101
|
Jara JH, Singh BB, Floden AM, Combs CK. Tumor necrosis factor alpha stimulates NMDA receptor activity in mouse cortical neurons resulting in ERK-dependent death. J Neurochem 2007; 100:1407-20. [PMID: 17241124 PMCID: PMC3619402 DOI: 10.1111/j.1471-4159.2006.04330.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple cytokines are secreted in the brain during pro-inflammatory conditions and likely affect neuron survival. Previously, we demonstrated that glutamate and tumor necrosis factor alpha (TNFalpha) kill neurons via activation of the N-methyl-d-aspartate (NMDA) and TNFalpha receptors, respectively. This report continues characterizing the signaling cross-talk pathway initiated during this inflammation-related mechanism of death. Stimulation of mouse cortical neuron cultures with TNFalpha results in a transient increase in NMDA receptor-dependent calcium influx that is additive with NMDA stimulation and inhibited by pre-treatment with the NMDA receptor antagonist, DL-2-amino-5-phosphonovaleric acid, or the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione. Pre-treatment with N-type calcium channel antagonist, omega-conotoxin, or the voltage-gated sodium channel antagonist, tetrodotoxin, also prevents the TNFalpha-stimulated calcium influx. Combined TNFalpha and NMDA stimulation results in a transient increase in activity of extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Specific inhibition of ERKs but not JNKs is protective against TNFalpha and NMDA-dependent death. Death is mediated via the low-affinity TNFalpha receptor, TNFRII, as agonist antibodies for TNFRII but not TNFRI stimulate NMDA receptor-dependent calcium influx and death. These data demonstrate how microglial pro-inflammatory secretions including TNFalpha can acutely facilitate glutamate-dependent neuron death.
Collapse
Affiliation(s)
- Javier H. Jara
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Brij B. Singh
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Angela M. Floden
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Colin K. Combs
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
102
|
Lambertsen KL, Clausen BH, Fenger C, Wulf H, Owens T, Dagnaes-Hansen F, Meldgaard M, Finsen B. Microglia and macrophages express tumor necrosis factor receptor p75 following middle cerebral artery occlusion in mice. Neuroscience 2007; 144:934-49. [PMID: 17161916 DOI: 10.1016/j.neuroscience.2006.10.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 01/01/2023]
Abstract
The proinflammatory and potential neurotoxic cytokine tumor necrosis factor (TNF) is produced by activated CNS resident microglia and infiltrating blood-borne macrophages in infarct and peri-infarct areas following induction of focal cerebral ischemia. Here, we investigated the expression of the TNF receptors, TNF-p55R and TNF-p75R, from 1 to 10 days following permanent occlusion of the middle cerebral artery in mice. Using quantitative polymerase chain reaction (PCR), we observed that the relative level of TNF-p55R mRNA was significantly increased at 1-2 days and TNF-p75R mRNA was significantly increased at 1-10 days following arterial occlusion, reaching peak values at 5 days, when microglial-macrophage CD11b mRNA expression was also increased. In comparison, the relative level of TNF mRNA was significantly increased from 1 to 5 days, with peak levels 1 day after arterial occlusion. In situ hybridization revealed mRNA expression of both receptors in predominantly microglial- and macrophage-like cells in the peri-infarct and subsequently in the infarct, and being most marked from 1 to 5 days. Using green fluorescent protein-bone marrow chimeric mice, we confirmed that TNF-p75R was expressed in resident microglia and blood-borne macrophages located in the peri-infarct and infarct 1 and 5 days after arterial occlusion, which was supported by Western blotting. The data show that increased expression of the TNF-p75 receptor following induction of focal cerebral ischemia in mice can be attributed to expression in activated microglial cells and blood-borne macrophages.
Collapse
Affiliation(s)
- K L Lambertsen
- Medical Biotechnology Center, Winsloewparken 25, University of Southern Denmark, Odense, DK-5000, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW, Benowitz LI. Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 2006; 26:12633-41. [PMID: 17151265 PMCID: PMC6674838 DOI: 10.1523/jneurosci.2801-06.2006] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glaucoma is a widespread ocular disease characterized by a progressive loss of retinal ganglion cells (RGCs). Previous studies suggest that the cytokine tumor necrosis factor-alpha (TNF-alpha) may contribute to the disease process, although its role in vivo and its mechanism of action are unclear. To investigate pathophysiological mechanisms in glaucoma, we induced ocular hypertension (OH) in mice by angle closure via laser irradiation. This treatment resulted in a rapid upregulation of TNF-alpha, followed sequentially by microglial activation, loss of optic nerve oligodendrocytes, and delayed loss of RGCs. Intravitreal TNF-alpha injections in normal mice mimicked these effects. Conversely, an anti-TNF-alpha-neutralizing antibody or deleting the genes encoding TNF-alpha or its receptor, TNFR2, blocked the deleterious effects of OH. Deleting the CD11b/CD18 gene prevented microglial activation and also blocked the pathophysiological effects of OH. Thus TNF-alpha provides an essential, although indirect, link between OH and RGC loss in vivo. Blocking TNF-alpha signaling or inflammation, therefore, may be helpful in treating glaucoma.
Collapse
Affiliation(s)
- Toru Nakazawa
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Department of Neurosurgery and Neurobiology Program, Children's Hospital Boston, Boston, Massachusetts 02115, and
- Departments of Ophthalmology and
- Surgery and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Chifuyu Nakazawa
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Akihisa Matsubara
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Kousuke Noda
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Toshio Hisatomi
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Haicheng She
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Norman Michaud
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Ali Hafezi-Moghadam
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Joan W. Miller
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Larry I. Benowitz
- Department of Neurosurgery and Neurobiology Program, Children's Hospital Boston, Boston, Massachusetts 02115, and
- Surgery and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
104
|
Figiel I, Dzwonek K. TNFalpha and TNF receptor 1 expression in the mixed neuronal-glial cultures of hippocampal dentate gyrus exposed to glutamate or trimethyltin. Brain Res 2006; 1131:17-28. [PMID: 17161388 DOI: 10.1016/j.brainres.2006.10.095] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 09/18/2006] [Accepted: 10/27/2006] [Indexed: 01/02/2023]
Abstract
We examined the expression and cellular localization of tumor necrosis factor alpha (TNFalpha) and its type 1 receptor (TNFR1) in mixed neuronal-glial cultures of rat hippocampal dentate gyrus exposed to glutamate (GLU) or trimethyltin (TMT). Our previous studies demonstrated that both pathogenic factors evoked neuronal apoptosis, however, TMT was more potent and caused cell death in almost 90% of neurons. Observed neurodegeneration was accompanied by morphological changes of microglia. In the current study, using RT-PCR and Western blotting analysis, we found that GLU and TMT induced increase in TNFalpha mRNA and protein levels. The induction of transcription was stronger following GLU treatment, however the protein production was much more intensive after TMT exposure. Double fluorescent labeling for TNFalpha, TNFR1 and cellular markers revealed cytokine expression in microglia and some neurons. On the other hand, majority of neuronal cells displayed TNFR1 immunoreactivity, in control and in treated cultures. Moreover, TMT led to a strong increase in TNFR1 expression in astrocytes, which displayed remarkable, granular staining for the cytokine receptor. Western blotting for TNFR1 revealed enhanced protein expression only in cultures treated with TMT. This is the first report demonstrating the changes of expression of TNFalpha and TNFR1 in hippocampal dentate gyrus cultures treated with GLU or TMT. Our results indicate that TNFalpha may be involved in the mechanism of neurotoxic effects evoked by both pathogenic factors and suggest that astrocytes via TNFR1 may enhance TMT-induced injury.
Collapse
Affiliation(s)
- Izabela Figiel
- Laboratory of Mechanisms of Neurodegeneration and Neuroprotection, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, PAS, Pasteur 3 St., 02-093 Warsaw, Poland.
| | | |
Collapse
|
105
|
Fenger C, Drojdahl N, Wirenfeldt M, Sylvest L, Jorgensen OS, Meldgaard M, Lambertsen KL, Finsen B. Tumor necrosis factor and its p55 and p75 receptors are not required for axonal lesion-induced microgliosis in mouse fascia dentata. Glia 2006; 54:591-605. [PMID: 16927297 DOI: 10.1002/glia.20405] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tumor necrosis factor (TNF) is a potent pro-inflammatory and neuromodulatory cytokine. In the CNS it is produced primarily by microglia and considered to regulate microglial activation. On the basis of previous observations of increased microglial TNF mRNA synthesis in areas of anterograde axonal and terminal degeneration in mice, we studied the effect of TNF and its p55 and p75 receptors on axonal lesion-induced microglial activation in fascia dentata following transection of the perforant path (PP) projection. Unexpectedly, cell counting showed that the axonal lesion-induced microglial response in TNF and TNF-p55p75 receptor knock out mice and C57BL/6 mice was similar 5 days after the lesion. In addition, the microglial expression of the lysosomal-associated antigen CD68, and the clearance of MBP(+) myelin debris appeared similar in TNF and TNF-p55p75 receptor knock out mice compared to C57BL/6 mice. Quantitative PCR and in situ hybridization showed the expression of TNF mRNA to be maximally upregulated 6 h after the lesion, and confirmed that TNF mRNA was still upregulated 5 days after lesion when microglial numbers, CD11b mRNA level, and cellular TNF-p55 and -p75 receptor mRNA level reached maximum. However, in spite of the induction of TNF mRNA, TNF protein level remained at base-line in fascia dentata using immunohistochemistry and ELISA. In conclusion, the results showed a lower than expected lesion-induced increase in TNF protein, and that neither TNF nor its receptors were required for the axonal lesion-induced microglial morphological transformation and proliferation or for the initial clearance of degenerated myelin in the PP-deafferented fascia dentata.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Axons/metabolism
- Axons/pathology
- Axotomy
- CD11 Antigens/metabolism
- Dentate Gyrus/metabolism
- Dentate Gyrus/physiopathology
- Encephalitis/metabolism
- Encephalitis/physiopathology
- Gliosis/metabolism
- Gliosis/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Perforant Pathway/injuries
- Perforant Pathway/physiopathology
- Perforant Pathway/surgery
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Transcriptional Activation/physiology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/physiology
- Wallerian Degeneration/metabolism
Collapse
Affiliation(s)
- Christina Fenger
- Medical Biotechnology Center, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Pasquini LA, Calatayud CA, Bertone Uña AL, Millet V, Pasquini JM, Soto EF. The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 2006; 32:279-92. [PMID: 17063394 DOI: 10.1007/s11064-006-9165-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/06/2006] [Indexed: 01/01/2023]
Abstract
In order to further characterize the still unknown mechanism of cuprizone-induced demyelination, we investigated its effect on rat primary oligodendroglial cell cultures. Cell viability was not significantly affected by this treatment. However, when concentrations of IFNgamma and/or TNFalpha having no deleterious effects per se on cell viability were added together with cuprizone, cell viability decreased significantly. In mitochondria isolated from cuprizone-treated glial cells, we observed a marked decrease in the activities of the various complexes of the respiratory chain, indicating a disruption of mitochondrial function. An enhancement in oxidant production was also observed in cuprizone and/or TNFalpha-treated oligodendroglial cells. In in vivo experiments, inhibition of microglial activation with minocycline prevented cuprizone-induced demyelination. Based on the above-mentioned results we suggest that these microglial cells appear to have a very active role in cuprizone-induced oligodendroglial cell death and demyelination, through the production and secretion of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- L A Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires, C1113AAD, Argentina
| | | | | | | | | | | |
Collapse
|
107
|
Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJH, Bonde S, Kokaia Z, Jacobsen SEW, Lindvall O. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 2006; 26:9703-12. [PMID: 16988041 PMCID: PMC6674454 DOI: 10.1523/jneurosci.2723-06.2006] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine, acting through the TNF-R1 and TNF-R2 receptors. The two receptors have been proposed to mediate distinct TNF-alpha effects in the CNS, TNF-R1 contributing to neuronal damage and TNF-R2 being neuroprotective. Whether TNF-alpha and its receptors play any role for neurogenesis in the adult brain is unclear. Here we used mouse models with loss of TNF-R1 and TNF-R2 function to establish whether signaling through these receptors could influence hippocampal neurogenesis in vivo under basal conditions, as well as after status epilepticus (SE), which is associated with inflammation and elevated TNF-alpha levels. Notably, in the intact brain, the number of new, mature hippocampal neurons was elevated in TNF-R1(-/-) and TNF-R1/R2(-/-) mice, whereas no significant changes were detected in TNF-R2(-/-) mice. Also after SE, the TNF-R1(-/-) and TNF-R1/R2(-/-) mice produced more new neurons. In contrast, the TNF-R2(-/-) mice showed reduced SE-induced neurogenesis. Cell proliferation in the dentate subgranular zone was elevated in TNF-R1(-/-) and TNF-R1/R2(-/-) mice both under basal conditions and after SE. The TNF-R2(-/-) mice either showed no change or minor decrease of cell proliferation. TNF-R1 and TNF-R2 receptors were expressed by hippocampal progenitors, as assessed with reverse transcription-PCR on sorted or cultured cells and immunocytochemistry on cultures. Our data reveal differential actions of TNF-R1 and TNF-R2 signaling in adult hippocampal neurogenesis and identify for the first time TNF-R1 as a negative regulator of neural progenitor proliferation in both the intact and pathological brain.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- Hippocampus/cytology
- Hippocampus/pathology
- Hippocampus/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/cytology
- Neurons/metabolism
- Neurons/pathology
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Stem Cells/cytology
- Stem Cells/physiology
Collapse
Affiliation(s)
- Robert E. Iosif
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Christine T. Ekdahl
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Henrik Ahlenius
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Stem Cell Institute, University Hospital, SE 221 84 Lund, Sweden, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Cornelis J. H. Pronk
- Hematopoietic Stem Cell Laboratory, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Sara Bonde
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Stem Cell Institute, University Hospital, SE 221 84 Lund, Sweden, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Sten-Eirik W. Jacobsen
- Hematopoietic Stem Cell Laboratory, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| |
Collapse
|
108
|
Ovanesov MV, Sauder C, Rubin SA, Richt J, Nath A, Carbone KM, Pletnikov MV. Activation of microglia by borna disease virus infection: in vitro study. J Virol 2006; 80:12141-8. [PMID: 17020949 PMCID: PMC1676289 DOI: 10.1128/jvi.01648-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to the certain neuronal populations. Since persistent BDV infection of neurons in vitro is noncytolytic and noncytopathic, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brain have not been investigated. To address these issues, activation of primary rat microglial cells was studied following exposure to purified BDV or to persistently BDV-infected primary cortical neurons or after BDV infection of primary mixed neuron-glial cultures. Neither purified virus nor BDV-infected neurons alone activated primary microglia as assessed by the changes in cell shape or production of the proinflammatory cytokines. In contrast, in the BDV-infected primary mixed cultures, we observed proliferation of microglia cells that acquired the round morphology and expressed major histocompatibility complex molecules of classes I and II. These manifestations of microglia activation were observed in the absence of direct BDV infection of microglia or overt neuronal toxicity. In addition, compared to uninfected mixed cultures, activation of microglia in BDV-infected mixed cultures was associated with a significantly greater lipopolysaccharide-induced release of tumor necrosis factor alpha, interleukin 1beta, and interleukin 10. Taken together, the present data are the first in vitro evidence that persistent BDV infection of neurons and astrocytes rather than direct exposure to the virus or dying neurons is critical for activating microglia.
Collapse
Affiliation(s)
- Mikhail V Ovanesov
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Wheeler RD, Zehntner SP, Kelly LM, Bourbonnière L, Owens T. Elevated interferon gamma expression in the central nervous system of tumour necrosis factor receptor 1-deficient mice with experimental autoimmune encephalomyelitis. Immunology 2006; 118:527-38. [PMID: 16780563 PMCID: PMC1782311 DOI: 10.1111/j.1365-2567.2006.02395.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Inflammation in the central nervous system (CNS) can be studied in experimental autoimmune encephalomyelitis (EAE). The proinflammatory cytokines interferon-gamma (IFN-gamma) and tumour necrosis factor (TNF) are implicated in EAE pathogenesis. Signals through the type 1 TNF receptor (TNFR1) are required for severe EAE to develop, whereas deficiency in IFN-gamma or its receptor result in more severe EAE. We investigated IFN-gamma expression in TNFR1-deficient (TNFR1-/-) mice. We describe here that there were more IFN-gamma-secreting T cells present in the CNS of TNFR1-/- mice during EAE compared to wild-type (WT) mice, despite that clinical symptoms were mild, with delayed onset. There was greater expression of IL-12/23p40 by antigen-presenting cells in these mice, and in vitro, TNFR1-/- antigen-presenting cells induced greater secretion of IFN-gamma but not interleukin (IL)-17 when cultured with primed T cells than did WT antigen presenting cells. TNFR1-/- mice with EAE had significantly higher expression of CXCL10 mRNA (but not CCL5 mRNA) in the CNS compared to WT mice with EAE. These data demonstrate that IFN-gamma expression is enhanced in the CNS of TNFR1-/- mice with EAE and suggest that IFN-gamma levels do not necessarily correlate with EAE severity.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Gene Expression Regulation
- Interferon-gamma/analysis
- Interferon-gamma/genetics
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Tumor Necrosis Factor, Type I/analysis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spinal Cord/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Rachel D Wheeler
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
| | - Simone P Zehntner
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
| | - Lisa M Kelly
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
| | - Lyne Bourbonnière
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
| | - Trevor Owens
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
- Medical Biotechnology Centre, University of Southern DenmarkOdense C, Denmark
| |
Collapse
|
110
|
Gimenez MA, Sim J, Archambault AS, Klein RS, Russell JH. A tumor necrosis factor receptor 1-dependent conversation between central nervous system-specific T cells and the central nervous system is required for inflammatory infiltration of the spinal cord. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1200-9. [PMID: 16565495 PMCID: PMC1606568 DOI: 10.2353/ajpath.2006.050332] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the role of tumor necrosis factor receptor 1 (TNFR1) in inflammation initiated by the adoptive transfer of central nervous system (CNS)-specific Th1 cells in experimental autoimmune encephalomyelitis, a murine model of multiple sclerosis. This adoptive transfer paradigm eliminates the confounding effects of bacterial adjuvants in the analysis of inflammation. We found that although T cells could reach the meninges and perivascular space in the absence of TNFR1, recruitment of other inflammatory cells from the blood was dramatically reduced. The reduction in the recruitment of CD11b(hi) cells correlated with a dramatic reduction in the production of the chemokines CCL2 (MCP-1) and CXLC2 (MIP-2) in TNFR1-deficient hosts. Bone marrow chimera experiments demonstrated that TNF can be effectively supplied by either the hematopoietic system or the CNS, but the essential TNFR1-responsive cells reside in the CNS. Previous work has demonstrated that microglia produce CCL2, and here we demonstrate that astrocytes and endothelial cells produced CXCL2 in the early stages of inflammation. Therefore, productive inflammation results from a conversation, or mutually responding signals, between the initiating T cells and cells in the parenchyma of the spinal cord.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Astrocytes/metabolism
- Bone Marrow Cells/metabolism
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- CD11b Antigen/metabolism
- Chemokine CCL2/biosynthesis
- Chemokine CXCL2
- Chemokines/biosynthesis
- Chemokines, CXC/biosynthesis
- Chimera
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Endothelial Cells/metabolism
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Myelitis/immunology
- Myelitis/metabolism
- Myelitis/pathology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocytes/immunology
- Th1 Cells/immunology
- Tumor Necrosis Factor Decoy Receptors
Collapse
Affiliation(s)
- Mary Ann Gimenez
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
111
|
Simen BB, Duman CH, Simen AA, Duman RS. TNFalpha signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol Psychiatry 2006; 59:775-85. [PMID: 16458261 DOI: 10.1016/j.biopsych.2005.10.013] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 09/12/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Increased serum levels of TNFalpha and other pro-inflammatory cytokines have been found in patients with major depression and several other psychiatric conditions. In rodents, these cytokines produce symptoms commonly referred to as "sickness behavior." Some of these, including reduced feeding and decreased social and exploratory behavior, are reminiscent of those seen in depressed patients. Interpretation of these effects is complicated by the malaise caused by acute injections of pro-inflammatory cytokines, however. Thus, it is unclear whether cytokines are involved in the etiology of depressive symptoms. METHODS We used a panel of behavioral assays to assess TNFR1(-/-) and TNFR2(-/-) mice for anxiety and depression-like behaviors. RESULTS We show that deletion of either TNFR1 or TNFR2 leads to an antidepressant-like response in the forced swim test and that mice lacking TNFR2 demonstrate a hedonic response in a sucrose drinking test compared with wildtype littermates. In addition, deletion of TNFR1 leads to decreased fear conditioning. There were no differences in behavior in anxiety tests for either null mutant. CONCLUSIONS These results are consistent with the hypothesis that TNFalpha can induce depression-like symptoms even in the absence of malaise and demonstrate that both receptor subtypes can be involved in this response.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Anxiety/physiopathology
- Behavior, Animal/physiology
- Conditioning, Psychological
- Depression/physiopathology
- Disease Models, Animal
- Drinking Behavior/physiology
- Exploratory Behavior/physiology
- Fear
- Gene Expression/physiology
- Maze Learning/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/physiology
- RNA, Messenger/metabolism
- Reaction Time/physiology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Signal Transduction/physiology
- Sucrose
- Swimming/physiology
- Tumor Necrosis Factor Decoy Receptors
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Birgitte B Simen
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
112
|
Quintana A, Giralt M, Rojas S, Penkowa M, Campbell IL, Hidalgo J, Molinero A. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury. J Neurosci Res 2006; 82:701-16. [PMID: 16267827 DOI: 10.1002/jnr.20680] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO) or TNFR2 (TNFR2 KO). Lack of TNFR1, but not of TNFR2, significantly decreased the inflammatory response and tissue damage elicited by the cryolesion at both 3 and 7 days postlesion, with decreased gliosis, lower IL-1beta immunostaining, and a reduction of apoptosis markers. Cryolesion produced a clear induction of the proinflammatory cytokines interleukin (IL)-1alpha, IL-1beta, IL-6, and TNF-alpha; this induction was significantly lower in the TNFR1 KO mice. Host response genes (ICAM-1, A20, EB22/5, and GFAP) were also induced by the cryolesion, but to a lesser extent in TNFR1 KO mice. Lack of TNFR1 signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury.
Collapse
Affiliation(s)
- Albert Quintana
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
113
|
Fernandes A, Falcão AS, Silva RFM, Gordo AC, Gama MJ, Brito MA, Brites D. Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin. J Neurochem 2006; 96:1667-79. [PMID: 16476078 DOI: 10.1111/j.1471-4159.2006.03680.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During neonatal hyperbilirubinaemia, astrocytes activated by unconjugated bilirubin (UCB) may contribute to brain toxicity through the production of cytokines. As a first step in addressing the signal transduction cascades involved in the UCB-induced astroglial immunological response, we tested whether tumour necrosis factor (TNF)-alpha receptor 1 (TNFR1), mitogen-activated protein kinase (MAPK) and nuclear factor kappaB (NF-kappaB) would be activated in astrocytes exposed to UCB, and examined the profile of cytokine production. Astrocyte cultures stimulated with UCB showed a rapid rise in TNFR1 protein levels, followed by activation of the MAPKs p38, Jun N-terminal kinase1/2 and extracellular signal-regulated kinase1/2, and NF-kappaB. Interestingly, the induction of these signal effectors preceded the early up-regulation of TNF-alpha and interleukin (IL)-1beta mRNAs, and later secretion of TNF-alpha, IL-1beta and IL-6. Treatment of astrocytes with UCB also induced cell death, with levels comparable to those obtained after exposure of astrocytes to recombinant TNF-alpha and IL-1beta. Moreover, loss of cell viability and cytokine secretion were reduced when the NF-kappaB signal transduction pathway was inhibited, suggesting a key role for NF-kappaB in the astroglial response to UCB. These results demonstrate the complexity of the molecular mechanisms involved in cell injury by UCB during hyperbilirubinaemia and provide a basis for the development of novel therapeutic strategies.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/metabolism
- Bilirubin/metabolism
- Bilirubin/toxicity
- Brain/immunology
- Brain/metabolism
- Brain/physiopathology
- Cell Death/drug effects
- Cell Death/immunology
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Cytokines/toxicity
- Encephalitis/etiology
- Encephalitis/immunology
- Encephalitis/metabolism
- Gliosis/etiology
- Gliosis/immunology
- Gliosis/metabolism
- Hyperbilirubinemia, Neonatal/immunology
- Hyperbilirubinemia, Neonatal/metabolism
- Hyperbilirubinemia, Neonatal/physiopathology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- NF-kappa B/drug effects
- NF-kappa B/metabolism
- Nerve Degeneration/chemically induced
- Nerve Degeneration/immunology
- Nerve Degeneration/metabolism
- Rats
- Rats, Wistar
- Receptors, Tumor Necrosis Factor/drug effects
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Signal Transduction/immunology
- Tumor Necrosis Factor Decoy Receptors
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Adelaide Fernandes
- Centro de Patogénese Molecular, UBMBE, Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
114
|
Veglianese P, Lo Coco D, Bao Cutrona M, Magnoni R, Pennacchini D, Pozzi B, Gowing G, Julien JP, Tortarolo M, Bendotti C. Activation of the p38MAPK cascade is associated with upregulation of TNF alpha receptors in the spinal motor neurons of mouse models of familial ALS. Mol Cell Neurosci 2006; 31:218-31. [PMID: 16219474 DOI: 10.1016/j.mcn.2005.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/03/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022] Open
Abstract
Phosphorylated p38 mitogen-activated protein kinase (p38MAPK), but not activated c-jun-N-terminal kinase (JNK), increases in the motor neurons of transgenic mice overexpressing ALS-linked SOD1 mutants at different stages of the disease. This effect is associated with a selective increase of phosphorylated MKK3-6, MKK4 and ASK1 and a concomitant upregulation of the TNFalpha receptors (TNFR1 and TNFR2), but not IL1beta and Fas receptors. Activation of both p38 MAPK and JNK occurs in the activated microglial cells of SOD1 mutant mice at the advanced stage of the disease; however, this effect is not accompanied by the concomitant activation of the upstream kinases ASK1 and MKK3,4,6, while both the TNFRs are overexpressed in these cells. No changes of the upstream p38MAPK cascade kinases or TNFRs occur in reactive astrocytes. These findings highlight the activation of a selective intracellular signaling pathway in the motor neurons of SOD1 mutant mice, which is likely implicated in their death.
Collapse
MESH Headings
- Amyotrophic Lateral Sclerosis/genetics
- Amyotrophic Lateral Sclerosis/metabolism
- Amyotrophic Lateral Sclerosis/pathology
- Animals
- Disease Models, Animal
- Disease Progression
- Enzyme Activation
- Humans
- JNK Mitogen-Activated Protein Kinases/genetics
- JNK Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Kinase 3/metabolism
- MAP Kinase Kinase 6/metabolism
- MAP Kinase Kinase Kinase 5/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Motor Neurons/cytology
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Phosphorylation
- RNA, Messenger/metabolism
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Signal Transduction/physiology
- Spinal Cord/cytology
- Spinal Cord/pathology
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Superoxide Dismutase-1
- Tumor Necrosis Factor Decoy Receptors
- Tumor Necrosis Factor-alpha/metabolism
- fas Receptor/genetics
- fas Receptor/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- P Veglianese
- Lab. Molecular Neurobiology, Dept. Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Choi SJ, Lee KH, Park HS, Kim SK, Koh CM, Park JY. Differential expression, shedding, cytokine regulation and function of TNFR1 and TNFR2 in human fetal astrocytes. Yonsei Med J 2005; 46:818-26. [PMID: 16385659 PMCID: PMC2810597 DOI: 10.3349/ymj.2005.46.6.818] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Tumor necrosis factor (TNF)-alpha induces pleiotropic cellular effects through a 55kDa, type 1 receptor (TNFR1) and a 75kDa type 2 receptor (TNFR2). Moreover, it participates in the pathogenesis of several CNS diseases, including demyelinating diseases. TNF-alpha receptors are differentially expressed and are regulated in many cell types. However, data regarding the TNF-alpha receptor expression and regulation in human astrocytes is limited to date. We investigated TNF- receptor expression, its regulation by cytokines, and its functional role in primary cultured human fetal astrocytes, which are the most abundant cellular population in the central nervous system and are known to be immunologically active. In this study, astrocytes were found to constitutively and predominantly transcribe, translate and shed TNFR1 rather than TNFR2, but TNFR2 expression was increased by adding TNF-alpha, IL-1, and IFN-gamma, but not by adding LPS. To determine the functional roles of TNFR1 and TNFR2 on TNF induction, we investigated NF-kappaB activation and TNF-alpha induction after neutralizing TNFR1 and TNFR2 by an antibody treatment. We found that NF-kappaB activation and TNF-alpha induction are blocked by TNFR1 neutralizing antibody treatments.
Collapse
MESH Headings
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cells, Cultured
- Cytokines/pharmacology
- Fetus/cytology
- Gene Expression Regulation
- Humans
- NF-kappa B/metabolism
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/physiology
Collapse
Affiliation(s)
- Sun Ju Choi
- Department of Microbiology, Institute of Basic Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyoung-Ho Lee
- Department of Microbiology, Institute of Basic Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyun Sook Park
- Department of Microbiology, Institute of Basic Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soo-Ki Kim
- Department of Microbiology, Institute of Basic Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Choon-Myung Koh
- Department of Microbiology, Institute of Basic Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Joo Young Park
- Department of Microbiology, Institute of Basic Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
116
|
Rossi D, Brambilla L, Valori CF, Crugnola A, Giaccone G, Capobianco R, Mangieri M, Kingston AE, Bloc A, Bezzi P, Volterra A. Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease. J Biol Chem 2005; 280:42088-96. [PMID: 16253995 DOI: 10.1074/jbc.m504124200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytokine tumor necrosis factor-alpha (TNFalpha) induces Ca2+-dependent glutamate release from astrocytes via the downstream action of prostaglandin (PG) E2. By this process, astrocytes may participate in intercellular communication and neuromodulation. Acute inflammation in vitro, induced by adding reactive microglia to astrocyte cultures, enhances TNFalpha production and amplifies glutamate release, switching the pathway into a neurodamaging cascade (Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001) Nat. Neurosci. 4, 702-710). Because glial inflammation is a component of Alzheimer disease (AD) and TNFalpha is overexpressed in AD brains, we investigated possible alterations of the cytokine-dependent pathway in PDAPP mice, a transgenic model of AD. Glutamate release was measured in acute hippocampal and cerebellar slices from mice at early (4-month-old) and late (12-month-old) disease stages in comparison with age-matched controls. Surprisingly, TNFalpha-evoked glutamate release, normal in 4-month-old PDAPP mice, was dramatically reduced in the hippocampus of 12-month-old animals. This defect correlated with the presence of numerous beta-amyloid deposits and hypertrophic astrocytes. In contrast, release was normal in cerebellum, a region devoid of beta-amyloid deposition and astrocytosis. The Ca2+-dependent process by which TNFalpha evokes glutamate release in acute slices is distinct from synaptic release and displays properties identical to those observed in cultured astrocytes, notably PG dependence. However, prostaglandin E2 induced normal glutamate release responses in 12-month-old PDAPP mice, suggesting that the pathology-associated defect involves the TNFalpha-dependent control of secretion rather than the secretory process itself. Reduced expression of DENN/MADD, a mediator of TNFalpha-PG coupling, might account for the defect. Alteration of this neuromodulatory astrocytic pathway is described here for the first time in relation to Alzheimer disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Pharmacological Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
De A, Krueger JM, Simasko SM. Glutamate induces the expression and release of tumor necrosis factor-alpha in cultured hypothalamic cells. Brain Res 2005; 1053:54-61. [PMID: 16040010 DOI: 10.1016/j.brainres.2005.06.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Tumor necrosis factor-alpha (TNFalpha) affects several CNS functions such as regulation of sleep, body temperature, and feeding during pathology. There is also evidence for TNFalpha involvement in physiological sleep regulation, e.g., TNFalpha induces sleep and brain levels of TNFalpha increase during prolonged wakefulness. The immediate cause of enhanced TNFalpha production in brain is unknown. We investigated whether glutamate could signal TNFalpha production because glutamate is a neurotransmitter associated with cell activation and wakefulness. We used primary cultures of fetal rat hypothalamic cells to examine the expression and release of TNFalpha. Immunostaining for neuron specific enolase revealed that the cultures were 50-60% neuronal and 40-50% non-neuronal cells. TNFalpha was detected in both the media and cells under basal conditions. Stimulation of the cells with 1 mM glutamate for 2 h produced an increase in media content of TNFalpha, whereas cell content was elevated at earlier time points. Using trypan blue exclusion and MTT assays, there was no evidence of cell toxicity with this stimulation protocol. Immunocytochemical staining revealed that TNFalpha was expressed by approximately 25% of the neurons and approximately 75% of the glial cell in the culture. Stimulation of the cultures with glutamate did not increase the percentage of cells expressing TNFalpha. We conclude that TNFalpha is constitutively expressed and released by healthy cultures of hypothalamic cells and that activation of the cells with a non-toxic challenge of glutamate increases TNFalpha production. These findings support the hypothesis that TNFalpha can participate in normal physiological regulation of sleep and feeding.
Collapse
Affiliation(s)
- Alok De
- Program in Neuroscience, Department of VCAPP, College of Veterinary Medicine, Washington State University, 205 Wegner Hall, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
118
|
SILVERMAN MARNIN, PEARCE BRADD, BIRON CHRISTINEA, MILLER ANDREWH. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol 2005; 18:41-78. [PMID: 15802953 PMCID: PMC1224723 DOI: 10.1089/vim.2005.18.41] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Compelling data has been amassed indicating that soluble factors, or cytokines, emanating from the immune system can have profound effects on the neuroendocrine system, in particular the hypothalamic- pituitary-adrenal (HPA) axis. HPA activation by cytokines (via the release of glucocorticoids), in turn, has been found to play a critical role in restraining and shaping immune responses. Thus, cytokine-HPA interactions represent a fundamental consideration regarding the maintenance of homeostasis and the development of disease during viral infection. Although reviews exist that focus on the bi-directional communication between the immune system and the HPA axis during viral infection (188,235), others have focused on the immunomodulatory effects of glucocorticoids during viral infection (14,225). This review, however, concentrates on the other side of the bi-directional loop of neuroendocrine-immune interactions, namely, the characterization of HPA axis activity during viral infection and the mechanisms employed by cytokines to stimulate glucocorticoid release.
Collapse
Affiliation(s)
- MARNI N. SILVERMAN
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - BRAD D. PEARCE
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - CHRISTINE A. BIRON
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - ANDREW H. MILLER
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Address reprint requests to: Dr. Andrew H. Miller, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, WMRB Suite 4000, Atlanta, Georgia 30322, E-mail:
| |
Collapse
|
119
|
Lotocki G, Alonso OF, Dietrich WD, Keane RW. Tumor necrosis factor receptor 1 and its signaling intermediates are recruited to lipid rafts in the traumatized brain. J Neurosci 2005; 24:11010-6. [PMID: 15590916 PMCID: PMC6730274 DOI: 10.1523/jneurosci.3823-04.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The tumor necrosis factor (TNF) ligand-receptor system plays an essential role in apoptosis that contributes to secondary damage after traumatic brain injury (TBI). TNF also stimulates inflammation by activation of gene transcription through the IkappaB kinase (IKK)/NF-kappaB and JNK (c-Jun N-terminal protein kinase)/AP-1 signaling cascades. The mechanism by which TNF signals between cell death and survival and the role of receptor localization in the activation of downstream signaling events are not fully understood. Here, TNF receptor 1 (TNFR1) signaling complexes in lipid rafts were investigated in the cerebral cortex of adult male Sprague Dawley rats subjected to moderate (1.8-2.2 atmospheres) fluid-percussion TBI and naive controls. In the normal rat cortex, a portion of TNFR1 was present in lipid raft microdomains, where it associated with the adaptor proteins TRADD (TNF receptor-associated death domain), TNF receptor-associated factor-2 (TRAF-2), the Ser/Thr kinase RIP (receptor-interacting protein), TRAF1, and cIAP-1 (cellular inhibitor of apoptosis protein-1), forming a survival signaling complex. Moderate TBI resulted in rapid recruitment of TNFR1, but not TNFR2 or Fas, to lipid rafts and induced alterations in the composition of signaling intermediates. TNFR1 and TRAF1 were polyubiquitinated in lipid rafts after TBI. Subsequently, the signaling complex contained activated caspase-8, thus initiating apoptosis. In addition, TBI caused a transient activation of NF-kappaB, but receptor signaling interacting proteins IKKalpha and IKKbeta were not detected in raft-containing fractions. Thus, redistribution of TNFR1 in lipid rafts and nonraft regions of the plasma membrane may regulate the diversity of signaling responses initiated by these receptors in the normal brain and after TBI.
Collapse
Affiliation(s)
- George Lotocki
- Departmentof Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
120
|
Kleij HPVD, Bienenstock J. Significance of Conversation between Mast Cells and Nerves. Allergy Asthma Clin Immunol 2005; 1:65-80. [PMID: 20529227 PMCID: PMC2877069 DOI: 10.1186/1710-1492-1-2-65] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
More and more studies are demonstrating interactions between the nervous system and the immune system. However, the functional relevance of this interaction still remains to be elucidated. Such associations have been found in the intestine between nerves and mast cells as well as between eosinophils and plasma cells. Similar morphologic associations have been demonstrated in the liver, mesentery, urinary bladder, and skin. Unmyelinated axons especially were found to associate with mast cells as well as Langerhans' cells in primate as well as murine skin. Although there are several pathways by which immune cells interact with the nervous system, the focus in this review will be on the interaction between mast cells and nerves.
Collapse
Affiliation(s)
- Hanneke Pm van der Kleij
- Brain-Body Institute and Department of Pathology and Molecular Medicine, St, Joseph's Healthcare, Hamilton, Ontario, and McMaster University, Hamilton, Ontario
| | | |
Collapse
|
121
|
Abstract
cAMP has been reported to exert a neuroprotective role in several in vivo and in vitro models of brain pathologies, mainly by regulating microglial activation and orienting these cells toward a neuroprotective phenotype. In order to elucidate the intracellular pathways regulated by tumor necrosis factor (TNF) in glial cells, I have studied the modulation of cAMP accumulation by TNF in microglia and astrocyte cultures obtained from the neonatal rat brain. Pre-treatment of microglia with TNF reduced in a dose- and time-dependent manner cAMP accumulation induced by forskolin (FSK), in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX). The TNF inhibitory action was 90% reverted by a neutralizing polyclonal anti-TNF antibody and was not prevented by a 16 h pre-treatment of microglial cultures with the Gi protein inhibitor pertussis toxin (PTx). These results suggest that TNF acts at a step of the cAMP transduction pathway other than receptors, G proteins, and phosphodiesterases. The target of TNF appeared to be adenylyl cyclase, whose ability to synthesize cAMP was markedly reduced (up to 50%) in membranes prepared from TNF-treated microglial cells, both in basal conditions and after stimulation with FSK. TNF induced a time-dependent degradation of IkappaB-alpha in microglial cells that was reverted by two inhibitors of nuclear factor kappaB activation, N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and N-CBZ-Leu-Leu-Leu-al (MG132). The same inhibitors also markedly prevented the reduction of FSK-evoked cAMP accumulation by TNF, suggesting the involvement of NFkappaB in the regulation of adenylyl cyclase by TNF in microglia. Conversely, cAMP accumulation in astrocytes was not affected by TNF. Based on these findings, it is proposed that the ability of TNF to inhibit cAMP synthesis in microglia may exacerbate its response and contribute to cell damage in neuroinflammation and neurodegeneration, possibly through enhanced release of proinflammatory and/or cytotoxic factors.
Collapse
Affiliation(s)
- Mario Patrizio
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
122
|
Baker AE, Brautigam VM, Watters JJ. Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor beta. Endocrinology 2004; 145:5021-32. [PMID: 15256495 DOI: 10.1210/en.2004-0619] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens are well known to exert antiinflammatory effects outside the central nervous system (CNS). They have also been shown to exert neuroprotective effects in the CNS after several types of injury, including neurodegeneration. However, the molecular mechanisms by which these effects occur remain unclear. Because microglial hyperactivation and their production of neurotoxins is associated with many types of brain injury for which estrogens are beneficial, we sought to investigate the ability of estrogen to modulate microglial function. Furthermore, because little is known regarding the role of each of the two known estrogen receptors (ERs) in microglia, our studies were designed to test the hypothesis that 17beta-estradiol (E(2)) exerts antiinflammatory effects in microglia, specifically via interactions with ERbeta. We tested this hypothesis using the murine microglial cell line BV-2, which naturally expresses only ERbeta. Our results indicate that not only does E(2) decrease lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, it also reduces the expression of cyclooxygenase-2, a target for estrogen that has not previously been reported for ERbeta. We also observed that LPS-stimulated TNFalpha mRNA was increased by estrogen. E(2) exerts these effects within 30 min compared with typical estrogen transcriptional responses. Tamoxifen and ICI 182,780 differentially blocked the inhibitory effects of E(2) on LPS-stimulated iNOS and cyclooxygenase-2. In addition, we show that E(2) alters LPS-stimulated MAPK pathway activation, supporting the idea that alterations in the MAPKs may be a potential mechanism by which ERbeta mediates decreased microglial activation.
Collapse
Affiliation(s)
- Ann E Baker
- Department of Comparative Biosciences, 2015 Linden Drive, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
123
|
Ohtori S, Takahashi K, Moriya H, Myers RR. TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine (Phila Pa 1976) 2004; 29:1082-8. [PMID: 15131433 DOI: 10.1097/00007632-200405150-00006] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The purpose of the current study was to evaluate changes in tumor necrosis factor-alpha (TNF-alpha ) and TNF-alpha receptor 1 (p55 receptor) using double fluorescent immunohistochemistry in glial and neural cells in the dorsal root ganglion and spinal cord after sciatic nerve injury in mice. SUMMARY OF BACKGROUND DATA.: TNF-alpha is a primary mediator of the inflammatory response and is primarily synthesized and released in the nervous system by macrophages and Schwann cells following peripheral nerve injury. TNF-alpha is also released from astrocytes and microglia in the central nervous system, where it plays a crucial role in the pathophysiology of injury. METHODS Sixteen female mice were used. Under anesthesia, the left sciatic nerve was crushed. At 3, 5, and 14 days after surgery, the spinal cord at the level of L5 and the left L5 DRG were removed and processed for immunohistochemistry. Tissue sections were double stained with antibodies to either glial fibrillary acidic protein (GFAP; marker for astrocytes or satellite cells) or NeuN (marker for neurons), and TNF or p55 receptor. RESULTS.: In the dorsal root ganglion, GFAP-immunoreactive (IR) satellite cells became evident after injury and were also immunoreactive for both TNF-alpha and p55 receptor. Dorsal root ganglion neurons expressed p55 receptor after injury. TNF-alpha and GFAP-IR satellite cells surrounded p55-IR neurons. Furthermore, the number of GFAP-IR astrocytes dramatically increased in the spinal cord after nerve injury, and some astrocytes were also TNF-alpha -IR and p55 receptor-IR. TNF-alpha -1R astrocytes were seen around p55 receptor-IR neurons. CONCLUSIONS These data demonstrate that upregulation of glial TNF-alpha is associated with the expression of the p55 receptor on adjacent neurons. This association may have induced the expression of several cytokines and immediate early genes in dorsal root ganglion and spinal cord neurons via the TNF signaling pathway. These findings may be related to the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Seiji Ohtori
- Department of Anesthesiology, University of California, San Diego and the VA San Diego Healthcare System, La Jolla, CA 92093-0629, USA
| | | | | | | |
Collapse
|
124
|
Nakajima K, Tohyama Y, Kohsaka S, Kurihara T. Protein kinase Cα requirement in the activation of p38 mitogen-activated protein kinase, which is linked to the induction of tumor necrosis factor α in lipopolysaccharide-stimulated microglia. Neurochem Int 2004; 44:205-14. [PMID: 14602083 DOI: 10.1016/s0197-0186(03)00163-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activated microglia have been suggested to produce a cytotoxic cytokine, tumor necrosis factor alpha (TNF alpha), in many pathological brains. Thus, determining the molecular mechanism of this induction and suppression has been the focus of a great deal of research. Using lipopolysaccharide (LPS) as an experimental inducer of TNF alpha, we investigated the regulatory mechanism by which TNFalpha is induced or suppressed in microglia. We found that LPS-induced TNF alpha is suppressed by pretreatment with the p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580. Similar suppression was achieved by pretreatment with specific protein kinase C (PKC) inhibitors, Gö6976, myristoylated pseudosubstrate (20-28), and bisindolylmaleimide. These results suggest that PKC alpha activity as well as p38MAPK activity is associated with TNF alpha induction in LPS-stimulated microglia. The requirement of PKC alpha in LPS-dependent TNFalpha induction was verified in PKC alpha-downregulated microglia which could be induced by phorbol-12-myristate-13-acetate pretreatment. Simultaneously, PKC alpha was found to be requisite for the activation of p38MAPK in LPS-stimulated microglia. In addition, the PKC alpha levels in the LPS-stimulated microglia were observed to decrease in response to the p38MAPK inhibitor, indicating that the PKC alpha levels are regulated by the p38MAPK activity. We therefore concluded that PKC alpha and p38MAPK are interactively linked to the signaling cascade inducing TNFalpha in LPS-stimulated microglia, and that in this cascade, PKC alpha is requisite for the activation of p38MAPK, leading to the induction of TNF alpha.
Collapse
Affiliation(s)
- Kazuyuki Nakajima
- Neurobiology Lab, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| | | | | | | |
Collapse
|
125
|
Ruedig C, Dringen R. TNF? increases activity of ?-glutamyl transpeptidase in cultured rat astroglial cells. J Neurosci Res 2004; 75:536-43. [PMID: 14743437 DOI: 10.1002/jnr.10878] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To investigate the presence of gamma-glutamyl transpeptidase (gammaGT) in brain cells, cultures enriched for astroglial cells, neurons, oligodendroglial cells, and microglial cells were studied. Astroglial cultures contained a specific gammaGT activity of 2.3 +/- 0.9 nmol/min/mg protein. A similar specific gammaGT activity was measured for oligodendroglial cultures, whereas microglial cells and neurons contained less than 30% of the specific gammaGT activity of astroglial cultures. The activity of gammaGT in astroglial cultures was elevated strongly by the presence of tumor necrosis factor-alpha (TNFalpha) in a time- and concentration-dependent manner. Maximal activity of gammaGT was observed after incubation of astroglial cultures for 3 days with 30 ng/mL TNFalpha. Under these conditions the specific gammaGT activity was increased by threefold compared to controls. Presence of the gammaGT-inhibitor acivicin completely inhibited gammaGT activity both in TNFalpha-treated and in control cells. In addition, the increase in astroglial gammaGT activity after application of TNFalpha was prevented completely by the presence of the protein synthesis inhibitor cycloheximide. gammaGT is involved in extracellular processing of glutathione (GSH) that is exported by astroglial cells. After TNFalpha-treatment the concentration of GSH in the medium of astroglial cells was reduced significantly compared to control cells. In conclusion, the data presented demonstrate that TNFalpha stimulates gammaGT synthesis in astroglial cells and thereby improves the capacity to process GSH exported by these cells.
Collapse
Affiliation(s)
- Cornelia Ruedig
- Physiologisch-chemisches Institut der Universität Tübingen, Tübingen, Germany
| | | |
Collapse
|
126
|
Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 2003. [PMID: 12930811 DOI: 10.1523/jneurosci.23-20-07710.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the role of IGF signaling in the remyelination process by disrupting the gene encoding the type 1 IGF receptor (IGF1R) specifically in the mouse brain by Cre-mediated recombination and then exposing these mutants and normal siblings to cuprizone. This neurotoxicant induces a demyelinating lesion in the corpus callosum that is reversible on termination of the insult. Acute demyelination and oligodendrocyte depletion were the same in mutants and controls, but the mutants did not remyelinate adequately. We observed that oligodendrocyte progenitors did not accumulate, proliferate, or survive within the mutant mice, compared with wild type, indicating that signaling through the IGF1R plays a critical role in remyelination via effects on oligodendrocyte progenitors.
Collapse
|
127
|
Hisahara S, Okano H, Miura M. Caspase-mediated oligodendrocyte cell death in the pathogenesis of autoimmune demyelination. Neurosci Res 2003; 46:387-97. [PMID: 12871760 DOI: 10.1016/s0168-0102(03)00127-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by localized areas of demyelination. MS is believed to be an autoimmune disorder mediated by activated immune cells such as T- and B-lymphocytes and macrophages/microglia. Lymphocytes are primed in the peripheral tissues by antigens, and clonally expanded cells infiltrate the CNS. They produce large amounts of inflammatory and cytokines that lead to demyelination and axonal degeneration. Although several studies have shown that oligodendrocytes (OLGs), the myelin-forming glial cells in the CNS, are sensitive to cell death stimuli, such as cytotoxic cytokines, anti-myelin antibodies, nitric oxide, and oxidative stress, in vitro, the mechanisms underlying injury to the OLGs in MS/EAE remain unclear. Transgenic mice that express the anti-apoptotic protein specifically in OLGs and caspase-11-deficient mice are significantly resistant to EAE induction. Histopathological analyses show that the number of caspase-activated OLGs and dead OLGs are reduced in the CNS of these mice. The numbers of infiltrating immune cells and the amounts of cytokines are also markedly reduced in EAE lesions. Therefore, caspase-mediated OLG death leads to the exacerbation of demyelination and the deterioration of neurological manifestations by inducing local inflammatory events.
Collapse
Affiliation(s)
- Shin Hisahara
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan.
| | | | | |
Collapse
|
128
|
Abstract
It is now clear that cytokines function as powerful regulators of glial cell function in the central nervous system (CNS), either inhibiting or promoting their contribution to CNS pathology. Although these interactions are complex, the availability of animals with targeted deletions of these genes and/or their receptors, as well as transgenic mice in which cytokine expression has been targeted to specific cell types, and the availability of purified populations of glia that can be studied in vitro, has provided a wealth of interesting and frequently surprising data relevant to this activity. A particular feature of many of these studies is that it is the nature of the receptor that is expressed, rather than the cytokine itself, that regulates the functional properties of these cytokines. Because cytokine receptors are themselves modulated by cytokines, it becomes evident that the effects of these cytokines may change dramatically depending upon the cytokine milieu present in the immediate environment. An additional exciting aspect of these studies is the previously underappreciated role of these factors in repair to the CNS. In this review, we focus on current information that has helped to define the role of cytokines in regulating glial cell function as it relates to the properties of microglia and astrocytes.
Collapse
Affiliation(s)
- Gareth R John
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
129
|
Akassoglou K, Douni E, Bauer J, Lassmann H, Kollias G, Probert L. Exclusive tumor necrosis factor (TNF) signaling by the p75TNF receptor triggers inflammatory ischemia in the CNS of transgenic mice. Proc Natl Acad Sci U S A 2003; 100:709-14. [PMID: 12522266 PMCID: PMC141061 DOI: 10.1073/pnas.0236046100] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor (TNF) is up-regulated in a variety of central nervous system (CNS) diseases with diverse etiology and pathologic manifestation. TNF mediates multiple biological activities through two membrane receptors, the p55 and p75 TNF receptors (TNFRs). We have shown previously that human transmembrane TNF (tmTNF)p55TNFR signaling in transgenic mice triggers oligodendrocyte apoptosis, endothelial cell activation, parenchymal inflammation, and primary demyelinating lesions similar to those of acute multiple sclerosis. To address the role of the p75TNFR in the CNS, we have generated "humanized" mice that express human tmTNF in astrocytes and a physiologically regulated human p75TNFR transgene, in the absence of the endogenous (murine) p55TNFR. Human tmTNFp75TNFR transgenic mice develop CNS vascular pathology, characterized by endothelial cell activation, meningeal inflammation, and vessel fibrosis. There is no evidence of oligodendrocyte apoptosis or primary demyelination in these mice. Late in disease, vasculitis can result in vessel occlusion and secondary, multifocal CNS ischemic injury. These results identify a proinflammatory role for the p75TNFR at the level of the CNS vascular endothelium, which correlates with the expression pattern of this receptor in the CNS, and indicate that the differential expression patterns of the two TNFRs within the CNS play a significant role in shaping the outcome of TNF signaling during neuroimmune interactions.
Collapse
Affiliation(s)
- Katerina Akassoglou
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, Athens 11521, Greece
| | | | | | | | | | | |
Collapse
|
130
|
|
131
|
Osburg B, Peiser C, Dömling D, Schomburg L, Ko YT, Voigt K, Bickel U. Effect of endotoxin on expression of TNF receptors and transport of TNF-alpha at the blood-brain barrier of the rat. Am J Physiol Endocrinol Metab 2002; 283:E899-908. [PMID: 12376316 DOI: 10.1152/ajpendo.00436.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transport mechanism mediating brain uptake of tumor necrosis factor (TNF)-alpha has been studied. When (125)I-labeled rat TNF-alpha was used in internal carotid artery perfusions in rats, the cytokine showed transcytosis through the blood-brain barrier in intact form (permeability-surface area product 0.34 +/- 0.13 microl. min(-1). g(-1)). Uptake was inhibited by low nanomolar concentrations of unlabeled rat TNF-alpha. Human TNF-alpha, which does not interact with the p80 TNF receptor in rodents, showed no brain uptake. mRNA expression of both p60 and p80 receptors could be demonstrated in native brain microvessel preparations. These transcripts increased to 149% (p60) and 127% (p80) of control 4 h after a systemic immune stimulation (2 mg/kg bacterial endotoxin ip). Lipopolysaccharide treatment did not alter the rate of brain uptake of TNF-alpha measured between 4 and 24 h later. In conclusion, a receptor-mediated mechanism is responsible for the transcytosis of TNF-alpha. Saturable transport, requiring the p80 receptor, occurs at concentrations encountered under pathophysiological conditions and therefore constitutes a relevant mechanism of communication between the immune system and the brain.
Collapse
Affiliation(s)
- B Osburg
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Dopp JM, Sarafian TA, Spinella FM, Kahn MA, Shau H, de Vellis J. Expression of the p75 TNF receptor is linked to TNF-induced NFkappaB translocation and oxyradical neutralization in glial cells. Neurochem Res 2002; 27:1535-42. [PMID: 12512958 DOI: 10.1023/a:1021608724117] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tumor necrosis factor (TNF)-family cytokines induce reactive oxygen species (ROS) that injure vulnerable populations of brain cells. Among glia, oligodendrocytes are particularly susceptible to TNF-induced ROS whereas microglia are protected. We previously found that oligodendrocytes in vitro predominantly express the p55 type-1 TNF receptor, while microglial cells express both type-1 and p75 type-2 receptors. We hypothesized that differential TNF receptor expression and attendant signaling underlies the relative vulnerability of oligodendrocytes, versus microglia, to TNF-induced injury. To test this hypothesis, purified cultures of glial cells were incubated 0-48 hr with TNFalpha or lymphotoxin-alpha, following which levels of ROS, glutathione (GSH), nuclear factor kappa-B (NFkappaB) translocation, and anti-oxidant proteins and activity were measured. 48 hr exposure to TNF increased ROS levels 28% and decreased GSH levels 17% in oligodendrocytes, but decreased levels ROS levels 24% and increased GSH levels 112% increase in microglia. Thirty to 180 min exposure to TNF increased NFkappaB nuclear translocation to a greater extent and for a longer time in microglia versus oligodendrocytes, and this was followed 24-48 hr later with 3- to 13-fold increases in microglia manganese superoxide dismutase protein levels and 6-fold increases in enzyme activity. Collectively, these data suggest that signals transduced through the p75 receptor activate anti-oxidant mechanisms that protect microglia from TNF-induced injury. Lacking such signals, oligodendrocytes are considerably more vulnerable to the injurious effects of TNF.
Collapse
Affiliation(s)
- Joel M Dopp
- Mental Retardation Research Center, University of California at Los Angeles, Los Angeles, California, 90024-1759, USA
| | | | | | | | | | | |
Collapse
|
133
|
Wang J, Asensio VC, Campbell IL. Cytokines and chemokines as mediators of protection and injury in the central nervous system assessed in transgenic mice. Curr Top Microbiol Immunol 2002; 265:23-48. [PMID: 12014193 DOI: 10.1007/978-3-662-09525-6_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytokines and chemokines are potent biologic response molecules that play a key role in cellular communication in physiologic and pathophysiologic states. An understanding of the actions and roles of these molecules in CNS biology has been greatly facilitated by molecular genetic approaches that permit the targeted manipulation of gene expression in an intact organism. Studies in promoter-driven transgenic mice with CNS production of a number of cytokines or chemokines have demonstrated that these factors can directly induce a spectrum of cellular alterations often resulting in pronounced neurological disease (Table 1). Thus, these factors, in addition to initiating and maintaining immunoinflammatory responses, can be direct mediators of CNS injury. The neuropathological outcomes in the transgenic mice often recapitulate those reported in human neurological disorders such as MS, neurological diseases associated with AIDS and Alzheimer's disease, pointing to the importance of these animal models to our understanding of the role of cytokines and chemokines in these human disorders. Despite problems of timing and tissue specificity as well as some inconsistencies in the findings from different groups, knockout mice have begun to provide insights that are altering our view of the contribution made by individual cytokines to immunoinflammatory responses in the brain. For example, IL-6 and TNF were originally viewed as having minor and major proinflammatory contributions, respectively, in EAE, but now, based on findings from knockout mice, the opposite seems true. Studies in transgenic and knockout mice now offer strong evidence that, in addition to being mediators of damage, cytokines can have beneficial functions, e.g. the antiviral functions of the IFNs or the trophic and/or neuroprotective actions of some cytokines such as IL-6 and TNF. Clearly, studies in mutant mice, as summarized here, will continue to provide important insights into the nature of cytokine and chemokine actions in the CNS and will offer the possibility that we may identify new targets for effective therapeutic intervention in neuroinflammatory disorders.
Collapse
Affiliation(s)
- J Wang
- Department of Neuropharmacology, SP315, Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | |
Collapse
|
134
|
Perry SW, Dewhurst S, Bellizzi MJ, Gelbard HA. Tumor necrosis factor-alpha in normal and diseased brain: Conflicting effects via intraneuronal receptor crosstalk? J Neurovirol 2002; 8:611-24. [PMID: 12476354 PMCID: PMC7094979 DOI: 10.1080/13550280290101021] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is pleiotropic mediator of a diverse array of physiological and neurological functions, including both normal regulatory functions and immune responses to infectious agents. Its role in the nervous system is prominent but paradoxical. Studies on uninflamed or "normal" brain have generally attributed TNF-alpha a neuromodulatory effect. In contrast, in inflamed or diseased brain, the abundance of evidence suggests that TNF-alpha has an overall neurotoxic effect, which may be particularly pronounced for virally mediated neurological disease. Still others have found TNF-alpha to be protective under some conditions of neurological insult. It is still uncertain exactly how TNF-alpha is able to induce these opposing effects through receptor activation of only a limited set of cell signaling pathways. In this paper, we provide support from the literature to advance our hypothesis that one mechanism by which TNF-alpha can exert its paradoxical effects in the brain is via crosstalk with signaling pathways of growth factors or other cytokines.
Collapse
Affiliation(s)
- Seth W. Perry
- Center for Aging and Developmental Biology, Aab Biomedical Institute, University of Rochester Medical Center, Rochester, New York USA
- Department of Neurology (Child Neurology Division), University of Rochester Medical Center, Rochester, New York USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York USA
- Interdepartmental Graduate Program in Neuroscience, University of Rochester Medical Center, Rochester, New York USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York USA
| | - Matthew J. Bellizzi
- Center for Aging and Developmental Biology, Aab Biomedical Institute, University of Rochester Medical Center, Rochester, New York USA
- Department of Neurology (Child Neurology Division), University of Rochester Medical Center, Rochester, New York USA
- Interdepartmental Graduate Program in Neuroscience, University of Rochester Medical Center, Rochester, New York USA
| | - Harris A. Gelbard
- Center for Aging and Developmental Biology, Aab Biomedical Institute, University of Rochester Medical Center, Rochester, New York USA
- Department of Neurology (Child Neurology Division), University of Rochester Medical Center, Rochester, New York USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York USA
| |
Collapse
|
135
|
Probert L, Akassoglou K. Glial expression of tumor necrosis factor in transgenic animals: how do these models reflect the "normal situation"? Glia 2001; 36:212-9. [PMID: 11596129 DOI: 10.1002/glia.1110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent progress in the field of experimental genetics, which enables the selective and conditional ablation or dysregulation in the expression of specific genes in mice, and its application to the study of experimentally inducible models for human disease, have contributed enormously to our understanding of the molecules and mechanisms that underlie autoimmunity and inflammation in the CNS. This article describes the lessons learned from the application of such technology to the study of the tumor necrosis factor-alpha (TNF) ligand/receptor system in the CNS. Important roles for TNF and its two membrane-bound receptors in the initiation and support of CNS inflammation, the development of CNS autoimmunity, and possibly in the resolution of T-cell-mediated disease, as well as their implications for our understanding of the "normal" cellular and molecular mechanisms that underlie CNS pathology, are discussed.
Collapse
Affiliation(s)
- L Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece.
| | | |
Collapse
|
136
|
Abstract
Oligodendrocytes and Schwann cells are the glia principally responsible for the synthesis and maintenance of myelin. Damage may occur to these cells in a number of conditions, but perhaps the most studied are the idiopathic inflammatory demyelinating diseases, multiple sclerosis in the CNS, and Guillain-Barré syndrome and its variants in the peripheral nervous system (PNS). This article explores the effects on these cells of cytotoxic immunological and inflammatory mediators: similarities are revealed, of which perhaps the most important is the sensitivity of both Schwann cells and oligodendrocytes to many such agents. This area of research is, however, characterised and complicated by numerous and often very substantial inter-observer discrepancies. Marked variability in cell culture techniques, and in assays of cell damage and death, provide artifactual explanations for some of this variability; true inter-species differences also contribute. Not the least important conclusion centres on the limited capacity of in vitro studies to reveal disease mechanisms: cell culture findings merely illustrate possibilities which must then be tested ex vivo using human tissue samples affected by the relevant disease.
Collapse
Affiliation(s)
- T Benn
- Department of Neurology, Institute of Clinical Neurosciences, University of Bristol, Frenchay Hospital, Bristol, United Kingdom
| | | | | |
Collapse
|
137
|
Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 2001; 4:1116-22. [PMID: 11600888 DOI: 10.1038/nn738] [Citation(s) in RCA: 771] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here we used mice lacking tumor necrosis factor-alpha (TNF alpha) and its associated receptors to study a model of demyelination and remyelination in which these events could be carefully controlled using a toxin, cuprizone. Unexpectedly, the lack of TNF alpha led to a significant delay in remyelination as assessed by histology, immunohistochemistry for myelin proteins and electron microscopy coupled with morphometric analysis. Failure of repair correlated with a reduction in the pool of proliferating oligodendrocyte progenitors (bromodeoxyuridine-labeled NG2(+) cells) followed by a reduction in the number of mature oligodendrocytes. Analysis of mice lacking TNF receptor 1 (TNFR1) or TNFR2 indicated that TNFR2, not TNFR1, is critical to oligodendrocyte regeneration. This unexpected reparative role for TNF alpha in the CNS is important for understanding oligodendrocyte regeneration/proliferation, nerve remyelination and the design of new therapeutics for demyelinating diseases.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- B-Lymphocytes/metabolism
- Brain Chemistry
- Corpus Callosum/metabolism
- Corpus Callosum/ultrastructure
- Cuprizone/administration & dosage
- Cuprizone/toxicity
- Demyelinating Diseases/chemically induced
- Disease Models, Animal
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- Macrophages/metabolism
- Male
- Mice
- Mice, Knockout
- Microglia/metabolism
- Monoamine Oxidase Inhibitors/pharmacology
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Myelin Sheath/ultrastructure
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/physiology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Stem Cells/physiology
- Stem Cells/ultrastructure
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- H A Arnett
- Lineberger Comprehensive Cancer Center, School of Medicine CB7295, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
During the past decade, mechanisms involved in the immune surveillance of the central nervous system (CNS) have moved to the forefront of neuropathological research mainly because of the recognition that most neurological disorders involve activation and, possibly, dysregulation of microglia, the intrinsic macrophages of the CNS. Increasing evidence indicates that, in addition to their well-established phagocytic function, microglia may also participate in the regulation of non specific inflammation as well as adaptive immune responses. This article focuses on the signals regulating microglia innate immune functions, the role of microglia in antigen presentation, and their possible involvement in the development of CNS immunopathology.
Collapse
Affiliation(s)
- F Aloisi
- Neurophysiology Unit, Laboratory of Organ and System Pathophysiology, Istituto Superiore di Sanità, Roma, Italy.
| |
Collapse
|
139
|
Zvalova D, Formstecher E, Fauquet M, Canton B, Chneiweiss H. Keeping TNF-induced apoptosis under control in astrocytes: PEA-15 as a 'double key' on caspase-dependent and MAP-kinase-dependent pathways. PROGRESS IN BRAIN RESEARCH 2001; 132:455-67. [PMID: 11545011 DOI: 10.1016/s0079-6123(01)32095-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- D Zvalova
- INSERM U114/Chaire de Neuropharmacologie, Collège de France, 75231 Paris, France
| | | | | | | | | |
Collapse
|
140
|
Goddard DR, Bunning RA, Woodroofe MN. Astrocyte and endothelial cell expression of ADAM 17 (TACE) in adult human CNS. Glia 2001; 34:267-71. [PMID: 11360299 DOI: 10.1002/glia.1060] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ADAM 17, also known as TACE, is an important sheddase for a number of proteins, including tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-alpha (TGF-alpha), L-selectin, p75, and p55 TNF receptors, and interleukin-1 receptor II (IL-1RII). The presence of ADAM 17 mRNA in adult mouse and rat CNS was recently reported (Karkkainen et al. Mol Cell Neurosci 15:547-560, 2000). However, the cellular origin of ADAM 17 remains unknown. In this study, we have used an anti-ADAM 17 antibody in an immunohistochemical study of its distribution in human adult CNS tissue. Cells with astrocytic and endothelial morphology were ADAM 17-positive. This finding was further confirmed using double immunofluorescence with antibodies against GFAP and von Willebrand factor, which label astrocytes and endothelial cells, respectively. This study demonstrates that ADAM 17 is expressed by astrocytes and endothelial cells in normal brain tissue and may have a role in normal brain function.
Collapse
Affiliation(s)
- D R Goddard
- Division of Biomedical Sciences, School of Science and Mathematics, Sheffield Hallam University, Sheffield, United Kingdom.
| | | | | |
Collapse
|
141
|
Hisahara S, Takano R, Shoji S, Okano H, Miura M. Role of caspase-1 subfamily in cytotoxic cytokine-induced oligodendrocyte cell death. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:135-42. [PMID: 11128603 DOI: 10.1007/978-3-7091-6284-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Oligodendrocytes are myelin forming cells in mammalian central nervous system. About 50% of oligodendrocytes (OLGs) undergo cell death in normal development. In addition, OLG cell deaths have been observed in demyelinating diseases including multiple sclerosis (MS). Clinical observations and in vitro cell culture studies have suggested that cytokines mediate OLG cell damage in multiple sclerosis (MS). Among the cytokines, tumor necrosis factor (TNF) is thought to be one of the mediators responsible for the damage of OLGs in MS. The administration of TNF-alpha to primary cultures of OLGs induced DNA fragmentation, and significantly decreased the number of live OLGs. Chemical inhibitors Ac-YVAD-CHO (a specific inhibitor of caspase-1 (ICE)-like proteases) enhanced the survival of TNF-alpha treated OLGs better than Ac-DEVD-CHO (a specific inhibitor of caspase-3 (CPP32)-like proteases). These results indicate that caspase-1-mediated cell-death pathway are activated in TNF-induced OLG cell death. Caspase-11 is involved in activation of caspase-1. Oligodendrocytes from caspase-11-deficient mice are partially resistant to TNF-induced OLG cell death. Our results suggest that the inhibition of caspase-1 sufamily may be a novel therapeutic approach to treat MS.
Collapse
Affiliation(s)
- S Hisahara
- Department of Neuroanatomy, Biomedical Research Center, Osaka University Medical School, Suita, Japan
| | | | | | | | | |
Collapse
|
142
|
Walther M, Kuklinski S, Pesheva P, Guntinas-Lichius O, Angelov DN, Neiss WF, Asou H, Probstmeier R. Galectin-3 is upregulated in microglial cells in response to ischemic brain lesions, but not to facial nerve axotomy. J Neurosci Res 2000; 61:430-5. [PMID: 10931529 DOI: 10.1002/1097-4547(20000815)61:4<430::aid-jnr9>3.0.co;2-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently demonstrated that the beta-galactoside-specific lectin galectin-3 is expressed by microglial cells in vitro, but not by normal resting microglia in vivo. In the present study, we have analyzed the expression of galectin-3 by microglia under traumatic conditions in vivo using two experimental rat models which substantially differ in the severity of lesion related to a breakdown of the blood-brain barrier (BBB) and the occurrence of inflammatory processes. These two features are absent after peripheral nerve lesion and present after cerebral ischemia. Here we show that, following facial nerve axotomy under conditions allowing (nerve anastomosis) or not subsequent regeneration (nerve resection), galectin-3 is not expressed by microglia in the corresponding facial nucleus 1-112 days after lesion. Galectin-3 is also absent in microglia at sites of a defective BBB in the normal brain, such as the circumventricular organs. Following experimental ischemia (i.e., permanent occlusion of the middle cerebral artery), in contrast, galectin-3 becomes strongly expressed by activated microglia as early as 48 hours after trauma, as determined by immunohistochemistry and Western blot analysis. Our findings suggest that the expression of galectin-3 by microglia in vivo correlates with the state of microglial activation.
Collapse
Affiliation(s)
- M Walther
- Institute I of Anatomy, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Hall SM, Redford EJ, Smith KJ. Tumour necrosis factor-alpha has few morphological effects within the dorsal columns of the spinal cord, in contrast to its effects in the peripheral nervous system. J Neuroimmunol 2000; 106:130-6. [PMID: 10814790 DOI: 10.1016/s0165-5728(00)00213-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is circumstantial evidence implicating the pro-inflammatory cytokine tumour necrosis factor (TNF) in the pathogenesis of multiple sclerosis (MS), but there is no direct evidence that TNF can produce demyelination in the central nervous system (CNS). We demonstrate here that single injections of TNF into the dorsal columns of adult rats produced a mild inflammatory response indistinguishable from that seen in control cords, but did not induce demyelination. A similar response was seen when TNF-alpha was injected into dorsal columns where central axons had been remyelinated by Schwann cells. In marked contrast, single intraneural injections of TNF into sciatic nerves produced acute changes in the endoneurial microvascular bed that were followed by demyelination and degeneration.
Collapse
Affiliation(s)
- S M Hall
- Neuroinflammation Research Group, Division of Anatomy, Cell and Human Biology, Guy's, King's and St. Thomas' Schools of Medicine, Dentistry and Biomedical Sciences, Hodgkin Building, Guy's Campus, London, UK
| | | | | |
Collapse
|
144
|
Jiang X, Ikeda H, Tomaru U, Morita K, Tanaka Y, Yoshiki T. A rat model for human T lymphocyte virus type I-associated myeloneuropathy. down-regulation of bcl-2 expression and increase in sensitivity to TNF-alpha of the spinal oligodendrocytes. J Neuroimmunol 2000; 106:105-13. [PMID: 10814788 DOI: 10.1016/s0165-5728(00)00216-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We reported that the tumor necrosis factor-alpha (TNF-alpha) expression and apoptotic death of oligodendrocytes appeared to be a major pathogenesis of the demyelination of spinal cords of Wistar-King-Aptekman-Hokudai (WKAH) rats with human T lymphocyte virus type I (HTLV-I) infection, HAM rats. In the present study, we examined the sensitivity to TNF-alpha-induced cell death of in vitro-separated oligodendrocytes from HTLV-I-infected WKAH rats. Although the number of non-viable oligodendrocytes increased by adding recombinant TNF-alpha, in a dose-dependent manner, in both HTLV-I-infected and uninfected control rats, oligodendrocytes from the infected rats were more susceptible to TNF-alpha. In situ detection of DNA fragmentation showed apoptotic death of oligodendrocytes. The expression of bcl-2, an anti-apoptotic gene, was strongly down-regulated in oligodendrocytes of the infected rats but not in the control rats. We suggest that the down-regulation of bcl-2 expression in the oligodendrocytes of the HTLV-I-infected rats may increase the susceptibility to TNF-alpha-induced apoptosis of oligodendrocytes, the result being development of HTLV-I-induced myeloneuropathy in rats.
Collapse
Affiliation(s)
- X Jiang
- Department of Pathology, Hokkaido University School of Medicine, Kita-ku, Kita-15, Nishi-7, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
145
|
Abstract
Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia to produce TNFalpha in response to transection of perforant path axons in SJL/J mice. TNFalpha mRNA was produced in a transient manner, peaking at 2 d and falling again by 5 d after lesioning. This was unlike other markers of glial reactivity, such as Mac-1 upregulation, which were sustained over longer time periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice, in which IFNgamma was endogenously produced in hippocampus. The kinetics of TNFalpha downregulation 5 d after lesion was not affected by transgenic IFNgamma, indicating that IFNgamma acts as an amplifier and not an inducer of response. These results are discussed in the context of a regenerative role for TNFalpha in the CNS, which is innately regulated and potentiated by IFNgamma.
Collapse
|
146
|
Finsen B, Jensen MB, Lomholt ND, Hegelund IV, Poulsen FR, Owens T. Axotomy-induced glial reactions in normal and cytokine transgenic mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:157-71. [PMID: 10635027 DOI: 10.1007/978-1-4615-4685-6_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- B Finsen
- Department of Anatomy and Cell Biology, Odense University, Denmark
| | | | | | | | | | | |
Collapse
|
147
|
Abstract
Cell death in the oligodendrocyte lineage occurs during development and in pathological conditions as the result of a balance between opposing molecular signals. This review focuses on the molecular mechanisms of activation of signal transduction pathways affecting life/death decisions in progenitor cells and in mature oligodendrocytes. Loss of trophic support, cytokine receptor activation, and oxidative stress may differentially contribute to the induction of cell death at specific stages of development and to the pathogenesis of demyelinating disorders. The execution of the death program leading to the morphological changes of apoptosis and/or necrosis is then determined by the generation of reactive oxygen species and the level of impairment of mitochondrial function. The final decision of a cell to die or survive is determined by a competition between survival and death signals. Depending on ligand availability, type, and levels of receptor expression and downstream cross-talks between distinct signaling pathways, the cell may activate a death execution program that will be affected by its stage of differentiation and its energetic metabolism.
Collapse
|
148
|
Akassoglou K, Bauer J, Kassiotis G, Lassmann H, Kollias G, Probert L. Transgenic models of TNF induced demyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:245-59. [PMID: 10635034 DOI: 10.1007/978-1-4615-4685-6_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- K Akassoglou
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | | | | | |
Collapse
|
149
|
Yuan L, Neufeld AH. Tumor necrosis factor-?: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 2000. [DOI: 10.1002/1098-1136(200010)32:1<42::aid-glia40>3.0.co;2-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
150
|
Gregersen R, Lambertsen K, Finsen B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000; 20:53-65. [PMID: 10616793 DOI: 10.1097/00004647-200001000-00009] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The proinflammatory cytokine tumor necrosis factor (TNF) is known to be expressed in brain ischemia; however, its cellular and temporal appearance is not fully settled. In this study, nonradioactive in situ hybridization for murine TNF mRNA was performed on brain sections from adult C57x129 mice at 6 hours, 12 hours, 24 hours, 2 days, 5 days, or 10 days (six to eight mice per group) after induction of permanent focal cerebral ischemia. Cortical infarct volumes were estimated, and TNF mRNA-expressing cells were counted within the infarct and infarct border using Cast-Grid analysis. At 12 hours, a peak of 19.2 +/- 5.1 TNF mRNA-expressing cells/mm2 was counted, contrasting two to three times lower values at 6 and 24 hours (6.4 +/- 4.6 and 9.2 +/- 3.4 cells/mm2, respectively) and <2 cells/mm2 at 48 hours and later stages. The TNF mRNA-expressing cells were distributed along the entire rostrocaudal axis of the cortical infarcts and occasionally within the caudate putamen. At all time points, TNF mRNA colocalized with Mac-1-positive microglia/macrophages but not with Ly-6G (Gr-1)-positive polymorphonuclear leukocytes. Similarly, combined in situ hybridization for TNF mRNA and immunohistochemistry for glial fibrillary acidic protein at 12 and 24 hours revealed no TNF mRNA-expressing astrocytes at these time points. Translation of TNF mRNA into bioactive protein was demonstrated in the neocortex of C57B1/6 mice subjected to permanent middle cerebral artery occlusion. In summary, this study points to a time-restricted microglial/macrophage production of TNF in focal cerebral ischemia in mice.
Collapse
Affiliation(s)
- R Gregersen
- Department of Anatomy and Neurobiology, University of Southern Denmark/Odense University
| | | | | |
Collapse
|