101
|
Braun L, Travier L, Kieffer S, Musset K, Garin J, Mercier C, Cesbron-Delauw MF. Purification of Toxoplasma dense granule proteins reveals that they are in complexes throughout the secretory pathway. Mol Biochem Parasitol 2007; 157:13-21. [PMID: 17959262 DOI: 10.1016/j.molbiopara.2007.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 11/18/2022]
Abstract
Dense granules are Apicomplexa specific secretory organelles. In Toxoplasma gondii, the dense granules proteins, named GRA proteins, are massively secreted into the parasitophorous vacuole (PV) shortly after invasion. Despite the presence of hydrophobic membrane segments, they are stored as both soluble and aggregated forms within the dense granules and are secreted as soluble forms into the vacuolar space where they further stably associate with PV membranes. In this study, we explored the unusual biochemical behavior of GRA proteins during their trafficking. Conventional chromatography indicated that the GRA proteins form high globular weight complexes within the parasite. To confirm these results, DeltaGRA knocked-out parasites were stably complemented with their respective HA-FLAG tagged GRA2 or GRA5. Purification of the tagged proteins by affinity chromatography showed that within the parasite and the PV soluble fraction, both the soluble GRA2-HA-FLAG and GRA5-HA-FLAG associate with several GRA proteins, the major ones being GRA3, GRA6 and GRA7. Following their insertion into the PV membranes, GRA2-HA-FLAG associated with GRA5 and GRA7 while GRA5-HA-FLAG associated with GRA7 only. Taken together, these data suggest that the GRA proteins form oligomeric complexes that may explain their solubility within the dense granules and the vacuolar matrix by sequestering their hydrophobic domains within the interior of the complex. Insertion into the PV membranes correlates with the decrease of the GRA partners number.
Collapse
Affiliation(s)
- Laurence Braun
- UMR 5163/CNRS-Université Joseph Fourier, Domaine de la Merci, 38700 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
102
|
Dautu G, Munyaka B, Carmen G, Zhang G, Omata Y, Xuenan X, Igarashi M. Toxoplasma gondii: DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential. Exp Parasitol 2007; 116:273-82. [PMID: 17379212 DOI: 10.1016/j.exppara.2007.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 01/17/2007] [Accepted: 01/21/2007] [Indexed: 01/15/2023]
Abstract
A combination of antigenic regions of microneme proteins have been previously reported as being protective against chronic toxoplasmosis. In this work, we evaluated immune responses induced by immunizing BALB/c and C57BL/6 mice intradermally with plasmid DNA encoding the protein sequences of Toxoplasma gondii AMA1, MIC2, M2AP and BAG1. Mice immunized with the AMA1 gene developed high levels of serum IgG2a and c antibodies as well as cellular immune responses associated with IFN-gamma synthesis suggesting a modulated Th1 type of response. Immunization with the AMA1 gene resulted in a partial but significant protection against the acute phase of toxoplasmosis compared to MIC2, M2AP and BAG1 genes. Therefore, the AMA1 gene appears to generate a strong specific immune response and also provides effective protection against toxoplasmosis more than the MIC2, M2AP and BAG1 genes.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Biolistics
- Cell Line
- Female
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/immunology
- Humans
- Immunity, Cellular
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Interferon-gamma/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Spleen/cytology
- Spleen/immunology
- Toxoplasma/genetics
- Toxoplasma/immunology
- Toxoplasmosis, Animal/prevention & control
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- George Dautu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | | | | | | | | | | |
Collapse
|
103
|
Sinnis P, Coppi A. A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. Parasitol Int 2007; 56:171-8. [PMID: 17513164 PMCID: PMC1995443 DOI: 10.1016/j.parint.2007.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 04/17/2007] [Indexed: 11/21/2022]
Abstract
The Plasmodium sporozoite, the infectious stage of the malaria parasite, makes a remarkable journey in its mammalian host. Here we review our current knowledge of the molecular and cellular basis of this journey, which begins in the skin and ends in the hepatocyte.
Collapse
Affiliation(s)
- Photini Sinnis
- Department of Medical Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, United States.
| | | |
Collapse
|
104
|
Jan G, Delorme V, David V, Revenu C, Rebollo A, Cayla X, Tardieux I. The toxofilin-actin-PP2C complex of Toxoplasma: identification of interacting domains. Biochem J 2007; 401:711-9. [PMID: 17014426 PMCID: PMC1770844 DOI: 10.1042/bj20061324] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which causes toxoplasmosis. Toxofilin binds to G-actin, and in vitro studies have shown that it controls elongation of actin filaments by sequestering actin monomers. Toxofilin affinity for G-actin is controlled by the phosphorylation status of its Ser53, which depends on the activities of a casein kinase II and a type 2C serine/threonine phosphatase (PP2C). To get insights into the functional properties of toxofilin, we undertook a structure-function analysis of the protein using a combination of biochemical techniques. We identified a domain that was sufficient to sequester G-actin and that contains three peptide sequences selectively binding to G-actin. Two of these sequences are similar to sequences present in several G- and F-actin-binding proteins, while the third appears to be specific to toxofilin. Additionally, we identified two toxofilin domains that interact with PP2C, one of which contains the Ser53 substrate. In addition to characterizing the interacting domains of toxofilin with its partners, the present study also provides information on an in vivo-based approach to selectively and competitively disrupt the protein-protein interactions that are important to parasite motility.
Collapse
Affiliation(s)
- Gaelle Jan
- *Institut Cochin, Département des Maladies Infectieuses, Paris, F-75014 France
- †INSERM U567, Paris, F-75014 France
- ‡CNRS, UMR 8104, Paris, F-75014 France
- §Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, F-75014 France
| | - Violaine Delorme
- *Institut Cochin, Département des Maladies Infectieuses, Paris, F-75014 France
- †INSERM U567, Paris, F-75014 France
- ‡CNRS, UMR 8104, Paris, F-75014 France
- §Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, F-75014 France
- ∥The Scripps Research Institute, Immunology Department, La Jolla, CA 92122, U.S.A
| | - Violaine David
- *Institut Cochin, Département des Maladies Infectieuses, Paris, F-75014 France
- †INSERM U567, Paris, F-75014 France
- ‡CNRS, UMR 8104, Paris, F-75014 France
- §Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, F-75014 France
| | - Celine Revenu
- ¶Institut Curie UMR 144, Laboratoire de Morphogenèse et Signalisation Cellulaires, Paris, F-75248 France
| | | | - Xavier Cayla
- ††INRA-CNRS UMR 6175-Université de Tours-Haras Nationaux, IFR 135, Nouzilly, F-37380 France
| | - Isabelle Tardieux
- *Institut Cochin, Département des Maladies Infectieuses, Paris, F-75014 France
- †INSERM U567, Paris, F-75014 France
- ‡CNRS, UMR 8104, Paris, F-75014 France
- §Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, F-75014 France
- To whom correspondence should be addressed (email )
| |
Collapse
|
105
|
Carruthers V, Boothroyd JC. Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol 2007; 10:83-9. [PMID: 16837236 DOI: 10.1016/j.mib.2006.06.017] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/26/2006] [Indexed: 11/29/2022]
Abstract
The protozoan Toxoplasma gondii invades a wide array of animal cells using an actin/myosin-based motor complex to drive active penetration. This broad specificity implies that the parasite has developed a means of using a widely expressed receptor, many different receptors, or perhaps a receptor produced by T. gondii itself. Recently, there has been an explosion in identification of the molecules involved, including those that comprise the 'moving junction' that slides over the parasite as it invades. The emerging model is that invasion comprises at least seven steps that progressively increase the parasite's grip on the host surface, form the moving junction and enlist the motor complex to drive entry. These recent findings have led to new hypotheses regarding the parasite's broad host-specificity.
Collapse
Affiliation(s)
- Vern Carruthers
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-1918, USA.
| | | |
Collapse
|
106
|
Gilk SD, Raviv Y, Hu K, Murray JM, Beckers CJM, Ward GE. Identification of PhIL1, a novel cytoskeletal protein of the Toxoplasma gondii pellicle, through photosensitized labeling with 5-[125I]iodonaphthalene-1-azide. EUKARYOTIC CELL 2006; 5:1622-34. [PMID: 17030994 PMCID: PMC1595352 DOI: 10.1128/ec.00114-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pellicle of the protozoan parasite Toxoplasma gondii is a unique triple bilayer structure, consisting of the plasma membrane and two tightly apposed membranes of the underlying inner membrane complex. Integral membrane proteins of the pellicle are likely to play critical roles in host cell recognition, attachment, and invasion, but few such proteins have been identified. This is in large part because the parasite surface is dominated by a family of abundant and highly immunogenic glycosylphosphatidylinositol (GPI)-anchored proteins, which has made the identification of non-GPI-linked proteins difficult. To identify such proteins, we have developed a radiolabeling approach using the hydrophobic, photoactivatable compound 5-[(125)I]iodonaphthalene-1-azide (INA). INA can be activated by photosensitizing fluorochromes; by restricting these fluorochromes to the pellicle, [(125)I]INA labeling will selectively target non-GPI-anchored membrane-embedded proteins of the pellicle. We demonstrate here that three known membrane proteins of the pellicle can indeed be labeled by photosensitization with INA. In addition, this approach has identified a novel 22-kDa protein, named PhIL1 (photosensitized INA-labeled protein 1), with unexpected properties. While the INA labeling of PhIL1 is consistent with an integral membrane protein, the protein has neither a transmembrane domain nor predicted sites of lipid modification. PhIL1 is conserved in apicomplexan parasites and localizes to the parasite periphery, concentrated at the apical end just basal to the conoid. Detergent extraction and immunolocalization data suggest that PhIL1 associates with the parasite cytoskeleton.
Collapse
Affiliation(s)
- Stacey D Gilk
- Department of Microbiology and Molecular Genetics, 316 Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
107
|
Ikadai H, Tsukada R, Sasaki M, Takashiro R, Yokoyama N, Kudo N, Igarashi I, Oyamada T. Molecular characterization of a putative protein disulfide isomerase from Babesia caballi. Parasitology 2006; 131:775-82. [PMID: 16336731 DOI: 10.1017/s0031182005008516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/30/2005] [Accepted: 06/01/2005] [Indexed: 11/07/2022]
Abstract
We produced a mAb against the Babesia caballi extracellular merozoite termed mAb 2H2 and used it to screen a cDNA expression library prepared from B. caballi merozoite mRNA for highly expressed proteins. The complete nucleotide sequence of the cloned gene had 1547 nucleotides and contained a 36-nucleotide intron. The 1398 nucleotide open reading frame predicts a 51 kDa protein showing similarity to protein disulfide isomerase (PDI) from other species. The PDI gene had a predicted N-terminal signal sequence of 19 amino acids and a C-terminal tetrapeptide sequence (His-Thr-Glu-Leu; HTEL) for retention in lumen of the endoplasmic reticulum (ER). The recombinant protein expressed in baculovirus showed an apparent mass of 51 kDa, identical to that the native B. caballi protein. Moreover, the ER retention signal site (HTEL) of the recombinant protein retained its function in ER of insect cells. This 51 kDa protein was strongly expressed by extracelluar B. caballi merozoites in indirect immunofluorescence antibody tests, and was not expressed in the early phase of trophozoite development. Interestingly, detailed observation showed that the reaction of anti-P51 antibody and mAb 2H2 against pear-shaped forms was very erratic, some displaying one or two brightly fluorescent patterns.
Collapse
Affiliation(s)
- H Ikadai
- Department of Veterinary Parasitology, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Harper JM, Huynh MH, Coppens I, Parussini F, Moreno S, Carruthers VB. A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2-M2AP invasion complex. Mol Biol Cell 2006; 17:4551-63. [PMID: 16914527 PMCID: PMC1635346 DOI: 10.1091/mbc.e06-01-0064] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Propeptides regulate protein function and trafficking in many eukaryotic systems and have emerged as important features of regulated secretory proteins in parasites of the phylum Apicomplexa. Regulated protein secretion from micronemes and host cell invasion are inextricably linked and essential processes for the apicomplexan parasite Toxoplasma gondii. TgM2AP is a propeptide-containing microneme protein found in a heterohexameric complex with the microneme protein TgMIC2, a protein that has a demonstrated fundamental role in gliding motility and invasion. TgM2AP function is also central to these processes, because disruption of TgM2AP (m2apKO) results in secretory retention of TgMIC2, leading to reduced TgMIC2 secretion from the micronemes and impaired invasion. Because the TgM2AP propeptide is predicted to be processed in an intracellular site near where TgMIC2 is retained in m2apKO parasites, we hypothesized that the propeptide and its proteolytic removal influence trafficking and secretion of the complex. We found that proTgM2AP traffics through endosomal compartments and that deletion of the propeptide leads to defective trafficking of the complex within or near this site, resulting in aberrant processing and decreased secretion of TgMIC2, impaired invasion, and reduced virulence in vivo, mirroring the phenotypes observed in m2apKO parasites. In contrast, mutation of several cleavage site residues resulted in normal localization, but it affected the stability and secretion of the complex from the micronemes. Therefore, the propeptide and its cleavage site influence distinct aspects of TgMIC2-M2AP function, with both impacting the outcome of infection.
Collapse
Affiliation(s)
- Jill M. Harper
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - My-Hang Huynh
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Isabelle Coppens
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Fabiola Parussini
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Silvia Moreno
- Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
| | - Vern B. Carruthers
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| |
Collapse
|
109
|
Hemphill A, Vonlaufen N, Naguleswaran A. Cellular and immunological basis of the host-parasite relationship during infection with Neospora caninum. Parasitology 2006; 133:261-78. [PMID: 16753081 DOI: 10.1017/s0031182006000485] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/04/2006] [Accepted: 04/08/2006] [Indexed: 11/07/2022]
Abstract
Neospora caninum is an apicomplexan parasite that is closely related to Toxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast to T. gondii, N. caninum represents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused by N. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, by analogy with T. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.
Collapse
Affiliation(s)
- A Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | | | |
Collapse
|
110
|
Abstract
Secretory processes play an important role on the biology and life cycles of parasitic protozoa. This review focus on basic aspects, from a cell biology perspective, of the secretion of (a) micronemes, rhoptries and dense granules in members of the Apicomplexa group, where these organelles are involved in the process of protozoan penetration into the host cell, survival within the parasitophorous vacuole and subsequent egress from the host cell, (b) the Maurer's cleft in Plasmodium, a structure involved in the secretion of proteins synthesized by the intravacuolar parasite and transported through vesicles to the erythrocyte surface, (c) the secretion of macromolecules into the flagellar pocket of trypanosomatids, and (d) the secretion of proteins which make the cyst wall of Giardia and Entamoeba, with the formation of encystation vesicles.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21949-900 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
111
|
Kariu T, Ishino T, Yano K, Chinzei Y, Yuda M. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol Microbiol 2006; 59:1369-79. [PMID: 16468982 DOI: 10.1111/j.1365-2958.2005.05024.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The malarial parasite has two hosts in its life cycle, a vertebrate and a mosquito. We report here that malarial invasion into these hosts is mediated by a protein, designated cell-traversal protein for ookinetes and sporozoites (CelTOS), which is localized to micronemes that are organelles for parasite invasive motility. Targeted disruption of the CelTOS gene in Plasmodium berghei reduced parasite infectivity in the mosquito host approximately 200-fold. The disruption also reduced the sporozoite infectivity in the liver and almost abolished its cell-passage ability. Liver infectivity was restored in Kupffer cell-depleted rats, indicating that CelTOS is necessary for sporozoite passage from the circulatory system to hepatocytes through the liver sinusoidal cell layer. Electron microscopic analysis revealed that celtos-disrupted ookinetes invade the midgut epithelial cell by rupturing the cell membrane, but then fail to cross the cell, indicating that CelTOS is necessary for migration through the cytoplasm. These results suggest that conserved cell-passage mechanisms are used by both sporozoites and ookinetes to breach host cellular barriers. Elucidation of these mechanisms might lead to novel antimalarial strategies to block parasite's transmission.
Collapse
Affiliation(s)
- Tohru Kariu
- Mie University, School of Medicine, 2-174 Edobashi, Tsu, Mie 514-0001, Japan
| | | | | | | | | |
Collapse
|
112
|
Yokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: Current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol 2006; 138:22-32. [PMID: 16504403 DOI: 10.1016/j.vetpar.2006.01.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During an asexual growth cycle of Babesia parasites in a natural host, the extracellular merozoites invade (i.e., attach to, penetrate, and internalize) the host erythrocytes (RBC) via multiple adhesive interactions of several protozoan ligands with the target receptors on the host cell surface. After internalizing the host RBC, they asexually multiply, egress from the RBC by rupturing the host cells, and then invade the new RBC again. In the invasion stage, several surface-coating molecules of merozoites might be involved in the initial attachment to the RBC, while proteins secreted from apical organelles (rhoptry, microneme, and spherical body) are proposed to play roles mainly in erythrocyte penetration or internalization. On the other hand, several components located on the surface of the RBC, such as sialic acid residues, protease-sensitive proteins, or sulphated glycosaminoglycans, are identified or suspected as the host receptors of erythrocyte invasion by Babesia parasites. The detailed molecular interactions between Babesia merozoites and the host RBC are incompletely understood. In this review, these identified or suspected molecules (protozoan ligands/erythrocyte receptors) are described by especially focusing on Babesia bovis.
Collapse
Affiliation(s)
- Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | |
Collapse
|
113
|
de Vries E, Corton C, Harris B, Cornelissen AWCA, Berriman M. Expressed sequence tag (EST) analysis of the erythrocytic stages of Babesia bovis. Vet Parasitol 2006; 138:61-74. [PMID: 16530971 DOI: 10.1016/j.vetpar.2006.01.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Expressed sequence tags (ESTs) provide an efficient way to identify large numbers of genes expressed in a specific stage of the life cycle of an organism. Here we analysed approximately 13,000 ESTs derived from the erythrocytic stage of the apicomplexan parasite Babesia bovis. The ESTs were clustered in order to obtain information on the expression level of a gene and to increase sequence length and reliability. A total of 3522 clusters were obtained and annotated using BLAST algorithms. The clusters were estimated to represent approximately 2600 genes of which in total approximately 2.1 Mbp sequence information was obtained. Expression levels of the genes, as determined by the numbers of ESTs contained within a cluster, were compared to those of their closest homologs in the erythrocytic stage of Plasmodium falciparum and Toxoplasma gondii tachyzoites. Pathways that are represented relatively abundant in B. bovis are, amongst others, the purine salvage pathway (displaying characteristics not identified before in apicomplexans), isoprenoid biosynthesis in the apicoplast and many genes encoding mitochondrial proteins. Especially remarkable in the latter group are the F-type ATPases - which are hardly expressed in P. falciparum and T. gondii - and two highly expressed glycerol-3-phosphate dehydrogenases creating a shuttle possibly controlling the cytoplasmic NADH/NAD+ -ratio. A comparison of known antigenic proteins from Australian and American strains of B. bovis with the Israel strain used here identifies considerable sequence variation in the rhoptry associated protein-1 (RAP-1), merozoite surface proteins of the variable merozoite surface antigen (VMSA) family and spherical body proteins. Analysis of the EST clusters representing the variable erythocyte surface antigen family reveals many variant transcripts of which a few are dominant. Two putative pseudogenes also seem to be transcribed at high levels.
Collapse
Affiliation(s)
- Erik de Vries
- Division of Infection Biology, Department of Infectious Diseases and Immunology, Utrecht University, P.O. Box 80165, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
114
|
Wang C, Shumyatsky P, Zeng F, Zevallos M, Alfano RR. Computer-controlled optical scanning tile microscope. APPLIED OPTICS 2006; 45:1148-52. [PMID: 16523776 DOI: 10.1364/ao.45.001148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A new type of computer-controlled optical scanning, high-magnification imaging system with a large field of view is described that overcomes the commonly believed incompatibility of achieving both high magnification and a large field of view. The new system incorporates galvanometer scanners, a CCD camera, and a high-brightness LED source for the fast acquisition of a large number of a high-resolution segmented tile images with a magnification of 800x for each tile. The captured segmented tile images are combined to create an effective enlarged view of a target totaling 1.6 mm x 1.2 mm in area. The speed and sensitivity of the system make it suitable for high-resolution imaging and monitoring of a small segmented area of 320 microm x 240 microm with 4 microm resolution. Each tile segment of the target can be zoomed up without loss of the high resolution. This new microscope imaging system gives both high magnification and a large field of view. This microscope can be utilized in medicine, biology, semiconductor inspection, device analysis, and quality control.
Collapse
Affiliation(s)
- C Wang
- Institute for Ultrafast Spectroscopy and Lasers and New York State Center for Advanced Technology for Photonics Applications, Department of Physics, The City College and Graduate School of the City University of New York, New York, New York, 10031, USA
| | | | | | | | | |
Collapse
|
115
|
Mercier C, Adjogble KDZ, Däubener W, Delauw MFC. Dense granules: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? Int J Parasitol 2006; 35:829-49. [PMID: 15978597 DOI: 10.1016/j.ijpara.2005.03.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/07/2005] [Accepted: 03/18/2005] [Indexed: 02/06/2023]
Abstract
Together with micronemes and rhoptries, dense granules are specialised secretory organelles of Apicomplexa parasites. Among Apicomplexa, Plasmodium represents a model of parasites propagated by way of an insect vector, whereas Toxoplasma is a model of food borne protozoa forming cysts. Through comparison of both models, this review summarises data accumulated over recent years on alternative strategies chosen by these parasites to develop within a parasitophorous vacuole and explores the role of dense granules in this process. One of the characteristics of the Plasmodium erythrocyte stages is to export numerous parasite proteins into both the host cell cytoplasm and/or plasma membrane via the vacuole used as a step trafficking compartment. Whether this feature can be correlated to few storage granules and a restricted number of dense granule proteins, is not yet clear. By contrast, the Toxoplasma developing vacuole is decorated by abundantly expressed dense granule proteins and is characterised by a network of membranous nanotubes. Although the exact function of most of these proteins remains currently unknown, recent data suggest that some of these dense granule proteins could be involved in building the intravacuolar membranous network. Conserved expression of the Toxoplasma dense granule proteins throughout most of the parasite stages suggests that they could also be key elements of the cyst formation.
Collapse
Affiliation(s)
- Corinne Mercier
- Institut Jean Roget, Université Joseph Fourier, CNRS UMR 5163, Place du Commandant Nal., 38700 La Tronche, France.
| | | | | | | |
Collapse
|
116
|
Lourenço EV, Bernardes ES, Silva NM, Mineo JR, Panunto-Castelo A, Roque-Barreira MC. Immunization with MIC1 and MIC4 induces protective immunity against Toxoplasma gondii. Microbes Infect 2006; 8:1244-51. [PMID: 16616574 DOI: 10.1016/j.micinf.2005.11.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Host cell invasion by Toxoplasma gondii is tightly coupled to the apical release of micronemal proteins (MIC). In this work, we evaluated the protective effect encountered in C57BL/6 mice immunized with MIC1 and MIC4 purified from soluble tachyzoite antigens by affinity to immobilized lactose. The immunized mice presented high serum levels of IgG1 and IgG2b specific antibodies. MIC1/4-stimulated spleen cells from immunized mice produced IL-2, IL-12, IFN-gamma, IL-10, but not IL-4, suggesting the induction of a polarized Th1 type immune response. When orally challenged with 40 cysts of the ME49 strain, the immunized mice had 68% fewer brain cysts than the control mice. Immunization was associated with 80% survival of the mice challenged with 80 cysts, contrasting with 100% mortality of the non-immunized mice in the acute phase. In this phase, there was much lower parasitism in the lungs and small intestine of the immunized mice, and they did not exhibit the early-stage signs of intestinal necrosis, which was clearly detected in the control mice. Our data demonstrate that MIC1 and MIC4 triggered a protective response against toxoplasmosis, and that these antigens are targets for the further development of a vaccine.
Collapse
Affiliation(s)
- Elaine V Lourenço
- Laboratório de Imunoquímica e Glicobiologia, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto-SP, CEP 14.049-900, Brazil
| | | | | | | | | | | |
Collapse
|
117
|
Neospora caninum and neosporosis — recent achievements in host and parasite cell biology and treatment. Acta Parasitol 2006. [DOI: 10.2478/s11686-006-0002-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractNeospora caninum is an apicomplexan parasite, which owes its importance to the fact that it represents the major infectious cause of bovine abortion worldwide. Its life cycle is comprised of three distinct stages: Tachyzoites, representing the proliferative and disease-causing stage, bradyzoites, representing a slowly replicating, tissue cyst-forming stage, and sporozoites, which represent the end product of a sexual process taking place within the intestinal tissue of the final canine host. Tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo, while bradyzoites have been found mainly within the central nervous system. In order to survive, proliferate, and proceed in its life cycle, N. caninum has evolved some amazing features. First, the parasite profits immensely from its ability to interact with, and invade, a large number of host cell types. Secondly, N. caninum exploits its capability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long term survival of not only the parasite but also of the host cell. These three key events (host cell invasion — stage conversion — host cell modulation) represent potential targets for intervention. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are extensively exploited. In this review, we will summarize the present knowledge and achievements related to host cell and parasite cell biology.
Collapse
|
118
|
Brossier F, David Sibley L. Toxoplasma gondii: microneme protein MIC2. Int J Biochem Cell Biol 2005; 37:2266-72. [PMID: 16084754 DOI: 10.1016/j.biocel.2005.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 06/09/2005] [Indexed: 11/25/2022]
Abstract
The phylum Apicomplexa contains parasites responsible for a variety of diseases including malaria, cryptosporidiosis, and toxoplasmosis. One of the common features of these parasites is that they contain a set of apical organelles whose sequential secretion is required for the invasion of host cells. Microneme proteins are the main adhesins involved in the attachment to the host cell surface by apicomplexans. The microneme protein MIC2, produced by Toxoplasma gondii, is conserved in apicomplexans and serves as a model to understand the first steps of invasion by the phylum. New data about the structure-function relationship of MIC2 reinforce the critical role of this protein in the successful invasion of cells by Toxoplasma and reveal potential therapeutic targets that may be used to control toxoplasmosis.
Collapse
Affiliation(s)
- Fabien Brossier
- Washington University School of Medicine, Department of Microbiology, Campus Box 8230, Saint Louis, MO 63110-1093, USA
| | | |
Collapse
|
119
|
Chini E, Nagamune K, Wetzel D, Sibley L. Evidence that the cADPR signalling pathway controls calcium-mediated microneme secretion in Toxoplasma gondii. Biochem J 2005; 389:269-77. [PMID: 15773818 PMCID: PMC1175103 DOI: 10.1042/bj20041971] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The protozoan parasite Toxoplasma gondii relies on calcium-mediated exocytosis to secrete adhesins on to its surface where they can engage host cell receptors. Increases in intracellular calcium occur in response to Ins(1,4,5)P3 and caffeine, an agonist of ryanodine-responsive calcium-release channels. We examined lysates and microsomes of T. gondii and detected evidence of cADPR (cyclic ADP ribose) cyclase and hydrolase activities, the two enzymes that control the second messenger cADPR, which causes calcium release from RyR (ryanodine receptor). We also detected endogenous levels of cADPR in extracts of T. gondii. Furthermore, T. gondii microsomes that were loaded with 45Ca2+ released calcium when treated with cADPR, and the RyR antagonists 8-bromo-cADPR and Ruthenium Red blocked this response. Although T. gondii microsomes also responded to Ins(1,4,5)P3, the inhibition profiles of these calcium-release channels were mutually exclusive. The RyR antagonists 8-bromo-cADPR and dantrolene inhibited protein secretion and motility in live parasites. These results indicate that RyR calcium-release channels that respond to the second-messenger cADPR play an important role in regulating intracellular Ca2+, and hence host cell invasion, in protozoan parasites.
Collapse
Affiliation(s)
- Eduardo N. Chini
- *Department of Anesthesiology, Mayo Medical School, Mayo Clinic and Foundation, Rochester, MN 55905, U.S.A
| | - Kisaburo Nagamune
- †Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| | - Dawn M. Wetzel
- †Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| | - L. David Sibley
- †Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
120
|
Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, Vial H, Dubremetz JF. The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 2005; 7:1823-33. [PMID: 16309467 DOI: 10.1111/j.1462-5822.2005.00646.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Host cell invasion in the Apicomplexa is unique in its dependency on a parasite actin-driven machinery and in the exclusion of most host cell membrane proteins during parasitophorous vacuole (PV) formation. This exclusion occurs at a junction between host cell and parasite plasma membranes that has been called the moving junction, a circumferential zone which forms at the apical tip of the parasite, moves backward and eventually pinches the PV from the host cell membrane. Despite having been described by electron microscopic studies 30 years ago, the molecular nature of this singular structure is still enigmatic. We have obtained a monoclonal antibody that recognizes the moving junction of invading tachyzoites of Toxoplasma gondii, in a pattern clearly distinct from those described so far for microneme and rhoptry proteins. The protein recognized by this antibody has been affinity purified. Mass spectrometry analysis showed that it is a rhoptry neck protein (RON4), a hypothetical protein with homologues restricted to Apicomplexa. Our findings reveals for the first time the participation of rhoptry neck proteins in moving junction formation and strongly suggest the conservation of this structure at the molecular level among Apicomplexa.
Collapse
Affiliation(s)
- Maryse Lebrun
- UMR 5539 CNRS, Université de Montpellier 2, CP 107, Place Eugène Bataillon, 34090 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
121
|
Coppel RL, Black CG. Parasite genomes. Int J Parasitol 2005; 35:465-79. [PMID: 15826640 DOI: 10.1016/j.ijpara.2005.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 02/24/2005] [Accepted: 02/24/2005] [Indexed: 01/01/2023]
Abstract
The availability of genome sequences and the associated transcriptome and proteome mapping projects has revolutionised research in the field of parasitology. As more parasite species are sequenced, comparative and phylogenetic comparisons are improving the quality of gene prediction and annotation. Genome sequences of parasites are also providing important data sets for understanding parasite biology and identifying new vaccine candidates and drug targets. We review some of the preliminary conclusions from examination of parasite genome sequences and discuss some of the bioinformatics approaches taken in this analysis.
Collapse
Affiliation(s)
- Ross L Coppel
- Department of Microbiology and the Victorian Bioinformatics Consortium, Monash University, Melbourne, Vic. 3800, Australia.
| | | |
Collapse
|
122
|
Barragan A, Brossier F, Sibley LD. Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 2005; 7:561-8. [PMID: 15760456 DOI: 10.1111/j.1462-5822.2005.00486.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Toxoplasma gondii crosses non-permissive biological barriers such as the intestine, the blood-brain barrier and the placenta thereby gaining access to tissues where it most commonly causes severe pathology. Herein we show that in the process of migration Toxoplasma initially concentrates around intercellular junctions and probably uses a paracellular pathway to transmigrate across biological barriers. Parasite transmigration required viable and actively motile parasites. Interestingly, the integrity of host cell barriers was not altered during parasite transmigration. As intercellular adhesion molecule 1 (ICAM-1) is upregulated on cellular barriers during Toxoplasma infection, we investigated the role of this receptor in parasite transmigration. Soluble human ICAM-1 and ICAM-1 antibodies inhibited transmigration of parasites across cellular barriers implicating this receptor in the process of transmigration. Furthermore, human ICAM-1 immunoprecipitated the mature form of the parasite adhesin MIC2 present on the parasite surface, indicating that this interaction may contribute to cellular migration. These findings reveal that Toxoplasma exploits the natural cell trafficking pathways in the host to cross cellular barriers and disseminate to deep tissues.
Collapse
Affiliation(s)
- Antonio Barragan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
123
|
Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferguson DJ, Sanderson SJ, Wastling JM, Boothroyd JC. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 2005; 280:34245-58. [PMID: 16002398 DOI: 10.1074/jbc.m504158200] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Rhoptries are specialized secretory organelles that are uniquely present within protozoan parasites of the phylum Apicomplexa. These obligate intracellular parasites comprise some of the most important parasites of humans and animals, including the causative agents of malaria (Plasmodium spp.) and chicken coccidiosis (Eimeria spp.). The contents of the rhoptries are released into the nascent parasitophorous vacuole during invasion into the host cell, and the resulting proteins often represent the literal interface between host and pathogen. We have developed a method for highly efficient purification of rhoptries from one of the best studied Apicomplexa, Toxoplasma gondii, and we carried out a detailed proteomic analysis using mass spectrometry that has identified 38 novel proteins. To confirm their rhoptry origin, antibodies were raised to synthetic peptides and/or recombinant protein. Eleven of 12 of these yielded antibody that showed strong rhoptry staining by immunofluorescence within the rhoptry necks and/or their bulbous base. Hemagglutinin epitope tagging confirmed one additional novel protein as from the rhoptry bulb. Previously identified rhoptry proteins from Toxoplasma and Plasmodium were unique to one or the other organism, but our elucidation of the Toxoplasma rhoptry proteome revealed homologues that are common to both. This study also identified the first Toxoplasma genes encoding rhoptry neck proteins, which we named RONs, demonstrated that toxofilin and Rab11 are rhoptry proteins, and identified novel kinases, phosphatases, and proteases that are likely to play a key role in the ability of the parasite to invade and co-opt the host cell for its own survival and growth.
Collapse
Affiliation(s)
- Peter J Bradley
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Mital J, Meissner M, Soldati D, Ward GE. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 2005; 16:4341-9. [PMID: 16000372 PMCID: PMC1196342 DOI: 10.1091/mbc.e05-04-0281] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.
Collapse
Affiliation(s)
- Jeffrey Mital
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
125
|
Dowse TJ, Pascall JC, Brown KD, Soldati D. Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol 2005; 35:747-56. [PMID: 15913633 DOI: 10.1016/j.ijpara.2005.04.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/29/2005] [Accepted: 04/03/2005] [Indexed: 11/28/2022]
Abstract
Apicomplexan parasites secrete transmembrane (TM) adhesive proteins as part of the process leading to host cell attachment and invasion. These microneme proteins are cleaved in their TM domains by an unidentified protease termed microneme protein protease 1 (MPP1). The cleavage site sequence (IA downward arrowGG), mapped in the Toxoplasma gondii microneme proteins TgMIC2 and TgMIC6, is conserved in microneme proteins of other apicomplexans including Plasmodium species. We report here the characterisation of novel T. gondii proteins belonging to the rhomboid family of intramembrane-cleaving serine proteases. T. gondii possesses six genes encoding rhomboid-like proteins. Four are localised along the secretory pathway and therefore constitute possible candidates for MPP1 activity. Toxoplasma rhomboids TgROM1, TgROM2 and TgROM5 cleave the TM domain of Drosophila Spitz, an established substrate for rhomboids from several species, demonstrating that they are active proteases. In addition, TgROM2 cleaves chimeric proteins that contain the TM domains of TgMIC2 and TgMIC12.
Collapse
Affiliation(s)
- Timothy J Dowse
- Department of Biological Sciences, Imperial College London, Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
126
|
Robold AV, Hardham AR. During attachment Phytophthora spores secrete proteins containing thrombospondin type 1 repeats. Curr Genet 2005; 47:307-15. [PMID: 15815927 DOI: 10.1007/s00294-004-0559-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2004] [Revised: 12/05/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Adhesion is a key aspect of disease establishment in animals and plants. Adhesion anchors the parasite to the host surface and is a prerequisite for further development and host cell invasion. Although a number of adhesin molecules produced by animal pathogens have been characterised, molecular details of adhesins of plant pathogens, especially fungi, are largely restricted to general descriptions of the nature of heterogeneous secreted materials. In this paper, we report the cloning of a gene, PcVsv1, encoding a protein secreted during attachment of spores of Phytophthora, a genus of highly destructive plant pathogens. PcVsv1 contains 47 copies of the thrombospondin type 1 repeat, a motif found in adhesins of animals and malarial parasites but not in plants, green algae or true fungi. Our results suggest that PcVsv1 is a spore adhesin and highlight intriguing similarities in structural and molecular features of host attachment in oomycete and malarial parasites.
Collapse
Affiliation(s)
- Andrea V Robold
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
127
|
Carey KL, Jongco AM, Kim K, Ward GE. The Toxoplasma gondii rhoptry protein ROP4 is secreted into the parasitophorous vacuole and becomes phosphorylated in infected cells. EUKARYOTIC CELL 2005; 3:1320-30. [PMID: 15470260 PMCID: PMC522600 DOI: 10.1128/ec.3.5.1320-1330.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many intracellular pathogens are separated from the cytosol of their host cells by a vacuole membrane. This membrane serves as a critical interface between the pathogen and the host cell, across which nutrients are imported, wastes are excreted, and communication between the two cells takes place. Very little is known about the vacuole membrane proteins mediating these processes in any host-pathogen interaction. During a screen for monoclonal antibodies against novel surface or secreted proteins of Toxoplasma gondii, we identified ROP4, a previously uncharacterized member of the ROP2 family of proteins. We report here on the sequence, posttranslational processing, and subcellular localization of ROP4, a type I transmembrane protein. Mature, processed ROP4 is localized to the rhoptries, secretory organelles at the apical end of the parasite, and is secreted from the parasite during host cell invasion. Released ROP4 associates with the vacuole membrane and becomes phosphorylated in the infected cell. Similar results are seen with ROP2. Further analysis of ROP4 showed it to be phosphorylated on multiple sites, a subset of which result from the action of either host cell protein kinase(s) or parasite kinase(s) activated by host cell factors. The localization and posttranslational modification of ROP4 and other members of the ROP2 family of proteins within the infected cell make them well situated to play important roles in vacuole membrane function.
Collapse
Affiliation(s)
- Kimberly L Carey
- University of Vermont, Department of Microbiology and Molecular Genetics, 316 Stafford Hall, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
128
|
Saouros S, Chen HA, Simpson P, Cota E, Edwards-Jones B, Soldati-Favre D, Matthews S. Complete resonance assignments of the C-terminal domain from MIC1: a micronemal protein from Toxoplasma gondii. JOURNAL OF BIOMOLECULAR NMR 2005; 31:177-178. [PMID: 15772760 DOI: 10.1007/s10858-004-8237-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 12/16/2004] [Indexed: 05/24/2023]
|
129
|
Cérède O, Dubremetz JF, Soête M, Deslée D, Vial H, Bout D, Lebrun M. Synergistic role of micronemal proteins in Toxoplasma gondii virulence. ACTA ACUST UNITED AC 2005; 201:453-63. [PMID: 15684324 PMCID: PMC2213027 DOI: 10.1084/jem.20041672] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apicomplexan parasites invade cells by a unique mechanism involving discharge of secretory vesicles called micronemes. Microneme proteins (MICs) include transmembrane and soluble proteins expressing different adhesive domains. Although the transmembrane protein TRAP and its homologues are thought to bridge cell surface receptors and the parasite submembranous motor, little is known about the function of other MICs. We have addressed the role of MIC1 and MIC3, two soluble adhesins of Toxoplasma gondii, in invasion and virulence. Single deletion of the MIC1 gene decreased invasion in fibroblasts, whereas MIC3 deletion had no effect either alone or in the mic1KO context. Individual disruption of MIC1 or MIC3 genes slightly reduced virulence in the mouse, whereas doubly depleted parasites were severely impaired in virulence and conferred protection against subsequent challenge. Single substitution of two critical amino acids in the chitin binding–like (CBL) domain of MIC3 abolished MIC3 binding to cells and generated the attenuated virulence phenotype. Our findings identify the CBL domain of MIC3 as a key player in toxoplasmosis and reveal the synergistic role of MICs in virulence, supporting the idea that parasites have evolved multiple ligand–receptor interactions to ensure invasion of different cells types during the course of infection.
Collapse
Affiliation(s)
- Odile Cérède
- UMR Université-INRA d'Immunologie Parasitaires, Faculté des Sciences Pharmaceutiques et Biologiques, 37200 Tours, France
| | | | | | | | | | | | | |
Collapse
|
130
|
Shirley MW, Smith AL, Tomley FM. The Biology of Avian Eimeria with an Emphasis on their Control by Vaccination. ADVANCES IN PARASITOLOGY 2005; 60:285-330. [PMID: 16230106 DOI: 10.1016/s0065-308x(05)60005-x] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies on the biology of the avian species of Eimeria are currently benefiting from the availability of a comprehensive sequence for the nuclear genome of Eimeria tenella. Allied to some recent advances in transgenic technologies and genetic approaches to identify protective antigens, some elements are now being assembled that should be helpful for the development of a new generation of vaccines. In the meantime, control of avian coccidiosis by vaccination represents a major success in the fight against infections caused by parasitic protozoa. Live vaccines that comprise defined populations of oocysts are used routinely and this form of vaccination is based upon the long-established fact that chickens infected with coccidial parasites rapidly develop protective immunity against challenge infections with the same species. Populations of wild-type Eimeria parasites were the basis of the first live vaccines introduced around 50 years ago and the more recent introduction of safer, live-attenuated, vaccines has had a significant impact on coccidiosis control in many areas of the world. In Europe the introduction of vaccination has coincided with declining drug efficacy (on account of drug resistance) and increasing concerns by consumers about the inclusion of in-feed medication and prospects for drug residues in meat. The use of attenuated vaccines throughout the world has also stimulated a greater interest in the vaccines that comprise wild-type parasites and, during the past 3 years worldwide, around 3x10(9) doses of each type of vaccine have been used. The need for only small numbers of live parasites to induce effective protective immunity and the recognition that Eimeria spp. are generally very potent immunogens has stimulated efforts to develop other types of vaccines. None has succeeded except for the licensing, within several countries in 2002, of a vaccine (CoxAbic vaccine; Abic, Israel) that protects via the maternal transfer of immunoglobulin to the young chick. Building on the success of viral vaccines that are delivered via the embryonating egg, an in ovo coccidiosis vaccine (Inovocox, Embrex Inc.) is currently in development. Following successful field trials in 2001, the product will be ready for Food and Drug Administration approval in 2005 and a manufacturing plant will begin production for sale in late 2005. Limited progress has been achieved towards the development of subunit or recombinant vaccines. No products are available and studies to identify potential antigens remain compromised by an absence of effective in vitro assays that correlate with the induction of protective immunity in the host. To date, only a relatively small portfolio of molecules has been evaluated for an ability to induce protection in vivo. Although Eimeria are effective immunogens, it is probable that to date none of the antigens that induce potent protective immune responses during the course of natural infection has been isolated.
Collapse
Affiliation(s)
- Martin W Shirley
- Institute for Animal Health, Compton Laboratory, Compton Nr Newbury, Berks RG20 7NN, UK.
| | | | | |
Collapse
|
131
|
Dowse T, Soldati D. Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis. Curr Opin Microbiol 2004; 7:388-96. [PMID: 15358257 DOI: 10.1016/j.mib.2004.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Intracellular life-style has been adopted by many pathogens as a successful immune evasion mechanism. To gain entry to a large variety of host cells and to establish an intracellular niche, Toxoplasma gondii and other apicomplexans rely on an active process distinct from phagocytosis. Calcium-regulated secretion of microneme proteins and parasite actin polymerization together with the action of at least one myosin motor act in concert to generate the gliding motility necessary to propel the parasite into host cells. During this active penetration, host cell transmembrane proteins are excluded from the forming parasitophorous vacuole hence conferring the resistance to acidification and degradative fusion. Apicomplexans possess a large repertoire of microneme proteins that contribute to invasion, but their precise role and the level of functional redundancy remain to be evaluated. Remarkably, most microneme proteins are proteolytically cleaved during biogenesis and post-exocytosis. The significance of the processing events and the identification of the proteases implicated are the object of intensive investigations. These proteases may constitute potential drug targets for intervention against malaria and other diseases caused by these parasites.
Collapse
Affiliation(s)
- Timothy Dowse
- Department of Biological Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
132
|
Keeley A, Soldati D. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol 2004; 14:528-32. [PMID: 15450974 DOI: 10.1016/j.tcb.2004.08.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The apicomplexans are obligate intracellular protozoan parasites that rely on gliding motility for their migration across biological barriers and for host-cell invasion and egress. This unusual form of substrate-dependent motility is powered by the "glideosome", a macromolecular complex consisting of adhesive proteins that are released apically and translocated to the posterior pole of the parasite by the action of an actomyosin system anchored in the inner membrane complex of the parasite. Recent studies have revealed new insights into the composition and biogenesis of Toxoplasma gondii myosin-A motor complex and have identified an exciting set of small molecules that can interfere with different aspects of glideosome function.
Collapse
Affiliation(s)
- Anthony Keeley
- Department of Biological Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
133
|
Hemphill A, Vonlaufen N, Naguleswaran A, Keller N, Riesen M, Guetg N, Srinivasan S, Alaeddine F. Tissue culture and explant approaches to studying and visualizing Neospora caninum and its interactions with the host cell. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2004; 10:602-620. [PMID: 15525434 DOI: 10.1017/s1431927604040930] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Indexed: 05/24/2023]
Abstract
Neospora caninum is an apicomplexan parasite first mentioned in 1984 as a causative agent of neuromuscular disease in dogs. It is closely related to Toxoplasma gondii and Hammondia heydorni, and its subsequent description in 1988 has been, and still is, accompanied by discussions on the true phylogenetical status of the genus Neospora. N. caninum exhibits features that clearly distinguish this parasite from other members of the Apicomplexa, including distinct ultrastructural properties, genetic background, antigenic composition, host cell interactions, and the definition of the dog as a final host. Most importantly, N. caninum has a particular significance as a cause of abortion in cattle. In vitro culture has been indispensable for the isolation of this parasite and for investigations on the ultrastructural, cellular, and molecular characteristics of the different stages of N. caninum. Tissue culture systems include maintenance of N. caninum tachyzoites, which represent the rapidly proliferating stage in a large number of mammalian host cells, culture of parasites in organotypic brain slice cultures as a tool to investigate cerebral infection by N. caninum, and the use of techniques to induce the stage conversion from the tachyzoite stage to the slowly proliferating and tissue cyst-forming bradyzoite stage. This review will focus on the use of these tissue culture models as well as light- and electron-microscopical techniques for studies on N. caninum tachyzoites and bradyzoites, and on the physical interactions between parasites and host cells.
Collapse
Affiliation(s)
- Andrew Hemphill
- Institute of Parasitology, University of Berne, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Keller N, Riesen M, Naguleswaran A, Vonlaufen N, Stettler R, Leepin A, Wastling JM, Hemphill A. Identification and characterization of a Neospora caninum microneme-associated protein (NcMIC4) that exhibits unique lactose-binding properties. Infect Immun 2004; 72:4791-800. [PMID: 15271941 PMCID: PMC470650 DOI: 10.1128/iai.72.8.4791-4800.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microneme proteins have been shown to play an important role in the early phase of host cell adhesion, by mediating the contact between the parasite and host cell surface receptors. In this study we have identified and characterized a lectin-like protein of Neospora caninum tachyzoites which was purified by alpha-lactose-agarose affinity chromatography. Upon separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this lactose-binding protein migrated at 70 and 55 kDa under reducing and nonreducing conditions, respectively. Immunofluorescence and immunogold electron microscopy with affinity-purified antibodies showed that the protein was associated with the tachyzoite micronemes. Mass spectrometry analyses and expressed sequence tag database mining revealed that this protein is a member of the Neospora microneme protein family; the protein was named NcMIC4 (N. caninum microneme protein 4). Upon two-dimensional gel electrophoresis, NcMIC4 separated into seven distinct isoforms. Incubation of extracellular parasites at 37 degrees C resulted in the secretion of NcMIC4 into the medium as a soluble protein, and the secreted protein exhibited a slightly reduced M(r) but retained its lactose-binding properties. Immunofluorescence was used to investigate the temporal and spatial distribution of NcMIC4 in tachyzoites entering their host cells and showed that reexpression of NcMIC4 took place 30 min after entry into the host cell. Incubation of secreted fractions and purified NcMIC4 with Vero cells demonstrated binding of NcMIC4 to Vero cells as well as binding to chondroitin sulfate A glycosaminoglycans.
Collapse
Affiliation(s)
- Nadine Keller
- Institute of Parasitology, University of Bern, Laenggass-Strasse 122, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. A Babesia bovis merozoite protein with a domain architecture highly similar to the thrombospondin-related anonymous protein (TRAP) present in Plasmodium sporozoites. Mol Biochem Parasitol 2004; 136:25-34. [PMID: 15138064 DOI: 10.1016/j.molbiopara.2004.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 02/12/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Recognition and invasion of host cells is a key step in the life-cycle of all apicomplexan parasites. The thrombospondin-related anonymous protein (TRAP) of Plasmodium sporozoites is directly involved in both processes and shares conserved adhesive domains with micronemal transmembrane proteins of other apicomplexans. Here, we report the cloning and characterization of a Babesia bovis TRAP homologue (BbTRAP). It was predicted to be a type 1 transmembrane protein containing a von Willebrand Factor A domain (vWFA), a thrombospondin type 1 domain (TSP1), a conserved transmembrane region and a conserved cytoplasmic C-terminus, thus resembling the domain arrangement of Plasmodium TRAP. In contrast to Plasmodium TRAP, BbTRAP was shown to be present during the asexual erythrocytic cycle, being located mainly at the apical side of merozoites. Polyclonal rabbit antisera directed against synthetic peptides derived from the TSP1 domain or the C-terminal end of the ectodomain were shown to inhibit erythrocyte invasion in vitro. Both antisera recognized a 75 kDa protein in merozoite extracts as well as in a protein fraction that was secreted into the extracellular milieu during in vitro invasion of erythrocytes.
Collapse
Affiliation(s)
- Fasila R Gaffar
- Department of Infectious Diseases and Immunology, Division of Parasitology and Tropical Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | |
Collapse
|
136
|
Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte invasion by Babesia bovis merozoites is inhibited by polyclonal antisera directed against peptides derived from a homologue of Plasmodium falciparum apical membrane antigen 1. Infect Immun 2004; 72:2947-55. [PMID: 15102807 PMCID: PMC387893 DOI: 10.1128/iai.72.5.2947-2955.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apical membrane antigen 1 (AMA-1) is a micronemal protein secreted to the surface of merozoites of Plasmodium species and Toxoplasma gondii tachyzoites in order to fulfill an essential but noncharacterized function in host cell invasion. Here we describe cloning and characterization of a Babesia bovis AMA-1 homologue designated BbAMA-1. The overall level of similarity of BbAMA-1 to P. falciparum AMA-1 was low (18%), but characteristic features like a transmembrane domain near the C terminus, a predicted short cytoplasmic C-terminal sequence with conserved sequence properties, and an extracellular domain containing 14 conserved cysteine residues putatively involved in disulfide bridge formation are typical of AMA-1. Rabbit polyclonal antisera were raised against three synthetic peptides derived from the N-terminal region and domains II and III of the putative extracellular domain and were shown to recognize specifically recombinant BbAMA-1 expressed in Escherichia coli. Immunofluorescence microscopy showed that there was labeling of the apical half of merozoites with these antisera. Preincubation of free merozoites with all three antisera reduced the efficiency of invasion of erythrocytes by a maximum of 65%. Antisera raised against the N-terminal peptide detected a 82-kDa protein on Western blots and a 69-kDa protein in the supernatant that was harvested after in vitro invasion, suggesting that proteolytic processing and secretion take place during or shortly after invasion. A combination of two-dimensional Western blotting and metabolic labeling allowing direct identification of spots reacting with the BbAMA-1 peptide antisera together with the very low silver staining intensity of these spots indicated that very low levels of BbAMA-1 are present in Babesia merozoites.
Collapse
Affiliation(s)
- Fasila R Gaffar
- Department of Infectious Diseases and Immunology, Utrecht University, 3508 TD, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
137
|
Kim K. Role of proteases in host cell invasion by Toxoplasma gondii and other Apicomplexa. Acta Trop 2004; 91:69-81. [PMID: 15158690 DOI: 10.1016/j.actatropica.2003.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Accepted: 11/06/2003] [Indexed: 10/26/2022]
Abstract
The process of invasion by apicomplexan parasites is a carefully coordinated process involving the regulated release of specialized secretory organelles. Several lines of evidence suggest that proteases are critical for the assembly and trafficking of organellar content proteins. Further, invasion is accompanied by cleavage and shedding of secreted proteins as host cell invasion occurs. Recent studies in Toxoplasma gondii and other Apicomplexa have led to the identification of proteases that may mediate these processing events. Among these are subtilases, subtilisin-like serine proteinases that have essential roles in processing of secreted proteins in prokaryotes and eukaryotes. Other studies suggest that cysteine proteinases or rhomboid proteases, a newly described class of serine proteinases, may be important. In addition to providing insights into the invasion process, characterization of invasion proteases may lead to identification of novel targets for antiparasitic chemotherapy.
Collapse
Affiliation(s)
- Kami Kim
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
138
|
Witcombe DM, Ferguson DJP, Belli SI, Wallach MG, Smith NC. Eimeria maxima TRAP family protein EmTFP250: subcellular localisation and induction of immune responses by immunisation with a recombinant C-terminal derivative. Int J Parasitol 2004; 34:861-72. [PMID: 15157769 DOI: 10.1016/j.ijpara.2004.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/03/2004] [Accepted: 03/12/2004] [Indexed: 11/26/2022]
Abstract
EmTFP250 is a high molecular mass, asexual stage antigen from Eimeria maxima strongly associated with maternally derived immunity to this protozoan parasite in hatchling chickens. Cloning and sequence analysis has predicted the antigen to be a novel member of the thrombospondin-related anonymous protein (TRAP) family of apicomplexan parasites. Members of the TRAP family are microneme proteins and are associated with host cell invasion and apicomplexan gliding motility. In order to assess the immunogenicity of EmTFP250, a C-terminal derivative encoding a low complex, hydrophilic region and putative transmembrane domain/cytosolic tail was expressed in a bacterial host system. The recombinant protein was used to immunise mice and chickens and found to induce strong IgG responses in both animal models as determined by specific ELISAs. Using Western blotting, protective maternal IgG antibodies previously shown to recognise native EmTFP250 recognised the recombinant protein and, in addition, antibodies raised against the recombinant protein were shown to recognise native EmTFP250. Localisation studies employing immuno-light microscopy and immuno-electron microscopy showed that antibodies to the recombinant protein specifically labeled micronemes within merozoites of E. maxima. Furthermore, antibodies to the recombinant EmTFP250 derivative showed similar labeling of micronemes within merozoites of Eimeria tenella. This study is further suggestive of a functional importance for EmTFP250 and underscores its potential as a candidate for a recombinant vaccine targeting coccidiosis in chickens.
Collapse
Affiliation(s)
- David M Witcombe
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Westbourne St, Gore Hill, Sydney, NSW 2065, Australia.
| | | | | | | | | |
Collapse
|
139
|
Tosini F, Agnoli A, Mele R, Gomez Morales MA, Pozio E. A new modular protein of Cryptosporidium parvum, with ricin B and LCCL domains, expressed in the sporozoite invasive stage. Mol Biochem Parasitol 2004; 134:137-47. [PMID: 14747151 DOI: 10.1016/j.molbiopara.2003.11.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The recombinant SA35 peptide has been described as an antigenic portion of a larger Cryptosporidium parvum protein. We identified and characterized the encoding Cpa135 gene and the entire protein, Cpa135. The Cpa135 gene was found to consist of a single exon of 4671 bp, and the mRNA transcribed in the sporozoites was identified. The predicted 1556 amino-acid protein showed the presence of domains which are widely conserved also in other unrelated phylogenetic groups (i.e. a ricin B and a LCCL motif). Comparison of Cpa135 sequence with genomic and protein databases revealed many related genes in other apicomplexan species and high homology with CCP2 protein from Plasmodium yoelii and Plasmodium berghei. The Cpa135 protein was identified and localized by using a monoclonal antibody (Mab) directed against the SA35 antigen (anti-SA35). In oocyst-sporozoite lysate, the anti-SA35 MAb recognized a 135 kDa protein that forms a protein complex larger than 200 kDa, which is mediated by disulfide bridges. Cpa135 synthesis was up-regulated during the excystation process. After host-cell invasion, Cpa135 gene expression was undetectable up to 48 h, whereas mRNA synthesis was newly observed at 72 h post-infection. The Cpa135 protein was localized in the apical complex, and it was found to be secreted by sporozoites during their gliding. Cpa135 persisted during the intracellular stages of the parasite, and it defined the boundaries of the parasitophorous vacuole in the infected cells. The unique array of domains and the homology with other apicomplexan proteins indicate that the Cpa135 protein is representative of a new family of proteins.
Collapse
Affiliation(s)
- Fabio Tosini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
140
|
Abstract
Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called "gliding" to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.
Collapse
Affiliation(s)
- L D Sibley
- Department of Molecular Microbiology, Center for Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
141
|
Huang BQ, Chen XM, LaRusso NF. CRYPTOSPORIDIUM PARVUM ATTACHMENT TO AND INTERNALIZATION BY HUMAN BILIARY EPITHELIA IN VITRO: A MORPHOLOGIC STUDY. J Parasitol 2004; 90:212-21. [PMID: 15165040 DOI: 10.1645/ge-3204] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To explore the mechanisms by which Cryptosporidium parvum infects epithelial cells, we performed a detailed morphological study by serial electron microscopy to assess attachment to and internalization of biliary epithelial cells by C. parvum in an in vitro model of human biliary cryptosporidiosis. When C. parvum sporozoites initially attach to the host cell membrane, the rhoptry of the sporozoite extends to the attachment site; both micronemes and dense granules are recruited to the apical complex region of the attached parasite. During internalization, numerous vacuoles covered by the parasite's plasma membrane are formed and cluster together to establish a preparasitophorous vacuole. This preparasitophorous vacuole comes in contact with host cell membrane to form a host cell-parasite membrane interface, beneath which an electron-dense band begins to appear within the host cell cytoplasm. Simultaneously, host cells display membrane protrusion along the edge of the host cell-parasite membrane interface, resulting in the formation of a mature parasitophorous vacuole that completely covers the parasite. During internalization, vacuole-like structures appear in the apical complex region of the attached sporozoite, which bud out into host cells. A tunnel directly connecting the parasite to the host cell cytoplasm forms during internalization and remains when the parasite is totally internalized. Immunoelectron microscopy showed that sporozoite-associated proteins were localized along the dense band and at the parasitophorous vacuole membrane. These morphological observations provide evidence that secretion of parasite apical organelles and protrusion of host cell membrane play an important role in the attachment and internalization of host epithelial cells by C. parvum.
Collapse
Affiliation(s)
- Bing Q Huang
- The Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic and Foundation, 200 First Street, Southwest, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
142
|
Jewett TJ, Sibley LD. The Toxoplasma Proteins MIC2 and M2AP Form a Hexameric Complex Necessary for Intracellular Survival. J Biol Chem 2004; 279:9362-9. [PMID: 14670959 DOI: 10.1074/jbc.m312590200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii parasites gain entry into host cells through a process that depends on apically stored adhesins that are strategically released during invasion. One of these adhesins, microneme protein 2 (MIC2), is a type one transmembrane protein that binds to an accessory protein known as MIC2-associated protein (M2AP). Together the MIC2 x M2AP complex participates in host cell attachment and invasion. The short cytoplasmic C-domain of MIC2 is implicated in protein trafficking and mediating an association with the parasite cytoskeleton. To define the role of the cytoplasmic domain of MIC2, proteins lacking the C-domain were expressed in transgenic T. gondii. Surprisingly, protein trafficking and secretion were not affected. We hypothesized that mutant mic2 lacking the C-domain might be escorted to the micronemes by association with endogenous wild-type MIC2 possessing functional transmembrane and cytoplasmic domains. To investigate this interaction, native blue gels and gel filtration were employed to identify a stable macromolecular MIC2 x M2AP complex of approximately 450 kDa. Our findings reveal that MIC2 and M2AP proteins form stable hexamers consisting of three alphabeta dimers. Resolution of this complex has implications for how MIC2 x M2AP associates with host cell receptors and the cytoskeleton to facilitate parasite motility and invasion.
Collapse
Affiliation(s)
- Travis J Jewett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
143
|
Affiliation(s)
- Matthew Freeman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
144
|
Zhou XW, Blackman MJ, Howell SA, Carruthers VB. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol Cell Proteomics 2004; 3:565-76. [PMID: 14982962 DOI: 10.1074/mcp.m300123-mcp200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transmembrane micronemal protein MIC2 and its partner M2AP comprise an adhesive complex that is required for rapid invasion of host cells by the obligate intracellular parasite Toxoplasma gondii. Recent studies have shown that the MIC2/M2AP complex undergoes extensive proteolytic processing on the parasite surface during invasion, including primary processing of M2AP by unknown proteases and proteolytic shedding of the complex by an anonymous protease called MPP1. While it was shown that MPP1-mediated cleavage is necessary for efficient invasion, it remained unclear whether the adhesive complex was liberated by juxtamembrane or intramembrane proteolysis. Here, using a three-phase strategy of assigning cleavage sites based on intact matrix-assisted laser desorption/ionization mass followed by confirmation by enzymatic digestion and inhibitor profiling, we demonstrate that M2AP is processed by two parasite-derived proteases called MPP2 and MPP3. We also define the substrate repertoire of MPP2 by two-dimensional differential gel electrophoresis using fluorescent tags. Finally, we use complementary mass spectrometric techniques to unequivocally show that MIC2 is shed by intramembrane cleavage within its anchoring domain. Based on the properties of this cleavage site, we conclude that the sheddase, MPP1, is likely a multipass membrane protease of the Rhomboid family. Our data support a novel two-step proteolysis model that includes primary processing of the MIC2/M2AP complex followed by secondary cleavage to shed the complex from the parasite surface during the final steps of invasion.
Collapse
Affiliation(s)
- Xing W Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
145
|
O'Connor RM, Kim K, Khan F, Ward HD. Expression of Cpgp40/15 in Toxoplasma gondii: a surrogate system for the study of Cryptosporidium glycoprotein antigens. Infect Immun 2003; 71:6027-34. [PMID: 14500524 PMCID: PMC201096 DOI: 10.1128/iai.71.10.6027-6034.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium parvum is a waterborne enteric coccidian that causes diarrheal disease in a wide range of hosts. Development of successful therapies is hampered by the inability to culture the parasite and the lack of a transfection system for genetic manipulation. The glycoprotein products of the Cpgp40/15 gene, gp40 and gp15, are involved in C. parvum sporozoite attachment to and invasion of host cells and, as such, may be good targets for anticryptosporidial therapies. However, the function of these antigens appears to be dependent on the presence of multiple O-linked alpha-N-acetylgalactosamine (alpha-GalNAc) determinants. A eukaryotic expression system that would produce proteins bearing glycosylation patterns similar to those found on the native C. parvum glycoproteins would greatly facilitate the molecular and functional characterization of these antigens. As a unique approach to this problem, the Cpgp40/15 gene was transiently expressed in Toxoplasma gondii, and the expressed recombinant glycoproteins were characterized. Antisera to gp40 and gp15 reacted with the surface membranes of tachyzoites expressing the Cpgp40/15 construct, and this reactivity colocalized with that of antiserum to the T. gondii surface protein SAG1. Surface membrane localization was dependent on the presence of the glycophosphatidylinositol anchor attachment site present in the gp15 coding sequence. The presence of terminal O-linked alpha-GalNAc determinants on the T. gondii recombinant gp40 was confirmed by reactivity with Helix pomatia lectin and the monoclonal antibody 4E9, which recognizes alpha-GalNAc residues, and digestion with alpha-N-acetylgalactosaminidase. In addition to appropriate localization and glycosylation, T. gondii apparently processes the gp40/15 precursor into the gp40 and gp15 component glycopolypeptides, albeit inefficiently. These results suggest that a surrogate system using T. gondii for the study of Cryptosporidium biology may be useful.
Collapse
Affiliation(s)
- R M O'Connor
- Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center, 50 Washington Street, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
146
|
Buscaglia CA, Coppens I, Hol WGJ, Nussenzweig V. Sites of interaction between aldolase and thrombospondin-related anonymous protein in plasmodium. Mol Biol Cell 2003; 14:4947-57. [PMID: 14595113 PMCID: PMC284797 DOI: 10.1091/mbc.e03-06-0355] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gliding motility and host cell invasion by apicomplexan parasites are empowered by an acto-myosin motor located underneath the parasite plasma membrane. The motor is connected to host cell receptors through trans-membrane invasins belonging to the thrombospondin-related anonymous protein (TRAP) family. A recent study indicates that aldolase bridges the cytoplasmic tail of MIC2, the homologous TRAP protein in Toxoplasma, and actin. Here, we confirm these unexpected findings in Plasmodium sporozoites and identify conserved features of the TRAP family cytoplasmic tail required to bind aldolase: a subterminal tryptophan residue and two noncontiguous stretches of negatively charged amino acids. The aldolase substrate and other compounds that bind to the active site inhibit its interaction with TRAP and with F-actin, suggesting that the function of the motor is metabolically regulated. Ultrastructural studies in salivary gland sporozoites localize aldolase to the periphery of the secretory micronemes containing TRAP. Thus, the interaction between aldolase and the TRAP tail takes place during or preceding the biogenesis of the micronemes. The release of their contents in the anterior pole of the parasite upon contact with the target cells should bring simultaneously aldolase, TRAP and perhaps F-actin to the proper subcellular location where the motor is engaged.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Michael Heidelberg Division of Immunology, Department of Pathology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
147
|
Bannister LH, Hopkins JM, Dluzewski AR, Margos G, Williams IT, Blackman MJ, Kocken CH, Thomas AW, Mitchell GH. Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J Cell Sci 2003; 116:3825-34. [PMID: 12902400 DOI: 10.1242/jcs.00665] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the assembly of Plasmodium falciparum merozoites within the schizont stage, the parasite synthesizes and positions three sets of secretory vesicles (rhoptries, micronemes and dense granules) that are active during red cell invasion. There are up to 40 micronemes per merozoite, shaped like long-necked bottles, about 160 nm long and 65 nm at their widest diameter. On their external surfaces, they bear bristle-like filaments, each 3-4 nm thick and 25 nm long. Micronemes are translocated from a single Golgi-like cisterna near the nucleus along a band of two or three subpellicular microtubules to the merozoite apex, where they dock with the rhoptry tips. Dense granules are also formed around the periphery of the Golgi cisternae but their distribution is unrelated to microtubules. Three polyclonal antibodies raised against the recombinant PfAMA-1 ectodomain sequence recognizing both the 83 kDa and processed 66 kDa molecules label the peripheries of translocating and mature micronemes but do not label rhoptries significantly at any stage of merozoite development within schizonts. This result confirms that PfAMA-1 is a micronemal protein, and indicates that within the microneme it is located near or inserted into this organelle's boundary membrane.
Collapse
Affiliation(s)
- Lawrence H Bannister
- Department of Anatomy, Cell and Human Biology, Guy's, King's and St Thomas' School of Biomedical Science, Guy's Hospital, London SE1 1UL, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Toxoplasma gondii is a widespread protozoan parasite that infects all nucleated cell types of warm-blooded vertebrates. Parasite motility is regulated by polymerization of new actin filaments that provide a substrate for the small myosin TgMyoA. Interaction between the cytoplasmic tails of parasite adhesins and the actin-binding protein aldolase links these cell surface proteins with the cytoskeleton. Translocation of adhesins coupled to extracellular receptors allows the parasite to glide across the substrate. This conserved system is important for active penetration into host cells and tissue migration by T. gondii. Entry into the host cell is accompanied by dramatic remodeling of the intracellular vacuole that the parasite resides in. This compartment resists fusion with host cell endocytic organelles, yet recruits mitochondria and endoplasmic reticulum in order to gain access to host cell nutrients. The combined abilities to actively penetrate host cells and control the fate of the parasite-containing vacuole contributes to the remarkable success of T. gondii as an intracellular parasite.
Collapse
Affiliation(s)
- L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
149
|
Lovett JL, Sibley LD. Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 2003; 116:3009-16. [PMID: 12783987 DOI: 10.1242/jcs.00596] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invasion of host cells by Toxoplasma gondii is accompanied by secretion of parasite proteins that occurs coincident with increases in intracellular calcium. The source of calcium mobilized by the parasite and the signals that promote calcium increase remain largely undefined. We demonstrate here that intracellular stores of calcium in the parasite were both necessary and sufficient to support microneme secretion, motility and invasion of host cells. In contrast, host cell calcium was largely unaltered during parasite entry and not essential for this process. During parasite motility, cytosolic calcium levels underwent dramatic and rapid fluxes as imaged using the calcium indicator fluo-4 and time-lapse microscopy. Surprisingly, intracellular calcium in the parasite cytosol was rapidly quenched during the initial stages of host cell invasion, suggesting that while it is needed to initiate motility, it is not required to complete entry. These studies indicate that intracellular calcium stores govern secretion and motility by T. gondii and that the essential role of calcium in these events explains its requirement for cell entry.
Collapse
Affiliation(s)
- Jennie L Lovett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
150
|
Dessens JT, Sidén-Kiamos I, Mendoza J, Mahairaki V, Khater E, Vlachou D, Xu XJ, Kafatos FC, Louis C, Dimopoulos G, Sinden RE. SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Mol Microbiol 2003; 49:319-29. [PMID: 12828632 DOI: 10.1046/j.1365-2958.2003.03566.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An essential, but poorly understood part of malaria transmission by mosquitoes is the development of the ookinetes into the sporozoite-producing oocysts on the mosquito midgut wall. For successful oocyst formation newly formed ookinetes in the midgut lumen must enter, traverse, and exit the midgut epithelium to reach the midgut basal lamina, processes collectively known as midgut invasion. After invasion ookinete-to-oocyst transition must occur, a process believed to require ookinete interactions with basal lamina components. Here, we report on a novel extracellular malaria protein expressed in ookinetes and young oocysts, named secreted ookinete adhesive protein (SOAP). The SOAP gene is highly conserved amongst Plasmodium species and appears to be unique to this genus. It encodes a predicted secreted and soluble protein with a modular structure composed of two unique cysteine-rich domains. Using the rodent malaria parasite Plasmodium berghei we show that SOAP is targeted to the micronemes and forms high molecular mass complexes via disulphide bonds. Moreover, SOAP interacts strongly with mosquito laminin in yeast-two-hybrid assays. Targeted disruption of the SOAP gene gives rise to ookinetes that are markedly impaired in their ability to invade the mosquito midgut and form oocysts. These results identify SOAP as a key molecule for ookinete-to-oocyst differentiation in mosquitoes.
Collapse
Affiliation(s)
- Johannes T Dessens
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|