101
|
Fernández-Gallego N, Sánchez-Madrid F, Cibrian D. Role of AHR Ligands in Skin Homeostasis and Cutaneous Inflammation. Cells 2021; 10:cells10113176. [PMID: 34831399 PMCID: PMC8622815 DOI: 10.3390/cells10113176] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is an important regulator of skin barrier function. It also controls immune-mediated skin responses. The AHR modulates various physiological functions by acting as a sensor that mediates environment–cell interactions, particularly during immune and inflammatory responses. Diverse experimental systems have been used to assess the AHR’s role in skin inflammation, including in vitro assays of keratinocyte stimulation and murine models of psoriasis and atopic dermatitis. Similar approaches have addressed the role of AHR ligands, e.g., TCDD, FICZ, and microbiota-derived metabolites, in skin homeostasis and pathology. Tapinarof is a novel AHR-modulating agent that inhibits skin inflammation and enhances skin barrier function. The topical application of tapinarof is being evaluated in clinical trials to treat psoriasis and atopic dermatitis. In the present review, we summarize the effects of natural and synthetic AHR ligands in keratinocytes and inflammatory cells, and their relevance in normal skin homeostasis and cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| | - Danay Cibrian
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| |
Collapse
|
102
|
Wang S, Zhang YR, Yu YB. The important role of fungi in inflammatory bowel diseases. Scand J Gastroenterol 2021; 56:1312-1322. [PMID: 34392745 DOI: 10.1080/00365521.2021.1963838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a life-threatening and chronic inflammatory disease of gastrointestinal tissue, with complex pathogenesis. Current research on IBD has mainly focused on bacteria; however, the role of fungi in IBD is largely unknown due to the incomplete annotation of fungi in current genomic databases. With the development of molecular techniques, the gut mycobiome has been found to have great diversity. In addition, increasing evidence has shown intestinal mycobiome plays an important role in the physiological and pathological processes of IBD. In this review, we will systemically introduce the recent knowledge about multi-dimensional fungal dysbiosis associated with IBD, the interactions between fungus and bacteria, the role of fungi in inflammation in IBD, and highlight recent advances in the potential therapeutic role of fungus in IBD, which may hold the keys to develop new predictive, therapeutic or prognostic approaches in IBD.
Collapse
Affiliation(s)
- Sui Wang
- Laboratory of Translational Gastroenterology, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Rong Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
103
|
Shou Y, Yang L, Yang Y, Xu J. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Dis 2021; 12:1009. [PMID: 34707088 PMCID: PMC8551323 DOI: 10.1038/s41419-021-04284-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Psoriasis is a common, chronic, and recurrent inflammatory disease. It is characterized by hyperproliferation and abnormal differentiation of keratinocytes. Keratinocyte death is also involved in many pathophysiological conditions and amplifies the inflammatory cascade. As a newly recognized form of cell death, ferroptosis is involved in several inflammatory diseases. In this study, we aimed to investigate a previously unrecognized role for ferroptosis in psoriasis. Ferroptosis is mediated by lipid peroxidation and iron overload. Compared with normal lesions, the mRNA expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (PTGS2), and transferrin receptor (TFRC) were highly expressed in psoriatic lesions, with decreased levels of glutathione peroxidase 4 (GPX4), ferritin light chain (FTL), and ferritin heavy chain 1 (FTH1). The protein levels of ACSL4 and GPX4 were consistent with their mRNA levels. A similar tendency of ferroptosis was also observed in erastin-treated human primary keratinocytes and the Imiquimod (IMQ)-induced model of psoriasis. To investigate the correlation between inflammation and peroxidation, we analyzed single-cell RNA-sequencing data and identified 15 cell types. There was a high correlation between the activity of the lipid oxidation and the Th22/Th17 response in keratinocytes at a single-cell level. Moreover, ferrostatin-1 (Fer-1), a potent inhibitor of lipid peroxidation, suppressed ferroptosis-related changes in erastin-treated keratinocytes and alleviated psoriasiform dermatitis of IMQ-induced models. Additionally, Fer-1 blocked inflammatory responses in vitro and in vivo, reducing the production of cytokines including TNF-α, IL-6, IL-1α, IL-1β, IL-17, IL-22, and IL-23. This study revealed an expression pattern of ferroptosis in which specific molecules enhance inflammatory reactions in psoriasis.
Collapse
Affiliation(s)
- Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Lu Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Yongsheng Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China.
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China.
- Shanghai Institute of Dermatology, Shanghai, P. R. China.
| |
Collapse
|
104
|
Application of benvitimod on psoriasis: A systematic review and meta-analysis of randomized controlled trials. A systematic review of benvitimod on psoriasis. Therapie 2021; 77:339-347. [PMID: 34689959 DOI: 10.1016/j.therap.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND We conducted this systematic review to clarify the efficacy and safety of benvitimod on psoriasis. METHODS We searched the databases of PubMed, China National Knowledge infrastructure, Cochrane Library, Embase, Web of science to identify randomized controlled trials (RCTs) of benvitimod on psoriasis up to April 2021. RESULTS Five RCTs of benvitimod on psoriasis were included. A total of 1237 patients were included. 0.5% or 1.0% benvitimod was applied topically once or twice a day. More patients in benvitimod group achieved PASI 90, PASI 75, PASI 50 and BSA reduction than placebo at Week 12. More patients in benvitimod group achieved PGA 0 or 1 than placebo since Week 6. There were no statistical significances in efficacies of benvitimod at different concentrations and frequencies. CONCLUSIONS Benvitimod was effective and safe for psoriasis. More RCTs with high qualities are needed to further verify the current conclusion.
Collapse
|
105
|
Spurlock B, Parker D, Basu MK, Hjelmeland A, GC S, Liu S, Siegal GP, Gunter A, Moran A, Mitra K. Fine-tuned repression of Drp1-driven mitochondrial fission primes a 'stem/progenitor-like state' to support neoplastic transformation. eLife 2021; 10:e68394. [PMID: 34545812 PMCID: PMC8497058 DOI: 10.7554/elife.68394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model, we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem/progenitor cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks' level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.
Collapse
Affiliation(s)
- Brian Spurlock
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Danitra Parker
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Malay Kumar Basu
- Departments of Pathology, University of Alabama at BirminghamBirminghamUnited States
| | - Anita Hjelmeland
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Sajina GC
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Shanrun Liu
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Gene P Siegal
- Departments of Pathology, Surgery, Genetics and Cell and Developmental Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Alan Gunter
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Aida Moran
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
106
|
Tanimoto K, Hirota K, Fukazawa T, Matsuo Y, Nomura T, Tanuza N, Hirohashi N, Bono H, Sakaguchi T. Inhibiting SARS-CoV-2 infection in vitro by suppressing its receptor, angiotensin-converting enzyme 2, via aryl-hydrocarbon receptor signal. Sci Rep 2021; 11:16629. [PMID: 34404832 PMCID: PMC8371152 DOI: 10.1038/s41598-021-96109-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/05/2021] [Indexed: 01/31/2023] Open
Abstract
Since understanding molecular mechanisms of SARS-CoV-2 infection is extremely important for developing effective therapies against COVID-19, we focused on the internalization mechanism of SARS-CoV-2 via ACE2. Although cigarette smoke is generally believed to be harmful to the pathogenesis of COVID-19, cigarette smoke extract (CSE) treatments were surprisingly found to suppress the expression of ACE2 in HepG2 cells. We thus tried to clarify the mechanism of CSE effects on expression of ACE2 in mammalian cells. Because RNA-seq analysis suggested that suppressive effects on ACE2 might be inversely correlated with induction of the genes regulated by aryl hydrocarbon receptor (AHR), the AHR agonists 6-formylindolo(3,2-b)carbazole (FICZ) and omeprazole (OMP) were tested to assess whether those treatments affected ACE2 expression. Both FICZ and OMP clearly suppressed ACE2 expression in a dose-dependent manner along with inducing CYP1A1. Knock-down experiments indicated a reduction of ACE2 by FICZ treatment in an AHR-dependent manner. Finally, treatments of AHR agonists inhibited SARS-CoV-2 infection into Vero E6 cells as determined with immunoblotting analyses detecting SARS-CoV-2 specific nucleocapsid protein. We here demonstrate that treatment with AHR agonists, including FICZ, and OMP, decreases expression of ACE2 via AHR activation, resulting in suppression of SARS-CoV-2 infection in mammalian cells.
Collapse
Affiliation(s)
- Keiji Tanimoto
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan.
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan
| | - Takahiro Fukazawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan
| | - Toshihito Nomura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Nazmul Tanuza
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Nobuyuki Hirohashi
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hidemasa Bono
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| |
Collapse
|
107
|
Alwan W, Di Meglio P. Guardians of the barrier: Microbiota engage AHR in keratinocytes to mantain skin homeostasis. Cell Host Microbe 2021; 29:1213-1216. [PMID: 34384523 DOI: 10.1016/j.chom.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The skin barrier is critical in ensuring homeostasis, yet factors influencing its development, repair, and maintenance are ill-defined. In this issue of Cell Host & Microbe, Uberoi et al. demonstrate the skin microbiota's role in maintaining barrier integrity via AHR signaling in keratinocytes, which has implications for skin disease management.
Collapse
Affiliation(s)
- Wisam Alwan
- Guy's and St Thomas' NHS Foundation Trust, London, UK; St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Paola Di Meglio
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK.
| |
Collapse
|
108
|
Yoshikawa Y, Izawa T, Hamada Y, Takenaga H, Wang Z, Ishimaru N, Kamioka H. Roles for B[a]P and FICZ in subchondral bone metabolism and experimental temporomandibular joint osteoarthritis via the AhR/Cyp1a1 signaling axis. Sci Rep 2021; 11:14927. [PMID: 34290363 PMCID: PMC8295293 DOI: 10.1038/s41598-021-94470-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Bone loss due to smoking represents a major risk factor for fractures and bone osteoporosis. Signaling through the aryl hydrocarbon receptor (AhR) and its ligands contributes to both bone homeostasis and inflammatory diseases. It remains unclear whether the same AhR signaling axis affects the temporomandibular joint (TMJ). The aim of this study was to investigate possible mechanisms which mediate bone loss in the TMJ due to smoking. In particular, whether benzo[a]pyrene (B[a]P), a carcinogen of tobacco smoke, induces expression of the AhR target gene, Cyp1a1, in mandibular condyles. Possible functions of an endogenous ligand of FICZ, were also investigated in a TMJ-osteoarthritis (OA) mouse model. B[a]P was administered orally to wild-type and AhR-/- mice and bone metabolism was subsequently examined. TMJ-OA was induced in wild-type mice with forceful opening of the mouth. Therapeutic functions of FICZ were detected with μCT and histology. Exposure to B[a]P accelerated bone loss in the mandibular subchondral bone. This bone loss manifested with osteoclastic bone resorption and upregulated expression of Cyp1a1 in an AhR-dependent manner. In a mouse model of TMJ-OA, FICZ exhibited a dose-dependent rescue of mandibular subchondral bone loss by repressing osteoclast activity. Meanwhile, in vitro, pre-treatment with FICZ reduced RANKL-mediated osteoclastogenesis. B[a]P regulates mandibular subchondral bone metabolism via the Cyp1a1. The AhR ligand, FICZ, can prevent TMJ-OA by regulating osteoclast differentiation.
Collapse
Affiliation(s)
- Yuri Yoshikawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Izawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Yusaku Hamada
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroko Takenaga
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| |
Collapse
|
109
|
Cardinali G, Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Dell'Anna ML, Truglio M, Vento A, Zaccarini M, Zouboulis CC, Picardo M. Anti-Inflammatory and Pro-Differentiating Properties of the Aryl Hydrocarbon Receptor Ligands NPD-0614-13 and NPD-0614-24: Potential Therapeutic Benefits in Psoriasis. Int J Mol Sci 2021; 22:ijms22147501. [PMID: 34299118 PMCID: PMC8304622 DOI: 10.3390/ijms22147501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Maria Lucia Dell'Anna
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Antonella Vento
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
110
|
Koptan DMT, Rasheed Bahgat DM, Abdelrasool AA, Allam RSHM, Elgengehy FT, Abdel Baki NM, Medhat BM. Analysis of Nuclear Receptor Coactivator 5 (NCOA5) Messenger RNA Expression and rs2903908 Single Nucleotide Polymorphism of NCOA5 in an Egyptian Cohort with Behçet's Disease: A Single-Center Case-control Study. Ocul Immunol Inflamm 2021; 30:1436-1446. [PMID: 34255592 DOI: 10.1080/09273948.2021.1889610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The nuclear receptor coactivator 5 (NCOA5) has been linked to several inflammatory disorders, including Behçet's disease (BD). We evaluated the expression of NCOA5 messenger RNA (mRNA) using real-time reverse transcription-polymerase chain reaction, and analyzed the rs2903908 T > C of NCOA5 using TaqMan allelic discrimination assay in 49 Egyptian BD patients and 50 controls. The NCOA5 mRNA levels were higher in patients compared to controls (p = .02), female patients compared to males (p = .037), and in patients with ocular involvement (p = .049). Non-CC genotype carriers had a higher frequency of articular manifestations compared with CC carriers (p = .047). Genotypes CC + CT were associated with reduced risk of cutaneous involvement (OR = 0.27, p = .04). CC carriers with active BD or cutaneous manifestations displayed significantly lower NCOA5 mRNA expression than TT carriers. Our results demonstrate that NCOA5 is linked to BD clinical findings and activity.
Collapse
Affiliation(s)
- Dina M T Koptan
- Faculty of Medicine, Kasr Al Ainy, Department of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Dina M Rasheed Bahgat
- Faculty of Medicine, Kasr Al Ainy, Department of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Asmaa A Abdelrasool
- Faculty of Medicine, Kasr Al Ainy, Department of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Riham S H M Allam
- Faculty of Medicine, Kasr Al Ainy, Department of Ophthalmology, Cairo University, Egypt
| | - Fatema T Elgengehy
- Faculty of Medicine, Kasr Al Ainy, Department of Rheumatology and Rehabilitation, Cairo University, Egypt
| | - Noha M Abdel Baki
- Faculty of Medicine, Kasr Al Ainy, Department of Rheumatology and Rehabilitation, Cairo University, Egypt
| | - Basma M Medhat
- Faculty of Medicine, Kasr Al Ainy, Department of Rheumatology and Rehabilitation, Cairo University, Egypt
| |
Collapse
|
111
|
Guerrina N, Traboulsi H, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor Suppresses Chronic Smoke-Induced Pulmonary Inflammation. FRONTIERS IN TOXICOLOGY 2021; 3:653569. [PMID: 35295140 PMCID: PMC8915858 DOI: 10.3389/ftox.2021.653569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor expressed in the lungs that is activated by numerous xenobiotic, endogenous and dietary ligands. Although historically the AhR is known for mediating the deleterious response to the environmental pollutant dioxin, emerging evidence supports a prominent role for the AhR in numerous biological process including inflammation. We have shown that the AhR suppresses pulmonary neutrophilia in response to acute cigarette smoke exposure. Whether the AhR can also prevent lung inflammation from chronic smoke exposure is not known but highly relevant, given that people smoke for decades. Using our preclinical smoke model, we report that exposure to chronic cigarette smoke for 8-weeks or 4 months significantly increased pulmonary inflammation, the response of which was greater in Ahr−/− mice. Notably, there was an increased number of multinucleated giant cells (MNGCs) in smoke-exposed Ahr−/− mice without a change in cytokine levels. These data support a protective role for the AhR against the deleterious effects of cigarette smoke, warranting continued investigation into its therapeutic potential for chronic lung diseases.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Hussein Traboulsi
| | | | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Deaprtment of Pathology, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- *Correspondence: Carolyn J. Baglole
| |
Collapse
|
112
|
Uberoi A, Bartow-McKenney C, Zheng Q, Flowers L, Campbell A, Knight SAB, Chan N, Wei M, Lovins V, Bugayev J, Horwinski J, Bradley C, Meyer J, Crumrine D, Sutter CH, Elias P, Mauldin E, Sutter TR, Grice EA. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 2021; 29:1235-1248.e8. [PMID: 34214492 DOI: 10.1016/j.chom.2021.05.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
The epidermis forms a barrier that defends the body from desiccation and entry of harmful substances, while also sensing and integrating environmental signals. The tightly orchestrated cellular changes needed for the formation and maintenance of this epidermal barrier occur in the context of the skin microbiome. Using germ-free mice, we demonstrate the microbiota is necessary for proper differentiation and repair of the epidermal barrier. These effects are mediated by microbiota signaling through the aryl hydrocarbon receptor (AHR) in keratinocytes, a xenobiotic receptor also implicated in epidermal differentiation. Mice lacking keratinocyte AHR are more susceptible to barrier damage and infection, during steady-state and epicutaneous sensitization. Colonization with a defined consortium of human skin isolates restored barrier competence in an AHR-dependent manner. We reveal a fundamental mechanism whereby the microbiota regulates skin barrier formation and repair, which has far-reaching implications for the numerous skin disorders characterized by epidermal barrier dysfunction.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Casey Bartow-McKenney
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Qi Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Laurice Flowers
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Amy Campbell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Simon A B Knight
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Neal Chan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Monica Wei
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Victoria Lovins
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Julia Bugayev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Joseph Horwinski
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Charles Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA, USA
| | - Jason Meyer
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, CA, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Debra Crumrine
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, CA, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Carrie Hayes Sutter
- Department of Biological Sciences, W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN, USA
| | - Peter Elias
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, CA, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA, USA
| | - Thomas R Sutter
- Department of Biological Sciences, W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN, USA.
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
113
|
Cheng YC, Kuo CL, Hsu SY, Way TDER, Cheng CL, Chen JC, Liu KC, Peng SF, Ho WJ, Chueh FS, Huang WW. Tetrandrine Enhances H 2O 2-Induced Apoptotic Cell Death Through Caspase-dependent Pathway in Human Keratinocytes. In Vivo 2021; 35:2047-2057. [PMID: 34182480 DOI: 10.21873/invivo.12474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tetrandrine, a bis-benzylisoquinoline alkaloid, induces apoptosis of many types of human cancer cell. Hydrogen peroxide (H2O2) is a reactive oxygen species inducer; however, there are no reports to show whether pre-treatment of tetrandrine with H2O2 induces more cell apoptosis than H2O2 alone. Thus, the present study investigated the effects of tetrandrine on H2O2-induced cell apoptosis of human keratinocytes, HaCaT, in vitro. MATERIALS AND METHODS HaCaT cells were pre-treated with and without tetrandrine for 1 h, and then treated with H2O2 for examining cell morphological changes and cell viability using contrast-phase microscopy and propidium iodide (PI) exclusion assay, respectively. Cells were measured apoptotic cell death by using annexin V/PI double staining and further analyzed by flow cytometer. Cells were further assessed for DNA condensation using 2-(4-amidinophenyl)-6-indolecarbamidine staining. Western blotting was used to measure expression of apoptosis-associated proteins and confocal laser microscopy was used to measure the protein expression and nuclear translocation from the cytoplasm to nuclei. RESULTS Pre-treatment of tetrandrine for 1 h and treatment with H2O2 enhanced H2O2-induced cell morphological changes and reduced cell viability, whilst increasing apoptotic cell death and DNA condensation. Furthermore, tetrandrine significantly increased expression of reactive oxygen species-associated proteins such as superoxide dismutase (Cu/Zn) and superoxide dismutase (Mn) but significantly reduced the level of catalase, which was also confirmed by confocal laser microscopy. It also increased expression of DNA repair-associated proteins ataxia telangiectasia mutated, ataxia-telangectasia and Rad3-related, phospho-P53, P53 and phosphorylated histone H2AX, and of pro-apoptotic proteins BCL2 apoptosis regulator-associated X-protein, caspase-3, caspase-8, caspase-9 and poly ADP ribose polymerase in HaCaT cells. CONCLUSION These are the first and novel findings showing tetrandrine enhances H2O2-induced apoptotic cell death of HaCaT cells and may provide a potent approach for the treatment of proliferated malignant keratinocytes.
Collapse
Affiliation(s)
- Yi-Ching Cheng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan, R.O.C
| | - Sheng-Yao Hsu
- Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan, R.O.C.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan, R.O.C
| | - Tzong-DER Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Ching-Ling Cheng
- Progam of Digital Health Innovation, China Medical University, Taichung, Taiwan, R.O.C
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan, R.O.C
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wai-Jane Ho
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C.
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.;
| |
Collapse
|
114
|
Cheng YC, Chen PY, Way TDER, Cheng CL, Huang YP, Hsia TC, Chou YC, Peng SF. Pre-Treatment of Pterostilbene Enhances H 2O 2-induced Cell Apoptosis Through Caspase-dependent Pathway in Human Keratinocyte Cells. In Vivo 2021; 35:833-843. [PMID: 33622876 DOI: 10.21873/invivo.12324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS), which can induce apoptotic cell death in numerous cancer cells. Pterostilbene (PTE), a natural polyphenolic compound, induces cell apoptosis in many human cancer cells. MATERIALS AND METHODS We investigated whether PTE could enhance H2O2-induced cell apoptosis in human keratinocyte HaCaT cells in vitro. The morphological change of HaCaT cells was observed and photographed under a contrast-phase microscope. The percentage of cell viability was measured by propidium iodide exclusion assay. Cell apoptosis was performed by Annexin V/PI double staining and assayed by flow cytometer. DNA condensation was measured by DAPI staining. The protein expression was determined by western blotting. ROS production-associated proteins were also assayed by confocal laser scanning microscopy. RESULTS PTE pre-treatment enhanced H2O2 (600 μM)-induced cell morphological changes and reduced the total cell number (cell viability). The decreased cell viability in HaCaT cells was through induction of apoptotic cell death, which was confirmed by Annexin V/PI double staining and DAPI staining. Western blotting studies indicated that HaCaT cells which were pre-treated with PTE (100 μM) and then co-treated with H2O2 (600 μM) for 12 h showed significantly increased levels of SOD (Cu/Zn), SOD (Mn), Bax, caspase-3, caspase-8, caspase-9, PARP, p53, p-p53, and p-H2A.X but decreased levels Bcl-2 and catalase. Results also showed that HaCaT cells pre-treated with PTE and then co-treated with H2O2 had increased expression of SOD (Cu/Zn) and glutathione but decreased catalase. CONCLUSION These observations suggest that PTE pre-treatment can enhance the H2O2-induced apoptotic cell death in keratinocyte cells and may be an effective candidate for the treatment of proliferative keratinocytes.
Collapse
Affiliation(s)
- Yi-Ching Cheng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Tzong-DER Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Ching-Ling Cheng
- Program of Digital Health Innovation, China Medical University, Taichung, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C.,Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.; .,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.; .,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
115
|
Grifka-Walk HM, Jenkins BR, Kominsky DJ. Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Front Immunol 2021; 12:653208. [PMID: 34149693 PMCID: PMC8213022 DOI: 10.3389/fimmu.2021.653208] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptophan (Trp) is an essential amino acid primarily derived from the diet for use by the host for protein synthesis. The intestinal tract is lined with cells, both host and microbial, that uptake and metabolize Trp to also generate important signaling molecules. Serotonin (5-HT), kynurenine and its downstream metabolites, and to a lesser extent other neurotransmitters are generated by the host to signal onto host receptors and elicit physiological effects. 5-HT production by neurons in the CNS regulates sleep, mood, and appetite; 5-HT production in the intestinal tract by enterochromaffin cells regulates gastric motility and inflammation in the periphery. Kynurenine can signal onto the aryl hydrocarbon receptor (AHR) to elicit pleiotropic responses from several cell types including epithelial and immune cells, or can be further metabolized into bioactive molecules to influence neurodegenerative disease. There is a remarkable amount of cross-talk with the microbiome with regard to tryptophan metabolites as well. The gut microbiome can regulate the production of host tryptophan metabolites and can use dietary or recycled trp to generate bioactive metabolites themselves. Trp derivatives like indole are able to signal onto xenobiotic receptors, including AHR, to elicit tolerogenic effects. Here, we review studies that demonstrate that tryptophan represents a key intra-kingdom signaling molecule.
Collapse
Affiliation(s)
| | | | - Douglas J. Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
116
|
Bier K, Schittek B. Beneficial effects of coagulase-negative Staphylococci on Staphylococcus aureus skin colonization. Exp Dermatol 2021; 30:1442-1452. [PMID: 33960019 DOI: 10.1111/exd.14381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Our skin is constantly exposed to a large number of pathogens while at the same time undergoing selective colonization by commensal microorganisms such as coagulase-negative Staphylococci. Staphylococcus aureus, however, is a facultative pathogen that is usually absent from healthy skin but frequently colonizes the inflamed skin of atopic dermatitis patients, where it further promotes inflammation. Enhanced S. aureus skin colonization was shown to correlate with a loss of microbiome diversity indicating a role for skin commensals to shape pathogen colonization. Together, keratinocytes and immune cells in the skin need to discriminate commensals from pathogens and orchestrate subsequent immune reactions in response to colonizing microbes. However, the mechanisms how individual commensals cooperate with keratinocytes and the immune system of the skin to prevent pathogen colonization are barely understood. In this review, we discuss the current knowledge on the functional effects of coagulase-negative staphylococci, the most frequently isolated skin commensals, on S. aureus skin colonization.
Collapse
Affiliation(s)
- Katharina Bier
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
117
|
Gargaro M, Manni G, Scalisi G, Puccetti P, Fallarino F. Tryptophan Metabolites at the Crossroad of Immune-Cell Interaction via the Aryl Hydrocarbon Receptor: Implications for Tumor Immunotherapy. Int J Mol Sci 2021; 22:ijms22094644. [PMID: 33924971 PMCID: PMC8125364 DOI: 10.3390/ijms22094644] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The Aryl hydrocarbon receptor (AhR) is a critical regulator of both innate and adaptive immune responses, with potent immunomodulatory effects that makes this receptor an attractive molecular target for novel therapeutics. Accumulating evidence indicates that diverse—both host’s and microbial—tryptophan metabolites profoundly regulate the immune system in the host via AhR, promoting either tolerance or immunity, largely as a function of the qualitative and quantitative nature of the metabolites being contributed by either source. Additional findings indicate that host and microbiota-derived tryptophan metabolic pathways can influence the outcome of immune responses to tumors. Here, we review recent studies on the role and modalities of AhR activation by various ligands, derived from either host-cell or microbial-cell tryptophan metabolic pathways, in the regulation of immune responses. Moreover, we highlight potential implications of those ligands and pathways in tumor immunotherapy, with particular relevance to checkpoint-blockade immune intervention strategies.
Collapse
|
118
|
Kim JE, Kim HR, Kang SY, Jung MJ, Heo NH, Lee HJ, Ryu A, Kim HO, Park CW, Chung BY. Aryl Hydrocarbon Receptor and Autophagy-Related Protein Microtubule-Associated Protein Light Chain 3 Expression in Psoriasis. Ann Dermatol 2021; 33:138-146. [PMID: 33935455 PMCID: PMC8082009 DOI: 10.5021/ad.2021.33.2.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background The aryl hydrocarbon receptor (AHR) and autophagy are both important to maintain skin homeostasis. However, they are also involved in skin disorders. So far, their roles in psoriasis pathogenesis are unknown. Objective We studied the immunohistochemical and gene expression of AHR, CYP1A1, and microtubule-associated protein light chain 3 (LC3) in lesional skin of psoriasis patients to determine correlations among them. Methods We included 24 psoriasis patients and ten healthy volunteers. Skin biopsies were collected. AHR, CYP1A1, and LC3 protein expression was examined by immunohistochemistry, immunofluorescence, and western blotting. AHR, CYP1A1, LC3, ATG5, BECN1 and Nrf2 mRNA levels were measured by quantitative polymerase chain reaction. Results AHR and CYP1A1 protein expression were higher in psoriasis lesional skin than in normal skin. LC3 protein expression was lower in psoriasis lesions than in normal controls. AHR and CYP1A1 protein expression in psoriasis lesions showed significant positive correlations with mean epidermal thickness and inflammatory cell density. Significant negative correlations were noted between LC3 protein expression in psoriasis lesions and the mean epidermal thickness or inflammatory cell density. A significant negative correlation was found between AHR and LC3 expression in psoriatic skin. AHR, CYP1A1 and Nrf2 mRNA expression were upregulated while LC3, ATG5, and BECN1 mRNA were down-regulated, in psoriatic lesional skin compared with normal controls. Conclusion AHR and autophagy could play a role in psoriasis pathogenesis by modifying epidermal hyperproliferation and inflammation. AHR and autophagy regulation are potential therapeutic targets in chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hye Ran Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Seok Young Kang
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Min Je Jung
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Nam Hun Heo
- Soonchunhyang University Hospital Cheonan, Clinical Trial Center, Cheonan, Korea
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Aeli Ryu
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| |
Collapse
|
119
|
Kim BE, Kim J, Goleva E, Berdyshev E, Lee J, Vang KA, Lee UH, Han S, Leung S, Hall CF, Kim NR, Bronova I, Lee EJ, Yang HR, Leung DY, Ahn K. Particulate matter causes skin barrier dysfunction. JCI Insight 2021; 6:145185. [PMID: 33497363 PMCID: PMC8021104 DOI: 10.1172/jci.insight.145185] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms that underlie the detrimental effects of particulate matter (PM) on skin barrier function are poorly understood. In this study, the effects of PM2.5 on filaggrin (FLG) and skin barrier function were investigated in vitro and in vivo. The levels of FLG degradation products, including pyrrolidone carboxylic acid, urocanic acid (UCA), and cis/trans-UCA, were significantly decreased in skin tape stripping samples of study subjects when they moved from Denver, an area with low PM2.5, to Seoul, an area with high PM2.5 count. Experimentally, PM2.5 collected in Seoul inhibited FLG, loricrin, keratin-1, desmocollin-1, and corneodesmosin but did not modulate involucrin or claudin-1 in keratinocyte cultures. Moreover, FLG protein expression was inhibited in human skin equivalents and murine skin treated with PM2.5. We demonstrate that this process was mediated by PM2.5-induced TNF-α and was aryl hydrocarbon receptor dependent. PM2.5 exposure compromised skin barrier function, resulting in increased transepidermal water loss, and enhanced the penetration of FITC-dextran in organotypic and mouse skin. PM2.5-induced TNF-α caused FLG deficiency in the skin and subsequently induced skin barrier dysfunction. Compromised skin barrier due to PM2.5 exposure may contribute to the development and the exacerbation of allergic diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jinyoung Lee
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Kathryn A Vang
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Un Ha Lee
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - SongYi Han
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Susan Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Na-Rae Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Eu Jin Lee
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Hye-Ran Yang
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, South Korea
| | - Donald Ym Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
120
|
Hsu YSO, Lu KL, Fu Y, Wang CW, Lu CW, Lin YF, Chang WC, Yeh KY, Hung SI, Chung WH, Chen CB. The Roles of Immunoregulatory Networks in Severe Drug Hypersensitivity. Front Immunol 2021; 12:597761. [PMID: 33717075 PMCID: PMC7953830 DOI: 10.3389/fimmu.2021.597761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The immunomodulatory effects of regulatory T cells (Tregs) and co-signaling receptors have gained much attention, as they help balance immunogenic and immunotolerant responses that may be disrupted in autoimmune and infectious diseases. Drug hypersensitivity has a myriad of manifestations, which ranges from the mild maculopapular exanthema to the severe Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome (DRESS/DIHS). While studies have identified high-risk human leukocyte antigen (HLA) allotypes, the presence of the HLA allotype at risk is not sufficient to elicit drug hypersensitivity. Recent studies have suggested that insufficient regulation by Tregs may play a role in severe hypersensitivity reactions. Furthermore, immune checkpoint inhibitors, such as anti-CTLA-4 or anti-PD-1, in cancer treatment also induce hypersensitivity reactions including SJS/TEN and DRESS/DIHS. Taken together, mechanisms involving both Tregs as well as coinhibitory and costimulatory receptors may be crucial in the pathogenesis of drug hypersensitivity. In this review, we summarize the currently implicated roles of co-signaling receptors and Tregs in delayed-type drug hypersensitivity in the hope of identifying potential pharmacologic targets.
Collapse
Affiliation(s)
- Yun-Shiuan Olivia Hsu
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Lin Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yun Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chuang-Wei Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
| | - Chun-Wei Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Fen Lin
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Nursing, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Cheng Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kun-Yun Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shuen-Iu Hung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
| | - Wen-Hung Chung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Chang Gung Hospital, Xiamen, China
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chun-Bing Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Chang Gung Hospital, Xiamen, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
121
|
Rico de Souza A, Traboulsi H, Wang X, Fritz JH, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor Attenuates Acute Cigarette Smoke-Induced Airway Neutrophilia Independent of the Dioxin Response Element. Front Immunol 2021; 12:630427. [PMID: 33659010 PMCID: PMC7917085 DOI: 10.3389/fimmu.2021.630427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a prevalent respiratory toxicant that remains a leading cause of death worldwide. Cigarette smoke induces inflammation in the lungs and airways that contributes to the development of diseases such as lung cancer and chronic obstructive pulmonary disease (COPD). Due to the presence of aryl hydrocarbon receptor (AhR) ligands in cigarette smoke, activation of the AhR has been implicated in driving this inflammatory response. However, we have previously shown that the AhR suppresses cigarette smoke-induced pulmonary inflammation, but the mechanism by which the AhR achieves its anti-inflammatory function is unknown. In this study, we use the AhR antagonist CH-223191 to inhibit AhR activity in mice. After an acute (3-day) cigarette smoke exposure, AhR inhibition was associated with significantly enhanced neutrophilia in the airways in response to cigarette smoke, mimicking the phenotype of AhR-deficient mice. We then used genetically-modified mouse strains which express an AhR that can bind ligand but either cannot translocate to the nucleus or bind its cognate response element, to show that these features of the AhR pathway are not required for the AhR to suppress pulmonary neutrophilia. Finally, using the non-toxic endogenous AhR ligand FICZ, we provide proof-of-concept that activation of pulmonary AhR attenuates smoke-induced inflammation. Collectively, these results support the importance of AhR activity in mediating its anti-inflammatory function in response to cigarette smoke. Further investigation of the precise mechanisms by which the AhR exerts is protective functions may lead to the development of therapeutic agents to treat people with chronic lung diseases that have an inflammatory etiology, but for which few therapeutic options exist.
Collapse
Affiliation(s)
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xinyu Wang
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Western University, London, ON, Canada
| | - Jorg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
122
|
Yidana DB. Hidradenitis suppurativa - The role of interleukin-17, the aryl hydrocarbon receptor and the link to a possible fungal aetiology. Med Hypotheses 2021; 149:110530. [PMID: 33607406 DOI: 10.1016/j.mehy.2021.110530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022]
Abstract
Hidradenitis Suppurativa (HS) is a chronic, recurrent, debilitating skin disease of the hair follicle that usually presents after puberty with painful, deep-seated, inflamed lesions in the apocrine gland bearing areas of the body, most commonly the axillae, inguinal and anogenital regions. The pathophysiology of the disease remains elusive, with newer therapies targeting various aspects of the dysregulated immune system. This presents a useful opportunity to look at the cytokine profile in HS and other inflammatory conditions that share similar patterns with the aim of teasing out less considered explanations for HS pathogenesis. It has been observed that IL-17 appears to be the most common denominator linking HS with other immune mediated diseases like Crohn, ulcerative colitis, multiple sclerosis and psoriasis. Given that IL-17 plays an important role in antifungal immunity, evidenced by the cytokine pattern in fungal disease and the bulk of data citing their potential involvement in Crohn, ulcerative colitis, multiple sclerosis and psoriasis; it is fair to suggest the need to explore the role that fungi play in the setting of HS going forward. The aryl hydrocarbon receptor (ahr) is a ubiquitous and largely conserved entity that is gaining interest in inflammatory conditions such as psoriasis and atopic dermatitis. It is well known to modulate autoimmune states. Its activation by both exogenous and endogenous agents result in secretion of IL-17 by Th17 cells. One of such agents is the tryptophan metabolite 6-formylindolo [3,2-b] carbazole (FICZ)-which can be produced by microorganisms such as fungi. It will be interesting to explore its usefulness in HS pathogenesis.
Collapse
Affiliation(s)
- Daniel B Yidana
- King's College London, St. John's Institute of Dermatology, Strand, London WC2R 2LS, United Kingdom.
| |
Collapse
|
123
|
A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22031104. [PMID: 33499346 PMCID: PMC7865493 DOI: 10.3390/ijms22031104] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.
Collapse
|
124
|
Gill T, Rosenbaum JT. Putative Pathobionts in HLA-B27-Associated Spondyloarthropathy. Front Immunol 2021; 11:586494. [PMID: 33537028 PMCID: PMC7848169 DOI: 10.3389/fimmu.2020.586494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of immune mediated inflammatory diseases with a strong association to the major histocompatibility (MHC) class I molecule, HLA-B27. Although the association between HLA-B27 and AS has been known for almost 50 years, the mechanisms underlying disease pathogenesis are elusive. Over the years, three hypotheses have been proposed to explain HLA-B27 and disease association: 1) HLA B27 presents arthritogenic peptides and thus creates a pathological immune response; 2) HLA-B27 misfolding causes endoplasmic reticulum (ER) stress which activates the unfolded protein response (UPR); 3) HLA-B27 dimerizes on the cell surface and acts as a target for natural killer (NK) cells. None of these hypotheses explains SpA pathogenesis completely. Evidence supports the hypothesis that HLA-B27-related diseases have a microbial pathogenesis. In animal models of various SpAs, a germ-free environment abrogates disease development and colonizing these animals with gut commensal microbes can restore disease manifestations. The depth of microbial influence on SpA development has been realized due to our ability to characterize microbial communities in the gut using next-generation sequencing approaches. In this review, we will discuss various putative pathobionts in the pathogenesis of HLA-B27-associated diseases. We pursue whether a single pathobiont or a disruption of microbial community and function is associated with HLA-B27-related diseases. Furthermore, rather than a specific pathobiont, metabolic functions of various disease-associated microbes might be key. While the use of germ-free models of SpA have facilitated understanding the role of microbes in disease development, future studies with animal models that mimic diverse microbial communities instead of mono-colonization are indispensable. We discuss the causal mechanisms underlying disease pathogenesis including the role of these pathobionts on mucin degradation, mucosal adherence, and gut epithelial barrier disruption and inflammation. Finally, we review the various uses of microbes as therapeutic modalities including pre/probiotics, diet, microbial metabolites and fecal microbiota transplant. Unravelling these complex host-microbe interactions will lead to the development of new targets/therapies for alleviation of SpA and other HLA-B27 associated diseases.
Collapse
Affiliation(s)
- Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - James T Rosenbaum
- Departments of Ophthalmology, Medicine, and Cell Biology, Oregon Health & Science University, Portland, OR, United States.,Legacy Devers Eye Institute, Portland, OR, United States
| |
Collapse
|
125
|
ARNT deficiency represses pyruvate dehydrogenase kinase 1 to trigger ROS production and melanoma metastasis. Oncogenesis 2021; 10:11. [PMID: 33446631 PMCID: PMC7809415 DOI: 10.1038/s41389-020-00299-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
The metabolic changes in melanoma cells that are required for tumor metastasis have not been fully elucidated. In this study, we show that the increase in glucose uptake and mitochondrial oxidative phosphorylation confers metastatic ability as a result of aryl hydrocarbon receptor nuclear translocator (ARNT) deficiency. In clinical tissue specimens, increased ARNT, pyruvate dehydrogenase kinase 1 (PDK1), and NAD(P)H quinine oxidoreductase-1 (NQO1) was observed in benign nevi, whereas lower expression was observed in melanoma. The depletion of ARNT dramatically repressed PDK1 and NQO1 expression, which resulted in an increase of ROS levels. The elimination of ROS using N-acetylcysteine (NAC) and inhibition of oxidative phosphorylation using carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and rotenone inhibited the ARNT and PDK1 deficiency-induced cell migration and invasion. In addition, ARNT deficiency in tumor cells manipulated the glycolytic pathway through enhancement of the glucose uptake rate, which reduced glucose dependence. Intriguingly, CCCP and NAC dramatically inhibited ARNT and PDK1 deficiency-induced tumor cell extravasation in mouse models. Our work demonstrates that downregulation of ARNT and PDK1 expression serves as a prognosticator, which confers metastatic potential as the metastasizing cells depend on metabolic changes.
Collapse
|
126
|
The Landscape of AhR Regulators and Coregulators to Fine-Tune AhR Functions. Int J Mol Sci 2021; 22:ijms22020757. [PMID: 33451129 PMCID: PMC7828596 DOI: 10.3390/ijms22020757] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.
Collapse
|
127
|
Tao S, Guo F, Ren Q, Liu J, Wei T, Li L, Ma L, Fu P. Activation of aryl hydrocarbon receptor by 6-formylindolo[3,2-b]carbazole alleviated acute kidney injury by repressing inflammation and apoptosis. J Cell Mol Med 2021; 25:1035-1047. [PMID: 33280241 PMCID: PMC7812300 DOI: 10.1111/jcmm.16168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a multifactorial disease of various aetiologies. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that responds to ligands to induce or repress gene expressions, thereby regulating a diverse spectrum of biological or pathophysiologic effects. However, the effect of AhR on AKI remains unknown. A single intraperitoneal injection of 50% glycerol was performed to induce rhabdomyolysis in C57BL/6J mice. The bilateral renal pedicles were occluded for 30 minutes and then removed to stimulate renal I/R injury. 6-formylindolo[3,2-b]carbazole (FICZ), a photo-oxidation product of tryptophan with a high affinity for AhR, was used. The in vitro study was performed on HK-2 cells. Ferrous myoglobin and FICZ was dissolved in the medium in different cell groups. Treatment with AhR agonist FICZ significantly alleviated the elevation of serum creatinine and urea in AKI. AKI modelling-induced renal damage was attenuated by FICZ. AhR mainly expressed in proximal tubular cells and could be activated by FICZ administration. Meanwhile, AKI triggered the production of pro-inflammatory cytokines in injured kidneys, while FICZ inhibited their expressions. Furthermore, FICZ effectively reversed cell apoptosis in AKI models. Mechanistically, AKI stimulated the activation of NF-κB and JNK pathways in the kidneys, while FICZ significantly suppressed these corresponding protein expressions. For the in vitro study, FICZ also inhibited inflammation and apoptosis in myoglobin or H/R-stimulated HK-2 cells. In summary, agonism of AhR by FICZ alleviated rhabdomyolysis and I/R-induced AKI. FICZ inhibited inflammation and apoptosis via suppressing NF-κB and JNK pathways in proximal tubular cells.
Collapse
Affiliation(s)
- Sibei Tao
- Division of NephrologyNational Clinical Research Center for GeriatricsKidney Research InstituteWest China Hospital of Sichuan UniversityChengduChina
| | - Fan Guo
- Division of NephrologyNational Clinical Research Center for GeriatricsKidney Research InstituteWest China Hospital of Sichuan UniversityChengduChina
| | - Qian Ren
- Division of NephrologyNational Clinical Research Center for GeriatricsKidney Research InstituteWest China Hospital of Sichuan UniversityChengduChina
| | - Jing Liu
- Division of NephrologyNational Clinical Research Center for GeriatricsKidney Research InstituteWest China Hospital of Sichuan UniversityChengduChina
| | - Tiantian Wei
- Division of NephrologyNational Clinical Research Center for GeriatricsKidney Research InstituteWest China Hospital of Sichuan UniversityChengduChina
| | - Lingzhi Li
- Division of NephrologyNational Clinical Research Center for GeriatricsKidney Research InstituteWest China Hospital of Sichuan UniversityChengduChina
| | - Liang Ma
- Division of NephrologyNational Clinical Research Center for GeriatricsKidney Research InstituteWest China Hospital of Sichuan UniversityChengduChina
| | - Ping Fu
- Division of NephrologyNational Clinical Research Center for GeriatricsKidney Research InstituteWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
128
|
Kyoreva M, Li Y, Hoosenally M, Hardman-Smart J, Morrison K, Tosi I, Tolaini M, Barinaga G, Stockinger B, Mrowietz U, Nestle FO, Smith CH, Barker JN, Di Meglio P. CYP1A1 Enzymatic Activity Influences Skin Inflammation Via Regulation of the AHR Pathway. J Invest Dermatol 2020; 141:1553-1563.e3. [PMID: 33385398 PMCID: PMC8152917 DOI: 10.1016/j.jid.2020.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
The AHR is an environmental sensor and transcription factor activated by a variety of man-made and natural ligands, which has recently emerged as a critical regulator of homeostasis at barrier organs such as the skin. Activation of the AHR pathway downmodulates skin inflammatory responses in animal models and psoriasis clinical samples. In this study, we identify CYP1A1 enzymatic activity as a critical regulator of beneficial AHR signaling in the context of skin inflammation. Mice constitutively expressing Cyp1a1 displayed increased CYP1A1 enzymatic activity in the skin, which resulted in exacerbated immune cell activation and skin pathology, mirroring that observed in Ahr-deficient mice. Inhibition of CYP1A1 enzymatic activity ameliorated the skin immunopathology by restoring beneficial AHR signaling. Importantly, patients with psoriasis displayed reduced activation of the AHR pathway and increased CYP1A1 enzymatic activity compared with healthy donors, suggesting that dysregulation of the AHR/CYP1A1 axis may play a role in inflammatory skin disease. Thus, modulation of CYP1A1 activity may represent a promising alternative strategy to harness the anti-inflammatory effect exerted by activation of the AHR pathway in the skin.
Collapse
Affiliation(s)
- Mariela Kyoreva
- AhRimmunity Lab, The Francis Crick Institute, London, United Kingdom
| | - Ying Li
- AhRimmunity Lab, The Francis Crick Institute, London, United Kingdom
| | - Mariyah Hoosenally
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | | | - Kirsten Morrison
- AhRimmunity Lab, The Francis Crick Institute, London, United Kingdom; Psoriasis Centre at the Department of Dermatology, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Isabella Tosi
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Mauro Tolaini
- AhRimmunity Lab, The Francis Crick Institute, London, United Kingdom
| | - Guillermo Barinaga
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | | | - Ulrich Mrowietz
- Psoriasis Centre at the Department of Dermatology, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Frank O Nestle
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Catherine H Smith
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Jonathan N Barker
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Paola Di Meglio
- AhRimmunity Lab, The Francis Crick Institute, London, United Kingdom; St John's Institute of Dermatology, King's College London, London, United Kingdom.
| |
Collapse
|
129
|
Bissonnette R, Stein Gold L, Rubenstein DS, Tallman AM, Armstrong A. Tapinarof in the treatment of psoriasis: A review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor-modulating agent. J Am Acad Dermatol 2020; 84:1059-1067. [PMID: 33157177 DOI: 10.1016/j.jaad.2020.10.085] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
Tapinarof, a novel, first-in-class, small-molecule topical therapeutic aryl hydrocarbon receptor (AhR)-modulating agent, is in clinical development for the treatment of psoriasis and atopic dermatitis. The efficacy of tapinarof in psoriasis is attributed to its specific binding and activation of AhR, a ligand-dependent transcription factor, leading to the downregulation of proinflammatory cytokines, including interleukin 17, and regulation of skin barrier protein expression to promote skin barrier normalization. AhR signaling regulates gene expression in immune cells and skin cells and has critical roles in the regulation of skin homeostasis. Tapinarof-mediated AhR signaling underlies the mechanistic basis for the significant efficacy and acceptable tolerability observed in early-phase clinical trials of tapinarof cream in the treatment of psoriasis.
Collapse
Affiliation(s)
| | | | | | | | - April Armstrong
- Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
130
|
Yang X, Liu H, Ye T, Duan C, Lv P, Wu X, Liu J, Jiang K, Lu H, Yang H, Xia D, Peng E, Chen Z, Tang K, Ye Z. AhR activation attenuates calcium oxalate nephrocalcinosis by diminishing M1 macrophage polarization and promoting M2 macrophage polarization. Am J Cancer Res 2020; 10:12011-12025. [PMID: 33204326 PMCID: PMC7667681 DOI: 10.7150/thno.51144] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Calcium oxalate (CaOx) crystal can trigger kidney injury, which contributes to the pathogenesis of nephrocalcinosis. The phenotypes of infiltrating macrophage may impact CaOx-mediated kidney inflammatory injury as well as crystal deposition. How aryl hydrocarbon receptor (AhR) regulates inflammation and macrophage polarization is well understood; however, how it modulates CaOx nephrocalcinosis remains unclear. Methods: Mice were intraperitoneally injected with glyoxylate to establish CaOx nephrocalcinosis model with or without the treatment of AhR activator 6-formylindolo(3,2-b)carbazole (FICZ). Positron emission tomography computed tomography (PET-CT) imaging, Periodic acid-Schiff (PAS) staining, and polarized light optical microscopy were used to evaluate kidney injury and crystal deposition in mice kidney. Western blotting, immunofluorescence, chromatin immunoprecipitation, microRNA-fluorescence in situ hybridization, and luciferase reporter assays were applied to analyze polarization state and regulation mechanism of macrophage. Results: AhR expression was significantly upregulated and negatively correlated with interferon-regulatory factor 1 (IRF1) and hypoxia inducible factor 1-alpha (HIF-1α) levels in a murine CaOx nephrocalcinosis model following administration of FICZ. Moreover, AhR activation suppressed IRF1 and HIF-1α levels and decreased M1 macrophage polarization in vitro. In terms of the mechanism, bioinformatics analysis and chromatin immunoprecipitation assay confirmed that AhR could bind to miR-142a promoter to transcriptionally activate miR-142a. In addition, luciferase reporter assays validated that miR-142a inhibited IRF1 and HIF-1α expression by directly targeting their 3'-untranslated regions. Conclusions: Our results indicated that AhR activation could diminish M1 macrophage polarization and promote M2 macrophage polarization to suppress CaOx nephrocalcinosis via the AhR-miR-142a-IRF1/HIF-1α pathway.
Collapse
|
131
|
Sato Y, Fujimura T, Hidaka T, Lyu C, Tanita K, Matsushita S, Yamamoto M, Aiba S. Possible Roles of Proinflammatory Signaling in Keratinocytes Through Aryl Hydrocarbon Receptor Ligands for the Development of Squamous Cell Carcinoma. Front Immunol 2020; 11:534323. [PMID: 33178182 PMCID: PMC7596320 DOI: 10.3389/fimmu.2020.534323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) provides a deeper insight into the pathogenesis of cutaneous squamous cell carcinoma (cSCC). AhR ligands, such as 6-formylindolo[3,2-b] carbazole (FICZ), and 7,12-Dimethylbenz[a]anthracene (DMBA), constitute major substrates for the cytochrome P450 (CYP) family, and influence the expression of various cytokine genes, including IL-17 and IL-23-related genes via the AhR. On the other hand, proinflammatory cytokines could drive tumor progression through the TRAF-ERK5 signaling pathway in cSCC. From the above findings, we hypothesized that AhR ligands might enhance the mRNA expression of proinflammatory cytokines via the AhR, leading to the development of cSCC. The purpose of this study was to investigate (1) the immunomodulatory effects of FICZ and DMBA on normal human keratinocytes (NHKCs), focusing on IL-17, and related cytokines/chemokines (IL-23, IL-36γ, and CCL20), (2) the expression of these factors in AhR-dependent pathways using a two-stage chemically induced skin carcinogenesis mouse model, and (3) the expression of these factors in lesion-affected skin in cSCC. Both FICZ and DMBA augmented the expression of CYP1A1, p19, CCL20, and IL-36γ mRNA in NHKCs in vitro. Moreover, the mRNA expression of these proinflammatory factors, as well as IL-17, in mouse cSCC is significantly decreased in the AhR-(fl/fl) Krt5-(Cre) mice compared to wild type mice, leading to a decrease in the number of developed cSCC lesions. Furthermore, CCL20, IL-23, as well as IL-17, are detected in the lesion-affected skin of cSCC patients. Our study demonstrates a possible mechanism for the development of cSCC involving AhR-mediated signaling by epidermal keratinocytes and recruitment of Th17 cells.
Collapse
Affiliation(s)
- Yota Sato
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chunbing Lyu
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kayo Tanita
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
132
|
Guenin-Macé L, Morel JD, Doisne JM, Schiavo A, Boulet L, Mayau V, Goncalves P, Duchatelet S, Hovnanian A, Bondet V, Duffy D, Ungeheuer MN, Delage M, Nassif A, Di Santo JP, Demangel C. Dysregulation of tryptophan catabolism at the host-skin microbiota interface in hidradenitis suppurativa. JCI Insight 2020; 5:140598. [PMID: 32970636 PMCID: PMC7605522 DOI: 10.1172/jci.insight.140598] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic skin disorder of unknown etiology that manifests as recurrent, painful lesions. Cutaneous dysbiosis and unresolved inflammation are hallmarks of active HS, but their origin and interplay remain unclear. Our metabolomic profiling of HS skin revealed an abnormal induction of the kynurenine pathway of tryptophan catabolism in dermal fibroblasts, correlating with the release of kynurenine pathway–inducing cytokines by inflammatory cell infiltrates. Notably, overactivation of the kynurenine pathway in lesional skin was associated with local and systemic depletion in tryptophan. Yet the skin microbiota normally degrades host tryptophan into indoles regulating tissue inflammation via engagement of the aryl hydrocarbon receptor (AHR). In HS skin lesions, we detected contextual defects in AHR activation coinciding with impaired production of bacteria-derived AHR agonists and decreased incidence of AHR ligand-producing bacteria in the resident flora. Dysregulation of tryptophan catabolism at the skin-microbiota interface thus provides a mechanism linking the immunological and microbiological features of HS lesions. In addition to revealing metabolic alterations in patients with HS, our study suggests that correcting AHR signaling would help restore immune homeostasis in HS skin. Loss of homeostasis of tryptophan metabolism at the host-microbiota interface may contribute to Hidradenitis Suppurativa.
Collapse
Affiliation(s)
- Laure Guenin-Macé
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Jean-David Morel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France.,Université Paris 7, Sorbonne Paris Cité, Paris, France.,ENS de Lyon, Lyon, France
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| | - Angèle Schiavo
- Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| | - Lysiane Boulet
- Laboratoire de Biochimie Hormonale et Nutritionnelle, CHU Grenoble-Alpes, La Tronche, France
| | - Véronique Mayau
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Pedro Goncalves
- Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| | - Sabine Duchatelet
- Université de Paris, Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Paris, France
| | - Alain Hovnanian
- Université de Paris, Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Paris, France.,Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Vincent Bondet
- Immunobiology of Dendritic Cells, Institut Pasteur, INSERM U1223, Paris, France
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, INSERM U1223, Paris, France
| | | | - Maïa Delage
- Centre Médical, Institut Pasteur, Paris, France
| | - Aude Nassif
- Centre Médical, Institut Pasteur, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| |
Collapse
|
133
|
Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020; 5:142067. [PMID: 33055429 PMCID: PMC7605526 DOI: 10.1172/jci.insight.142067] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin serves as the primary interface between our body and the external environment and acts as a barrier against entry of physical agents, chemicals, and microbes. Keratinocytes make up the main cellular constitute of the outermost layer of the skin, contributing to the formation of the epidermis, and they are crucial for maintaining the integrity of this barrier. Beyond serving as a physical barrier component, keratinocytes actively participate in maintaining tissue homeostasis, shaping, amplifying, and regulating immune responses in skin. Keratinocytes act as sentinels, continuously monitoring changes in the environment, and, through microbial sensing, stretch, or other physical stimuli, can initiate a broad range of inflammatory responses via secretion of various cytokines, chemokines, and growth factors. This diverse function of keratinocytes contributes to the highly variable clinical manifestation of skin immune responses. In this Review, we highlight the highly diverse functions of epidermal keratinocytes and their contribution to various immune-mediated skin diseases.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Department of Nutrition and Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| |
Collapse
|
134
|
Lissner MM, Cumnock K, Davis NM, Vilches-Moure JG, Basak P, Navarrete DJ, Allen JA, Schneider D. Metabolic profiling during malaria reveals the role of the aryl hydrocarbon receptor in regulating kidney injury. eLife 2020; 9:60165. [PMID: 33021470 PMCID: PMC7538157 DOI: 10.7554/elife.60165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic metabolic reprogramming induced by infection exerts profound, pathogen-specific effects on infection outcome. Here, we detail the host immune and metabolic response during sickness and recovery in a mouse model of malaria. We describe extensive alterations in metabolism during acute infection, and identify increases in host-derived metabolites that signal through the aryl hydrocarbon receptor (AHR), a transcription factor with immunomodulatory functions. We find that Ahr-/- mice are more susceptible to malaria and develop high plasma heme and acute kidney injury. This phenotype is dependent on AHR in Tek-expressing radioresistant cells. Our findings identify a role for AHR in limiting tissue damage during malaria. Furthermore, this work demonstrates the critical role of host metabolism in surviving infection.
Collapse
Affiliation(s)
- Michelle M Lissner
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Katherine Cumnock
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Nicole M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - José G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, United States
| | - Priyanka Basak
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Daniel J Navarrete
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Jessica A Allen
- Division of Health, Mathematics and Science, Columbia College, Columbia, United States
| | - David Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| |
Collapse
|
135
|
Um JY, Kim HB, Kang SY, Son JH, Chung BY, Park CW, Kim HO. 2,3,7,8-Tetrachlorodibenzo- p-Dioxin Regulates the Expression of Aryl Hydrocarbon Receptor-Related Factors and Cytokines in Peripheral Blood Mononuclear Cells and CD4+ T cells from Patients with Atopic Dermatitis and Psoriasis. Ann Dermatol 2020; 32:360-369. [PMID: 33911769 PMCID: PMC7992582 DOI: 10.5021/ad.2020.32.5.360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 01/22/2023] Open
Abstract
Background Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is important for xenobiotic metabolism and binds to various endogenous and exogenous ligands in the skin. However, the functional role of AhR in patients with psoriasis (PS) and atopic dermatitis (AD) remains unclear. Objective We aimed to determine whether AhR-regulated factors (AhR, CYP1A1, interleukin [IL]-17, IL-22) were affected by AhR ligands (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) in chronic inflammatory skin diseases such as PS and AD. Methods The expression levels of AhR-related factors were determined by quantitative PCR, western blotting, and immunocytochemistry. Specific siRNA targeting AhR was used to inhibit gene expression in human peripheral blood mononuclear cells (PBMC). Cytokine assays were performed to determine the protein production of CD4+ T cells. Results In comparison with healthy controls, TCDD-treated PBMCs and CD4+ T cells from patients with PS and AD showed an increase in AhR gene levels as well as significantly increased expression of AhR-related factors (such as AhR, CYP1A1, IL-17, and IL-22). In contrast, 6-formyl indolo [3,2-b] carbazole (FICZ) inversely affected the differentiation of CD4+ T cells and their cytokine expression levels as compared with TCDD. CD4+ T cells from patients with AD and PS showed higher expression levels of AhR, CYP1A1, IL-17, and IL-22. Conclusion Our results suggest that TCDD-induced AhR-related factor upregulation in AD and PS patients may increase the expression of AhR-regulatory genes, thereby contributing to the development of AD and PS.
Collapse
Affiliation(s)
- Ji-Young Um
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Han Bi Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Seok Young Kang
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Jee Hee Son
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| |
Collapse
|
136
|
Aryl hydrocarbon receptor expression in serum, peripheral blood mononuclear cells, and skin lesions of patients with atopic dermatitis and its correlation with disease severity. Chin Med J (Engl) 2020; 133:148-153. [PMID: 31868801 PMCID: PMC7028167 DOI: 10.1097/cm9.0000000000000591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which is critically involved in the pathogenesis of a variety of skin diseases. The aim of this study was to detect AhR and its downstream regulators including cytochrome P450 (CYP1A1), AhR nuclear translocation (ARNT), and aryl hydrocarbon receptor repressor (AhRR) in serum, peripheral blood mononuclear cells (PBMCs), and skin lesions in patients with atopic dermatitis (AD). Methods Twenty-nine AD patients defined according to the criteria of Hanifin and Rajka and Chinese criteria of AD were included. Subjects without allergic and chronic diseases were recruited as controls. Patients and controls were selected from the dermatology outpatient clinic of Peking University People's Hospital from August 1 to December 31 in 2018. Enzyme-linked immunosorbent assay was performed to detect serum AhR level. The mRNA of AhR, AhRR, ARNT, and CYP1A1 in PBMCs were measured by real-time quantitative polymerase chain reaction. AhR expression in skin lesions was measured by immunohistochemistry. Results AhR was significantly higher expressed in serum (41.26 ± 4.52 vs. 33.73 ± 2.49 pmol/L, t = 6.507, P < 0.001) and skin lesions (0.191 ± 0.041 vs. 0.087 ± 0.017, t = 10.036, P < 0.001) of AD patients compared with those of controls. The mRNA levels of AhR (1.572 ± 0.392 vs. 1.000 ± 0.173, t = 6.819, P < 0.001), AhRR (2.402 ± 1.716 vs. 1.000 ± 0.788, t = 3.722, P < 0.001), CYP1A1 (2.258 ± 1.598 vs. 1.000 ± 0.796, t = 3.400, P = 0.002) in PBMCs of AD patients were higher compared with those of controls. The difference in mRNA levels of ARNT was not statistically significant between the patients and controls (1.383 ± 0.842 vs. 1.000 ± 0.586, t = 1.653, P = 0.105). AhR mRNA levels in PBMCs positively correlated with eczema area and severity index score and serum interleukin-6 levels. Conclusion AhR and its downstream regulators were highly expressed in serum, PBMCs, and skin of AD patients, which might contribute to the pathogenesis of AD.
Collapse
|
137
|
Aryl Hydrocarbon Receptor Activity in Hepatocytes Sensitizes to Hyperacute Acetaminophen-Induced Hepatotoxicity in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:371-388. [PMID: 32932016 PMCID: PMC7779786 DOI: 10.1016/j.jcmgh.2020.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP)-induced liver injury is one of the most common causes of acute liver failure, however, a clear definition of sensitizing risk factors is lacking. Here, we investigated the role of the ligand-activated transcription factor aryl hydrocarbon receptor (Ahr) in APAP-induced liver injury. We hypothesized that Ahr, which integrates environmental, dietary, microbial and metabolic signals into complex cellular transcriptional programs, might act as a rheostat for APAP-toxicity. METHODS Wildtype or conditional Ahr knockout mice lacking Ahr in hepatocytes (AlbΔ/ΔAhr) or myeloid cells (LysMΔ/ΔAhr) were treated with the specific Ahr ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) together with APAP. RESULTS Ahr activation by ITE, which by itself was non-toxic, exacerbated APAP-induced hepatotoxicity compared to vehicle-treated controls, causing 80% vs. 0% mortality after administration of a normally sublethal APAP overdose. Of note, Ahr activation induced hepatocyte death even at APAP doses within the therapeutic range. Aggravated liver injury was associated with significant neutrophil infiltration; however, lack of Ahr in myeloid cells did not protect LysMΔ/ΔAhr mice from exacerbated APAP hepatotoxicity. In contrast, AlbΔ/ΔAhr mice were largely protected from ITE-induced aggravated liver damage, indicating that Ahr activation in hepatocytes, but not in myeloid cells, was instrumental for disease exacerbation. Mechanistically, Ahr activation fueled hepatic accumulation of toxic APAP metabolites by up-regulating expression of the APAP-metabolizing enzyme Cyp1a2, a direct Ahr downstream target. CONCLUSIONS Ahr activation in hepatocytes potentiates APAP-induced hepatotoxicity. Thus, individual exposition to environmental Ahr ligands might explain individual sensitivity to hyperacute liver failure.
Collapse
|
138
|
Safe S, Jin UH, Park H, Chapkin RS, Jayaraman A. Aryl Hydrocarbon Receptor (AHR) Ligands as Selective AHR Modulators (SAhRMs). Int J Mol Sci 2020; 21:6654. [PMID: 32932962 PMCID: PMC7555580 DOI: 10.3390/ijms21186654] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) was first identified as the intracellular protein that bound and mediated the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and dioxin-like compounds (DLCs). Subsequent studies show that the AhR plays an important role in maintaining cellular homeostasis and in pathophysiology, and there is increasing evidence that the AhR is an important drug target. The AhR binds structurally diverse compounds, including pharmaceuticals, phytochemicals and endogenous biochemicals, some of which may serve as endogenous ligands. Classification of DLCs and non-DLCs based on their persistence (metabolism), toxicities, binding to wild-type/mutant AhR and structural similarities have been reported. This review provides data suggesting that ligands for the AhR are selective AhR modulators (SAhRMs) that exhibit tissue/cell-specific AhR agonist and antagonist activities, and that their functional diversity is similar to selective receptor modulators that target steroid hormone and other nuclear receptors.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (U.-h.J.); (H.P.)
| | - Un-ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (U.-h.J.); (H.P.)
| | - Hyejin Park
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (U.-h.J.); (H.P.)
| | - Robert S. Chapkin
- Departments of Nutrition and Food Science and Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA;
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
139
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
140
|
Wajda A, Łapczuk-Romańska J, Paradowska-Gorycka A. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. Int J Mol Sci 2020; 21:E6404. [PMID: 32899152 PMCID: PMC7504141 DOI: 10.3390/ijms21176404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental factors contribute to autoimmune disease manifestation, and as regarded today, AhR has become an important factor in studies of immunomodulation. Besides immunological aspects, AhR also plays a role in pharmacological, toxicological and many other physiological processes such as adaptive metabolism. In recent years, epigenetic mechanisms have provided new insight into gene regulation and reveal a new contribution to autoimmune disease pathogenesis. DNA methylation, histone modifications, chromatin alterations, microRNA and consequently non-genetic changes in phenotypes connect with environmental factors. Increasing data reveals AhR cross-roads with the most significant in immunology pathways. Although study on epigenetic modulations in autoimmune diseases is still not well understood, therefore future research will help us understand their pathophysiology and help to find new therapeutic strategies. Present literature review sheds the light on the common ground between remodeling chromatin compounds and autoimmune antibodies used in diagnostics. In the proposed review we summarize recent findings that describe epigenetic factors which regulate AhR activity and impact diverse immunological responses and pathological changes.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
141
|
Phelan-Dickinson SJ, Palmer BC, Chen Y, DeLouise LA. The UVR Filter Octinoxate Modulates Aryl Hydrocarbon Receptor Signaling in Keratinocytes via Inhibition of CYP1A1 and CYP1B1. Toxicol Sci 2020; 177:188-201. [PMID: 32603427 DOI: 10.1093/toxsci/kfaa091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet radiation (UVR) is a consistent part of the environment that has both beneficial and harmful effects on human health. UVR filters in the form of commercial sunscreens have been widely used to reduce the negative health effects of UVR exposure. Despite their benefit, literature suggests that some filters can penetrate skin and have off-target biological effects. We noted that many organic filters are hydrophobic and contain aromatic rings, making them potential modulators of Aryl hydrocarbon Receptor (AhR) signaling. We hypothesized that some filters may be able to act as agonists or antagonists on the AhR. Using a luciferase reporter cell line, we observed that the UVR filter octinoxate potentiated the ability of the known AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ), to activate the AhR. Cotreatments of keratinocytes with octinoxate and FICZ lead to increased levels of cytochrome P4501A1 (CYP1A1) and P4501B1 (CYP1B1) mRNA transcripts, in an AhR-dependent fashion. Mechanistic studies revealed that octinoxate is an inhibitor of CYP1A1 and CYP1B1, with IC50 values at approximately 1 µM and 586 nM, respectively. In vivo topical application of octinoxate and FICZ also elevated CYP1A1 and CYP1B1 mRNA levels in mouse skin. Our results show that octinoxate is able to indirectly modulate AhR signaling by inhibiting CYP1A1 and CYP1B1 enzyme function, which may have important downstream consequences for the metabolism of various compounds and skin integrity. It is important to continue studying the off-target effects of octinoxate and other UVR filters, because they are used on skin on a daily basis world-wide.
Collapse
Affiliation(s)
| | - Brian C Palmer
- Department of Environmental Medicine, University of Rochester Medical Center, New York 14642
| | - Yue Chen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | - Lisa A DeLouise
- Department of Environmental Medicine, University of Rochester Medical Center, New York 14642.,Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
142
|
Walker JM, Garcet S, Aleman JO, Mason CE, Danko D, Butler D, Zuffa S, Swann JR, Krueger J, Breslow JL, Holt PR. Obesity and ethnicity alter gene expression in skin. Sci Rep 2020; 10:14079. [PMID: 32826922 PMCID: PMC7442822 DOI: 10.1038/s41598-020-70244-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
Obesity is accompanied by dysfunction of many organs, but effects on the skin have received little attention. We studied differences in epithelial thickness by histology and gene expression by Affymetrix gene arrays and PCR in the skin of 10 obese (BMI 35-50) and 10 normal weight (BMI 18.5-26.9) postmenopausal women paired by age and ethnicity. Epidermal thickness did not differ with obesity but the expression of genes encoding proteins associated with skin blood supply and wound healing were altered. In the obese, many gene expression pathways were broadly downregulated and subdermal fat showed pronounced inflammation. There were no changes in skin microbiota or metabolites. African American subjects differed from European Americans with a trend to increased epidermal thickening. In obese African Americans, compared to obese European Americans, we observed altered gene expression that may explain known differences in water content and stress response. African Americans showed markedly lower expression of the gene encoding the cystic fibrosis transmembrane regulator characteristic of the disease cystic fibrosis. The results from this preliminary study may explain the functional changes found in the skin of obese subjects and African Americans.
Collapse
Affiliation(s)
- Jeanne M Walker
- The Rockefeller University Hospital, New York, NY, 10065, USA.
| | - Sandra Garcet
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jose O Aleman
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY, 10016, USA
| | | | - David Danko
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Daniel Butler
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Simone Zuffa
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Jonathan R Swann
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Krueger
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jan L Breslow
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
| | - Peter R Holt
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
143
|
Benezeder T, Painsi C, Patra V, Dey S, Holcmann M, Lange-Asschenfeldt B, Sibilia M, Wolf P. Dithranol targets keratinocytes, their crosstalk with neutrophils and inhibits the IL-36 inflammatory loop in psoriasis. eLife 2020; 9:e56991. [PMID: 32484435 PMCID: PMC7266641 DOI: 10.7554/elife.56991] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the introduction of biologics, topical dithranol (anthralin) has remained one of the most effective anti-psoriatic agents. Serial biopsies from human psoriatic lesions and both the c-Jun/JunB and imiquimod psoriasis mouse model allowed us to study the therapeutic mechanism of this drug. Top differentially expressed genes in the early response to dithranol belonged to keratinocyte and epidermal differentiation pathways and IL-1 family members (i.e. IL36RN) but not elements of the IL-17/IL-23 axis. In human psoriatic response to dithranol, rapid decrease in expression of keratinocyte differentiation regulators (e.g. involucrin, SERPINB7 and SERPINB13), antimicrobial peptides (e.g. ß-defensins like DEFB4A, DEFB4B, DEFB103A, S100 proteins like S100A7, S100A12), chemotactic factors for neutrophils (e.g. CXCL5, CXCL8) and neutrophilic infiltration was followed with much delay by reduction in T cell infiltration. Targeting keratinocytes rather than immune cells may be an alternative approach in particular for topical anti-psoriatic treatment, an area with high need for new drugs.
Collapse
Affiliation(s)
| | - Clemens Painsi
- State Hospital KlagenfurtKlagenfurt am WörtherseeAustria
| | - VijayKumar Patra
- Department of Dermatology, Medical University of GrazGrazAustria
| | - Saptaswa Dey
- Department of Dermatology, Medical University of GrazGrazAustria
| | - Martin Holcmann
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of ViennaViennaAustria
| | | | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of ViennaViennaAustria
| | - Peter Wolf
- Department of Dermatology, Medical University of GrazGrazAustria
| |
Collapse
|
144
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020; 59:7871-7880. [PMID: 32097515 PMCID: PMC7200298 DOI: 10.1002/anie.201916204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/01/2023]
Abstract
Tapinarof is a stilbene drug that is used to treat psoriasis and atopic dermatitis, and is thought to function through regulation of the AhR and Nrf2 signaling pathways, which have also been linked to inflammatory bowel diseases. It is produced by the gammaproteobacterial Photorhabdus genus, which thus represents a model to probe tapinarof structural and functional transformations. We show that Photorhabdus transforms tapinarof into novel drug metabolism products that kill inflammatory bacteria, and that a cupin enzyme contributes to the conversion of tapinarof and related dietary stilbenes into novel dimers. One dimer has activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), and another undergoes spontaneous cyclizations to a cyclopropane-bridge-containing hexacyclic framework that exhibits activity against Mycobacterium. These dimers lack efficacy in a colitis mouse model, whereas the monomer reduces disease symptoms.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Tyler N. Goddard
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jaymin Patel
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zheng Wei
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Corey E. Perez
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical and Biophysical Instrumentation Center, Yale University, New Haven, CT 06520, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Thomas P. Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
145
|
Del Rosso JQ. An Update on the Latest Developments in Nonsteroidal Topical Therapy for Atopic Dermatitis. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2020; 13:44-48. [PMID: 32802256 PMCID: PMC7380691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The author provides a thorough review of the latest topical treatment approaches for atopic dermatitis. Some agents are currently available in the marketplace, while others are in development. Modes of action, including phosphodiesterase-4 inhibition, aryl hydrocarbon receptor activation, and Janus kinase inhibition are discussed. Emphasis is placed on therapeutic approaches related to modes of action, with clinical data included.
Collapse
Affiliation(s)
- James Q Del Rosso
- Dr. Del Rosso is Research Director at JDR Dermatology Research in Las Vegas, Nevada; is with Thomas Dermatology in Las Vegas, Nevada, and is an adjunct clinical professor of dermatology at Touro University Nevada in Henderson, Nevada
| |
Collapse
|
146
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
147
|
Tucovic D, Mirkov I, Kulas J, Zeljkovic M, Popovic D, Zolotarevski L, Djurdjic S, Mutic J, Kataranovski M, Popov Aleksandrov A. Dermatotoxicity of oral cadmium is strain-dependent and related to differences in skin stress response and inflammatory/immune activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103326. [PMID: 31924569 DOI: 10.1016/j.etap.2020.103326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Adverse effects of non-occupational exposure to cadmium (Cd) are increasingly acknowledged. Since our previous study has showed that orally acquired Cd affects skin, the contribution of genetic background to dermatotoxicity of oral cadmium was examined in two rat strains, Albino Oxford (AO) and Dark Agouti (DA), which differed in response to chemicals. While similar accumulation of Cd in the skin of both strains was noted, the skin response to the metal differed. DA rat individuals mounted antioxidant enzyme defense in the skin already at lower Cd dose, in contrast to AO rats which reacted to higher metal dose solely (and less pronounced), implying higher susceptibility of DA strain to Cd dermatotoxicity. Epidermal cells from both strains developed stress response, but higher intensity of antioxidant response in AO rats implied this strain`s better ability to defend against Cd insult. Cd induced epidermal cells' proinflammatory cytokine response only in DA rats. Increased IL-10 seems responsible for the lack of response in AO rats. Differences in the pattern of skin/epidermal cell responsiveness to cadmium give a new insight into repercussion of genetic variability to dermatotoxicity of orally acquired cadmium, bearing relevance for variations in the link between dietary cadmium and inflammation-based skin pathologies.
Collapse
Affiliation(s)
- Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Milica Zeljkovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Lidija Zolotarevski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Sladjana Djurdjic
- Innovation Center of the Faculty of Chemistry, University of Belgrade, 12-16 Studentski Trg, 11000, Belgrade, Serbia
| | - Jelena Mutic
- Innovation Center of the Faculty of Chemistry, University of Belgrade, 12-16 Studentski Trg, 11000, Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia.
| |
Collapse
|
148
|
Kim HR, Kang SY, Kim HO, Park CW, Chung BY. Role of Aryl Hydrocarbon Receptor Activation and Autophagy in Psoriasis-Related Inflammation. Int J Mol Sci 2020; 21:ijms21062195. [PMID: 32235789 PMCID: PMC7139675 DOI: 10.3390/ijms21062195] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) and autophagy reportedly regulate immune responses in the skin. This study explored the effects of AhR activation on autophagy in human keratinocytes, and the relevance of AhR and autophagy in psoriasis pathogenesis. AhR activation by 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) repressed autophagy, while autophagy inhibition induced AhR activation in HaCaT cells and normal human epidermal keratinocytes (NHEKs). A particularly strong interaction between AhR and autophagy was observed in proinflammatory cytokines-stimulated keratinocytes, an in vitro model of psoriasis. In skin biopsies from psoriasis patients, a similar impact of AhR on autophagy and inflammation was observed. AhR inhibition blocked TCDD- and chloroquine-induced p65NF-κB and p38MAPK phosphorylation in proinflammatory cytokines-stimulated HaCaT cells. Moreover, higher expression of AhR and CYP1A1, and lower expression of LC3, were detected in psoriatic skin tissues, compared to the controls. These data demonstrated that AhR modulated autophagy leads to skin inflammation in human keratinocytes via the p65NF-κB/p38MAPK signaling pathways, suggesting that AhR signaling and autophagy might be involved in the pathogenesis of chronic inflammatory disorders such as psoriasis.
Collapse
Affiliation(s)
| | | | | | | | - Bo Young Chung
- Correspondence: ; Tel.: +82-2-829-5221; Fax: +82-2-832-3237
| |
Collapse
|
149
|
Smith AM, Walsh JR, Long J, Davis CB, Henstock P, Hodge MR, Maciejewski M, Mu XJ, Ra S, Zhao S, Ziemek D, Fisher CK. Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data. BMC Bioinformatics 2020; 21:119. [PMID: 32197580 PMCID: PMC7085143 DOI: 10.1186/s12859-020-3427-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The ability to confidently predict health outcomes from gene expression would catalyze a revolution in molecular diagnostics. Yet, the goal of developing actionable, robust, and reproducible predictive signatures of phenotypes such as clinical outcome has not been attained in almost any disease area. Here, we report a comprehensive analysis spanning prediction tasks from ulcerative colitis, atopic dermatitis, diabetes, to many cancer subtypes for a total of 24 binary and multiclass prediction problems and 26 survival analysis tasks. We systematically investigate the influence of gene subsets, normalization methods and prediction algorithms. Crucially, we also explore the novel use of deep representation learning methods on large transcriptomics compendia, such as GTEx and TCGA, to boost the performance of state-of-the-art methods. The resources and findings in this work should serve as both an up-to-date reference on attainable performance, and as a benchmarking resource for further research. RESULTS Approaches that combine large numbers of genes outperformed single gene methods consistently and with a significant margin, but neither unsupervised nor semi-supervised representation learning techniques yielded consistent improvements in out-of-sample performance across datasets. Our findings suggest that using l2-regularized regression methods applied to centered log-ratio transformed transcript abundances provide the best predictive analyses overall. CONCLUSIONS Transcriptomics-based phenotype prediction benefits from proper normalization techniques and state-of-the-art regularized regression approaches. In our view, breakthrough performance is likely contingent on factors which are independent of normalization and general modeling techniques; these factors might include reduction of systematic errors in sequencing data, incorporation of other data types such as single-cell sequencing and proteomics, and improved use of prior knowledge.
Collapse
Affiliation(s)
| | | | - John Long
- Computational Sciences, Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Craig B Davis
- Oncology Global Product Development, Pfizer Inc., San Diego, CA, USA
| | | | - Martin R Hodge
- Inflammation and Immunology, Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Mateusz Maciejewski
- Inflammation and Immunology, Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Xinmeng Jasmine Mu
- Oncology Research & Development, Worldwide Research & Development, Pfizer Inc., San Diego, CA, USA
| | - Stephen Ra
- Computational Sciences, Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Shanrong Zhao
- Computational Sciences, Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Daniel Ziemek
- Inflammation and Immunology, Worldwide Research & Development, Pfizer Pharma GmbH., Berlin, Germany
| | | |
Collapse
|
150
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Tyler N. Goddard
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Joonseok Oh
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Jaymin Patel
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Molecular, Cellular, and Developmental Biology Yale University New Haven CT 06520 USA
| | - Zheng Wei
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
| | - Corey E. Perez
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Brandon Q. Mercado
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical and Biophysical Instrumentation Center Yale University New Haven CT 06520 USA
| | - Rurun Wang
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Thomas P. Wyche
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Grazia Piizzi
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Richard A. Flavell
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
- Howard Hughes Medical Institute Yale University School of Medicine New Haven CT 06520 USA
| | - Jason M. Crawford
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Microbial Pathogenesis Yale School of Medicine New Haven CT 06536 USA
| |
Collapse
|