101
|
Abstract
The surface coat (SC) of the plant-parasitic nematode cuticle is an understudied area of current research, even though it likely plays key roles in both nematode-plant and nematode-microbe interactions. Although in several ways Caenorhabditis elegans is a poor model for plant-parasitic nematodes, it is a useful starting point for investigations of the cuticle and its SC, especially in the light of recent work using this species as a model for innate immunity and the generic biology underpinning much host-parasite biology. We review the research focused on the involvement of the SC of plant-parasitic nematodes. Using the insights gained from animal-parasitic nematodes and other sequenced nematodes, we discuss the key roles that the SC may play.
Collapse
Affiliation(s)
- Keith G Davies
- Plant Pathology and Microbiology, Rothamsted Research, Hertfordshire AL5 2JQ, United Kingdom
| | | |
Collapse
|
102
|
Deep insights into Dictyocaulus viviparus transcriptomes provides unique prospects for new drug targets and disease intervention. Biotechnol Adv 2010; 29:261-71. [PMID: 21182926 DOI: 10.1016/j.biotechadv.2010.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/22/2010] [Indexed: 11/23/2022]
Abstract
The lungworm, Dictyocaulus viviparus, causes parasitic bronchitis in cattle, and is responsible for substantial economic losses in temperate regions of the world. Here, we undertake the first large-scale exploration of available transcriptomic data for this lungworm, examine differences in transcription between different stages/both genders and identify and prioritize essential molecules linked to fundamental metabolic pathways, which could represent novel drug targets. Approximately 3 million expressed sequence tags (ESTs), generated by 454 sequencing from third-stage larvae (L3s) as well as adult females and males of D. viviparus, were assembled and annotated. The assembly of these sequences yielded ~61,000 contigs, of which relatively large proportions encoded collagens (4.3%), ubiquitins (2.1%) and serine/threonine protein kinases (1.9%). Subtractive analysis in silico identified 6928 nucleotide sequences as being uniquely transcribed in L3, and 5203 and 7889 transcripts as being exclusive to the adult female and male, respectively. Most peptides predicted from the conceptual translations were nucleoplasmins (L3), serine/threonine protein kinases (female) and major sperm proteins (male). Additional analyses allowed the prediction of three drug target candidates, whose Caenorhabditis elegans homologues were linked to a lethal RNA interference phenotype. This detailed exploration, combined with future transcriptomic sequencing of all developmental stages of D. viviparus, will facilitate future investigations of the molecular biology of this parasitic nematode as well as genomic sequencing. These advances will underpin the discovery of new drug and/or vaccine targets, focused on biotechnological outcomes.
Collapse
|
103
|
Kim TH, Kim YJ, Cho JW, Shim J. A novel zinc-carboxypeptidase SURO-1 regulates cuticle formation and body morphogenesis in Caenorhabditis elegans. FEBS Lett 2010; 585:121-7. [PMID: 21094156 DOI: 10.1016/j.febslet.2010.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 11/27/2022]
Abstract
Cuticle formation and molting are critical for the development of Caenorhabditis elegans. To understand cuticle formation more clearly, we screened for suppressors in transgenic worms that expressed dominant ROL-6 collagen proteins. The suro-1 mutant, which is mild dumpy, exhibited a different ROL-6::GFP localization pattern compared to other Dpy mutants. We identified mutations in three suro-1 mutants, and found that suro-1 (ORF R11A5.7) encodes a putative zinc-carboxypeptidase homologue. The expression of this enzyme in the hypodermis and the genetic interactions between this enzyme and other collagen-modifying enzyme mutants suggest a regulatory role in collagen processing and cuticle organization for this novel carboxypeptidase. These findings aid our understanding of cuticle formation during worm development.
Collapse
Affiliation(s)
- Tai Hoon Kim
- Cancer Experimental Resources Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | | | | | | |
Collapse
|
104
|
O'Meara H, Barber R, Mello LV, Sangaralingam A, Viney ME, Paterson S. Response of the Strongyloides ratti transcriptome to host immunological environment. Int J Parasitol 2010; 40:1609-17. [PMID: 20673765 DOI: 10.1016/j.ijpara.2010.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
The immunological environment experienced by parasitic nematodes varies greatly between hosts and is particularly influenced by whether or not a host has been previously infected. How a parasitic nematode responds to these different environments is poorly understood, but may allow a parasite to ameliorate the adverse effects of host immunity on parasite fitness. Here we use a microarray approach to identify genes in the parasitic nematode Strongyloides ratti that exhibit differential transcription between different rat host immunological environments, and between replicate lines of S. ratti selected for either early or late reproduction. We hypothesise that such genes may be used by this species to cope with and respond to its host environment. Our results showed that, despite large phenotypic differences between S. ratti adults from different immunological environments, the S. ratti transcriptome exhibited a relatively stable pattern of expression. Thus, differential expression amongst treatments was limited to a small proportion of transcripts and generally involved only modest fold changes. These transcripts included a group of collagen genes up-regulated in parasites early in an infection, and in immunised host environments, which may be related to protection against the damage caused to a parasite by host immune responses. We found that later in an infection, a number of genes associated with muscle function and repair were up-regulated in immunised host environments; these may help parasites maintain their position in the host intestine. Differences in transcription between selection lines of S. ratti were only observed in immunised hosts and included genes associated with the response to the host's immunological environment.
Collapse
Affiliation(s)
- Helen O'Meara
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
105
|
Cho JH, Song HO, Singaravelu G, Sung H, Oh WC, Kwon S, Kim DH, Ahnn J. Pleiotropic roles of calumenin (calu-1), a calcium-binding ER luminal protein, inCaenorhabditis elegans. FEBS Lett 2009; 583:3050-6. [DOI: 10.1016/j.febslet.2009.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 11/29/2022]
|
106
|
Thein MC, Winter AD, Stepek G, McCormack G, Stapleton G, Johnstone IL, Page AP. Combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical for post-embryonic viability in Caenorhabditis elegans. J Biol Chem 2009; 284:17549-63. [PMID: 19406744 PMCID: PMC2719394 DOI: 10.1074/jbc.m900831200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/27/2009] [Indexed: 01/01/2023] Open
Abstract
The nematode cuticle is a protective collagenous extracellular matrix that is modified, cross-linked, and processed by a number of key enzymes. This Ecdysozoan-specific structure is synthesized repeatedly and allows growth and development in a linked degradative and biosynthetic process known as molting. A targeted RNA interference screen using a cuticle collagen marker has been employed to identify components of the cuticle biosynthetic pathway. We have characterized an essential peroxidase, MoLT-7 (MLT-7), that is responsible for proper cuticle molting and re-synthesis. MLT-7 is an active, inhibitable peroxidase that is expressed in the cuticle-synthesizing hypodermis coincident with each larval molt. mlt-7 mutants show a range of body morphology defects, most notably molt, dumpy, and early larval stage arrest phenotypes that can all be complemented with a wild type copy of mlt-7. The cuticles of these mutants lacks di-tyrosine cross-links, becomes permeable to dye and accessible to tyrosine iodination, and have aberrant collagen protein expression patterns. Overexpression of MLT-7 causes mutant phenotypes further supporting its proposed enzymatic role. In combination with BLI-3, an H2O2-generating NADPH dual oxidase, MLT-7 is essential for post-embryonic development. Disruption of mlt-7, and particularly bli-3, via RNA interference also causes dramatic changes to the in vivo cross-linking patterns of the cuticle collagens DPY-13 and COL-12. This points toward a functionally cooperative relationship for these two hypodermally expressed proteins that is essential for collagen cross-linking and proper extracellular matrix formation.
Collapse
Affiliation(s)
- Melanie C. Thein
- From the Institute of Comparative Medicine, Veterinary Faculty, and
| | - Alan D. Winter
- From the Institute of Comparative Medicine, Veterinary Faculty, and
| | - Gillian Stepek
- From the Institute of Comparative Medicine, Veterinary Faculty, and
| | | | - Genevieve Stapleton
- the Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G61 1QH, Scotland, United Kingdom
| | - Iain L. Johnstone
- the Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G61 1QH, Scotland, United Kingdom
| | - Antony P. Page
- From the Institute of Comparative Medicine, Veterinary Faculty, and
| |
Collapse
|
107
|
Fritz JA, Behm CA. CUTI-1: A novel tetraspan protein involved in C. elegans CUTicle formation and epithelial integrity. PLoS One 2009; 4:e5117. [PMID: 19357781 PMCID: PMC2663847 DOI: 10.1371/journal.pone.0005117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 03/11/2009] [Indexed: 11/18/2022] Open
Abstract
The nematode cuticle is a tough extracellular matrix composed primarily of cross-linked collagens and non-collagenous cuticulins. It is required for nematode motility and protection from the external environment. Little is known about how the complex process of cuticle formation has been adapted to the specialized requirements of the nematode cuticle, which is structurally and compositionally unique from other organisms. The C. elegans gene cuti-1 (CUTicle and epithelial Integrity) encodes a nematode-specific protein. We have shown that CUTI-1 is expressed in the epithelia and in seam cells. Within these tissues the expression of cuti-1 mRNA cycles throughout development in line with the molting cycle, a process that involves synthesis of a new cuticle. In addition, knockdown of cuti-1 by RNA interference (RNAi) results in worms that display post-embryonic phenotypes related to cuticle dysfunction and defects in epithelial integrity. This is one of the first reports of a nematode-specific protein involved in extracellular matrix formation. It provides further insight into how novel ways have evolved to regulate the formation of the cuticle, which is the primary protective barrier and skeletal component of nematodes.
Collapse
Affiliation(s)
- Julie-Anne Fritz
- Biochemistry & Molecular Biology, The School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
108
|
Golden TR, Hubbard A, Dando C, Herren MA, Melov S. Age-related behaviors have distinct transcriptional profiles in Caenorhabditis elegans. Aging Cell 2008; 7:850-65. [PMID: 18778409 PMCID: PMC2613281 DOI: 10.1111/j.1474-9726.2008.00433.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There has been a great deal of interest in identifying potential biomarkers of aging. Biomarkers of aging would be useful to predict potential vulnerabilities in an individual that may arise well before they are chronologically expected, due to idiosyncratic aging rates that occur between individuals. Prior attempts to identify biomarkers of aging have often relied on the comparisons of long-lived animals to a wild-type control. However, the effect of interventions in model systems that prolong lifespan (such as single gene mutations or caloric restriction) can sometimes be difficult to interpret due to the manipulation itself having multiple unforeseen consequences on physiology, unrelated to aging itself. The search for predictive biomarkers of aging therefore is problematic, and the identification of metrics that can be used to predict either physiological or chronological age would be of great value. One methodology that has been used to identify biomarkers for numerous pathologies is gene expression profiling. Here, we report whole-genome expression profiles of individual wild-type Caenorhabditis elegans covering the entire wild-type nematode lifespan. Individual nematodes were scored for either age-related behavioral phenotypes, or survival, and then subsequently associated with their respective gene expression profiles. This facilitated the identification of transcriptional profiles that were highly associated with either physiological or chronological age. Overall, our approach serves as a paradigm for identifying potential biomarkers of aging in higher organisms that can be repeatedly sampled throughout their lifespan.
Collapse
Affiliation(s)
- Tamara R. Golden
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945
| | - Alan Hubbard
- Div. of Biostatistics, School of Public Health, University of California, 101 Haviland Hall, MC 7358, Berkeley, CA 94720
| | - Caroline Dando
- Fluidigm Corporation, 7000 Shoreline Court, South San Francisco, CA 94080
| | - Michael A. Herren
- Fluidigm Corporation, 7000 Shoreline Court, South San Francisco, CA 94080
| | - Simon Melov
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945
| |
Collapse
|
109
|
Broday L, Hauser CA, Kolotuev I, Ronai Z. Muscle-epidermis interactions affect exoskeleton patterning in Caenorhabditis elegans. Dev Dyn 2008; 236:3129-36. [PMID: 17937397 DOI: 10.1002/dvdy.21341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The C. elegans hypodermis is a single epithelial cell layer separated from the musculature by a thin basement membrane on its basal surface. The hypodermis secretes the extracellular material of the cuticle from its apical surface. The regulation of cuticle synthesis and apical secretion is not well understood. UNC-95 is a component of the muscle dense bodies and M-lines, which are integrin-based adhesion complexes required for force transduction to the cuticle. Using gene expression profiling and in vivo assays, we show that, in unc-95 mutant worms, there is an increase in expression levels of a group of hypodermal and pharyngeal genes related to cuticle structure and molting. Moreover, the cuticle structure of unc-95 mutant adult is impaired. Our findings suggest that aberrant force transduction from the structurally impaired muscle attachments across the basement membrane to the underlying hypodermis elicits intercellular signaling that plays a role in regulating cuticle synthesis and patterning.
Collapse
Affiliation(s)
- Limor Broday
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
110
|
Hao L, Mukherjee K, Liegeois S, Baillie D, Labouesse M, Bürglin TR. The hedgehog-related gene qua-1 is required for molting in Caenorhabditis elegans. Dev Dyn 2007; 235:1469-81. [PMID: 16502424 DOI: 10.1002/dvdy.20721] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Caenorhabditis elegans genome encodes ten proteins that share similarity with Hedgehog through the C-terminal Hint/Hog domain. While most genes are members of larger gene families, qua-1 is a single copy gene. Here we show that orthologs of qua-1 exist in many nematodes, including Brugia malayi, which shared a common ancestor with C. elegans about 300 million years ago. The QUA-1 proteins contain an N-terminal domain, the Qua domain, that is highly conserved, but whose molecular function is not known. We have studied the expression pattern of qua-1 in C. elegans using a qua-1::GFP transcriptional fusion. qua-1 is mainly expressed in hyp1 to hyp11 hypodermal cells, but not in seam cells. It is also expressed in intestinal and rectal cells, sensilla support cells, and the P cell lineage in L1. The expression of qua-1::GFP undergoes cyclical changes during development in phase with the molting cycle. It accumulates prior to molting and disappears between molts. Disruption of the qua-1 gene function through an internal deletion that causes a frame shift with premature stop in the middle of the gene results in strong lethality. The animals arrest in the early larval stages due to defects in molting. Electron microscopy reveals double cuticles due to defective ecdysis, but no obvious defects are seen in the hypodermis. Qua domain-only::GFP and full-length QUA-1::GFP fusion constructs are secreted and associated with the overlying cuticle, but only QUA-1::GFP rescues the mutant phenotype. Our results suggest that both the Hint/Hog domain and Qua domain are critically required for the function of QUA-1.
Collapse
Affiliation(s)
- Limin Hao
- Department of Biosciences and Nutrition, and Center for Genomics and Bioinformatics, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
Axons and dendrites can withstand acute mechanical strain despite their small diameter. In this study, we demonstrate that β-spectrin is required for the physical integrity of neuronal processes in the nematode Caenorhabditis elegans. Axons in β-spectrin mutants spontaneously break. Breakage is caused by acute strain generated by movement because breakage can be prevented by paralyzing the mutant animals. After breaking, the neuron attempts to regenerate by initiating a new growth cone; this second round of axon extension is error prone compared with initial outgrowth. Because spectrin is a major target of calpain proteolysis, it is possible that some neurodegenerative disorders may involve the cleavage of spectrin followed by the breakage of neural processes.
Collapse
Affiliation(s)
- Marc Hammarlund
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
112
|
Kikuchi T, Aikawa T, Kosaka H, Pritchard L, Ogura N, Jones JT. Expressed sequence tag (EST) analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Mol Biochem Parasitol 2007; 155:9-17. [PMID: 17560668 DOI: 10.1016/j.molbiopara.2007.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/27/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
Most Bursaphelenchus species feed on fungi that colonise dead or dying trees. However, Bursaphelenchus xylophilus is unique in that in addition to feeding on fungi it has the capacity to be a parasite of live pine trees. We present an analysis of over 13,000 expressed sequence tags (ESTs) from B. xylophilus and, by way of contrast, over 3000 ESTs from a closely related species that does not parasitise plants as readily; B. mucronatus. Four libraries from B. xylophilus, from a variety of life stages including fungal feeding nematodes, nematodes extracted from plants and dauer-like stage nematodes, and one library from B. mucronatus were constructed and used to generate ESTs. Contig analysis showed that the 13,327 B. xylophilus ESTs could be grouped into 2110 contigs and 4377 singletons giving a total of 6487 identified genes. Similarly the 3193 B. mucronatus ESTs yielded a total of 2219 identified genes from 425 contigs and 1794 singletons. A variety of proteins potentially important in the parasitic process of B. xylophilus and B. mucronatus, including plant and fungal cell wall degrading enzymes and a novel gene potentially encoding a expansin-like protein that may disrupt non-covalent bonds in the plant cell wall were identified in the libraries. Additionally several gene candidates potentially involved in dauer entry or maintenance were also identified in the EST dataset. The EST sequences from this study will provide a solid base for future research on the biology, pathogenicity and evolutionary history of this nematode group.
Collapse
Affiliation(s)
- Taisei Kikuchi
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| | | | | | | | | | | |
Collapse
|
113
|
Regulation of Caenorhabditis elegans body size and male tail development by the novel gene lon-8. BMC DEVELOPMENTAL BIOLOGY 2007; 7:20. [PMID: 17374156 PMCID: PMC1847802 DOI: 10.1186/1471-213x-7-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 03/20/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND In C. elegans and other nematode species, body size is determined by the composition of the extracellular cuticle as well as by the nuclear DNA content of the underlying hypodermis. Mutants that are defective in these processes can exhibit either a short or a long body size phenotype. Several mutations that give a long body size (Lon) phenotype have been characterized and found to be regulated by the DBL-1/TGF-beta pathway, that controls post-embryonic growth and male tail development. RESULTS Here we characterize a novel gene affecting body size. lon-8 encodes a secreted product of the hypodermis that is highly conserved in Rhabditid nematodes. lon-8 regulates larval elongation as well as male tail development. In both processes, lon-8 appears to function independently of the Sma/Mab pathway. Rather, lon-8 genetically interacts with dpy-11 and dpy-18, which encode cuticle collagen modifying enzymes. CONCLUSION The novel gene lon-8 encodes a secreted product of the hypodermis that controls body size and male ray morphology in C. elegans. lon-8 genetically interacts with enzymes that affect the composition of the cuticle.
Collapse
|
114
|
Elling AA, Mitreva M, Recknor J, Gai X, Martin J, Maier TR, McDermott JP, Hewezi T, McK Bird D, Davis EL, Hussey RS, Nettleton D, McCarter JP, Baum TJ. Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines. Genome Biol 2007; 8:R211. [PMID: 17919324 PMCID: PMC2246285 DOI: 10.1186/gb-2007-8-10-r211] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 10/05/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean cyst nematode Heterodera glycines is the most important parasite in soybean production worldwide. A comprehensive analysis of large-scale gene expression changes throughout the development of plant-parasitic nematodes has been lacking to date. RESULTS We report an extensive genomic analysis of H. glycines, beginning with the generation of 20,100 expressed sequence tags (ESTs). In-depth analysis of these ESTs plus approximately 1,900 previously published sequences predicted 6,860 unique H. glycines genes and allowed a classification by function using InterProScan. Expression profiling of all 6,860 genes throughout the H. glycines life cycle was undertaken using the Affymetrix Soybean Genome Array GeneChip. Our data sets and results represent a comprehensive resource for molecular studies of H. glycines. Demonstrating the power of this resource, we were able to address whether arrested development in the Caenorhabditis elegans dauer larva and the H. glycines infective second-stage juvenile (J2) exhibits shared gene expression profiles. We determined that the gene expression profiles associated with the C. elegans dauer pathway are not uniformly conserved in H. glycines and that the expression profiles of genes for metabolic enzymes of C. elegans dauer larvae and H. glycines infective J2 are dissimilar. CONCLUSION Our results indicate that hallmark gene expression patterns and metabolism features are not shared in the developmentally arrested life stages of C. elegans and H. glycines, suggesting that developmental arrest in these two nematode species has undergone more divergent evolution than previously thought and pointing to the need for detailed genomic analyses of individual parasite species.
Collapse
Affiliation(s)
- Axel A Elling
- Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
- Current address: Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Makedonka Mitreva
- Department of Genetics, Washington University School of Medicine, Genome Sequencing Center, St Louis, MO 63108, USA
| | - Justin Recknor
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Xiaowu Gai
- LH Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA 50011, USA
- Current address: Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John Martin
- Department of Genetics, Washington University School of Medicine, Genome Sequencing Center, St Louis, MO 63108, USA
| | - Thomas R Maier
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey P McDermott
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
- Current address: The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tarek Hewezi
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - David McK Bird
- Department of Plant Pathology, NC State University, Raleigh, NC 27695, USA
| | - Eric L Davis
- Department of Plant Pathology, NC State University, Raleigh, NC 27695, USA
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - James P McCarter
- Department of Genetics, Washington University School of Medicine, Genome Sequencing Center, St Louis, MO 63108, USA
- Divergence Inc., North Warson Road, St Louis, MO 63141, USA
| | - Thomas J Baum
- Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
115
|
Liégeois S, Benedetto A, Michaux G, Belliard G, Labouesse M. Genes required for osmoregulation and apical secretion in Caenorhabditis elegans. Genetics 2006; 175:709-24. [PMID: 17179093 PMCID: PMC1800596 DOI: 10.1534/genetics.106.066035] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Few studies have investigated whether or not there is an interdependence between osmoregulation and vesicular trafficking. We previously showed that in Caenorhabditis elegans che-14 mutations affect osmoregulation, cuticle secretion, and sensory organ development. We report the identification of seven lethal mutations displaying che-14-like phenotypes, which define four new genes, rdy-1-rdy-4 (rod-like larval lethality and dye-filling defective). rdy-1, rdy-2, and rdy-4 mutations affect excretory canal function and cuticle formation. Moreover, rdy-1 and rdy-2 mutations reduce the amount of matrix material normally secreted by sheath cells in the amphid channel. In contrast, rdy-3 mutants have short cystic excretory canals, suggesting that it acts in a different process. rdy-1 encodes the vacuolar H+-ATPase a-subunit VHA-5, whereas rdy-2 encodes a new tetraspan protein. We suggest that RDY-1/VHA-5 acts upstream of RDY-2 and CHE-14 in some tissues, since it is required for their delivery to the epidermal, but not the amphid sheath, apical plasma membrane. Hence, the RDY-1/VHA-5 trafficking function appears essential in some cells and its proton pump function essential in others. Finally, we show that RDY-1/VHA-5 distribution changes prior to molting in parallel with that of actin microfilaments and propose a model for molting whereby actin provides a spatial cue for secretion.
Collapse
Affiliation(s)
- Samuel Liégeois
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Institut National de la Santé et de la Recherche Médicale Université Louis Pasteur BP.10142, 67400 Illkirch, France
| | | | | | | | | |
Collapse
|
116
|
Corsi AK. A biochemist's guide to Caenorhabditis elegans. Anal Biochem 2006; 359:1-17. [PMID: 16942745 PMCID: PMC1855192 DOI: 10.1016/j.ab.2006.07.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/11/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Ann K Corsi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
117
|
Hao L, Johnsen R, Lauter G, Baillie D, Bürglin TR. Comprehensive analysis of gene expression patterns of hedgehog-related genes. BMC Genomics 2006; 7:280. [PMID: 17076889 PMCID: PMC1636047 DOI: 10.1186/1471-2164-7-280] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 10/31/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh)-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. RESULTS With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the efficacy of our GFP expression effort with EST, OST and SAGE data. CONCLUSION No bona-fide Hh signaling pathway is present in C. elegans. Given that the hh-related gene products have a predicted signal peptide for secretion, it is possible that they constitute components of the extracellular matrix (ECM). They might be associated with the cuticle or be present in soluble form in the body cavity. They might interact with the Patched or the Patched-related proteins in a manner similar to the interaction of Hedgehog with its receptor Patched.
Collapse
Affiliation(s)
- Limin Hao
- Department of Biosciences and Nutrition, and Center for Genomics and Bioinformatics, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | - Robert Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. Canada
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, and Center for Genomics and Bioinformatics, Karolinska Institutet, SE-141 57 Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Alfred Nobels Allé 7, SE-141 89 Huddinge, Sweden
| | - David Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. Canada
| | - Thomas R Bürglin
- Department of Biosciences and Nutrition, and Center for Genomics and Bioinformatics, Karolinska Institutet, SE-141 57 Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Alfred Nobels Allé 7, SE-141 89 Huddinge, Sweden
| |
Collapse
|
118
|
Abstract
The phagocytic NADPH oxidase is recognized as a critical component of innate immunity, responsible for generation of microbicidal reactive oxygen species (ROS). This enzyme is one representative of the Nox family of oxidases (Nox1-Nox5, Duox1, and Duox2) that exhibit diverse expression patterns and appear to serve a variety of functions related to ROS generation. Mounting evidence now suggests that several of these novel oxidases also serve in host defense, particularly those showing high expression along epithelial surfaces exposed to the external environment. Within these sites, Nox enzymes tend to be located on apical cell surfaces and release ROS into extracellular environments, where they can be used by known antimicrobial peroxidases. Moreover, microbial factors were shown in several cases to cause higher ROS production, either by direct oxidase activation or by inducing higher oxidase expression. Several oxidases are also induced by immune cytokines, including interferon-gamma, interleukin (IL)-4, and IL-13. Although most of the evidence supporting host defense roles for mammalian nonphagocytic oxidases remains circumstantial, recent evidence indicates that Drosophila Duox plays a role in host resistance to infection. Finally, oxidative defense against invading pathogens appears to be an ancient protective mechanism, because related oxidases are known to participate in disease resistance in plants.
Collapse
Affiliation(s)
- Thomas L Leto
- Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | |
Collapse
|
119
|
Ruaud AF, Bessereau JL. Activation of nicotinic receptors uncouples a developmental timer from the molting timer inC. elegans. Development 2006; 133:2211-22. [PMID: 16672334 DOI: 10.1242/dev.02392] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
C. elegans develops through four larval stages (L1 to L4)separated by molts. The identity of larval stages is mostly determined by stage-specific expression of heterochronic genes, which constitute an intrinsic genetic timer. However, extrinsic cues such as food availability or population density also modulate the developmental timing of C. elegans by mechanisms that remain largely unknown. To investigate a potential role of the nervous system in the temporal regulation of C. elegans development, we pharmacologically manipulated nicotinic neurotransmission, which represents a prominent signaling component in C. elegans nervous system. Exposure to the nicotinic agonist DMPP during post-embryonic development is lethal at the L2/L3 molt. Specifically, it delays cell divisions and differentiation during the L2 stage but does not affect the timing of the molt cycle, hence causing exposure of a defective L3 cuticle to the environment after the L2/L3 molt. Forcing development through a previously uncharacterized L2 diapause resynchronizes these events and suppresses DMPP-induced lethality. Nicotinic acetylcholine receptors (nAChRs)containing the UNC-63 subunit are required, probably in neurons, to trigger the action of DMPP. Using a forward genetic screen, we further demonstrated that the nuclear hormone receptor (NHR) DAF-12 is necessary to implement the developmental effects of DMPP. Therefore, a novel neuroendocrine pathway involving nAChRs and the NHR DAF-12 can control the speed of stage-specific developmental events in C. elegans. Activation of DMPP-sensitive nAChRs during the second larval stage uncouples a molting timer and a developmental timer, thus causing a heterochronic phenotype that is lethal at the subsequent molt.
Collapse
|
120
|
Page AP, McCormack G, Birnie AJ. Biosynthesis and enzymology of the Caenorhabditis elegans cuticle: identification and characterization of a novel serine protease inhibitor. Int J Parasitol 2006; 36:681-9. [PMID: 16500660 DOI: 10.1016/j.ijpara.2006.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/06/2006] [Accepted: 01/09/2006] [Indexed: 11/23/2022]
Abstract
Caenorhabditis elegans represents an excellent model in which to dissect the biosynthesis and assembly of the nematode cuticle. A sequenced genome, straightforward transgenesis, available mutants and practical genome-wide RNAi approaches provide an invaluable toolkit in the characterization of cuticle components. We have performed a targeted RNAi screen in an attempt to identify components of the cuticle collagen biosynthetic pathway. Collagen biosynthesis and cuticle assembly are multi-step processes that involve numerous key enzymes involved in post-translational modification, trimer folding, procollagen processing and subsequent cross-linking stages. For many of these steps, the modifications and the enzymes are unique to nematodes and may represent attractive targets for the control of parasitic nematodes. A novel serine protease inhibitor was uncovered during our targeted screen, which is involved in collagen maturation, proper cuticle assembly and the moulting process. We have confirmed a link between this inhibitor and the previously uncharacterised bli-5 locus in C. elegans. The mutant phenotype, spatial expression pattern and the over-expression phenotype of the BLI-5 protease inhibitor and their relevance to collagen biosynthesis are discussed.
Collapse
Affiliation(s)
- Antony P Page
- Faculty of Veterinary Medicine, Institute of Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | |
Collapse
|
121
|
Novelli J, Page AP, Hodgkin J. The C terminus of collagen SQT-3 has complex and essential functions in nematode collagen assembly. Genetics 2006; 172:2253-67. [PMID: 16452136 PMCID: PMC1456373 DOI: 10.1534/genetics.105.053637] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 01/16/2006] [Indexed: 11/18/2022] Open
Abstract
The nematode exoskeleton is a multilayered structure secreted by the underlying hypodermal cells and mainly composed of small collagens, which are encoded by a large gene family. In previous work, we reported analysis of the C. elegans dpy-31 locus, encoding a hypodermally expressed zinc-metalloprotease of the BMP-1/TOLLOID family essential for viability and cuticle deposition. We have generated a large set of extragenic suppressors of dpy-31 lethality, most of which we show here to be allelic to the cuticle collagen genes sqt-3 and dpy-17. We analyzed the interaction among dpy-31, sqt-3, and dpy-17 using a SQT-3-specific antiserum, which was employed in immunofluorescence experiments. Our results support a role for DPY-31 in SQT-3 extracellular processing and suggest that the SQT-3 C-terminal nontrimeric region serves multiple roles during SQT-3 assembly. Different missense mutations of this region have diverse phenotypic consequences, including cold-sensitive lethality. Furthermore, the biochemical and genetic data indicate that the extracellular assemblies of DPY-17 and SQT-3 are interdependent, most likely because the collagens are incorporated into the same cuticular substructure. We find that absence of DPY-17 causes extensive intracellular retention of SQT-3, indicating that formation of the SQT-3-DPY-17 polymer could begin in the intracellular environment before secretion.
Collapse
Affiliation(s)
- Jacopo Novelli
- Genetics Unit, Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
122
|
Vogel WF, Abdulhussein R, Ford CE. Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 2006; 18:1108-16. [PMID: 16626936 DOI: 10.1016/j.cellsig.2006.02.012] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Accepted: 02/20/2006] [Indexed: 02/06/2023]
Abstract
Discoidin Domain Receptors (DDRs) have recently emerged as non-integrin-type receptors for collagen. The two mammalian gene products Discoidin Domain Receptor 1 and -2 constitute a subfamily of tyrosine kinase receptors that are selectively expressed in a number of different cell types and organs. Upon collagen activation, DDRs regulate cell adhesion, proliferation and extracellular matrix remodeling. Here we review the various signaling pathways and cellular responses evoked by activated DDRs. Additionally, we give an overview of the more recent advances in understanding the role of DDRs in various human diseases, in particular during tumor progression, atherosclerosis, inflammation and tissue fibrosis. Furthermore, we discuss potential roles of genes homologous to mammalian DDRs identified in flies, worms and sponges. We show that the structural organization of these DDR-related genes is highly conserved throughout evolution suggesting that invertebrate DDRs may also function as receptors for collagen. By highlighting current questions about these unusual collagen receptors, we hope to attract new research on DDRs from a variety of different fields.
Collapse
Affiliation(s)
- Wolfgang F Vogel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada, M5S 1A8.
| | | | | |
Collapse
|
123
|
Gallo M, Mah AK, Johnsen RC, Rose AM, Baillie DL. Caenorhabditis elegans dpy-14: an essential collagen gene with unique expression profile and physiological roles in early development. Mol Genet Genomics 2006; 275:527-39. [PMID: 16496175 DOI: 10.1007/s00438-006-0110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 02/01/2006] [Indexed: 10/25/2022]
Abstract
We describe the molecular characterisation of Caenorhabditis elegans dpy-14, a gene encoding an essential cuticular collagen annotated as col-59. Expression of dpy-14 starts at the 16 E cell stage, making it the earliest-expressing collagen reported to date. SAGE data and dpy-14 promoter::GFP reporter constructs indicate that the gene is transcribed mainly during embryogenesis, specifically in ciliated neurons and hypoderm. Water permeability assays and lectin staining showed that a mutation in the DPY-14 collagen results in defects in the channels of the amphids, which are a class of ciliated neuron, while the amphids appear morphologically normal by dye filling methods. Behavioural assays showed that the ciliated neurons expressing the gene are functional in dpy-14 mutants. All together, our data suggest that ciliated neurons and their hypodermal support cells collaborate in the transcription and synthesis of DPY-14, which then becomes a component of the amphid channels but not of the amphids proper. Interestingly, seam cells of dpy-14 mutants do not properly fuse to form a syncytium. This novel phenotype due to collagen mutations further stresses that dpy-14 plays a fundamental role in C. elegans physiology, since it is required for the proper development of the hypoderm.
Collapse
Affiliation(s)
- Marco Gallo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, BC, Canada
| | | | | | | | | |
Collapse
|
124
|
Zugasti O, Rajan J, Kuwabara PE. The function and expansion of the Patched- and Hedgehog-related homologs in C. elegans. Genome Res 2006; 15:1402-10. [PMID: 16204193 PMCID: PMC1240083 DOI: 10.1101/gr.3935405] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) signaling pathway promotes pattern formation and cell proliferation in Drosophila and vertebrates. Hh is a ligand that binds and represses the Patched (Ptc) receptor and thereby releases the latent activity of the multipass membrane protein Smoothened (Smo), which is essential for transducing the Hh signal. In Caenorhabditis elegans, the Hh signaling pathway has undergone considerable divergence. Surprisingly, obvious Smo and Hh homologs are absent whereas PTC, PTC-related (PTR), and a large family of nematode Hh-related (Hh-r) proteins are present. We find that the number of PTC-related and Hh-r proteins has expanded in C. elegans, and that this expansion occurred early in Nematoda. Moreover, the function of these proteins appears to be conserved in Caenorhabditis briggsae. Given our present understanding of the Hh signaling pathway, the absence of Hh and Smo raises many questions about the evolution and the function of the PTC, PTR, and Hh-r proteins in C. elegans. To gain insights into their roles, we performed a global survey of the phenotypes produced by RNA-mediated interference (RNAi). Our study reveals that these genes do not require Smo for activity and that they function in multiple aspects of C. elegans development, including molting, cytokinesis, growth, and pattern formation. Moreover, a subset of the PTC, PTR, and Hh-r proteins have the same RNAi phenotypes, indicating that they have the potential to participate in the same processes.
Collapse
Affiliation(s)
- Olivier Zugasti
- University of Bristol, Department of Biochemistry, School of Medical Sciences, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
125
|
Reichert K, Menzel R. Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. CHEMOSPHERE 2005; 61:229-37. [PMID: 16168746 DOI: 10.1016/j.chemosphere.2005.01.077] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 12/07/2004] [Accepted: 01/21/2005] [Indexed: 05/04/2023]
Abstract
The soil nematode Caenorhabditis elegans is frequently used in ecotoxicological studies due to its wide distribution in terrestrial habitats, its easy handling in the laboratory, and its sensitivity against different kinds of stress. Since its genome has been completely sequenced, more and more studies are investigating the functional relation of gene expression and phenotypic response. For these reasons C. elegans seems to be an attractive animal for the development of a new, genome based, ecotoxicological test system. In recent years, the DNA array technique has been established as a powerful tool to obtain distinct gene expression patterns in response to different experimental conditions. Using a C. elegans whole genome DNA microarray in this study, the effects of five different xenobiotics on the gene expression of the nematode were investigated. The exposure time for the following five applied compounds beta-NF (5 mg/l), Fla (0.5 mg/l), atrazine (25 mg/l), clofibrate (10 mg/l) and DES (0.5 mg/l) was 48+/-5 h. The analysis of the data showed a clear induction of 203 genes belonging to different families like the cytochromes P450, UDP-glucoronosyltransferases (UDPGT), glutathione S-transferases (GST), carboxylesterases, collagenes, C-type lectins and others. Under the applied conditions, fluoranthene was able to induce most of the induceable genes, followed by clofibrate, atrazine, beta-naphthoflavone and diethylstilbestrol. A decreased expression could be shown for 153 genes with atrazine having the strongest effect followed by fluoranthene, diethylstilbestrol, beta-naphthoflavone and clofibrate. For upregulated genes a change ranging from approximately 2.1- till 42.3-fold and for downregulated genes from approximately 2.1 till 6.6-fold of gene expression could be affected through the applied xenobiotics. The results confirm the applicability of the gene expression for the development of an ecotoxicological test system. Compared to classical tests the main advantages of this new approach will be the increased sensitivity and it's potential for a substance class specific effect determination as well as the large numbers of genes that can be screened rapidly at the same time and the selection of well regulated marker genes to study more in detail.
Collapse
Affiliation(s)
- Kerstin Reichert
- Institute of Biology, Ecotoxicology and Biochemistry, Free University Berlin, Ehrenbergstrasse 26-28, 14195 Berlin, Germany.
| | | |
Collapse
|
126
|
Bakhetia M, Charlton W, Atkinson HJ, McPherson MJ. RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1099-106. [PMID: 16255249 DOI: 10.1094/mpmi-18-1099] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
RNA interference (RNAi) is a powerful tool for the analysis of gene function in model organisms such as the nematode Caenorhabditis elegans. Recent demonstrations of RNAi in plant parasitic nematodes provide a stimulus to explore the potential of using RNAi to investigate disruption of gene function in Meloidogyne incognita, one of the most important nematode pests of global agriculture. We have used RNAi to examine the importance of dual oxidases (peroxidase and NADPH oxidase), a class of enzyme associated with extracellular matrix cross-linking in C. elegans. RNAi uptake by M. incognita juveniles is highly efficient. In planta infection data show that a single 4-h preinfection treatment with double-stranded RNA derived from the peroxidase region of a dual oxidase gene has effects on gene expression that are phenotypically observable 35 days postinfection. This RNAi effect results in a reduction in egg numbers at 35 days of up to 70%. The in vitro feeding strategy provides a powerful tool for identifying functionally important genes, including those that are potential targets for the development of new agrochemicals or transgenic resistance strategies.
Collapse
Affiliation(s)
- Manjula Bakhetia
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | | | | | | |
Collapse
|
127
|
Fu BQ, Liu MY, Kapel CMO, Meng XP, Lu Q, Wu XP, Chen QJ, Boireau P. Molecular cloning of a cDNA encoding a putative cuticle collagen of Trichinella spiralis. Vet Parasitol 2005; 132:31-5. [PMID: 15985335 DOI: 10.1016/j.vetpar.2005.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 5-day-old adult stage-specific cDNA fragment from Trichinella spiralis was identified by suppression subtractive hybridization and was used as a probe to screen the cDNA library. The cDNA sequence coding for a putative T. spiralis cuticle collagen was isolated. The cDNA encoded an open reading frame of 343 amino acid residues with molecular weight of 35.1 k Da. The deduced protein contained an N-terminal signal peptide, a nematode cuticle collagen N-terminal domain and a collagen triple helix repeat domain. Searches in GenBank using BLASTP showed up to 47% identity to cuticle collagens from other nematodes. Southern blot analysis of genomic DNA indicated this gene was present as a single copy in T. spiralis genome.
Collapse
Affiliation(s)
- B Q Fu
- Veterinary College, JILIN University, 5333 Xian Road, 130062 Changchun, PR China
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Sapio MR, Hilliard MA, Cermola M, Favre R, Bazzicalupo P. The Zona Pellucida domain containing proteins, CUT-1, CUT-3 and CUT-5, play essential roles in the development of the larval alae in Caenorhabditis elegans. Dev Biol 2005; 282:231-45. [PMID: 15936343 DOI: 10.1016/j.ydbio.2005.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 03/05/2005] [Accepted: 03/15/2005] [Indexed: 11/19/2022]
Abstract
The alae, longitudinal ridges of the lateral cuticle, are the most visible specialization of the Caenorhabditis elegans surface. They are present only in L1 and dauer larvae and in adults. Little is known about the mechanisms through which at the appropriate stages secretion of cuticle components by the seam cells results in the formation of the alae. Here we show that three proteins, each containing a Zona Pellucida domain (ZP), are components of the cuticle necessary for larval alae development: CUT-1 and CUT-5 in dauer larvae and CUT-3 and CUT-5 in L1s. Transcriptional regulation of the corresponding genes contributes to the stage-specific role of these proteins. Larvae with reduced cut-1, cut-3 or cut-5 function not only lack alae but are also larger in diameter due to an increase in the width of the lateral cuticle. We propose a model in which reduction of the body diameter, which occurs in normal L1 and dauer larvae, is the result of a dorso-ventral shrinking of the internal layer of the lateral cuticle and formation of the alae results from the folding of the external layer of the lateral cuticle over the reduced, internal one. Alae of adults appear to form through a different mechanism.
Collapse
Affiliation(s)
- Maria Rosaria Sapio
- Institute of Genetics and Biophysics-A. Buzzati Traverso, CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | | | | | | | | |
Collapse
|
129
|
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005; 15:1034-50. [PMID: 16024819 PMCID: PMC1182216 DOI: 10.1101/gr.3715005] [Citation(s) in RCA: 2942] [Impact Index Per Article: 147.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 06/02/2005] [Indexed: 11/24/2022]
Abstract
We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three species of Drosophila and Anopheles gambiae), two species of Caenorhabditis, and seven species of Saccharomyces. Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%-8% of the human genome (depending on the details of the calibration procedure) and substantially higher fractions of the more compact Drosophila melanogaster (37%-53%), Caenorhabditis elegans (18%-37%), and Saccharaomyces cerevisiae (47%-68%) genomes. From yeasts to vertebrates, in order of increasing genome size and general biological complexity, increasing fractions of conserved bases are found to lie outside of the exons of known protein-coding genes. In all groups, the most highly conserved elements (HCEs), by log-odds score, are hundreds or thousands of bases long. These elements share certain properties with ultraconserved elements, but they tend to be longer and less perfectly conserved, and they overlap genes of somewhat different functional categories. In vertebrates, HCEs are associated with the 3' UTRs of regulatory genes, stable gene deserts, and megabase-sized regions rich in moderately conserved noncoding sequences. Noncoding HCEs also show strong statistical evidence of an enrichment for RNA secondary structure.
Collapse
Affiliation(s)
- Adam Siepel
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Novelli J, Ahmed S, Hodgkin J. Gene interactions in Caenorhabditis elegans define DPY-31 as a candidate procollagen C-proteinase and SQT-3/ROL-4 as its predicted major target. Genetics 2005; 168:1259-73. [PMID: 15579684 PMCID: PMC1448789 DOI: 10.1534/genetics.104.027953] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc metalloproteases of the BMP-1/TOLLOID family (also known as astacins) are extracellular enzymes involved in important developmental processes in metazoans. We report the characterization of the Caenorhabditis elegans gene dpy-31, which encodes the first essential astacin metalloprotease identified in this organism. Loss-of-function mutations in dpy-31 result in cuticle defects, abnormal morphology, and embryonic lethality, indicating that dpy-31 is required for formation of the collagenous exoskeleton. DPY-31 is widely expressed in the hypodermal cells, which are responsible for cuticle secretion. We have investigated the dpy-31 function through reversion analysis. While complete reversion can be obtained only by intragenic suppressors, reversion of the Dpy-31 lethal phenotype also can be caused by dominant extragenic suppressors. Nine extragenic suppressors carry mutations in the uniquely essential collagen gene sqt-3, which we show is the same gene as rol-4. Most mutations exhibit the unusual property of exclusively dominant suppression and all affect the sequence of the SQT-3 collagen C terminus. This suggests that DPY-31 is responsible for C-terminal proteolytic processing of collagen trimers and is therefore a structural and functional homolog of vertebrate BMP-1. The results also demonstrate the critical importance of the collagen C-terminal sequence, which is highly conserved among all 49 members of the SQT-3 subfamily.
Collapse
Affiliation(s)
- Jacopo Novelli
- Genetics Unit, Department of Biochemistry, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
131
|
Kenning C, Kipping I, Sommer RJ. Isolation of mutations with dumpy-like phenotypes and of collagen genes in the nematode Pristionchus pacificus. Genesis 2005; 40:176-83. [PMID: 15493014 DOI: 10.1002/gene.20084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nematode Pristionchus pacificus was developed as a satellite system in evolutionary developmental biology and forward and reverse genetic approaches allow a detailed comparison of various developmental processes between P. pacificus and Caenorhabditis elegans. To facilitate map-based cloning in P. pacificus, a genome map was generated including a genetic linkage map of approximately 300 molecular markers and a physical map of 10,000 BAC clones. Here, we describe the isolation and characterization of more than 40 morphological mutations that can be used as genetic markers. These mutations fall into 12 Dumpy genes and one Roller gene that represent morphological markers for all six P. pacificus chromosomes. Using an in silico approach, we identified approximately 150 hits of P. pacificus collagen genes in the available EST, BAC-end, and fosmid-end sequences. However, 1:1 orthologs could only be identified for fewer than 20 collagen genes.
Collapse
Affiliation(s)
- Charlotte Kenning
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Evolutionsbiologie, Spermannstrasse 37-39, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
132
|
Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM, Fonarev P, Grant BD, Priess JR. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 2005; 16:3273-88. [PMID: 15843430 PMCID: PMC1165410 DOI: 10.1091/mbc.e05-01-0060] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The intestinal cells of Caenorhabditis elegans embryos contain prominent, birefringent gut granules that we show are lysosome-related organelles. Gut granules are labeled by lysosomal markers, and their formation is disrupted in embryos depleted of AP-3 subunits, VPS-16, and VPS-41. We define a class of gut granule loss (glo) mutants that are defective in gut granule biogenesis. We show that the glo-1 gene encodes a predicted Rab GTPase that localizes to lysosome-related gut granules in the intestine and that glo-4 encodes a possible GLO-1 guanine nucleotide exchange factor. These and other glo genes are homologous to genes implicated in the biogenesis of specialized, lysosome-related organelles such as melanosomes in mammals and pigment granules in Drosophila. The glo mutants thus provide a simple model system for the analysis of lysosome-related organelle biogenesis in animal cells.
Collapse
Affiliation(s)
- Greg J Hermann
- Department of Biology, Lewis and Clark College, Portland, OR 97219, USA.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Fernandez AP, Gibbons J, Okkema PG. C. elegans peb-1 mutants exhibit pleiotropic defects in molting, feeding, and morphology. Dev Biol 2005; 276:352-66. [PMID: 15581870 DOI: 10.1016/j.ydbio.2004.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 08/16/2004] [Accepted: 08/27/2004] [Indexed: 11/16/2022]
Abstract
Caenorhabditis elegans PEB-1 is a novel DNA-binding protein expressed in most pharyngeal cell types and outside the pharynx in the hypodermis, hindgut, and vulva. Previous RNAi analyses indicated that PEB-1 is required for normal morphology of these tissues and growth; however, the peb-1 null phenotype was unknown. Here we describe the deletion mutant peb-1(cu9) that not only exhibits the morphological defects observed in peb-1(RNAi) animals, but also results in penetrant larval lethality characterized by defects in pharyngeal function and molting. Consistent with a function in molting, we found that PEB-1 was detectable in all hypodermal and hindgut cells underlying the cuticle. Comparison to molting-defective lrp-1(ku156) mutants revealed that the peb-1(cu9) mutants were particularly defective in shedding the pharyngeal cuticle, and this defect likely contributed to feeding defects and lethality. Most markers of pharyngeal cell differentiation examined were expressed normally in peb-1(cu9) mutants; however, g1 gland cell expression of a kel-1Colon, two colonsgfp reporter was reduced. As g1 gland cells have prominent functions during molting, we suggest defective gland cell differentiation contributes to peb-1(cu9) molting defects. In comparison, other peb-1 mutant phenotypes, including hindgut abnormalities, appeared independent of the molting defect. Similar phenotypes resulted from late loss of pha-4 function, suggesting that PEB-1 and PHA-4 have common functions in some tissues where they are co-expressed.
Collapse
Affiliation(s)
- Anthony P Fernandez
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
134
|
Watanabe M, Mitani N, Ishii N, Miki K. A mutation in a cuticle collagen causes hypersensitivity to the endocrine disrupting chemical, bisphenol A, in Caenorhabditis elegans. Mutat Res 2005; 570:71-80. [PMID: 15680404 DOI: 10.1016/j.mrfmmm.2004.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 09/13/2004] [Accepted: 10/07/2004] [Indexed: 11/29/2022]
Abstract
A novel mutant gene, bis-1 (bisphenol A sensitive) has been isolated in the nematode, Caenorhabditis elegans, that affects the response to endocrine disrupting chemicals (EDC). The bis-1(nx3) allele is hypersensitive to bisphenol A (BPA), is allelic to a collagen gene (col-121), and is expressed in hypodermal cells. Among the collagen mutants so far studied, bis-1(nx3), dpy-2(e8), dpy-7(e88) and dpy-10(e128) showed BPA sensitivity. The isolated mutant may work as a useful tool for the assay of EDC toxicity since the physiological effect of the collagen mutation (glycine substitution) indicates an increased sensitivity to BPA.
Collapse
Affiliation(s)
- Masahito Watanabe
- Department of Cell Biology, Japanese Institute of Pearl Science, 4-28 Amanuma, Hiratsuka, Kanagawa 254-0031, Japan
| | | | | | | |
Collapse
|
135
|
Davis MW, Birnie AJ, Chan AC, Page AP, Jorgensen EM. A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans. Development 2005; 131:6001-8. [PMID: 15539494 DOI: 10.1242/dev.01454] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molting is required for progression between larval stages in the life cycle of nematodes. We have identified four mutant alleles of a Caenorhabditis elegans metalloprotease gene, nas-37, that cause incomplete ecdysis. At each molt the cuticle fails to open sufficiently at the anterior end and the partially shed cuticle is dragged behind the animal. The gene is expressed in hypodermal cells 4 hours before ecdysis during all larval stages. The NAS-37 protein accumulates in the anterior cuticle and is shed in the cuticle after ecdysis. This pattern of protein accumulation places NAS-37 in the right place and at the right time to degrade the cuticle to facilitate ecdysis. The nas-37 gene has orthologs in other nematode species, including parasitic nematodes, and they undergo a similar shedding process. For example, Haemonchus contortus molts by digesting a ring of cuticle at the tip of the nose. Incubating Haemonchus larvae in extracted exsheathing fluids causes a refractile ring of digested cuticle to form at the tip of the nose. When Haemonchus cuticles are incubated with purified NAS-37, a similar refractile ring forms. NAS-37 degradation of the Haemonchus cuticle suggests that the metalloproteases and the cuticle substrates involved in exsheathment of parasitic nematodes are conserved in free-living nematodes.
Collapse
Affiliation(s)
- M Wayne Davis
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | | | | | | |
Collapse
|
136
|
Kim TH, Hwang SB, Jeong PY, Lee J, Cho JW. Requirement of tyrosylprotein sulfotransferase-A for proper cuticle formation in the nematode C. elegans. FEBS Lett 2005; 579:53-8. [PMID: 15620690 DOI: 10.1016/j.febslet.2004.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/09/2004] [Accepted: 11/10/2004] [Indexed: 11/28/2022]
Abstract
Tyrosine O-sulfation is one of the post-translational modification processes that occur to membrane proteins and secreted proteins in eukaryotes. Tyrosylprotein sulfotransferase (TPST) is responsible for this modification, and in this report, we describe the expression pattern and the biological role of TPST-A in the nematode Caenorhabditis elegans. We found that TPST-A was mainly expressed in the hypodermis, especially in the seam cells. Reduction of TPST-A activity by RNAi caused severe defects in cuticle formation, indicating that TPST-A is involved in the cuticle formation in the nematode. We found that RNAi of TPST-A suppressed the roller phenotype caused by mutations in the rol-6 collagen gene, suggesting that sulfation of collagen proteins may be important for proper organization of the extracellular cuticle matrix. The TPST-A RNAi significantly decreased the dityrosine level in the worms, raising the possibility that the sulfation process may be a pre-requisite for the collagen tyrosine cross-linking.
Collapse
Affiliation(s)
- Tai Hoon Kim
- Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | |
Collapse
|
137
|
Ricard-Blum S, Ruggiero F. The collagen superfamily: from the extracellular matrix to the cell membrane. ACTA ACUST UNITED AC 2005; 53:430-42. [PMID: 16085121 DOI: 10.1016/j.patbio.2004.12.024] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 12/10/2004] [Indexed: 12/17/2022]
Abstract
The collagen superfamily is highly complex and shows a remarkable diversity in molecular and supramolecular organization, tissue distribution and function. However, all its members share a common structural feature, the presence of at least one triple-helical domain, which corresponds to a number of (Gly-X-Y)n repeats (X being frequently proline and Y hydroxyproline) in the amino acid sequence. Several sub-families have been determined according to sequence homologies and to similarities in the structural organization and supramolecular assembly. In the present review, we focus on the newly described fibrillar collagens, fibrillar-associated collagens with interrupted triple helix, membrane collagens and multiplexins. Recent advances in the characterization of proteins containing triple-helical domains but not referred to as collagens are also discussed.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS UCBL, IFR128 Biosciences Gerland, Lyon, France.
| | | |
Collapse
|
138
|
Pellis-van Berkel W, Verheijen MHG, Cuppen E, Asahina M, de Rooij J, Jansen G, Plasterk RHA, Bos JL, Zwartkruis FJT. Requirement of the Caenorhabditis elegans RapGEF pxf-1 and rap-1 for epithelial integrity. Mol Biol Cell 2004; 16:106-16. [PMID: 15525675 PMCID: PMC539156 DOI: 10.1091/mbc.e04-06-0492] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Rap-pathway has been implicated in various cellular processes but its exact physiological function remains poorly defined. Here we show that the Caenorhabditis elegans homologue of the mammalian guanine nucleotide exchange factors PDZ-GEFs, PXF-1, specifically activates Rap1 and Rap2. Green fluorescent protein (GFP) reporter constructs demonstrate that sites of pxf-1 expression include the hypodermis and gut. Particularly striking is the oscillating expression of pxf-1 in the pharynx during the four larval molts. Deletion of the catalytic domain from pxf-1 leads to hypodermal defects, resulting in lethality. The cuticle secreted by pxf-1 mutants is disorganized and can often not be shed during molting. At later stages, hypodermal degeneration is seen and animals that reach adulthood frequently die with a burst vulva phenotype. Importantly, disruption of rap-1 leads to a similar, but less severe phenotype, which is enhanced by the simultaneous removal of rap-2. In addition, the lethal phenotype of pxf-1 can be rescued by expression of an activated version of rap-1. Together these results demonstrate that the pxf-1/rap pathway in C. elegans is required for maintenance of epithelial integrity, in which it probably functions in polarized secretion.
Collapse
Affiliation(s)
- W Pellis-van Berkel
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Moribe H, Yochem J, Yamada H, Tabuse Y, Fujimoto T, Mekada E. Tetraspanin protein (TSP-15) is required for epidermal integrity inCaenorhabditis elegans. J Cell Sci 2004; 117:5209-20. [PMID: 15454573 DOI: 10.1242/jcs.01403] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epidermal integrity is essential for animal development and survival. Here, we demonstrate that TSP-15, a member of the tetraspanin protein family, is required for epithelial membrane integrity in Caenorhabditis elegans. Reduction of tsp-15 function by mutation or by RNA interference elicits abnormalities of the hypodermis, including dissociation of the cuticle and degeneration of the hypodermis. Lethality during molting often results. Examination of GFP transgenic animals, genetic mosaic analysis and rescue assays revealed that TSP-15 functions in hyp7, a large syncytium that composes most of the hypodermis. Assays with a membrane-impermeable dye or leakage analysis of a hypodermal-specific marker indicate that the barrier function of the hypodermal membrane is impaired owing to the loss or reduction of TSP-15. These results indicate that TSP-15 functions in the maintenance of epithelial cell integrity.
Collapse
Affiliation(s)
- Hiroki Moribe
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
140
|
Ami D, Natalello A, Zullini A, Doglia SM. Fourier transform infrared microspectroscopy as a new tool for nematode studies. FEBS Lett 2004; 576:297-300. [PMID: 15498551 DOI: 10.1016/j.febslet.2004.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 08/04/2004] [Accepted: 09/06/2004] [Indexed: 10/26/2022]
Abstract
We report the results of a microspectroscopy study on the Fourier transform infrared (FT-IR) absorption spectra of Caenorhabditis elegans, collected from the different parts of a single intact specimen--pharynx, intestine and tail regions. The principal absorption bands were assigned to the molecular species present in C. elegans, with an excellent reproducibility for the pharynx spectrum. These results enabled us to explore if FT-IR microspectroscopy could offer a new tool for nematode identification. As an example, the discrimination among four well characterised nematode taxa is reported. The FT-IR results completely match those obtained by Blaxter and colleagues through molecular biology [Nature 392 (1998) 71].
Collapse
Affiliation(s)
- Diletta Ami
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | |
Collapse
|
141
|
Risteli M, Niemitalo O, Lankinen H, Juffer AH, Myllylä R. Characterization of collagenous peptides bound to lysyl hydroxylase isoforms. J Biol Chem 2004; 279:37535-43. [PMID: 15208310 DOI: 10.1074/jbc.m405638200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysyl hydroxylase (LH, EC 1.14.11.4) is the enzyme catalyzing the formation of hydroxylysyl residues in collagens and other proteins with collagenous domains. Although lower species, such as Caenorhabditis elegans, have only one LH orthologue, LH activity in higher species, such as human, rat, and mouse, is present in three molecules, LH1, LH2, and LH3, encoded by three different genes. In addition, LH2 is present in two alternatively spliced forms (LH2a, LH2b). To understand the functions of the four molecular forms of LH in vertebrates, we analyzed differences in the binding and hydroxylation of various collagenous peptides by the LH isoforms. Nine-amino acid-long synthetic peptides on Pepspot were used for the binding analysis and an activity assay to measure hydroxylation. Our data with 727 collagenous peptides indicated that a positive charge on the peptide and specific amino acid residues in close proximity to the lysyl residues in the collagenous sequences are the key factors promoting peptide binding to the LH isoforms. The data suggest that the LH binding site is not a deep hydrophobic pocket but is open and hydrophilic where acidic amino acids play an important role in the binding. The data do not indicate strict sequence specificity for the LH isoforms, but the data indicated that there was a clear preference for some sequences to be bound and hydroxylated by a certain isoform.
Collapse
Affiliation(s)
- Maija Risteli
- Department of Biochemistry, Biocenter Oulu, University of Oulu, P. O. Box 3000, Fin-90014, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
142
|
Page AP, Winter AD. Enzymes involved in the biogenesis of the nematode cuticle. ADVANCES IN PARASITOLOGY 2003; 53:85-148. [PMID: 14587697 DOI: 10.1016/s0065-308x(03)53003-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nematodes include species that are significant parasites of man, his domestic animals and crops, and cause chronic debilitating diseases in the developing world; such as lymphatic filariasis and river blindness caused by filarial species. Around one third of the World's population harbour parasitic nematodes; no vaccines exist for prevention of infection, limited effective drugs are available and drug resistance is an ever-increasing problem. A critical structure of the nematode is the protective cuticle, a collagen-rich extracellular matrix (ECM) that forms the exoskeleton, and is critical for viability. This resilient structure is synthesized sequentially five times during nematode development and offers protection from the environment, including the hosts' immune response. The detailed characterization of this complex structure; it's components, and the means by which they are synthesized, modified, processed and assembled will identify targets that may be exploited in the future control of parasitic nematodes. This review will focus on the nematode cuticle. This structure is predominantly composed of collagens, a class of proteins that are modified by a range of co- and post-translational modifications prior to assembly into higher order complexes or ECMs. The collagens and their associated enzymes have been comprehensively characterized in vertebrate systems and some of these studies will be addressed in this review. Conversely, the biosynthesis of this class of essential structural proteins has not been studied in such detail in the nematodes. As with all morphogenetic, functional and developmental studies in the Nematoda phylum, the free-living species Caenorhabditis elegans has proven to be invaluable in the characterization of the cuticle and the cuticle collagen gene family, and is now proving to be an excellent model in the study of cuticle collagen biosynthetic enzymes. This model system will be the main focus of this review.
Collapse
Affiliation(s)
- Antony P Page
- Wellcome Centre for Molecular Parasitology, The Anderson College, The University of Glasgow, Glasgow G11 6NU, UK
| | | |
Collapse
|
143
|
Roberts B, Clucas C, Johnstone IL. Loss of SEC-23 in Caenorhabditis elegans causes defects in oogenesis, morphogenesis, and extracellular matrix secretion. Mol Biol Cell 2003; 14:4414-26. [PMID: 14551256 PMCID: PMC266761 DOI: 10.1091/mbc.e03-03-0162] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Revised: 06/25/2003] [Accepted: 06/26/2003] [Indexed: 11/11/2022] Open
Abstract
SEC-23 is a component of coat protein complex II (COPII)-coated vesicles involved in the endoplasmic reticulum-to-Golgi transport pathway of eukaryotes. During postembryonic life, Caenorhabditis elegans is surrounded by a collagenous exoskeleton termed the cuticle. From a screen for mutants defective in cuticle secretion, we identified and characterized a sec-23 mutant of C. elegans. By sequence homology, C. elegans has only the single sec-23 gene described herein. In addition to the cuticle secretion defect, mutants fail to complete embryonic morphogenesis. However, they progress through the earlier stages of embryogenesis, including gastrulation, and achieve substantial morphogenesis before death. We demonstrated a maternal component of SEC-23 function sufficient for progression through the earlier stages of embryogenesis and explaining the limited phenotype of the zygotic mutant. By RNA-mediated interference, we investigated the effects of perturbing COPII function during various postembryonic stages. During larval stages, major defects in cuticle synthesis and molting were observed. In the adult hermaphrodite, reduction of SEC-23 function by RNA-mediated interference caused a rapid onset of sterility, with defects in oogenesis including early maturation of the germline nuclei, probably a result of the observed loss of the GLP-1 receptor from the membrane surfaces adjacent to the developing germline nuclei.
Collapse
Affiliation(s)
- Brett Roberts
- The Wellcome Centre for Molecular Parasitology, The University of Glasgow, Glasgow G11 6NU, United Kingdom
| | | | | |
Collapse
|
144
|
Muriel JM, Brannan M, Taylor K, Johnstone IL, Lithgow GJ, Tuckwell D. M142.2 (cut-6), a novel Caenorhabditis elegans matrix gene important for dauer body shape. Dev Biol 2003; 260:339-51. [PMID: 12921736 DOI: 10.1016/s0012-1606(03)00237-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cuticle of the nematode Caenorhabditis elegans is a collagenous extracellular matrix which forms the exoskeleton and defines the shape of the worm. We have characterized the C. elegans gene M142.2, and we show that this is a developmentally regulated gene important for cuticle structure. Transgenic worms expressing M142.2 promoter fused to green fluorescent protein showed that M142.2 is expressed in late embryos and L2d predauers, in the hypodermal cells which synthesize the cuticle. The same temporal pattern was seen by RT-PCR using RNA purified from specific developmental stages. A recombinant fragment of M142.2 was expressed in Escherichia coli and used to raise an antiserum. Immunohistochemistry using the antiserum localized M142.2 to the periphery of the alae of L1 and dauers, forming two longitudinal ribbons over the hypodermal cells. Loss-of-function of M142.2 by RNAi resulted in a novel phenotype: dumpy dauers which lacked alae. M142.2 therefore plays a major role in the assembly of the alae and the morphology of the dauer cuticle; because of its similarity to the other cut genes of the cuticle, we have named the gene cut-6.
Collapse
Affiliation(s)
- Joaquin M Muriel
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 E Chicago Ave, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
145
|
Ch'ng Q, Williams L, Lie YS, Sym M, Whangbo J, Kenyon C. Identification of genes that regulate a left-right asymmetric neuronal migration in Caenorhabditis elegans. Genetics 2003; 164:1355-67. [PMID: 12930745 PMCID: PMC1462652 DOI: 10.1093/genetics/164.4.1355] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In C. elegans, cells of the QL and QR neuroblast lineages migrate with left-right asymmetry; QL and its descendants migrate posteriorly whereas QR and its descendants migrate anteriorly. One key step in generating this asymmetry is the expression of the Hox gene mab-5 in the QL descendants but not in the QR descendants. This asymmetry appears to be coupled to the asymmetric polarizations and movements of QL and QR as they migrate and relies on an asymmetric response to an EGL-20/Wnt signal. To identify genes involved in these complex layers of regulation and to isolate targets of mab-5 that direct posterior migrations, we screened visually for mutants with cell migration defects in the QL and QR lineages. Here, we describe a set of new mutants (qid-5, qid-6, qid-7, and qid-8) that primarily disrupt the migrations of the QL descendants. Most of these mutants were defective in mab-5 expression in the QL lineage and might identify genes that interact directly or indirectly with the EGL-20/Wnt signaling pathway.
Collapse
Affiliation(s)
- QueeLim Ch'ng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA
| | | | | | | | | | | |
Collapse
|
146
|
McMahon L, Muriel JM, Roberts B, Quinn M, Johnstone IL. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. Mol Biol Cell 2003; 14:1366-78. [PMID: 12686594 PMCID: PMC153107 DOI: 10.1091/mbc.e02-08-0479] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 12/09/2002] [Accepted: 12/23/2002] [Indexed: 11/11/2022] Open
Abstract
A ubiquitous feature of collagens is protein interaction, the trimerization of monomers to form a triple helix followed by higher order interactions during the formation of the mature extracellular matrix. The Caenorhabditis elegans cuticle is a complex extracellular matrix consisting predominantly of cuticle collagens, which are encoded by a family of approximately 154 genes. We identify two discrete interacting sets of collagens and show that they form functionally distinct matrix substructures. We show that mutation in or RNA-mediated interference of a gene encoding a collagen belonging to one interacting set affects the assembly of other members of that set, but not those belonging to the other set. During cuticle synthesis, the collagen genes are expressed in a distinct temporal series, which we hypothesize exists to facilitate partner finding and the formation of appropriate interactions between encoded collagens. Consistent with this hypothesis, we find for the two identified interacting sets that the individual members of each set are temporally coexpressed, whereas the two sets are expressed approximately 2 h apart during matrix synthesis.
Collapse
Affiliation(s)
- Laura McMahon
- The Wellcome Centre for Molecular Parasitology, The University of Glasgow, Anderson College, Glasgow G11 6NU, United Kingdom
| | | | | | | | | |
Collapse
|
147
|
Abstract
The collagen prolyl 4-hydroxylases (P4Hs), enzymes residing within the endoplasmic reticulum, have a central role in the biosynthesis of collagens. In addition, cytoplasmic P4Hs play a critical role in the regulation of the hypoxia-inducible transcription factor HIFalpha. Collagen and HIF P4Hs constitute enzyme families as several isoenzymes have been identified. Two catalytic alpha subunit isoforms have been cloned and characterized for collagen P4Hs from vertebrates, both of them assembling into alpha(2)beta(2) P4H tetramers in which protein disulfide isomerase (PDI) acts as the beta subunit. The catalytic properties of the two isoenzymes are very similar, but distinct differences are found in the binding properties of peptide substrates and inhibitors, and major differences are seen in the expression patterns of the isoenzymes. The nematode Caenorhabditis elegans has five P4H alpha subunit isoforms, PHY1-PHY5. The C. elegans PHY1 and PHY2, together with PDI, are expressed in the collagen synthesizing hypodermal cells and three P4H forms are assembled from them, a PHY-1/PHY-2/PDI(2) mixed tetramer and PHY-1/PDI and PHY-2/PDI dimers. The mixed tetramer is the main P4H form in wild-type C. elegans. PHY-3 is much shorter than PHY-1 and PHY-2, has a unique expression pattern, and is most likely involved in the synthesis of collagens in early embryos. The genome of Drosophila melanogaster contains approximately 20 P4H alpha subunit-related genes, and that of Arabidopsis thaliana six. One A. thaliana P4H has been cloned and shown to be a soluble monomer with several unexpected properties. It effectively hydroxylates poly(L-proline), (Pro-Pro-Gly)(10) and many other proline-containing peptides.
Collapse
Affiliation(s)
- Johanna Myllyharju
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland.
| |
Collapse
|
148
|
Thein MC, McCormack G, Winter AD, Johnstone IL, Shoemaker CB, Page AP. Caenorhabditis elegans exoskeleton collagen COL-19: an adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology. Dev Dyn 2003; 226:523-39. [PMID: 12619137 DOI: 10.1002/dvdy.10259] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The integral role that collagens play in the morphogenesis of the nematode exoskeleton or cuticle makes them a useful marker in the examination of the collagen synthesizing machinery. In this study, a green fluorescent protein-collagen fusion has been constructed by using the Caenorhabditis elegans adult-specific, hypodermally synthesized collagen COL-19. In wild-type nematodes, this collagen marker localized to the circumferential annular rings and the lateral trilaminar alae of the cuticle. Crosses carried out between a COL-19::GFP integrated strain and several morphologically mutant strains, including blister, dumpy, long, small, squat, and roller revealed significant COL-19 disruption that was predominantly strain-specific and provided a structural basis for the associated phenotypes. Disruption was most notable in the cuticle overlying the lateral seam cell syncytium, and confirmed the presence of two distinct forms of hypodermis, namely the circumferentially contracting lateral seam cells and the laterally contracting ventral-dorsal hypodermis. The effect of a single aberrant collagen being sufficient to mediate widespread collagen disruption was exemplified by the collagen mutant strain dpy-5 and its disrupted COL-19::GFP and DPY-7 collagen expression patterns. Through the disrupted pattern of COL-19 and DPY-7 in a thioredoxin mutant, dpy-11, and through RNA interference of a dual oxidase enzyme and a vesicular transport protein, we also show the efficacy of the COL-19::GFP strain as a marker for aberrant cuticle collagen synthesis and, thus, for the identification of factors involved in the construction of collagenous extracellular matrices.
Collapse
Affiliation(s)
- Melanie C Thein
- Wellcome Centre for Molecular Parasitology, Anderson College, The University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | |
Collapse
|
149
|
Eschenlauer SCP, Page AP. The Caenorhabditis elegans ERp60 homolog protein disulfide isomerase-3 has disulfide isomerase and transglutaminase-like cross-linking activity and is involved in the maintenance of body morphology. J Biol Chem 2003; 278:4227-37. [PMID: 12424233 DOI: 10.1074/jbc.m210510200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel protein disulfide isomerase gene, pdi-3, was isolated from the nematode Caenorhabditis elegans. This gene encodes an enzyme related to the ERp60 class of thioredoxin proteins and was found to exhibit unusual enzymatic properties. Recombinant protein displayed both disulfide bond isomerase activity and calcium-dependent transglutaminase-like cross-linking activity. The pdi-3 transcript was developmentally constitutively expressed, and the encoded protein is present in many tissues including the gut and the hypodermis. The nematode hypodermis synthesizes the essential collagenous extracellular matrix (ECM) called the cuticle. Transcript disruption via double-stranded RNA interference resulted in dramatic and specific synthetic phenotypes in several C. elegans mutant alleles with weakened cuticles: sqt-3(e2117), dpy-18(e364, ok162, and bx26). These nematodes displayed severe dumpy phenotypes and disrupted lateral alae, a destabilized cuticle and abnormal male and hermaphrodite tail morphologies. These defects were confirmed to be consistent with hypodermal seam cell abnormalities and corresponded with the severe disruption of a cuticle collagen. Wild type nematodes did not exhibit observable morphological defects; however, cuticle collagen localization was mildly disrupted following pdi-3 RNA interference. The unusual thioredoxin enzyme, protein disulfide isomerase-3, may therefore play a role in ECM assembly. This enzyme is required for the proper maintenance of post-embryonic body shape in strains with a weakened cuticle, perhaps through ECM stabilization via cross-linking activity, disulfide isomerase protein folding activity, protein disulfide isomerase chaperone activity, or via multifunctional events.
Collapse
Affiliation(s)
- Sylvain C P Eschenlauer
- Wellcome Centre for Molecular Parasitology, Anderson College, the University of Glasgow, United Kingdom
| | | |
Collapse
|
150
|
Winter AD, Myllyharju J, Page AP. A hypodermally expressed prolyl 4-hydroxylase from the filarial nematode Brugia malayi is soluble and active in the absence of protein disulfide isomerase. J Biol Chem 2003; 278:2554-62. [PMID: 12417582 DOI: 10.1074/jbc.m210381200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagen prolyl 4-hydroxylase (P4H) class of enzymes catalyze the hydroxylation of prolines in the X-Pro-Gly repeats of collagen chains. This modification is central to the synthesis of all collagens. Most P4Hs are alpha(2)beta(2) tetramers with the catalytic activity residing in the alpha subunits. The beta subunits are identical to the enzyme protein disulfide isomerase. The nematode cuticle is a collagenous extracellular matrix required for maintenance of the worm body shape. Examination of the model nematode Caenorhabditis elegans has demonstrated that its unique P4Hs are essential for viability and body morphology. The filarial parasite Brugia malayi is a causative agent of lymphatic filariasis in humans. We report here on the cloning and characterization of a B. malayi P4H with unusual properties. The recombinant B. malayi alpha subunit, PHY-1, is a soluble and active P4H by itself, and it does not become associated with protein disulfide isomerase. The active enzyme form is a homotetramer with catalytic and inhibition properties similar to those of the C. elegans P4Hs. High levels of B. malayi phy-1 transcript expression were observed in all developmental stages examined, and its expression was localized to the cuticle-synthesizing hypodermal tissue in the heterologous host C. elegans. Although active by itself, the B. malayi PHY-1 was not able to replace enzyme function in a C. elegans P4H mutant.
Collapse
Affiliation(s)
- Alan D Winter
- Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, Scotland, United Kingdom
| | | | | |
Collapse
|