo studies.
Collapse
|
103
|
Turner RJ, Kerber IJ. A theory of eu-estrogenemia: a unifying concept. Menopause 2017; 24:1086-1097. [PMID: 28562489 PMCID: PMC5571883 DOI: 10.1097/gme.0000000000000895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of the study was to propose a unifying theory for the role of estrogen in postmenopausal women through examples in basic science, randomized controlled trials, observational studies, and clinical practice. METHODS Review and evaluation of the literature relating to estrogen. DISCUSSION The role of hormone therapy and ubiquitous estrogen receptors after reproductive senescence gains insight from basic science models. Observational studies and individualized patient care in clinical practice may show outcomes that are not reproduced in randomized clinical trials. The understanding gained from the timing hypothesis for atherosclerosis, the critical window theory in neurosciences, randomized controlled trials, and numerous genomic and nongenomic actions of estrogen discovered in basic science provides new explanations to clinical challenges that practitioners face. Consequences of a hypo-estrogenemic duration in women's lives are poorly understood. The Study of Women Across the Nation suggests its magnitude is greater than was previously acknowledged. We propose that the healthy user bias was the result of surgical treatment (hysterectomy with oophorectomy) for many gynecological maladies followed by pharmacological and physiological doses of estrogen to optimize patient quality of life. The past decade of research has begun to demonstrate the role of estrogen in homeostasis. CONCLUSIONS The theory of eu-estrogenemia provides a robust framework to unify the timing hypothesis, critical window theory, randomized controlled trials, the basic science of estrogen receptors, and clinical observations of patients over the past five decades.
Collapse
Affiliation(s)
- Ralph J. Turner
- Department of Surgery, University of Texas Health Science Center at Tyler, Tyler, TX
| | - Irwin J. Kerber
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical School, Dallas, TX
| |
Collapse
|
104
|
Kim BY, Son Y, Choi J, Eo SK, Park YC, Kim K. 27-Hydroxycholesterol upregulates the production of heat shock protein 60 of monocytic cells. J Steroid Biochem Mol Biol 2017; 172:29-35. [PMID: 28549691 DOI: 10.1016/j.jsbmb.2017.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Investigating differentially expressed proteins in a milieu rich in cholesterol oxidation products, we found via mass spectrometry-based proteomics that surface levels of heat shock protein 60 (HSP60) were upregulated on monocytic cells in the presence of 27-hydroxycholesterol (27OHChol). The elevated levels of cytoplasmic membrane HSP60 were verified via Western blot analysis and visualized by confocal microscopy. Treatment with 27OHChol also resulted in increased levels of cellular HSP60 without altering its transcription. Cholesterol, however, did not affect cell-surface levels and cellular amount of HSP60. GSK 2033, an LXR antagonist, inhibited expression of live X receptor α, but not of HSP60, induced by 27OHChol. Treatment with 27OHChol also resulted in increased release of HSP60 from monocytic cells, but the release was significantly reduced by inhibitors of endoplasmic reticulum-Golgi protein trafficking, brefeldin A and monensin. Results of the current study indicate that 27OHChol upregulates not only cell-surface and cellular levels of HSP60 but also its release from monocytic cells, thereby contributing to activation of the immune system.
Collapse
Affiliation(s)
- Bo-Young Kim
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Yonghae Son
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Jeongyoon Choi
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Young Chul Park
- Department of Microbiology & Immunology, Pusan National University-School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea.
| |
Collapse
|
105
|
Oguro H, McDonald JG, Zhao Z, Umetani M, Shaul PW, Morrison SJ. 27-Hydroxycholesterol induces hematopoietic stem cell mobilization and extramedullary hematopoiesis during pregnancy. J Clin Invest 2017; 127:3392-3401. [PMID: 28783041 DOI: 10.1172/jci94027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) is induced during pregnancy to support rapid expansion of maternal blood volume. EMH activation requires hematopoietic stem cell (HSC) proliferation and mobilization, processes that depend upon estrogen receptor α (ERα) in HSCs. Here we show that treating mice with estradiol to model estradiol increases during pregnancy induced HSC proliferation in the bone marrow but not HSC mobilization. Treatment with the alternative ERα ligand 27-hydroxycholesterol (27HC) induced ERα-dependent HSC mobilization and EMH but not HSC division in the bone marrow. During pregnancy, 27HC levels increased in hematopoietic stem/progenitor cells as a result of CYP27A1, a cholesterol hydroxylase. Cyp27a1-deficient mice had significantly reduced 27HC levels, HSC mobilization, and EMH during pregnancy but normal bone marrow hematopoiesis and EMH in response to bleeding or G-CSF treatment. Distinct hematopoietic stresses thus induce EMH through different mechanisms. Two different ERα ligands, estradiol and 27HC, work together to promote EMH during pregnancy, revealing a collaboration of hormonal and metabolic mechanisms as well as a physiological function for 27HC in normal mice.
Collapse
Affiliation(s)
- Hideyuki Oguro
- Children's Research Institute and.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhiyu Zhao
- Children's Research Institute and.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Philip W Shaul
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Pulmonary and Vascular Biology and
| | - Sean J Morrison
- Children's Research Institute and.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
106
|
He S, Nelson ER. 27-Hydroxycholesterol, an endogenous selective estrogen receptor modulator. Maturitas 2017; 104:29-35. [PMID: 28923174 DOI: 10.1016/j.maturitas.2017.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
Abstract
Estrogen receptors (ERs) mediate the actions of the steroidal estrogens, and are important for the regulation of several physiological and pathophysiological processes, including reproduction, bone physiology, cardiovascular physiology and breast cancer. The unique pharmacology of the ERs allows for certain ligands, such as tamoxifen, to elicit tissue- and context-specific responses, ligands now referred to as selective estrogen receptor modulators (SERMs). Recently, the cholesterol metabolite 27-hydroxychoelsterol (27HC) has been defined as an endogenous SERM, with activities in atherosclerosis, osteoporosis, breast and prostate cancers, and neural degenerative diseases. Since 27HC concentrations closely mirror those of cholesterol, it is possible that 27HC mediates many of the biological effects of cholesterol. This paper provides an overview of ER pharmacology and summarizes the work to date implicating 27HC in various diseases. Wherever possible, we highlight clinical data in support of a role for 27HC in the diseases discussed.
Collapse
Affiliation(s)
- Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
107
|
Luchetti F, Crinelli R, Cesarini E, Canonico B, Guidi L, Zerbinati C, Di Sario G, Zamai L, Magnani M, Papa S, Iuliano L. Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol 2017; 13:581-587. [PMID: 28783588 PMCID: PMC5545768 DOI: 10.1016/j.redox.2017.07.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Oxysterols are bioactive lipids that act as regulators of lipid metabolism, inflammation, cell viability and are involved in several diseases, including atherosclerosis. Mounting evidence linked the atherosclerosis to endothelium dysfunction; in fact, the endothelium regulates the vascular system with roles in processes such as hemostasis, cell cholesterol, hormone trafficking, signal transduction and inflammation. Several papers shed light the ability of oxysterols to induce apoptosis in different cell lines including endothelial cells. Apoptotic endothelial cell and endothelial denudation may constitute a critical step in the transition to plaque erosion and vessel thrombosis, so preventing the endothelial damaged has garnered considerable attention as a novel means of treating atherosclerosis. Endoplasmic reticulum (ER) is the site where the proteins are synthetized and folded and is necessary for most cellular activity; perturbations of ER homeostasis leads to a condition known as endoplasmic reticulum stress. This condition evokes the unfolded protein response (UPR) an adaptive pathway that aims to restore ER homeostasis. Mounting evidence suggests that chronic activation of UPR leads to cell dysfunction and death and recently has been implicated in pathogenesis of endothelial dysfunction. Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation, maintaining basal levels of autophagic activity it is critical for cell survival. Several evidence suggests that persistent ER stress often results in stimulation of autophagic activities, likely as a compensatory mechanism to relieve ER stress and consequently cell death. In this review, we summarize evidence for the effect of oxysterols on endothelial cells, especially focusing on oxysterols-mediated induction of endoplasmic reticulum stress. Endothelial cells dysfunction is critical in the process of atherothrombosis. Endoplasmic reticulum stress is a key component in endothelial cell dysfunction. Oxysterols are oxidation products of cholesterol found in atherosclerosis lesions. Oxysterols are potential modulators of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- F Luchetti
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - R Crinelli
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - E Cesarini
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - B Canonico
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - L Guidi
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - C Zerbinati
- Department of Medico-Surgical Sciences and Biotechnologies Vascular Biology, Atherothrombosis & Mass Spectrometry, Sapienza University of Rome, Latina, Italy
| | - G Di Sario
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - L Zamai
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - M Magnani
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - S Papa
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - L Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies Vascular Biology, Atherothrombosis & Mass Spectrometry, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
108
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
109
|
Son Y, Kim BY, Park YC, Eo SK, Cho HR, Kim K. PI3K and ERK signaling pathways are involved in differentiation of monocytic cells induced by 27-hydroxycholesterol. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:301-308. [PMID: 28461772 PMCID: PMC5409116 DOI: 10.4196/kjpp.2017.21.3.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/13/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022]
Abstract
27-Hydroxycholesterol induces differentiation of monocytic cells into mature dendritic cells, mDCs. In the current study we sought to determine roles of the PI3K and the ERK pathways in the 27OHChol-induced differentiation. Up-regulation of mDC-specific markers like CD80, CD83 and CD88 induced by stimulation with 27OHChol was significantly reduced in the presence of LY294002, an inhibitor of PI3K, and U0126, an inhibitor of ERK. Surface expression of MHC class I and II molecules elevated by 27OHChol was decreased to basal levels in the presence of the inhibitors. Treatment with LY294002 or U0126 resulted in recovery of endocytic activity which was reduced by 27OHChol. CD197 expression and cell adherence enhanced by 27OHChol were attenuated in the presence of the inhibitors. Transcription and surface expression of CD molecules involved in atherosclerosis such as CD105, CD137 and CD166 were also significantly decreased by treatment with LY294002 and U0126. These results mean that the PI3K and the ERK signaling pathways are necessary for differentiation of monocytic cells into mDCs and involved in over-expression of atherosclerosis-associated molecules in response to 27OHChol.
Collapse
Affiliation(s)
- Yonghae Son
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Institute of Marine BioTechnology, Pusan National University, Busan 46241, Korea
| | - Bo-Young Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Young Chul Park
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Hyok-Rae Cho
- Department of Neurosurgery, Kosin University College of Medicine, Busan 49267, Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
110
|
Shen Z, Zhu D, Liu J, Chen J, Liu Y, Hu C, Li Z, Li Y. 27-Hydroxycholesterol induces invasion and migration of breast cancer cells by increasing MMP9 and generating EMT through activation of STAT-3. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:1-8. [PMID: 28257824 DOI: 10.1016/j.etap.2017.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Breast carcinoma plays a vital role in the reasons of global women's death. ER-related invasion and migration play an important part in the development and prognosis of breast cancer. Here, we found that 27-Hydroxycholesterol (27HC) could induce epithelial-mesenchymal transition (EMT) and increase the expression of the matrix metalloproteinase 9 (MMP9) at mRNA level and the active form. Meanwhile, interestingly, we found 27HC activated signal transducer and activator of transcription 3 (STAT-3) in ER positive cells except activation of ER signaling. Furthermore, inhibition of STAT-3 by siRNA attenuated the 27HC-induced improvement of MMP9 and decreased the invasion and migration ability in MCF7 and T47D cells. In addition, 27HC could also promote MMP9, vimentin and active STAT-3 in the ER negative cells MDA-MB-231. All these results not only raise a mechanism whereby 27HC enhances the invasion and metastasis, but also is helpful to realize 27HC as a potential endogenous detrimental factor in breast tumor patients.
Collapse
Affiliation(s)
- Zhaoxia Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongmei Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
111
|
Takase S, Matoba T, Nakashiro S, Mukai Y, Inoue S, Oi K, Higo T, Katsuki S, Takemoto M, Suematsu N, Eshima K, Miyata K, Yamamoto M, Usui M, Sadamatsu K, Satoh S, Kadokami T, Hironaga K, Ichi I, Todaka K, Kishimoto J, Egashira K, Sunagawa K. Ezetimibe in Combination With Statins Ameliorates Endothelial Dysfunction in Coronary Arteries After Stenting. Arterioscler Thromb Vasc Biol 2017; 37:350-358. [DOI: 10.1161/atvbaha.116.308388] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/21/2016] [Indexed: 11/16/2022]
Abstract
Objectives—
We sought to investigate whether treatment with ezetimibe in combination with statins improves coronary endothelial function in target vessels in coronary artery disease patients after coronary stenting.
Approach and Results—
We conducted a multicenter, prospective, randomized, open-label, blinded-end point trial among 11 cardiovascular treatment centers. From 2011 to 2013, 260 coronary artery disease patients who underwent coronary stenting were randomly allocated to 2 arms (statin monotherapy, S versus ezetimibe [10 mg/d]+statin combinational therapy, E+S). We defined target vessel dysfunction as the primary composite outcome, which comprised target vessel failure during treatment and at the 6- to 8-month follow-up coronary angiography and coronary endothelial dysfunction determined via intracoronary acetylcholine testing performed in cases without target vessel failure at the follow-up coronary angiography. Coadministration of ezetimibe with statins further lowered low-density lipoprotein cholesterol levels (83±23 mg/dL in S versus 67±23 mg/dL in E+S;
P
<0.0001), with significant decreases in oxidized low-density lipoprotein and oxysterol levels. Among patients without target vessel failure, 46 out of 89 patients (52%) in the S arm and 34 out of 96 patients (35%) in the E+S arm were found to have coronary endothelial dysfunction (
P
=0.0256), and the incidence of target vessel dysfunction at follow-up was significantly decreased in the E+S arm (69/112 (62%) in S versus 47/109 (43%) in E+S;
P
=0.0059). A post hoc analysis of post-treatment low-density lipoprotein cholesterol–matched subgroups revealed that the incidence of both target vessel dysfunction and coronary endothelial dysfunction significantly decreased in the E+S arm, with significant reductions in oxysterol levels.
Conclusions—
The CuVIC trial (Effect of Cholesterol Absorption Inhibitor Usage on Target Vessel Dysfunction after Coronary Stenting) has shown that ezetimibe with statins, compared with statin monotherapy, improves functional prognoses, ameliorating endothelial dysfunction in stented coronary arteries, and was associated with larger decreases in oxysterol levels.
Collapse
Affiliation(s)
- Susumu Takase
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Tetsuya Matoba
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Soichi Nakashiro
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Yasushi Mukai
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Shujiro Inoue
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Keiji Oi
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Taiki Higo
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Shunsuke Katsuki
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Masao Takemoto
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Nobuhiro Suematsu
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Kenichi Eshima
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Kenji Miyata
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Mitsutaka Yamamoto
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Makoto Usui
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Kenji Sadamatsu
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Shinji Satoh
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Toshiaki Kadokami
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Kiyoshi Hironaga
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Ikuyo Ichi
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Koji Todaka
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Junji Kishimoto
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Kensuke Egashira
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | - Kenji Sunagawa
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (S.T., T.M., S.N., T.H., K. Egashira, K. Sunagawa); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.T., T.M., S.N., Y.M., S.I., K.O., T.H., S.K., M.T., K. Sunagawa); Japanese Red Cross Fukuoka Hospital, Japan (N.S.); St. Mary’s Hospital, Kurume, Japan (K. Eshima); Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan (K.M.)
| | | |
Collapse
|
112
|
Zhu D, Shen Z, Liu J, Chen J, Liu Y, Hu C, Li Z, Li Y. The ROS-mediated activation of STAT-3/VEGF signaling is involved in the 27-hydroxycholesterol-induced angiogenesis in human breast cancer cells. Toxicol Lett 2016; 264:79-86. [DOI: 10.1016/j.toxlet.2016.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022]
|
113
|
Chambliss KL, Barrera J, Umetani M, Umetani J, Kim SH, Madak-Erdogan Z, Huang L, Katzenellenbogen BS, Katzenellenbogen JA, Mineo C, Shaul PW. Nonnuclear Estrogen Receptor Activation Improves Hepatic Steatosis in Female Mice. Endocrinology 2016; 157:3731-3741. [PMID: 27552247 PMCID: PMC5045504 DOI: 10.1210/en.2015-1629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogens have the potential to afford atheroprotection, to prevent excess adiposity and its metabolic complications including insulin resistance, and to lessen hepatic steatosis. Cellular responses to estrogens occur through gene regulation by nuclear estrogen receptors (ERs), and through signal initiation by plasma membrane-associated ER. Leveraging the potentially favorable cardiometabolic actions of estrogens has been challenging, because their reproductive tract and cancer-promoting effects adversely impact the risk to benefit ratio of the therapy. In previous works, we discovered that an estrogen dendrimer conjugate (EDC) comprised of ethinyl-estradiol (E2) molecules linked to a poly(amido)amine dendrimer selectively activates nonnuclear ER, and in mice, EDC does not invoke a uterotrophic response or support ER-positive breast cancer growth. In the present investigation, we employed EDC to determine how selective nonnuclear ER activation impacts atherosclerosis, adiposity, glucose homeostasis, and hepatic steatosis in female mice. In contrast to E2, EDC did not blunt atherosclerosis in hypercholesterolemic apoE-/- mice. Also in contrast to E2, EDC did not prevent the increase in adiposity caused by Western diet feeding in wild-type mice, and it did not affect Western diet-induced glucose intolerance. However, E2 and EDC had comparable favorable effect on diet-induced hepatic steatosis, and this was related to down-regulation of fatty acid and triglyceride synthesis genes in the liver. Predictably, only E2 caused a uterotrophic response. Thus, although nonnuclear ER activation does not prevent atherosclerosis or diet-induced obesity or glucose intolerance, it may provide a potential new strategy to combat hepatic steatosis without impacting the female reproductive tract or increasing cancer risk.
Collapse
Affiliation(s)
- Ken L Chambliss
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Jose Barrera
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Michihisa Umetani
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Junko Umetani
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Sung Hoon Kim
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Zeynep Madak-Erdogan
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Benita S Katzenellenbogen
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - John A Katzenellenbogen
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
114
|
Abstract
Oxysterols have long been known for their important role in cholesterol homeostasis, where they are involved in both transcriptional and posttranscriptional mechanisms for controlling cholesterol levels. However, they are increasingly associated with a wide variety of other, sometimes surprising cell functions. They are activators of the Hedgehog pathway (important in embryogenesis), and they act as ligands for a growing list of receptors, including some that are of importance to the immune system. Oxysterols have also been implicated in several diseases such as neurodegenerative diseases and atherosclerosis. Here, we explore the latest research into the roles oxy-sterols play in different areas, and we evaluate the current evidence for these roles. In addition, we outline critical concepts to consider when investigating the roles of oxysterols in various situations, which includes ensuring that the concentration and form of the oxysterol are relevant in that context--a caveat with which many studies have struggled.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Isabelle Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Ingrid C Gelissen
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia;
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| |
Collapse
|
115
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
116
|
Shoji A, Ikeya K, Aoyagi M, Takatsuji R, Yanagida A, Shibusawa Y, Sugawara M. Monitoring of cholesterol oxidation in a lipid bilayer membrane using streptolysin O as a sensing and signal transduction element. J Pharm Biomed Anal 2016; 128:455-461. [DOI: 10.1016/j.jpba.2016.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022]
|
117
|
Diclofenac inhibits 27-hydroxycholesterol-induced inflammation. Biochem Biophys Res Commun 2016; 478:1456-61. [PMID: 27576203 DOI: 10.1016/j.bbrc.2016.08.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022]
Abstract
27-Hydroxycholesterol (27OHChol) is a cholesterol oxidation product that induces inflammation. In the current study we investigated the effects of diclofenac on inflammatory responses caused by 27OHChol using human monocyte/macrophage (THP-1) cells. Transcription and secretion of CCL2, CCL3, and CCL4 chemokines enhanced by 27OHChol were significantly attenuated by diclofenac in a concentration dependent manner. Migrations of monocytic cells and CCR5-positive Jurkat T cells were reduced proportionally to the concentrations of diclofenac. Superproduction of CCL2 and monocytic cell migration induced by 27OHChol plus LPS were significantly attenuated by diclofenac. Diclofenac also attenuated transcription of MMP-9 and release of its active gene product. These results indicate that diclofenac inhibits 27OHChol-induced inflammatory responses, thereby suppressing inflammation in a milieu rich in cholesterol oxidation products.
Collapse
|
118
|
Zhou L, Zheng Y, Li Z, Bao L, Dou Y, Tang Y, Zhang J, Zhou J, Liu Y, Jia Y, Li X. Compound K Attenuates the Development of Atherosclerosis in ApoE(-/-) Mice via LXRα Activation. Int J Mol Sci 2016; 17:ijms17071054. [PMID: 27399689 PMCID: PMC4964430 DOI: 10.3390/ijms17071054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li Zhou
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
- Department of pharmacy, Xinqiao Hospital & The Second Affiliated Hospital, Third Military Medical University, Shapingba, Chongqing 400037, China.
| | - Yu Zheng
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Zhuoying Li
- Department of Outpatient, Logistical Engineering University of PLA, Shapingba, Chongqing 401311, China.
| | - Lingxia Bao
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Yin Dou
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Yuan Tang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Jianxiang Zhang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Jianzhi Zhou
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Ya Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| |
Collapse
|
119
|
Guillemot-Legris O, Mutemberezi V, Muccioli GG. Oxysterols in Metabolic Syndrome: From Bystander Molecules to Bioactive Lipids. Trends Mol Med 2016; 22:594-614. [PMID: 27286741 DOI: 10.1016/j.molmed.2016.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Oxysterols are cholesterol metabolites now considered bona fide bioactive lipids. Recent studies have identified new receptors for oxysterols involved in immune and inflammatory processes, hence reviving their appeal. Through multiple receptors, oxysterols are involved in numerous metabolic and inflammatory processes, thus emerging as key mediators in metabolic syndrome. This syndrome is characterized by complex interactions between inflammation and a dysregulated metabolism. Presently, the use of synthetic ligands and genetic models has facilitated a better understanding of the roles of oxysterols in metabolism, but also raised interesting questions. We discuss recent findings on the absolute levels of oxysterols in tissues, their newly identified targets, and the mechanistic studies emphasizing their importance in metabolic disease, as there is a pressing need to further comprehend these intriguing bioactive lipids.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium.
| |
Collapse
|
120
|
Ehrhardt M, Gerber A, Zapp J, Hannemann F, Bernhardt R. Human CYP27A1 catalyzes hydroxylation of β-sitosterol and ergosterol. Biol Chem 2016; 397:513-8. [DOI: 10.1515/hsz-2016-0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/15/2016] [Indexed: 11/15/2022]
Abstract
Abstract
β-Sitosterol and ergosterol are the equivalents of cholesterol in plants and fungi, respectively, and common sterols in the human diet. In the current work, both were identified as novel CYP27A1 substrates by in vitro experiments applying purified human CYP27A1 and its redox partners adrenodoxin (Adx) and adrenodoxin reductase (AdR). A Bacillus megaterium based biocatalyst recombinantly expressing the same proteins was utilized for the conversion of the substrates to obtain sufficient amounts of the novel products for a structural NMR analysis. β-Sitosterol was found to be converted into 26-hydroxy-β-sitosterol and 29-hydroxy-β-sitosterol, whereas ergosterol was converted into 24-hydroxyergosterol, 26-hydroxyergosterol and 28-hydroxyergosterol.
Collapse
|
121
|
Manrique C, Lastra G, Ramirez-Perez FI, Haertling D, DeMarco VG, Aroor AR, Jia G, Chen D, Barron BJ, Garro M, Padilla J, Martinez-Lemus LA, Sowers JR. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice. Endocrinology 2016; 157:1590-600. [PMID: 26872089 PMCID: PMC4816732 DOI: 10.1210/en.2015-1681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.
Collapse
Affiliation(s)
- Camila Manrique
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Guido Lastra
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Francisco I Ramirez-Perez
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Dominic Haertling
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Vincent G DeMarco
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Guanghong Jia
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Dongqing Chen
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Brady J Barron
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Mona Garro
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Jaume Padilla
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Luis A Martinez-Lemus
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - James R Sowers
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
122
|
Baek AE, Nelson ER. The Contribution of Cholesterol and Its Metabolites to the Pathophysiology of Breast Cancer. Discov Oncol 2016; 7:219-28. [PMID: 27020054 DOI: 10.1007/s12672-016-0262-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/17/2016] [Indexed: 02/07/2023] Open
Abstract
As the most common cancer in women, one in eight will develop invasive breast cancer over their lifetime making it the second most common cause of cancer-related death among women. Of the many known risk factors for developing breast cancer, obesity stands out as prominent and modifiable. Interestingly, elevated cholesterol is highly associated with obesity and has emerged as an independent risk factor for breast cancer onset and recurrence. This indicates that cholesterol also contributes to the breast cancer pathogenicity of obesity. This review highlights our current understanding of the mechanisms by which cholesterol impacts breast cancer. Key preclinical studies have been highlighted, including the discussion of homeostatic control of cholesterol levels, signaling by cholesterol metabolites through the estrogen receptors, cholesterol formation of lipid rafts and subsequent signaling, and the potential roles of cholesterol in creating a pro-inflammatory tumor microenvironment. Future directions and avenues for therapeutic exploitation are also considered.
Collapse
Affiliation(s)
- Amy E Baek
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S. Goodwin Ave (MC-114), Urbana, IL, 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S. Goodwin Ave (MC-114), Urbana, IL, 61801, USA. .,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
123
|
Vurusaner B, Leonarduzzi G, Gamba P, Poli G, Basaga H. Oxysterols and mechanisms of survival signaling. Mol Aspects Med 2016; 49:8-22. [PMID: 27017897 DOI: 10.1016/j.mam.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
Oxysterols, a family of oxidation products of cholesterol, are increasingly drawing attention of scientists to their multifaceted biochemical properties, several of them of clear relevance to human pathophysiology. Taken up by cells through both vesicular and non-vesicular ways or often generated intracellularly, oxysterols contribute to modulate not only the inflammatory and immunological response but also cell viability, metabolism and function by modulating several signaling pathways. Moreover, they have been recognized as elective ligands for the most important nuclear receptors. The outcome of such a complex network of intracellular reactions promoted by these cholesterol oxidation products appears to be largely dependent not only on the type of cells, the dynamic conditions of the cellular and tissue environment but also on the concentration of the oxysterols. Here focus has been given to the cascade of molecular events exerted by relatively low concentrations of certain oxysterols that elicit survival and functional signals in the cells, with the aim to contribute to further expand the knowledge about the biological and physiological potential of the biochemical reactions triggered and modulated by oxysterols.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey
| | | | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Huveyda Basaga
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
124
|
Ding Y, Huang L, Xian X, Yuhanna IS, Wasser CR, Frotscher M, Mineo C, Shaul PW, Herz J. Loss of Reelin protects against atherosclerosis by reducing leukocyte-endothelial cell adhesion and lesion macrophage accumulation. Sci Signal 2016; 9:ra29. [PMID: 26980442 DOI: 10.1126/scisignal.aad5578] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The multimodular glycoprotein Reelin controls neuronal migration and synaptic transmission by binding to apolipoprotein E receptor 2 (Apoer2) and very low density lipoprotein receptor (Vldlr) on neurons. In the periphery, Reelin is produced by the liver, circulates in blood, and promotes thrombosis and hemostasis. To investigate if Reelin influences atherogenesis, we studied atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice in which we inducibly deleted Reelin either ubiquitously or only in the liver, thus preventing the production of circulating Reelin. In both types of Reelin-deficient mice, atherosclerosis progression was markedly attenuated, and macrophage content and endothelial cell staining for vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were reduced at the sites of atherosclerotic lesions. Intravital microscopy revealed decreased leukocyte-endothelial adhesion in the Reelin-deficient mice. In cultured human endothelial cells, Reelin enhanced monocyte adhesion and increased ICAM1, VCAM1, and E-selectin expression by suppressing endothelial nitric oxide synthase (eNOS) activity and increasing nuclear factor κB (NF-κB) activity in an Apoer2-dependent manner. These findings suggest that circulating Reelin promotes atherosclerosis by increasing vascular inflammation, and that reducing or inhibiting circulating Reelin may present a novel approach for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Yinyuan Ding
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA. Key Laboratory of Medical Electrophysiology, Ministry of Education of China, and the Institute of Cardiovascular Research, Sichuan Medical University, Luzhou 646000, China
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xunde Xian
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ivan S Yuhanna
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Frotscher
- Zentrum für Molekulare Neurobiologie Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA. Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA. Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA. Center for Neuroscience, Department of Neuroanatomy, Albert-Ludwigs-University, 79104 Freiburg, Germany.
| |
Collapse
|
125
|
Umetani M. Re-adopting classical nuclear receptors by cholesterol metabolites. J Steroid Biochem Mol Biol 2016; 157:20-6. [PMID: 26563834 PMCID: PMC4724260 DOI: 10.1016/j.jsbmb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/10/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
Since the first cloning of the human estrogen receptor (ER) α in 1986 and the subsequent cloning of human ERβ, there has been extensive investigation of the role of estrogen/ER. Estrogens/ER play important roles not only in sexual development and reproduction but also in a variety of other functions in multiple tissues. Selective Estrogen Receptor Modulators (SERMs) are ER lignds that act as agonists or antagonists depending on the target genes and tissues, and until recently, only synthetic SERMs have been recognized. However, the discovery of the first endogenous SERM, 27-hydroxycholesterol (27HC), opened a new dimension of ER action in health and disease. In addition to the identification of 27HC as a SERM, oxysterols have been recently demonstrated as indirect modulators of ER through interaction with the nuclear receptor Liver X Receptor (LXR) β. In this review, the recent progress on these novel roles of oxysterols in ER modulation is summarized.
Collapse
Affiliation(s)
- Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3517 Cullen Blvd, SERC 545, Houston, TX 77204-5056, USA.
| |
Collapse
|
126
|
Zhao Y, Chen Y, Kuang Y, Bagchi MK, Taylor RN, Katzenellenbogen JA, Katzenellenbogen BS. Multiple Beneficial Roles of Repressor of Estrogen Receptor Activity (REA) in Suppressing the Progression of Endometriosis. Endocrinology 2016; 157:900-12. [PMID: 26653759 PMCID: PMC4733120 DOI: 10.1210/en.2015-1324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endometriosis is an estrogen-dependent, inflammation-driven gynecologic disorder in which endometrial tissue creates inflammatory lesions at extrauterine sites, leading to pelvic pain and impaired fertility. Although dysregulated estrogen receptor (ER) signaling has been implicated, understanding of this disease is incomplete and current therapies are of limited benefit. Using an immunocompetent syngeneic murine model, we used combinations of donor uterine tissue and/or recipient host mice with partial genetic deletion of the ER coregulator, repressor of ER activity (REA) (also known as prohibitin 2), to investigate roles of REA in the contributions of donor uterine tissue and host cell influences on endometriosis establishment and progression. Ectopic lesions derived from donor tissue with half the wild-type gene dosage of REA (REA(+/-)) grown in REA(+/-) hosts displayed enhanced proliferation, vascularization, and markedly increased neuron innervation and inflammatory responses, including elevated cytokine production, nuclear factor kappa B activation, cyclooxygenase-2 expression, and immune cell infiltration. Although lesion progression was greatest when REA was reduced in both donor tissue and host animals, other donor/host combinations indicated that distinct stimulatory inputs were derived from ectopic tissue (proliferative signals) and host cells (inflammatory signals). Importantly, depletion of REA in primary human endometriotic stromal cells led to elevated proliferation and expression of cell cycle regulators. Notably, REA was significantly lower in human endometriotic tissue versus normal human endometrium. Thus, REA modulates cross talk among multiple cell types in the uterine tissue and host background, serving as a brake on the estradiol-ER axis and restraining multiple aspects that contribute to the pathologic progression of endometriosis.
Collapse
Affiliation(s)
- Yuechao Zhao
- Departments of Molecular and Integrative Physiology (Y.Z., Y.C., M.K.B., B.S.K.) and Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Gynecology and Obstetrics (Y.K.), The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Yiru Chen
- Departments of Molecular and Integrative Physiology (Y.Z., Y.C., M.K.B., B.S.K.) and Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Gynecology and Obstetrics (Y.K.), The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Ye Kuang
- Departments of Molecular and Integrative Physiology (Y.Z., Y.C., M.K.B., B.S.K.) and Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Gynecology and Obstetrics (Y.K.), The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Milan K Bagchi
- Departments of Molecular and Integrative Physiology (Y.Z., Y.C., M.K.B., B.S.K.) and Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Gynecology and Obstetrics (Y.K.), The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Robert N Taylor
- Departments of Molecular and Integrative Physiology (Y.Z., Y.C., M.K.B., B.S.K.) and Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Gynecology and Obstetrics (Y.K.), The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - John A Katzenellenbogen
- Departments of Molecular and Integrative Physiology (Y.Z., Y.C., M.K.B., B.S.K.) and Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Gynecology and Obstetrics (Y.K.), The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Physiology (Y.Z., Y.C., M.K.B., B.S.K.) and Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Gynecology and Obstetrics (Y.K.), The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
127
|
Vini R, Juberiya AM, Sreeja S. Evidence of pomegranate methanolic extract in antagonizing the endogenous SERM, 27-hydroxycholesterol. IUBMB Life 2016; 68:116-21. [DOI: 10.1002/iub.1465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Center for Biotechnology; Thiruvananthapuram Kerala India
| | - Azeez M Juberiya
- Cancer Research Program, Rajiv Gandhi Center for Biotechnology; Thiruvananthapuram Kerala India
| | - Sreeharshan Sreeja
- Cancer Research Program, Rajiv Gandhi Center for Biotechnology; Thiruvananthapuram Kerala India
| |
Collapse
|
128
|
Ehrhardt M, Gerber A, Hannemann F, Bernhardt R. Expression of human CYP27A1 in B. megaterium for the efficient hydroxylation of cholesterol, vitamin D3 and 7-dehydrocholesterol. J Biotechnol 2016; 218:34-40. [DOI: 10.1016/j.jbiotec.2015.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
129
|
Nelson ER. Detection of Endogenous Selective Estrogen Receptor Modulators such as 27-Hydroxycholesterol. Methods Mol Biol 2016; 1366:431-443. [PMID: 26585155 DOI: 10.1007/978-1-4939-3127-9_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The estrogen receptors (ERs) belong to the nuclear receptor superfamily, and as such act as ligand inducible transcription factors, mediating the effects of estrogens. However, their pharmacology is complex, having the ability to be differentially activated by ligands. Such ligands possess the ability to behave as either ER-agonists or ER-antagonists, depending on the cellular and tissue context, and have been termed Selective Estrogen Receptor Modulators (SERMs). Several SERMs have been identified with clinical relevance such as tamoxifen and raloxifene. Recently, 27-hydroxycholesterol has been characterized as the first identified endogenous SERM leading to the notion that other endogenous SERMs may exist, each having potential pathophysiological functions. This, coupled with the historic pharmaceutical interest as well as growing concern over chemicals in the environment with the ability to behave like SERMs, has increased the demand for assays to detect SERM-like activity. Here, we describe a common, straightforward in vitro assay investigating the induction of classic ER-target genes in MCF7 breast cancer cells, allowing one to identify ligands with SERM-like activity.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, MC-114, 523 Burrill, 407 S. Goodwin Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
130
|
Lovastatin reversed the enhanced sphingomyelin caused by 27-hydroxycholesterol in cultured vascular endothelial cells. Biochem Biophys Rep 2015; 5:127-133. [PMID: 28955814 PMCID: PMC5600430 DOI: 10.1016/j.bbrep.2015.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/03/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
Statins have pleiotropic properties which are involved in inhibiting the thrombogenic response. In this study, the effects of lovastatin on two phospholipids, phosphatidylcholine and sphingomyelin, were studied in cultured endothelial cells in the presence of an oxysterol, 27-hydroxycholesterol. After the cells were cultured with 50 nM of lovastatin for 60 h, lovastatin was found to decrease the incorporation of [3H]choline into phosphatidylcholine and sphingomyelin, inhibited CTP: phosphocholine cytidylyltransferase (CT) activity without altering the activity of sphingomyelin synthase and neutral sphingomyelinase. And lovastatin was not found to have a direct inhibitive effect on activity of CT. Exogenous mevalonic acid or cholesterol reversed the reduction of cholesterol concentration that was caused by lovastatin, but had no significant effect on the diminished [3H]sphingomyelin by lovastatin. The increase of [3H]sphingomyelin by 27-hydroxycholesterol was not detected in the presence of lovastatin. These findings suggest that (1) lovastatin can reduce sphingomyelin content by means of inhibiting phosphatidylcholine synthesis; and (2) The decrease in sphingomyelin is not related to the diminished cholesterol concentration or mevalonate-derived intermediates. This inhibitive effect of lovastatin on sphingomyelin may benefit cellular calcification caused by sphingomyelin.
Collapse
|
131
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
132
|
Hubler MJ, Kennedy AJ. Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem 2015; 34:1-7. [PMID: 27424223 DOI: 10.1016/j.jnutbio.2015.11.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022]
Abstract
Immune cell plasticity has extensive implications in the pathogenesis and resolution of metabolic disorders, cancers, autoimmune diseases and chronic inflammatory disorders. Over the past decade, nutritional status has been discovered to influence the immune response. In metabolic disorders such as obesity, immune cells interact with various classes of lipids, which are capable of controlling the plasticity of macrophages and T lymphocytes. The purpose of this review is to discuss lipids and their impact on innate and adaptive immune responses, focusing on two areas: (1) the impact of altering lipid metabolism on immune cell activation, differentiation and function and (2) the mechanism by which lipids such as cholesterol and fatty acids regulate immune cell plasticity.
Collapse
Affiliation(s)
- Merla J Hubler
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
133
|
Li J, Papadopoulos V, Vihma V. Steroid biosynthesis in adipose tissue. Steroids 2015; 103:89-104. [PMID: 25846979 DOI: 10.1016/j.steroids.2015.03.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/25/2022]
Abstract
Tissue-specific expression of steroidogenic enzymes allows the modulation of active steroid levels in a local manner. Thus, the measurement of local steroid concentrations, rather than the circulating levels, has been recognized as a more accurate indicator of the steroid action within a specific tissue. Adipose tissue, one of the largest endocrine tissues in the human body, has been established as an important site for steroid storage and metabolism. Locally produced steroids, through the enzymatic conversion from steroid precursors delivered to adipose tissue, have been proven to either functionally regulate adipose tissue metabolism, or quantitatively contribute to the whole body's steroid levels. Most recently, it has been suggested that adipose tissue may contain the steroidogenic machinery necessary for the initiation of steroid biosynthesis de novo from cholesterol. This review summarizes the evidence indicating the presence of the entire steroidogenic apparatus in adipose tissue and discusses the potential roles of local steroid products in modulating adipose tissue activity and other metabolic parameters.
Collapse
Affiliation(s)
- Jiehan Li
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Biochemistry, McGill University, Montreal, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Biochemistry, McGill University, Montreal, Canada.
| | - Veera Vihma
- Folkhälsan Research Center, Helsinki, Finland; University of Helsinki and Helsinki University Central Hospital, Heart and Lung Center, Helsinki, Finland.
| |
Collapse
|
134
|
Liu D, Perkins JT, Petriello MC, Hennig B. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-κB subunit p65. Toxicol Appl Pharmacol 2015; 289:457-65. [PMID: 26519613 DOI: 10.1016/j.taap.2015.10.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023]
Abstract
Epigenetic modifications of DNA and histones alter cellular phenotypes without changing genetic codes. Alterations of epigenetic marks can be induced by exposure to environmental pollutants and may contribute to associated disease risks. Here we test the hypothesis that endothelial cell dysfunction induced by exposure to polychlorinated biphenyls (PCBs) is mediated in part though histone modifications. In this study, human vascular endothelial cells were exposed to physiologically relevant concentrations of several PCBs congeners (e.g., PCBs 77, 118, 126 and 153) followed by quantification of inflammatory gene expression and changes of histone methylation. Only exposure to coplanar PCBs 77 and 126 induced the expression of histone H3K9 trimethyl demethylase jumonji domain-containing protein 2B (JMJD2B) and nuclear factor-kappa B (NF-κB) subunit p65, activated NF-κB signaling as evidenced by nuclear translocation of p65, and up-regulated p65 target inflammatory genes, such as interleukin (IL)-6, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-1α/β. The increased accumulation of JMJD2B in the p65 promoter led to a depletion of H3K9me3 repression mark, which accounts for the observed up-regulation of p65 and associated inflammatory genes. JMJD2B gene knockdown confirmed a critical role for this histone demethylase in mediating PCB-induced inflammation of the vascular endothelium. Finally, it was determined, via chemical inhibition, that PCB-induced up-regulation of JMJD2B was estrogen receptor-alpha (ER-α) dependent. These data suggest that coplanar PCBs may exert endothelial cell toxicity through changes in histone modifications.
Collapse
Affiliation(s)
- Dandan Liu
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States
| | - Jordan T Perkins
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Graduate Center for Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, United States
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
135
|
Mast N, Lin JB, Pikuleva IA. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy. Mol Pharmacol 2015; 88:428-36. [PMID: 26082378 PMCID: PMC4551053 DOI: 10.1124/mol.115.099598] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Joseph B Lin
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
136
|
Abstract
The genomic actions of thyroid hormone and steroids depend upon primary interactions of the hormones with their specific nuclear receptor proteins. Formation of nuclear co-activator or co-repressor complexes involving the liganded receptors subsequently result in transcriptional events-either activation or suppression-at genes that are specific targets of thyroid hormone or steroids. Nongenomic actions of thyroid hormone and steroids are in contrast initiated at binding sites on the plasma membrane or in cytoplasm or organelles and do not primarily require formation of intranuclear receptor protein-hormone complexes. Importantly, hormonal actions that begin nongenomically outside the nucleus often culminate in changes in nuclear transcriptional events that are regulated by both traditional intranuclear receptors as well as other nuclear transcription factors. In the case of thyroid hormone, the extranuclear receptor can be the classical "nuclear" thyroid receptor (TR), a TR isoform, or integrin αvβ3. In the case of steroid hormones, the membrane receptor is usually, but not always, the classical "nuclear" steroid receptor. This concept defines the paradigm of overlapping nongenomic and genomic hormone mechanisms of action. Here we review some examples of how extranuclear signaling by thyroid hormone and by estrogens and androgens modulates intranuclear hormone signaling to regulate a number of vital biological processes both in normal physiology and in cancer progression. We also point out that nongenomic actions of thyroid hormone may mimic effects of estrogen in certain tumors.
Collapse
Affiliation(s)
- Stephen R Hammes
- Division of Endocrinology, Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Paul J Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
137
|
Paul R, Choudhury A, Borah A. Cholesterol - A putative endogenous contributor towards Parkinson's disease. Neurochem Int 2015; 90:125-33. [PMID: 26232622 DOI: 10.1016/j.neuint.2015.07.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 01/20/2023]
Abstract
Elevated levels of cholesterol and its metabolites (oxysterols) have been reported to be associated not only with several metabolic syndromes, but also become a prognostic risk factor of neurodegenerative diseases particularly Alzheimer's disease. The incidence and the prospect of Alzheimer's disease with respect to elevated levels of cholesterol have been studied extensively and reviewed earlier. Recently, several interesting findings have shown the occurrence of equivalent Parkinsonian pathologies in cellular neuronal models, mediated by oxysterols or excess exposure to cholesterol. In this regard, oxysterols are particular in causing alpha-synuclein aggregation and destruction of dopamine containing neurons in in vitro models, which is linked to their direct influence on oxidative stress provoking potency. Inspite of the significant in vitro reports, which suggest the relativeness of cholesterol or oxysterol towards Parkinsonism, several prospective clinical reports provided a negative or no correlation. However, few prospective clinical studies showed a positive correlation between plasma cholesterol and incidence of Parkinson's disease (PD). Also, few significant studies have convincingly demonstrated that high fat diet exacerbates parkinsonian pathologies, including loss of dopaminergic neurons and oxidative stress parameters in animal models of PD. The present review brings together all the neuropathological proceedings mediated by excess cholesterol or its metabolites in brain in the light of their contribution towards the onset of PD. Also we have reviewed the possibilities of cholesterol lowering efficacy of statin therapy, in reducing the occurrence of PD.
Collapse
Affiliation(s)
- Rajib Paul
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Amarendranath Choudhury
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| |
Collapse
|
138
|
Semerano L, Roméo PH, Boissier MC. Metabolomics for rheumatic diseases: has the time come? Ann Rheum Dis 2015; 74:1325-6. [PMID: 25609411 DOI: 10.1136/annrheumdis-2014-206618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Luca Semerano
- Inserm UMR 1125, Bobigny, France Sorbonne Paris Cité-Université Paris 13, Bobigny, France Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne-Jean Verdier-René Muret, Service de Rhumatologie, Bobigny, France
| | - Paul-Henri Roméo
- LRTS/DSV/CEA, UMR967, Inserm, CEA, Paris-Diderot, Paris-Sud, Fontenay-aux-Roses, Cedex, France
| | - Marie-Christophe Boissier
- Inserm UMR 1125, Bobigny, France Sorbonne Paris Cité-Université Paris 13, Bobigny, France Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne-Jean Verdier-René Muret, Service de Rhumatologie, Bobigny, France
| |
Collapse
|
139
|
Transcriptional programming of human macrophages: on the way to systems immunology. J Mol Med (Berl) 2015; 93:589-97. [PMID: 25877862 DOI: 10.1007/s00109-015-1286-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
Many of the major common diseases such as atherosclerosis, diabetes, obesity, numerous autoimmune diseases, as well as neurodegenerative diseases such as Alzheimer's disease and many cancer types are characterised by a chronic inflammatory component termed sterile inflammation. Myeloid cells, particularly macrophages, are an important cellular component of chronic inflammation in these diseases. For almost all of these disease conditions, previous reports suggested that macrophages can exert either so-called pro-inflammatory or anti-inflammatory functions, thereby either fighting or feeding the disease. This apparent dichotomy of reactions of macrophages led to a dichotomous definition of macrophage activation classified as macrophage polarisation. However, analysis of large transcriptomics data derived from human and murine macrophages show that macrophage functions are shaped in a very tissue- and signal-input specific manner, allowing these cells to develop extremely specific functional programmes. Integrating global views on macrophage activation on the transcriptome, the epigenome, the proteome or the metabolome will finally lead to a data-driven approach to understand macrophage biology in context of major diseases. We are indeed on the way to a systems immunology approach that integrates -omics data with mathematical and bioinformatical modelling as the pre-requisite to generate data-driven hypotheses. This approach opens completely new avenues for the development of tailored diagnostics and therapies targeting macrophages in sterile inflammations of the major common diseases. I will also discuss some of the next developments that will be necessary to reach these important goals.
Collapse
|
140
|
Morzycki JW, Sobkowiak A. Electrochemical oxidation of cholesterol. Beilstein J Org Chem 2015; 11:392-402. [PMID: 25977713 PMCID: PMC4419515 DOI: 10.3762/bjoc.11.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/03/2015] [Indexed: 12/22/2022] Open
Abstract
Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions.
Collapse
Affiliation(s)
- Jacek W Morzycki
- Institute of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Andrzej Sobkowiak
- Faculty of Chemistry, Rzeszów University of Technology, P.O. Box 85, 35-959 Rzeszów, Poland
| |
Collapse
|
141
|
Fazlollahi F, Kongmanas K, Tanphaichitr N, Mallen-St Clair J, Gopen Q, Faull KF, Suh JD. Lipidomic profiling of sinus mucosa from patients with chronic rhinosinusitis. Clin Transl Sci 2015; 8:107-15. [PMID: 25588779 DOI: 10.1111/cts.12256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sinusitis is a cause of significant morbidity, substantial healthcare costs, and negative effects on quality of life. The primary objective of this study is to characterize the previously unknown lipid profile of sinonasal mucosa from patients with chronic rhinosinusitis (CRS) and from controls. Sinus mucosa samples were analyzed from 9 CRS patients with concomitant nasal polyps, 11 CRS patients without polyps, and 12 controls. Ten lone polyp samples were also analyzed. Samples were subjected to a modified Bligh/Dyer lipid extraction, then high performance thin layer chromatography (HPTLC), combined gas chromatography/electron impact-mass spectrometry (GC/EI-MS), and flow-injection/electrospray ionization-tandem mass spectrometry (FI/ESI-MS/MS). Data was analyzed for identification and profiling of major components. HPTLC revealed an array of species reflecting the lipid complexity of the samples. GC/EI-MS revealed cholesterol and several fatty acids. FI/ESI-MSMS revealed numerous lipid species, namely a host of phosphatidylcholines, phosphatidylethanolamines, ceramides and cholesteryl esters, but no detectable amounts of phosphatidyinositols or sulfated lipids. These results are a first step to uncover unique molecular biomarkers in CRS.
Collapse
Affiliation(s)
- Farbod Fazlollahi
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Otorhinolaryngology-Head and Neck Surgery, UCLA Health System, Los Angeles, California, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Nelson ER, Chang CY, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol Metab 2014; 25:649-55. [PMID: 25458418 PMCID: PMC4268141 DOI: 10.1016/j.tem.2014.10.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 01/05/2023]
Abstract
Cholesterol is a risk factor for breast cancer although the mechanisms by which this occurs are not well understood. One hypothesis is that dyslipidemia results in increased cholesterol content in cell membranes, thus impacting upon membrane fluidity and subsequent signaling. In addition, studies demonstrate that the metabolite, 27-hydroxycholesterol (27HC), can function as an estrogen, increasing the proliferation of estrogen receptor (ER)-positive breast cancer cells. This was unexpected because 27HC and other oxysterols activate the liver X receptors (LXR), resulting in a reduction of intracellular cholesterol. Resolution of this paradox will require dissection of the molecular mechanisms by which ER and LXR converge in breast cancer cells. Regardless, the observation that 27HC influences breast cancer provides a rationale for strategies that target cholesterol metabolism.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Ching-yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
143
|
Lee WR, Ishikawa T, Umetani M. The interaction between metabolism, cancer and cardiovascular disease, connected by 27-hydroxycholesterol. ACTA ACUST UNITED AC 2014; 9:617-624. [PMID: 25632306 DOI: 10.2217/clp.14.53] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxysterols are metabolites of cholesterol that are produced in liver and other peripheral tissues as a means to eliminate cholesterol to bile acid. Recent studies have revealed that the most abundant circulating oxysterol 27-hydroxycholesterol (27HC) is the first identified endogenous selective estrogen receptor modulator. 27HC levels correlate well with that of cholesterol, and also rise progressively with age. 27HC affects estrogen receptor function by the antagonism of estrogen action and also by the direct modulation of the receptor function, and similar to estrogen/estrogen receptors, 27HC has many actions in various tissues. This review article introduces the recent progress in the understanding of the role of 27HC in breast cancer and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Wan-Ru Lee
- Division of Pulmonary & Vascular Biology, Departments of Pediatrics & Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Tomonori Ishikawa
- Division of Pulmonary & Vascular Biology, Departments of Pediatrics & Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA ; Comprehensive Reproductive Medicine, Graduate School of Medical & Dental Sciences, Tokyo Medical & Dental University, Tokyo, Japan
| | - Michihisa Umetani
- Division of Pulmonary & Vascular Biology, Departments of Pediatrics & Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
144
|
John C, Werner P, Worthmann A, Wegner K, Tödter K, Scheja L, Rohn S, Heeren J, Fischer M. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids. J Chromatogr A 2014; 1371:184-95. [DOI: 10.1016/j.chroma.2014.10.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/07/2023]
|
145
|
Heverin M, Maioli S, Pham T, Mateos L, Camporesi E, Ali Z, Winblad B, Cedazo-Minguez A, Björkhem I. 27-hydroxycholesterol mediates negative effects of dietary cholesterol on cognition in mice. Behav Brain Res 2014; 278:356-9. [PMID: 25453744 DOI: 10.1016/j.bbr.2014.10.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/21/2022]
Abstract
In spite of the fact that cholesterol does not pass the blood-brain barrier, treatment of mice with dietary cholesterol causes significant effects on a number of genes in the brain and in addition a memory impairment. We have suggested that these effects are mediated by 27-hydroxycholesterol, which is able to pass the blood-brain barrier. To test this hypothesis we utilized Cyp27-/- mice lacking 27-hydroxycholesterol. The negative effect on memory observed after treatment of wildtype mice with dietary cholesterol was not observed in these mice. The cholesterol diet reduced the levels of the "memory protein" Arc (Activity Regulated Cytoskeleton associated protein) in the hippocampus of the wildtype mice but not in the hippocampus of the Cyp27-/- mice. The results are consistent with 27-hydroxycholesterol as the mediator of the negative effects of cholesterol on cognition.
Collapse
Affiliation(s)
- Maura Heverin
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, SE 141 86 Stockholm, Sweden
| | - Silvia Maioli
- Karolinska Institute, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Stockholm, Sweden
| | - Therese Pham
- Karolinska Institute, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Stockholm, Sweden
| | - Laura Mateos
- Karolinska Institute, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Stockholm, Sweden
| | - Elena Camporesi
- Karolinska Institute, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Stockholm, Sweden
| | - Zeina Ali
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, SE 141 86 Stockholm, Sweden
| | - Bengt Winblad
- Karolinska Institute, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Karolinska Institute, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Stockholm, Sweden
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, SE 141 86 Stockholm, Sweden.
| |
Collapse
|
146
|
Abstract
Cholesterol and components of the cholesterol biosynthetic pathway have fundamental roles in all mammalian cells. Hydroxylated forms of cholesterol are now emerging as important regulators of immune function. This involves effects on the cholesterol biosynthetic pathway and cell membrane properties, which can have antiviral and anti-inflammatory influences. In addition, a dihydroxylated form of cholesterol functions as an immune cell guidance cue by engaging the G protein-coupled receptor EBI2, and it is required for mounting adaptive immune responses. In this Review, we summarize the current understanding of the closely related oxysterols 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, and the growing evidence that they have wide-ranging influences on innate and adaptive immunity.
Collapse
|