101
|
Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. Biological and pathological activities of interleukin-22. J Mol Med (Berl) 2016; 94:523-34. [PMID: 26923718 PMCID: PMC4860114 DOI: 10.1007/s00109-016-1391-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22(+)CD4(+) T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival, and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection, and malignancy. In this review, we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios and discuss the potential to target IL-22 signaling to treat human diseases.
Collapse
Affiliation(s)
- Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yanwei Lin
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
102
|
Dugger DT, Gerriets JE, Miller LA. Attenuated Airway Epithelial Cell Interleukin-22R1 Expression in the Infant Nonhuman Primate Lung. Am J Respir Cell Mol Biol 2016; 53:761-8. [PMID: 26309027 DOI: 10.1165/rcmb.2014-0452rc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Respiratory tract infections are a leading cause of morbidity and mortality in children under 5 years of age. Increased susceptibility to infection is associated with deficiencies in immunity during early childhood. Airway epithelium represents the first line of mucosal defense against inhaled pathogens. However, little is known about epithelial immune mechanisms in the maturing lung. IL-22 and its receptor IL-22R1 are important in host defense and repair of epithelial barriers. The objective of this study was to determine whether a quantitative difference in IL-22R1 exists between infant and adult airways using the rhesus macaque monkey as a model of childhood lung development. Immunofluorescence staining of tracheal tissue revealed minimal expression of IL-22R1 in epithelium at 1 month of age, with a progressive increase in fluorescence-positive basal cells through 1 year of age. Western blot analysis of tracheal lysates confirmed significant age-dependent differences in IL-22R1 protein content. Further, primary tracheobronchial epithelial cell cultures established from infant and adult monkeys showed differential IL-22R1 mRNA and protein expression in vitro. To begin to assess the regulation of age-dependent IL-22R1 expression in airway epithelium, the effect of histone deacetylase and DNA methyltransferase inhibitors was evaluated. IL-22R1 mRNA in adult cultures was not altered by 5-aza-2'-deoxycytidine or trichostatin A. IL-22R1 mRNA in infant cultures showed no change with 5-aza-2'-deoxycytidine but was significantly increased after trichostatin A treatment; however, IL-22R1 protein did not increase concurrently. These data suggest that IL-22R1 in airway epithelium is regulated, in part, by epigenetic mechanisms that are dependent on chronologic age.
Collapse
Affiliation(s)
- Daniel T Dugger
- 1 California National Primate Research Center, University of California, Davis, California; and
| | - Joan E Gerriets
- 1 California National Primate Research Center, University of California, Davis, California; and
| | - Lisa A Miller
- 1 California National Primate Research Center, University of California, Davis, California; and.,2 Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
103
|
Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016; 34:1504-1514. [PMID: 26878294 DOI: 10.1016/j.vaccine.2016.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/14/2023]
Abstract
Th17 cells are characterized as preferential producer of interleukins including IL-17A, IL-17F, IL-21 and IL-22. Corresponding receptors of these cytokines are expressed on number of cell types found in the mucosa, including epithelial cells and fibroblasts which constitute the prime targets of the Th17-associated cytokines. Binding of IL-17 family members to their corresponding receptors lead to modulation of antimicrobial functions of target cells including alveolar epithelial cells. Stimulated alveolar epithelial cells produce antimicrobial peptides and are involved in granulepoesis, neutrophil recruitment and tissue repair. Mucosal immunity mediated by Th17 cells is protective against numerous pulmonary pathogens including extracellular bacterial and fungal pathogens. This review focuses on the protective role of Th17 cells during pulmonary infection, highlighting subset differentiation, effector cytokines production, followed by study of the binding of these cytokines to their corresponding receptors, the subsequent signaling pathway they engender and their effector role in host defense.
Collapse
Affiliation(s)
- Jitendra Singh Rathore
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA; Gautam Buddha University, School of Biotechnology, Greater Noida, Yamuna Expressway, Uttar Pradesh, India.
| | - Yan Wang
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
104
|
Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol 2016; 38:471-82. [PMID: 26965109 PMCID: PMC4896975 DOI: 10.1007/s00281-016-0558-0] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
The respiratory tract is constantly exposed to the external environment, and therefore, must be equipped to respond to and eliminate pathogens. Viral clearance and resolution of infection requires a complex, multi-faceted response initiated by resident respiratory tract cells and innate immune cells and ultimately resolved by adaptive immune cells. Although an effective immune response to eliminate viral pathogens is essential, a prolonged or exaggerated response can damage the respiratory tract. Immune-mediated pulmonary damage is manifested clinically in a variety of ways depending on location and extent of injury. Thus, the antiviral immune response represents a balancing act between the elimination of virus and immune-mediated pulmonary injury. In this review, we highlight major components of the host response to acute viral infection and their role in contributing to mitigating respiratory damage. We also briefly describe common clinical manifestations of respiratory viral infection and morphological correlates. The continuing threat posed by pandemic influenza as well as the emergence of novel respiratory viruses also capable of producing severe acute lung injury such as SARS-CoV, MERS-CoV, and enterovirus D68, highlights the need for an understanding of the immune mechanisms that contribute to virus elimination and immune-mediated injury.
Collapse
Affiliation(s)
- Amy H Newton
- Beirne B. Carter Center for Immunology Research, University of Virginia, P.O. Box 801386, Charlottesville, VA, 22908, USA.,Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Amber Cardani
- Beirne B. Carter Center for Immunology Research, University of Virginia, P.O. Box 801386, Charlottesville, VA, 22908, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Thomas J Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, P.O. Box 801386, Charlottesville, VA, 22908, USA. .,Department of Pathology, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
105
|
Zhou K, Wang J, Li A, Zhao W, Wang D, Zhang W, Yan J, Gao GF, Liu W, Fang M. Swift and Strong NK Cell Responses Protect 129 Mice against High-Dose Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2016; 196:1842-54. [DOI: 10.4049/jimmunol.1501486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
|
106
|
Abstract
The T cell response is an integral and essential part of the host immune response to acute virus infection. Each viral pathogen has unique, frequently nuanced, aspects to its replication, which affects the host response and as a consequence the capacity of the virus to produce disease. There are, however, common features to the T cell response to viruses, which produce acute limited infection. This is true whether virus replication is restricted to a single site, for example, the respiratory tract (RT), CNS etc., or replication is in multiple sites throughout the body. In describing below the acute T cell response to virus infection, we employ acute virus infection of the RT as a convenient model to explore this process of virus infection and the host response. We divide the process into three phases: the induction (initiation) of the response, the expression of antiviral effector activity resulting in virus elimination, and the resolution of inflammation with restoration of tissue homeostasis.
Collapse
|
107
|
Yamagata T, Skepner J, Yang J. Targeting Th17 Effector Cytokines for the Treatment of Autoimmune Diseases. Arch Immunol Ther Exp (Warsz) 2015; 63:405-14. [PMID: 26358867 DOI: 10.1007/s00005-015-0362-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-17-producing T cells, especially T helper (Th)17 cells, play a critical role in the pathogenesis of a variety of autoimmune inflammatory diseases. The pathogenic function of Th17 cells results from their production of Th17 effector cytokines, namely IL-17 (or IL-17A), IL-17F, IL-22 and IL-26. The importance of IL-17 has been demonstrated by antibody neutralization studies in both animal models of autoimmune diseases as well as in human clinical trials. This review highlights the current knowledge of the clinical aspects of the Th17 cytokines as well as therapeutic antibodies against IL-17, IL-17F, IL-17 receptor, IL-22, IL-26 and granulocyte macrophage colony-stimulating factor for the future treatment of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
| | - Jill Skepner
- Tempero, GlaxoSmithKline, Cambridge, MA, 02139, USA
| | - Jianfei Yang
- Tempero, GlaxoSmithKline, Cambridge, MA, 02139, USA.
| |
Collapse
|
108
|
Pichavant M, Sharan R, Le Rouzic O, Olivier C, Hennegrave F, Rémy G, Pérez-Cruz M, Koné B, Gosset P, Just N, Gosset P. IL-22 Defect During Streptococcus pneumoniae Infection Triggers Exacerbation of Chronic Obstructive Pulmonary Disease. EBioMedicine 2015; 2:1686-96. [PMID: 26870795 PMCID: PMC4740310 DOI: 10.1016/j.ebiom.2015.09.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022] Open
Abstract
Progression of chronic obstructive pulmonary disease (COPD) is linked to episodes of exacerbations caused by bacterial infections due to Streptococcus pneumoniae. Our objective was to identify during COPD, factors of susceptibility to bacterial infections among cytokine network and their role in COPD exacerbations. S. pneumoniae was used to sub-lethally challenge mice chronically exposed to air or cigarette smoke (CS) and to stimulate peripheral blood mononuclear cells (PBMC) from non-smokers, smokers and COPD patients. The immune response and the cytokine production were evaluated. Delayed clearance of the bacteria and stronger lung inflammation observed in infected CS-exposed mice were associated with an altered production of IL-17 and IL-22 by innate immune cells. This defect was related to a reduced production of IL-1β and IL-23 by antigen presenting cells. Importantly, supplementation with recombinant IL-22 restored bacterial clearance in CS-exposed mice and limited lung alteration. In contrast with non-smokers, blood NK and NKT cells from COPD patients failed to increase IL-17 and IL-22 levels in response to S. pneumoniae, in association with a defect in IL-1β and IL-23 secretion. This study identified IL-17 and IL-22 as susceptibility factors in COPD exacerbation. Therefore targeting such cytokines could represent a potent strategy to control COPD exacerbation.
Collapse
Key Words
- AM, alveolar macrophages
- APC, antigen presenting cells
- BAL, broncho-alveolar lavage
- Bacterial infection
- CFU, colony forming unit
- COPD, chronic obstructive pulmonary disease
- CS, cigarette smoke
- Chronic obstructive pulmonary disease
- DC, dendritic cells
- IL-22
- Innate immunity
- NK, natural killer cells
- NKT, natural killer T cells
- PBMC, peripheral blood mononuclear cells
- Sp, Streptococcus pneumoniae
Collapse
Affiliation(s)
- Muriel Pichavant
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Riti Sharan
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Olivier Le Rouzic
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
- Service de Pneumologie, Hôpital Calmette, CHRU, Lille, France
| | - Cécile Olivier
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
- Service de Pneumologie, Hôpital Calmette, CHRU, Lille, France
| | - Florence Hennegrave
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
- Service de Pneumologie, Hôpital Calmette, CHRU, Lille, France
| | - Gaëlle Rémy
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Magdiel Pérez-Cruz
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Bachirou Koné
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Pierre Gosset
- Service d'Anatomo-Pathologie, Hôpital Saint Vincent de Paul, Lille, France
| | - Nicolas Just
- Service de Pneumologie, Hôpital Victor Provo, Roubaix, France
| | - Philippe Gosset
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| |
Collapse
|
109
|
Victorino F, Sojka DK, Brodsky KS, McNamee EN, Masterson JC, Homann D, Yokoyama WM, Eltzschig HK, Clambey ET. Tissue-Resident NK Cells Mediate Ischemic Kidney Injury and Are Not Depleted by Anti-Asialo-GM1 Antibody. THE JOURNAL OF IMMUNOLOGY 2015; 195:4973-85. [PMID: 26453755 DOI: 10.4049/jimmunol.1500651] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/15/2015] [Indexed: 01/01/2023]
Abstract
NK cells are innate lymphoid cells important for immune surveillance, identifying and responding to stress, infection, and/or transformation. Whereas conventional NK (cNK) cells circulate systemically, many NK cells reside in tissues where they appear to be poised to locally regulate tissue function. In the present study, we tested the contribution of tissue-resident NK (trNK) cells to tissue homeostasis by studying ischemic injury in the mouse kidney. Parabiosis experiments demonstrate that the kidney contains a significant fraction of trNK cells under homeostatic conditions. Kidney trNK cells developed independent of NFIL3 and T-bet, and they expressed a distinct cell surface phenotype as compared with cNK cells. Among these, trNK cells had reduced asialo-GM1 (AsGM1) expression relative to cNK cells, a phenotype observed in trNK cells across multiple organs and mouse strains. Strikingly, anti-AsGM1 Ab treatment, commonly used as an NK cell-depleting regimen, resulted in a robust and selective depletion of cNKs, leaving trNKs largely intact. Using this differential depletion, we tested the relative contribution of cNK and trNK cells in ischemic kidney injury. Whereas anti-NK1.1 Ab effectively depleted both trNK and cNK cells and protected against ischemic/reperfusion injury, anti-AsGM1 Ab preferentially depleted cNK cells and failed to protect against injury. These data demonstrate unanticipated specificity of anti-AsGM1 Ab depletion on NK cell subsets and reveal a new approach to study the contributions of cNK and trNK cells in vivo. In total, these data demonstrate that trNK cells play a key role in modulating local responses to ischemic tissue injury in the kidney and potentially other organs.
Collapse
Affiliation(s)
- Francisco Victorino
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045
| | - Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelley S Brodsky
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Eoin N McNamee
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Joanne C Masterson
- Gastrointestinal Eosinophilic Diseases Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045; Digestive Health Institute, Children's Hospital Colorado, Aurora, CO 80045; and
| | - Dirk Homann
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Wayne M Yokoyama
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045;
| |
Collapse
|
110
|
Abstract
The HIV epidemic has clearly demonstrated the critical role CD4(+) T cells play in preventing opportunistic infections in the lung. The types of CD4(+) effector T-cell populations in the lung have significantly expanded over the last 8-10 years with the discovery of helper T type 17 cells, and this review summarizes the field and discusses how these effector cells may be exploited to augment mucosal immunity in the lung.
Collapse
|
111
|
Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunol 2015; 8:720-30. [PMID: 25943273 DOI: 10.1038/mi.2015.40] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 02/04/2023]
Abstract
Compromised intestinal barrier function is a prominent feature of inflammatory bowel disease (IBD). However, links between intestinal barrier loss and disease extend much further, including documented associations with celiac disease, type I diabetes, rheumatoid arthritis, and multiple sclerosis. Intestinal barrier loss has also been proposed to have a critical role in the pathogenesis of graft-versus-host disease (GVHD), a serious, potentially fatal consequence of hematopoietic stem cell transplantation. Experimental evidence has begun to support this view, as barrier loss and its role in initiating and establishing a pathogenic inflammatory cycle in GVHD is emerging. Here we discuss similarities between IBD and GVHD, mechanisms of intestinal barrier loss in these diseases, and the crosstalk between barrier loss and the immune system, with a special focus on natural killer (NK) cells. Unanswered questions and future research directions on the topic are discussed along with implications for treatment.
Collapse
|
112
|
Hernández PP, Mahlakoiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, Gronke K, Ryffel B, Hoelscher C, Dumoutier L, Renauld JC, Suerbaum S, Staeheli P, Diefenbach A. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol 2015; 16:698-707. [PMID: 26006013 PMCID: PMC4589158 DOI: 10.1038/ni.3180] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
The epithelium is the main entry point for many viruses, but the processes that protect barrier surfaces against viral infections are incompletely understood. Here we identified interleukin 22 (IL-22) produced by innate lymphoid cell group 3 (ILC3) as an amplifier of signaling via interferon-λ (IFN-λ), a synergism needed to curtail the replication of rotavirus, the leading cause of childhood gastroenteritis. Cooperation between the receptor for IL-22 and the receptor for IFN-λ, both of which were 'preferentially' expressed by intestinal epithelial cells (IECs), was required for optimal activation of the transcription factor STAT1 and expression of interferon-stimulated genes (ISGs). These data suggested that epithelial cells are protected against viral replication by co-option of two evolutionarily related cytokine networks. These data may inform the design of novel immunotherapy for viral infections that are sensitive to interferons.
Collapse
Affiliation(s)
- Pedro P. Hernández
- Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Department of Medical Microbiology and Hygiene, Institute for Medical Microbiology and Hygiene, Freiburg University Medical Centre, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
- Max-Planck-Institute for Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Tanel Mahlakoiv
- Department of Medical Microbiology and Hygiene, Institute for Virology, Freiburg University Medical Centre, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19A, D-79104 Freiburg, Germany
| | - Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany and DZIF – German Center for Infection Research, Hannover-Braunschweig Site, D-30625 Hannover, Germany
| | - Vera Schwierzeck
- Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Department of Medical Microbiology and Hygiene, Institute for Medical Microbiology and Hygiene, Freiburg University Medical Centre, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | - Nam Nguyen
- Department of Medical Microbiology and Hygiene, Institute for Medical Microbiology and Hygiene, Freiburg University Medical Centre, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | - Fabian Guendel
- Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Department of Medical Microbiology and Hygiene, Institute for Medical Microbiology and Hygiene, Freiburg University Medical Centre, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Konrad Gronke
- Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Department of Medical Microbiology and Hygiene, Institute for Medical Microbiology and Hygiene, Freiburg University Medical Centre, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
- Max-Planck-Institute for Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Bernhard Ryffel
- INEM - UMR7355, Molecular Immunology, University and CNRS, F-45071 Orleans, France and Institute of Infectious Disease, University of Cape Town, RSA
| | - Christoph Hoelscher
- Infection Immunology Research, Research Center Borstel, D-23845 Borstel, Germany
- Cluster of Excellence Inflammation at Interfaces (Borstel-Kiel-Lübeck-Plön)
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany and DZIF – German Center for Infection Research, Hannover-Braunschweig Site, D-30625 Hannover, Germany
| | - Peter Staeheli
- Department of Medical Microbiology and Hygiene, Institute for Virology, Freiburg University Medical Centre, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | - Andreas Diefenbach
- Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Department of Medical Microbiology and Hygiene, Institute for Medical Microbiology and Hygiene, Freiburg University Medical Centre, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, Hauptstrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
113
|
Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 2015; 21:698-708. [PMID: 26121198 DOI: 10.1038/nm.3892] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans and found to influence the induction, regulation and resolution of inflammation. ILCs have an important role in these processes in mouse models of infection, inflammation and tissue repair. Further, disease-association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be used to selectively modulate ILC responses and limit chronic inflammatory diseases.
Collapse
|
114
|
Lauber C, Vieyres G, Terczyńska-Dyla E, Anggakusuma, Dijkman R, Gad HH, Akhtar H, Geffers R, Vondran FWR, Thiel V, Kaderali L, Pietschmann T, Hartmann R. Transcriptome analysis reveals a classical interferon signature induced by IFNλ4 in human primary cells. Genes Immun 2015; 16:414-21. [PMID: 26066369 PMCID: PMC7308733 DOI: 10.1038/gene.2015.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023]
Abstract
The IFNL4 gene is negatively associated with spontaneous and treatment-induced clearance of hepatitis C virus infection. The activity of IFNλ4 has an important causal role in the pathogenesis, but the molecular details are not fully understood. One possible reason for the detrimental effect of IFNλ4 could be a tissue-specific regulation of an unknown subset of genes. To address both tissue and subtype specificity in the interferon response, we treated primary human hepatocytes and airway epithelial cells with IFNα, IFNλ3 or IFNλ4 and assessed interferon mediated gene regulation using transcriptome sequencing. Our data show a surprisingly similar response to all three subtypes of interferon. We also addressed the tissue specificity of the response, and identified a subset of tissue-specific genes. However, the interferon response is robust in both tissues with the majority of the identified genes being regulated in hepatocytes as well as airway epithelial cells. Thus we provide an in-depth analysis of the liver interferon response seen over an array of interferon subtypes and compare it to the response in the lung epithelium.
Collapse
Affiliation(s)
- C Lauber
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - G Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - E Terczyńska-Dyla
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anggakusuma
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - R Dijkman
- Institute of Virology and Immunology IVI, Bern, and Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | - H H Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - H Akhtar
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - R Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - F W R Vondran
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany.,ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - V Thiel
- Institute of Virology and Immunology IVI, Bern, and Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | - L Kaderali
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - T Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - R Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
115
|
FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS One 2015; 10:e0128094. [PMID: 26039259 PMCID: PMC4454513 DOI: 10.1371/journal.pone.0128094] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/23/2015] [Indexed: 01/07/2023] Open
Abstract
Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.
Collapse
|
116
|
Busman-Sahay KO, Walrath T, Huber S, O'Connor W. Cytokine crowdsourcing: multicellular production of TH17-associated cytokines. J Leukoc Biol 2015; 97:499-510. [PMID: 25548251 PMCID: PMC5477895 DOI: 10.1189/jlb.3ru0814-386r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
In the 2 decades since its discovery, IL-17A has become appreciated for mounting robust, protective responses against bacterial and fungal pathogens. When improperly regulated, however, IL-17A can play a profoundly pathogenic role in perpetuating inflammation and has been linked to a wide variety of debilitating diseases. IL-17A is often present in a composite milieu that includes cytokines produced by TH17 cells (i.e., IL-17F, IL-21, IL-22, and IL-26) or associated with other T cell lineages (e.g., IFN-γ). These combinatorial effects add mechanistic complexity and more importantly, contribute differentially to disease outcome. Whereas TH17 cells are among the best-understood cell types that secrete IL-17A, they are frequently neither the earliest nor dominant producers. Indeed, non-TH17 cell sources of IL-17A can dramatically alter the course and severity of inflammatory episodes. The dissection of the temporal regulation of TH17-associated cytokines and the resulting net signaling outcomes will be critical toward understanding the increasingly intricate role of IL-17A and TH17-associated cytokines in disease, informing our therapeutic decisions. Herein, we discuss important non-TH17 cell sources of IL-17A and other TH17-associated cytokines relevant to inflammatory events in mucosal tissues.
Collapse
Affiliation(s)
- Kathleen O Busman-Sahay
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Travis Walrath
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - William O'Connor
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
117
|
Abstract
Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.
Collapse
|
118
|
Reilly EC, Martin KC, Jin GB, Yee M, O'Reilly MA, Lawrence BP. Neonatal hyperoxia leads to persistent alterations in NK responses to influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2015; 308:L76-85. [PMID: 25381024 PMCID: PMC4281699 DOI: 10.1152/ajplung.00233.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/02/2014] [Indexed: 02/06/2023] Open
Abstract
Respiratory distress in preterm or low birth weight infants is often treated with supplemental oxygen. However, this therapy can disrupt normal lung development and architecture and alter responses to respiratory insults. Similarly, exposure of newborn mice to 100% oxygen during saccular lung development leads to permanent alveolar simplification, and upon challenge with influenza A virus, mice exhibit reduced host resistance. Natural killer (NK) cells are key players in antiviral immunity, and emerging evidence suggest they also help to maintain homeostasis in peripheral tissues, including the lung, by promoting epithelial cell regeneration via IL-22. We tested the hypothesis that adult mice exposed to hyperoxia as neonates have modified NK cell responses to infection. We report here that mice exposed to neonatal hyperoxia had fewer IL-22(+) NK cells in their lungs after influenza virus challenge and a parallel increase in IFN-γ(+) NK cells. Using reciprocal bone marrow chimeric mice, we show that exposure of either hematopoietic or nonhematopoietic cells was sufficient to increase the severity of infection and to diminish the frequency of IL-22(+) NK cells in the infected lung. Overall, our findings suggest that neonatal hyperoxia leads to long-term changes in the reparative vs. cytotoxic nature of NK cells and that this is due in part to intrinsic changes in hematopoietic cells. These differences may contribute to how oxygen alters the host response to respiratory viral infections.
Collapse
Affiliation(s)
- Emma C Reilly
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Kyle C Martin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Guang-bi Jin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Min Yee
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Michael A O'Reilly
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| |
Collapse
|
119
|
Lambrecht BN, Neyt K, van Helden MJ. The Mucosal Immune Response to Respiratory Viruses. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
120
|
Effector Cells of the Mucosal Immune System. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
121
|
Li LJ, Gong C, Zhao MH, Feng BS. Role of interleukin-22 in inflammatory bowel disease. World J Gastroenterol 2014; 20:18177-88. [PMID: 25561785 PMCID: PMC4277955 DOI: 10.3748/wjg.v20.i48.18177] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/21/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease thought to be mediated by the microbiota of the intestinal lumen and inappropriate immune responses. Aberrant immune responses can cause secretion of harmful cytokines that destroy the epithelium of the gastrointestinal tract, leading to further inflammation. Interleukin (IL)-22 is a member of the IL-10 family of cytokines that was recently discovered to be mainly produced by both adaptive and innate immune cells. Several cytokines and many of the transcriptional factors and T regulatory cells are known to regulate IL-22 expression through activation of signal transducer and activator of transcription 3 signaling cascades. This cytokine induces antimicrobial molecules and proliferative and antiapoptotic pathways, which help prevent tissue damage and aid in its repair. All of these processes play a beneficial role in IBD by enhancing intestinal barrier integrity and epithelial innate immunity. In this review, we discuss recent progress in the involvement of IL-22 in the pathogenesis of IBD, as well as its therapeutic potential.
Collapse
|
122
|
Abstract
Our understanding of NK biology has expanded immensely since the initial discovery of natural killer cells in 1975. New studies have uncovered various levels of immune regulation both on and by unique subsets of NK cells, which go well beyond simple receptor-ligand interactions between NK cells and target cancer cells. Distinct suppressor and effector populations of NK cells have been delineated in both viral and tumor models. Interactions between NK cells and dendritic cells, T cells, and B cells also dramatically alter the overall immune response to cancer. To exploit the diverse functional abilities of NK cell subsets for cancer immunotherapies, it is important to understand NK cell biology and NK regulator mechanisms.
Collapse
Affiliation(s)
- Can M Sungur
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817
| | - William J Murphy
- Department of Dermatology, Department of Internal Medicine, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|
123
|
Moser EK, Hufford MM, Braciale TJ. Late engagement of CD86 after influenza virus clearance promotes recovery in a FoxP3+ regulatory T cell dependent manner. PLoS Pathog 2014; 10:e1004315. [PMID: 25144228 PMCID: PMC4140856 DOI: 10.1371/journal.ppat.1004315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
Influenza A virus (IAV) infection in the respiratory tract triggers robust innate and adaptive immune responses, resulting in both virus clearance and lung inflammation and injury. After virus clearance, resolution of ongoing inflammation and tissue repair occur during a distinct recovery period. B7 family co-stimulatory molecules such as CD80 and CD86 have important roles in modulating T cell activity during the initiation and effector stages of the host response to IAV infection, but their potential role during recovery and resolution of inflammation is unknown. We found that antibody-mediated CD86 blockade in vivo after virus clearance led to a delay in recovery, characterized by increased numbers of lung neutrophils and inflammatory cytokines in airways and lung interstitium, but no change in conventional IAV-specific T cell responses. However, CD86 blockade led to decreased numbers of FoxP3+ regulatory T cells (Tregs), and adoptive transfer of Tregs into αCD86 treated mice rescued the effect of the blockade, supporting a role for Tregs in promoting recovery after virus clearance. Specific depletion of Tregs late after infection mimicked the CD86 blockade phenotype, confirming a role for Tregs during recovery after virus clearance. Furthermore, we identified neutrophils as a target of Treg suppression since neutrophil depletion in Treg-depleted mice reduced excess inflammatory cytokines in the airways. These results demonstrate that Tregs, in a CD86 dependent mechanism, contribute to the resolution of disease after IAV infection, in part by suppressing neutrophil-driven cytokine release into the airways.
Collapse
Affiliation(s)
- Emily K. Moser
- The Beirne B. Carter Center for Immunology Research, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pharmacology, The University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew M. Hufford
- The Beirne B. Carter Center for Immunology Research, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, The University of Virginia, Charlottesville, Virginia, United States of America
| | - Thomas J. Braciale
- The Beirne B. Carter Center for Immunology Research, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
124
|
Quinton LJ, Mizgerd JP. Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling. Annu Rev Physiol 2014; 77:407-30. [PMID: 25148693 DOI: 10.1146/annurev-physiol-021014-071937] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps.
Collapse
|
125
|
Van Maele L, Carnoy C, Cayet D, Ivanov S, Porte R, Deruy E, Chabalgoity JA, Renauld JC, Eberl G, Benecke AG, Trottein F, Faveeuw C, Sirard JC. Activation of Type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection. J Infect Dis 2014; 210:493-503. [PMID: 24577508 DOI: 10.1093/infdis/jiu106] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mucosal sites are continuously exposed to pathogenic microorganisms and are therefore equipped to control respiratory infections. Type 3 innate lymphoid cells (ILC3) are key players in antimicrobial defense in intestinal mucosa, through interleukin 17 and interleukin 22 (IL-22) production. The present study aimed at analyzing the distribution and function of ILC3 in the respiratory tract. We first observed that lung mucosa harbors a discrete population of ILC3 expressing CD127, CD90, CCR6, and the transcriptional factor RORγt. In addition, lung ILC3 were identified as a major source of IL-22 in response to interleukin 23 stimulation. During Streptococcus pneumoniae infection, ILC3 rapidly accumulated in the lung tissue to produce IL-22. In response to S. pneumoniae, dendritic cells and MyD88, an important adaptor of innate immunity, play critical functions in IL-22 production by ILC3. Finally, administration of the Toll-like receptor 5 agonist flagellin during S. pneumoniae challenge exacerbated IL-22 production by ILC3, a process that protects against lethal infection. In conclusion, boosting lung ILC3 might represent an interesting strategy to fight respiratory bacterial infections.
Collapse
Affiliation(s)
- Laurye Van Maele
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Christophe Carnoy
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Delphine Cayet
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Stoyan Ivanov
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Rémi Porte
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Emeric Deruy
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - José A Chabalgoity
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur Centre National de la Recherche Scientifique, URA 1961, Paris
| | - Arndt G Benecke
- Institut des Hautes Études Scientifiques Centre National de la Recherche Scientifique, Bures-sur-Yvette, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Christelle Faveeuw
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Jean-Claude Sirard
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| |
Collapse
|
126
|
Abstract
Respiratory infections and diseases are among the leading causes of death worldwide, and effective treatments probably require manipulating the inflammatory response to pathogenic microbes or allergens. Here, we review mechanisms controlling the production and functions of interleukin-17 (IL-17) and IL-22, cytokines that direct several aspects of lung immunity. Innate lymphocytes (γδ T cells, natural killer cells, innate lymphoid cells) are the major source of IL-17 and IL-22 during acute infections, while CD4(+) T-helper 17 (Th17) cells contribute to vaccine-induced immunity. The characterization of dendritic cell (DC) subsets has revealed their central roles in T-cell activation. CD11b(+) DCs stimulated with bacteria or fungi secrete IL-1β and IL-23, potent inducers of IL-17 and IL-22. On the other hand, recognition of viruses by plasmacytoid DCs inhibits IL-1β and IL-23 release, increasing susceptibility to bacterial superinfections. IL-17 and IL-22 primarily act on the lung epithelium, inducing antimicrobial proteins and neutrophil chemoattractants. Recent studies found that stimulation of macrophages and DCs with IL-17 also contributes to antibacterial immunity, while IL-22 promotes epithelial proliferation and repair following injury. Chronic diseases such as asthma and chronic obstructive pulmonary disease have been associated with IL-17 and IL-22 responses directed against innocuous antigens. Future studies will evaluate the therapeutic efficacy of targeting the IL-17/IL-22 pathway in pulmonary inflammation.
Collapse
Affiliation(s)
- Jeremy P. McAleer
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| |
Collapse
|
127
|
Monnier J, Zabel BA. Anti-asialo GM1 NK cell depleting antibody does not alter the development of bleomycin induced pulmonary fibrosis. PLoS One 2014; 9:e99350. [PMID: 24922516 PMCID: PMC4055641 DOI: 10.1371/journal.pone.0099350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/13/2014] [Indexed: 12/30/2022] Open
Abstract
Despite circumstantial evidence postulating a protective role for NK cells in many fibrotic conditions, their contribution to the development of pulmonary fibrosis has yet to be tested. Lung-migrating NK cells are thought to attenuate the development of bleomycin induced pulmonary fibrosis (BIPF) by providing anti-fibrotic mediators and cytokines, such as IFN-γ. If true, we reasoned that depletion of NK cells during experimentally-induced fibrotic disease would lead to exacerbated fibrosis. To test this, we treated mice with NK cell-depleting antisera (anti-asialo GM1) and evaluated lung inflammation and fibrosis in the BIPF model. While NK cell infiltration into the airways was maximal at day 10 after bleomycin injection, NK cells represented a minor portion (1-3%) of the total leukocytes in BAL fluid. Anti-asialo GM1 significantly abrogated NK cell numbers over the course of the disease. Depletion of NK cells with anti-asialo GM1 before and throughout the BIPF model, or during just the fibrotic phase did not alter fibrosis development or affect the levels of any of the pro-inflammatory/pro-fibrotic cytokines measured (IL-1β, IL-17, IFN-γ, TGF-β and TNF-α). In addition, adoptively transferred NK cells, which were detectable systemically and in the airways throughout BIPF, failed to impact lung fibrosis. These findings indicate that NK cells likely do not play an essential protective role in controlling pulmonary fibrosis development.
Collapse
Affiliation(s)
- Justin Monnier
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Institute for Research and Education, Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Brian A. Zabel
- Palo Alto Institute for Research and Education, Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
128
|
Stacey MA, Marsden M, Pham N TA, Clare S, Dolton G, Stack G, Jones E, Klenerman P, Gallimore AM, Taylor PR, Snelgrove RJ, Lawley TD, Dougan G, Benedict CA, Jones SA, Wilkinson GWG, Humphreys IR. Neutrophils recruited by IL-22 in peripheral tissues function as TRAIL-dependent antiviral effectors against MCMV. Cell Host Microbe 2014; 15:471-83. [PMID: 24721575 PMCID: PMC3989063 DOI: 10.1016/j.chom.2014.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/26/2013] [Accepted: 03/04/2014] [Indexed: 02/06/2023]
Abstract
During primary infection, murine cytomegalovirus (MCMV) spreads systemically, resulting in virus replication and pathology in multiple organs. This disseminated infection is ultimately controlled, but the underlying immune defense mechanisms are unclear. Investigating the role of the cytokine IL-22 in MCMV infection, we discovered an unanticipated function for neutrophils as potent antiviral effector cells that restrict viral replication and associated pathogenesis in peripheral organs. NK-, NKT-, and T cell-secreted IL-22 orchestrated antiviral neutrophil-mediated responses via induction in stromal nonhematopoietic tissue of the neutrophil-recruiting chemokine CXCL1. The antiviral effector properties of infiltrating neutrophils were directly linked to the expression of TNF-related apoptosis-inducing ligand (TRAIL). Our data identify a role for neutrophils in antiviral defense, and establish a functional link between IL-22 and the control of antiviral neutrophil responses that prevents pathogenic herpesvirus infection in peripheral organs.
Collapse
Affiliation(s)
- Maria A Stacey
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Morgan Marsden
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Tu Anh Pham N
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1HH, UK
| | - Simon Clare
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1HH, UK
| | - Garry Dolton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Gabrielle Stack
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Emma Jones
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Awen M Gallimore
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Philip R Taylor
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Robert J Snelgrove
- Imperial College London, Leukocyte Biology Section, National Heart and Lung Institute, London SW7 2AZ, UK
| | - Trevor D Lawley
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1HH, UK
| | - Gordon Dougan
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1HH, UK
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Simon A Jones
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Gavin W G Wilkinson
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Ian R Humphreys
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK.
| |
Collapse
|
129
|
Strutt TM, McKinstry KK, Marshall NB, Vong AM, Dutton RW, Swain SL. Multipronged CD4(+) T-cell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunol Rev 2014; 255:149-64. [PMID: 23947353 DOI: 10.1111/imr.12088] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last decade, the known spectrum of CD4(+) T-cell effector subsets has become much broader, and it has become clear that there are multiple dimensions by which subsets with a particular cytokine commitment can be further defined, including their stage of differentiation, their location, and, most importantly, their ability to carry out discrete functions. Here, we focus on our studies that highlight the synergy among discrete subsets, especially those defined by helper and cytotoxic function, in mediating viral protection, and on distinctions between CD4(+) T-cell effectors located in spleen, draining lymph node, and in tissue sites of infection. What emerges is a surprising multiplicity of CD4(+) T-cell functions that indicate a large arsenal of mechanisms by which CD4(+) T cells act to combat viruses.
Collapse
Affiliation(s)
- Tara M Strutt
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
130
|
Ciccia F, Guggino G, Giardina A, Ferrante A, Carrubbi F, Giacomelli R, Triolo G. The role of innate and lymphoid IL-22-producing cells in the immunopathology of primary Sjögren's syndrome. Expert Rev Clin Immunol 2014; 10:533-41. [PMID: 24490899 DOI: 10.1586/1744666x.2014.884461] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In primary Sjögren's syndrome (pSS) a complex of interconnections between epithelial barrier, innate and adaptive immunity occurs. IL-22 is a pleiotropic cytokine that in pSS may be placed at the intersection of the adaptive and innate branches of immunity. Some evidence suggests that, in pSS, IL-22 may play a prominent pro-inflammatory role driving the early phase of tissue and systemic inflammation and participating in the self-perpetuation of disease. Despite contradictory data in literature about the role of NK cells in pSS, recent data also suggest an important contribution of this subset of cells of the innate immune system in the development and perpetuation of inflammation. Here, we discuss the role of IL-22 in the pathogenesis of pSS and in epithelial barrier function.
Collapse
Affiliation(s)
- Francesco Ciccia
- Dipartimento Biomedico di Medicina Interna e Specialistica, Università degli Studi di Palermo Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
131
|
Xu X, Weiss ID, Zhang H, Singh SP, Wynn TA, Wilson MS, Farber JM. Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1778-86. [PMID: 24442439 PMCID: PMC3995347 DOI: 10.4049/jimmunol.1300039] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It was reported that host defense against pulmonary Klebsiella pneumoniae infection requires IL-22, which was proposed to be of T cell origin. Supporting a role for IL-22, we found that Il22(-/-) mice had decreased survival compared with wild-type mice after intratracheal infection with K. pneumoniae. Surprisingly, however, Rag2(-/-) mice did not differ from wild-type mice in survival or levels of IL-22 in the lungs postinfection with K. pneumoniae. In contrast, K. pneumoniae-infected Rag2(-/-)Il2rg(-/-) mice failed to produce IL-22. These data suggested a possible role for NK cells or other innate lymphoid cells in host defense and production of IL-22. Unlike NK cell-like innate lymphoid cells that produce IL-22 and display a surface phenotype of NK1.1(-)NKp46(+)CCR6(+), lung NK cells showed the conventional phenotype, NK1.1(+)NKp46(+)CCR6(-). Mice depleted of NK cells using anti-asialo GM1 showed decreased survival and higher lung bacterial counts, as well as increased dissemination of K. pneumoniae to blood and liver, compared with control-treated mice. NK cell depletion also led to decreased production of IL-22 in the lung. Within 1 d postinfection, although there was no increase in the number of lung NK cells, a subset of lung NK cells became competent to produce IL-22, and such cells were found in both wild-type and Rag2(-/-) mice. Our data suggest that, during pulmonary infection of mice with K. pneumoniae, conventional NK cells are required for optimal host defense, which includes the production of IL-22.
Collapse
Affiliation(s)
- Xin Xu
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ido D. Weiss
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongwei Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satya P. Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A. Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark S. Wilson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua M. Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
132
|
Abstract
The Th17 pathway has recently been shown to play a critical role in host defense, allergic responses and autoimmune inflammation. Th17 cells predominantly produce IL-17 and IL-22, which are two cytokines with broad effects in the lung and other tissues. This review summarizes not only what is currently known about the molecular regulation of this pathway and Th17-related cytokine signaling, but also the roles of these cytokines in pathogen immunity and asthma. In the last 5 years, the Th17 field has rapidly grown and research has revealed that the Th17 pathway is essential in lung pathogenesis in response to exogenous stimuli. As work in the field continues, it is expected that many exciting therapeutic advances will be made for a broad range of diseases.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| | - Keven M Robinson
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John F Alcorn
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| |
Collapse
|
133
|
Abstract
Within days after infection, natural killer (NK) cells are recruited to the lungs and play an essential role in the immune response against influenza infection. Through interactions with the virus itself, as well as viral-infected cells, NK cells secrete a variety of cytokines and can contain viral replication by killing infected cells early after influenza infection. However, the virus has means of evading NK cell responses, including escaping NK cell recognition through mutation of the viral hemagglutinin (HA) protein, regulating HA levels, and by directly infecting and destroying NK cells. Although much of our understanding of NK cell role in influenza infection has come from animal models, there is increasing information from human infection. Studies conducted during the 2009 H1N1 pandemic provided much needed information on the importance of NK cells during human infection and suggest that NK lymphopenia may correlate with increased disease severity. However, more information on how different influenza virus subtypes influence NK cell levels and activities, the role of the different NK cell receptors in infection, and the impact of NK cells on human infection, particularly in high risk populations is needed.
Collapse
|
134
|
Eidenschenk C, Rutz S, Liesenfeld O, Ouyang W. Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 2014; 380:213-36. [PMID: 25004820 DOI: 10.1007/978-3-662-43492-5_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines, which, besides IL-10, contains seven additional cytokines. Although the founding member IL-10 is an important immunoregulatory cytokine that represses both innate and adaptive immunity, the other family members preferentially target epithelial cells and enhance innate host defense mechanisms against various pathogens such as bacteria, yeast, and viruses. Based on their functions, the IL-10 family can be further divided into three subgroups, IL-10 itself, the IL-20 subfamily, and the IFNλ subfamily. IL-22 is the best-studied member of the IL-20 subfamily, and exemplifies the diverse biological effects of this subfamily. IL-22 elicits various innate immune responses from epithelial cells and is essential for host defense against several invading pathogens, including Citrobacter rodentium and Klebsiella pneumonia. IL-22 also protects tissue integrity and maintains the mucosal homeostasis. On the other hand, IL-22 is a proinflammatory cytokine with the capacity to amplify inflammatory responses, which might result in tissue damage, e.g., the IL-22-dependent necrosis of the small intestine during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA,
| | | | | | | |
Collapse
|
135
|
Wang X, Ouyang W. Interleukin-22: A Bridge Between Epithelial Innate Host Defense and Immune Cells. CYTOKINE FRONTIERS 2014. [PMCID: PMC7120444 DOI: 10.1007/978-4-431-54442-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interleukin-22 (IL-22), an IL-10 family cytokine, is produced by various leukocytes. The receptor of IL-22, however, is preferentially detected on peripheral tissue epithelial cells. IL-22 functions as a unique messenger from immune system to tissue epithelial cells and to regulate homeostasis of epithelia. IL-22 is able to directly enhance antimicrobial defense mechanisms in epithelial cells and to facilitate epithelial barrier repair and wound healing process. It, therefore, possesses an irreplaceable role in host defense against certain pathogens that specifically invade epithelial cells. In addition, IL-22 can help to preserve the integrity and homeostasis of various epithelial organs during infection or inflammation. The importance of its tissue-protective function is manifested in many inflammatory situations such as inflammatory bowel diseases (IBD) and hepatitis. On the other hand, as a cytokine, IL-22 is capable of induction of proinflammatory responses, especially in synergy with other cytokines. Consequently, IL-22 contributes to pathogenesis of certain inflammatory diseases for example psoriasis.
Collapse
|
136
|
Abstract
Interleukin-22 (IL-22) is a key effector molecule that is produced by activated T cells, including T helper 22 (TH22) cells, TH17 cells and TH1 cells, as well as subsets of innate lymphoid cells. Although IL-22 can act synergistically with IL-17 or tumour necrosis factor, some important functions of IL-22 are unique to this cytokine. Data obtained over the past few years indicate that the IL-22-IL-22 receptor subunit 1 (IL-22R1) system has a high potential clinical relevance in psoriasis, ulcerative colitis, graft-versus-host disease, certain infections and tumours, as well as in liver and pancreas damage. This Review highlights current knowledge of the biology of the IL-22-IL-22R1 system, its role in inflammation, tissue protection, regeneration and antimicrobial defence, as well as the positive and potentially negative consequences of its therapeutic modulation.
Collapse
Affiliation(s)
- Robert Sabat
- 1] Interdisciplinary Group of Molecular Immunopathology, Institute of Medical Immunology, Department of Dermatology and Allergy, University Medicine Charité, Charitéplatz 1, D-10117 Berlin, Germany. [2] Research Center Immunosciences, University Hospital Charité, Hessische Strasse 3-4, D-10115 Berlin, Germany
| | - Wenjun Ouyang
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Kerstin Wolk
- 1] Interdisciplinary Group of Molecular Immunopathology, Institute of Medical Immunology, Department of Dermatology and Allergy, University Medicine Charité, Charitéplatz 1, D-10117 Berlin, Germany. [2] Research Center Immunosciences, University Hospital Charité, Hessische Strasse 3-4, D-10115 Berlin, Germany
| |
Collapse
|
137
|
McHugh KJ, Mandalapu S, Kolls JK, Ross TM, Alcorn JF. A novel outbred mouse model of 2009 pandemic influenza and bacterial co-infection severity. PLoS One 2013; 8:e82865. [PMID: 24324838 PMCID: PMC3855784 DOI: 10.1371/journal.pone.0082865] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/06/2013] [Indexed: 11/23/2022] Open
Abstract
Influenza viruses pose a significant health risk and annually impose a great cost to patients and the health care system. The molecular determinants of influenza severity, often exacerbated by secondary bacterial infection, are largely unclear. We generated a novel outbred mouse model of influenza virus, Staphylococcus aureus, and co-infection utilizing influenza A/CA/07/2009 virus and S. aureus (USA300). Outbred mice displayed a wide range of pathologic phenotypes following influenza virus or co-infection ranging broadly in severity. Influenza viral burden positively correlated with weight loss although lung histopathology did not. Inflammatory cytokines including IL-6, TNF-α, G-CSF, and CXCL10 positively correlated with both weight loss and viral burden. In S. aureus infection, IL-1β, G-CSF, TNF-α, and IL-6 positively correlated with weight loss and bacterial burden. In co-infection, IL-1β production correlated with decreased weight loss suggesting a protective role. The data demonstrate an approach to identify biomarkers of severe disease and to understand pathogenic mechanisms in pneumonia.
Collapse
Affiliation(s)
- Kevin J. McHugh
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Sivanarayana Mandalapu
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Jay K. Kolls
- Richard K. Mellon Foundation Institute, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Ted M. Ross
- Department of Microbiology & Molecular Genetics, University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - John F. Alcorn
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
138
|
Tripathi S, White MR, Hartshorn KL. The amazing innate immune response to influenza A virus infection. Innate Immun 2013; 21:73-98. [PMID: 24217220 DOI: 10.1177/1753425913508992] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Influenza A viruses (IAVs) remain a major health threat and a prime example of the significance of innate immunity. Our understanding of innate immunity to IAV has grown dramatically, yielding new concepts that change the way we view innate immunity as a whole. Examples include the role of p53, autophagy, microRNA, innate lymphocytes, endothelial cells and gut commensal bacteria in pulmonary innate immunity. Although the innate response is largely beneficial, it also contributes to major complications of IAV, including lung injury, bacterial super-infection and exacerbation of reactive airways disease. Research is beginning to dissect out which components of the innate response are helpful or harmful. IAV uses its limited genetic complement to maximum effect. Several viral proteins are dedicated to combating innate responses, while other viral structural or replication proteins multitask as host immune modulators. Many host innate immune proteins also multitask, having roles in cell cycle, signaling or normal lung biology. We summarize the plethora of new findings and attempt to integrate them into the larger picture of how humans have adapted to the threat posed by this remarkable virus. We explore how our expanded knowledge suggests ways to modulate helpful and harmful inflammatory responses, and develop novel treatments.
Collapse
Affiliation(s)
- Shweta Tripathi
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Mitchell R White
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Kevan L Hartshorn
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| |
Collapse
|
139
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
140
|
Björkström NK, Kekäläinen E, Mjösberg J. Tissue-specific effector functions of innate lymphoid cells. Immunology 2013; 139:416-27. [PMID: 23489335 DOI: 10.1111/imm.12098] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) is the collective term for a group of related innate lymphocytes, including natural killer (NK) cells and the more recently discovered non-NK ILCs, which all lack rearranged antigen receptors such as those expressed by T and B cells. Similar to NK cells, the newly discovered ILCs depend on the transcription factor Id2 and the common γ-chain of the interleukin-2 receptor for development. However, in contrast to NK cells, non-NK ILCs also require interleukin-7. In addition to the cytotoxic functions of NK cells, assuring protection against tumour development and viruses, new data indicate that ILCs contribute to a wide range of homeostatic and pathophysiological conditions in various organs via specialized cytokine production capabilities. Here we summarize current knowledge on ILCs with a particular emphasis on their tissue-specific effector functions, in the gut, liver, lungs and uterus. When possible, we try to highlight the role that these cells play in humans.
Collapse
Affiliation(s)
- Niklas K Björkström
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
141
|
Yoo JK, Kim TS, Hufford MM, Braciale TJ. Viral infection of the lung: host response and sequelae. J Allergy Clin Immunol 2013; 132:1263-76; quiz 1277. [PMID: 23915713 PMCID: PMC3844062 DOI: 10.1016/j.jaci.2013.06.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/21/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023]
Abstract
Because of its essential role in gas exchange and oxygen delivery, the lung has evolved a variety of strategies to control inflammation and maintain homeostasis. Invasion of the lung by pathogens (and in some instances exposure to certain noninfectious particulates) disrupts this equilibrium and triggers a cascade of events aimed at preventing or limiting colonization (and more importantly infection) by pathogenic microorganisms. In this review we focus on viral infection of the lung and summarize recent advances in our understanding of the triggering of innate and adaptive immune responses to viral respiratory tract infection, mechanisms of viral clearance, and the well-recognized consequences of acute viral infection complicating underlying lung diseases, such as asthma.
Collapse
Affiliation(s)
- Jae-Kwang Yoo
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
| | - Taeg S. Kim
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
- Department of Pathology and Molecular Medicine, University of Virginia, Charlottesville, Va
| | - Matthew M. Hufford
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Va
| | - Thomas J. Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Va
- Department of Pathology and Molecular Medicine, University of Virginia, Charlottesville, Va
- Corresponding author: Thomas J. Braciale, MD, PhD, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908.
| |
Collapse
|
142
|
Kobold S, Völk S, Clauditz T, Küpper NJ, Minner S, Tufman A, Düwell P, Lindner M, Koch I, Heidegger S, Rothenfuer S, Schnurr M, Huber RM, Wilczak W, Endres S. Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells. J Thorac Oncol 2013; 8:1032-42. [PMID: 23774470 DOI: 10.1097/jto.0b013e31829923c8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In lung cancer, interleukin-22 (IL-22) expression within primary tissue has been demonstrated, but the frequency and the functional consequence of IL-22 signaling have not been addressed. This study aims at analyzing the cellular effects of IL-22 on lung carcinoma cell lines and the prognostic impact of IL-22 tissue expression in lung cancer patients. METHODS Biological effects of IL-22 signaling were investigated in seven lung cancer cell lines by Western blot, flow cytometry, real-time polymerase chain reaction, and proliferation assays. Tumor tissue specimens of two cohorts with a total of 2300 lung cancer patients were tested for IL-22 expression by immunohistochemistry. IL-22 serum concentrations were analyzed in 103 additional patients by enzyme-linked immunosorbent assay. RESULTS We found the IL-22 receptor 1 (IL-22-R1) to be expressed in six of seven lung cancer cell lines. However IL-22 signaling was functional in only four cell lines, where IL-22 induced signal transducer activator of transcription 3 phosphorylation and increased cell proliferation. Furthermore, IL-22 induced the expression of antiapoptotic B-cell lymphoma 2, but did not rescue tumor cells from carboplatin-induced apoptosis. Cisplatin-resistant cell lines showed a significant up-regulation of IL-22-R1 along with a stronger proliferative response to IL-22 stimulation. IL-22 was preferentially expressed in small- and large-cell lung carcinoma (58% and 46% of cases, respectively). However, no correlation between IL-22 expression by immunohistochemistry and prognosis was observed. CONCLUSION IL-22 is frequently expressed in lung cancer tissue. Enhanced IL-22-R1 expression and signaling in chemotherapy-refractory cell lines are indicative of a protumorigenic function of IL-22 and may contribute to a more aggressive phenotype.
Collapse
Affiliation(s)
- Sebastian Kobold
- Department of Internal Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science, Ludwig-Maximilians Universität München, Member of the German Center for Lung Research, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
Evidence has increasingly shown that the lungs are a major site of immune regulation. A robust and highly regulated immune response in the lung protects the host from pathogen infection, whereas an inefficient or deleterious response can lead to various pulmonary diseases. Many cell types, such as epithelial cells, dendritic cells, macrophages, neutrophils, eosinophils, and B and T lymphocytes, contribute to lung immunity. This review focuses on the recent advances in understanding how T lymphocytes mediate pulmonary host defenses against bacterial, viral, and fungal pathogens.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15201, USA
| | | |
Collapse
|
144
|
Ivanov S, Renneson J, Fontaine J, Barthelemy A, Paget C, Fernandez EM, Blanc F, De Trez C, Van Maele L, Dumoutier L, Huerre MR, Eberl G, Si-Tahar M, Gosset P, Renauld JC, Sirard JC, Faveeuw C, Trottein F. Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection. J Virol 2013; 87:6911-24. [PMID: 23596287 PMCID: PMC3676141 DOI: 10.1128/jvi.02943-12] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/04/2013] [Indexed: 12/30/2022] Open
Abstract
Interleukin-22 (IL-22) has redundant, protective, or pathogenic functions during autoimmune, inflammatory, and infectious diseases. Here, we addressed the potential role of IL-22 in host defense and pathogenesis during lethal and sublethal respiratory H3N2 influenza A virus (IAV) infection. We show that IL-22, as well as factors associated with its production, are expressed in the lung tissue during the early phases of IAV infection. Our data indicate that retinoic acid receptor-related orphan receptor-γt (RORγt)-positive αβ and γδ T cells, as well as innate lymphoid cells, expressed enhanced Il22 transcripts as early as 2 days postinfection. During lethal or sublethal IAV infections, endogenous IL-22 played no role in the control of IAV replication and in the development of the IAV-specific CD8(+) T cell response. During lethal infection, where wild-type (WT) mice succumbed to severe pneumonia, the lack of IL-22 did not accelerate or delay IAV-associated pathogenesis and animal death. In stark contrast, during sublethal IAV infection, IL-22-deficient animals had enhanced lung injuries and showed a lower airway epithelial integrity relative to WT littermates. Of importance, the protective effect of endogenous IL-22 in pulmonary damages was associated with a more controlled secondary bacterial infection. Indeed, after challenge with Streptococcus pneumoniae, IAV-experienced Il22(-/-) animals were more susceptible than WT controls in terms of survival rate and bacterial burden in the lungs. Together, IL-22 plays no major role during lethal influenza but is beneficial during sublethal H3N2 IAV infection, where it limits lung inflammation and subsequent bacterial superinfections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Joelle Renneson
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Josette Fontaine
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Adeline Barthelemy
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Elodie Macho Fernandez
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Fany Blanc
- Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U874, Paris, France
| | - Carl De Trez
- Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurye Van Maele
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels
| | - Michel-René Huerre
- Institut Pasteur, Paris, France
- Unite de Recherche et d'Expertise Histotechnologie et Pathologie, Paris, France
| | - Gérard Eberl
- Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA 1961, Paris, France
| | - Mustapha Si-Tahar
- Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U874, Paris, France
| | - Pierre Gosset
- Hopital Saint Vincent, Groupe Hospitalier de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | | | - Jean Claude Sirard
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christelle Faveeuw
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| |
Collapse
|
145
|
Gessner MA, Doran SF, Yu Z, Dunaway CW, Matalon S, Steele C. Chlorine gas exposure increases susceptibility to invasive lung fungal infection. Am J Physiol Lung Cell Mol Physiol 2013; 304:L765-73. [PMID: 23564508 PMCID: PMC3680763 DOI: 10.1152/ajplung.00030.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/27/2013] [Indexed: 01/08/2023] Open
Abstract
Chlorine (Cl₂) is a highly irritating and reactive gas with potential occupational and environmental hazards. Acute exposure to Cl₂ induces severe epithelial damage, airway hyperreactivity, impaired alveolar fluid clearance, and pulmonary edema in the presence of heightened inflammation and significant neutrophil accumulation in the lungs. Herein, we investigated whether Cl₂ exposure affected the lung antimicrobial immune response leading to increased susceptibility to opportunistic infections. Mice exposed to Cl₂ and challenged intratracheally 24 h thereafter with the opportunistic mold Aspergillus fumigatus demonstrated an >500-fold increase in A. fumigatus lung burden 72 h postchallenge compared with A. fumigatus mice exposed to room air. Cl₂-exposed A. fumigatus challenged mice also demonstrated significantly higher lung resistance following methacholine challenge and increased levels of plasma proteins (albumin and IgG) in the bronchoalveolar lavage fluid. Despite enhanced recruitment of inflammatory cells to the lungs of Cl₂-exposed A. fumigatus challenged mice, these cells (>60% of which were neutrophils) demonstrated a profound impairment in generating superoxide. Significantly higher A. fumigatus burden in the lungs of Cl₂ exposed mice correlated with enhanced production of IL-6, TNF-α, CXCL1, CCL2, and CCL3. Surprisingly, however, Cl₂-exposed A. fumigatus challenged mice had a specific impairment in the production of IL-17A and IL-22 in the lungs compared with mice exposed to room air and challenged with A. fumigatus. In summary, our results indicate that Cl₂ exposure markedly impairs the antimicrobial activity and inflammatory reactivity of myeloid cells in the lung leading to increased susceptibility to opportunistic pathogens.
Collapse
Affiliation(s)
- Melissa A Gessner
- Department of Medicine, Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
146
|
Mühl H, Scheiermann P, Bachmann M, Härdle L, Heinrichs A, Pfeilschifter J. IL-22 in tissue-protective therapy. Br J Pharmacol 2013; 169:761-71. [PMID: 23530726 PMCID: PMC3687657 DOI: 10.1111/bph.12196] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/13/2013] [Accepted: 02/12/2013] [Indexed: 12/14/2022] Open
Abstract
IL-22, a member of the IL-10 cytokine family, has recently gained significant attention as a protective agent in murine models of diseases driven by epithelial injury. Like its biochemical and functional sibling IL-10, IL-22 elicits cellular activation primarily by engaging the STAT3 signalling pathway. Exclusively produced by leukocytes, but targeting mostly cells of epithelial origin, IL-22 has been proposed as a specialized cytokine messenger acting between leukocytic and non-leukocytic cell compartments. A lack of response in leukocytes to IL-22 mirrors tightly controlled IL-22 receptor expression and probably explains the apparent lack of instant adverse effects after systemic IL-22 administration to mice. Anti-apoptotic, pro-proliferative and pro-regenerative characteristics the major biological properties of this cytokine. Specifically, application of IL-22 is associated with tissue protection and/or regeneration in murine models of infection/microbe-driven inflammation at host/environment interfaces, ventilator-induced lung injury, pancreatitis and liver damage. Overall, preclinical studies would support therapeutic administration of seemingly well-tolerated recombinant IL-22 for treatment of an array of acute diseases manifested in epithelial tissues. However, the feasibility of prolonged administration of this cytokine is expected to be restricted by the tumourigenic potential of the IL-22/STAT3 axis. IL-22, moreover, apparently displays an inherent context-specific capacity to amplify distinct aspects of autoimmune inflammation. Here, the prospects, expectations and restrictions of IL-22 administration in tissue-protective therapy are discussed.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drugs, Investigational/adverse effects
- Drugs, Investigational/metabolism
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Hepatic Stellate Cells/drug effects
- Hepatic Stellate Cells/immunology
- Hepatic Stellate Cells/metabolism
- Humans
- Interleukins/adverse effects
- Interleukins/genetics
- Interleukins/metabolism
- Interleukins/therapeutic use
- MAP Kinase Signaling System/drug effects
- Mucous Membrane/drug effects
- Mucous Membrane/immunology
- Mucous Membrane/metabolism
- Protective Agents/adverse effects
- Protective Agents/metabolism
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Receptors, Interleukin/agonists
- Receptors, Interleukin/metabolism
- Recombinant Proteins/adverse effects
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Regeneration/drug effects
- STAT3 Transcription Factor/agonists
- STAT3 Transcription Factor/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
147
|
Pociask DA, Scheller EV, Mandalapu S, McHugh KJ, Enelow RI, Fattman CL, Kolls JK, Alcorn JF. IL-22 is essential for lung epithelial repair following influenza infection. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1286-96. [PMID: 23490254 PMCID: PMC3620404 DOI: 10.1016/j.ajpath.2012.12.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 12/21/2022]
Abstract
Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22(-/-) mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22(-/-) mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22(-/-) animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease.
Collapse
Affiliation(s)
- Derek A. Pociask
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Erich V. Scheller
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sivanarayana Mandalapu
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kevin J. McHugh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Richard I. Enelow
- Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire
| | - Cheryl L. Fattman
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John F. Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
148
|
Tait Wojno ED, Artis D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 2013; 12:445-57. [PMID: 23084914 DOI: 10.1016/j.chom.2012.10.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently described group of innate immune cells that can regulate immunity, inflammation, and tissue repair in multiple anatomical compartments, particularly the barrier surfaces of the skin, airways, and intestine. Broad categories of ILCs have been defined based on transcription factor expression and the ability to produce distinct patterns of effector molecules. Recent studies have revealed that ILC populations can regulate commensal bacterial communities, contribute to resistance to helminth and bacterial pathogens, promote inflammation, and orchestrate tissue repair and wound healing. This review will examine the phenotype and function of murine and human ILCs and discuss the critical roles these innate immune cells play in health and disease.
Collapse
Affiliation(s)
- Elia D Tait Wojno
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
149
|
Behrends J, Renauld JC, Ehlers S, Hölscher C. IL-22 is mainly produced by IFNγ-secreting cells but is dispensable for host protection against Mycobacterium tuberculosis infection. PLoS One 2013; 8:e57379. [PMID: 23460846 PMCID: PMC3583848 DOI: 10.1371/journal.pone.0057379] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/21/2013] [Indexed: 12/13/2022] Open
Abstract
Anti-inflammatory treatment of autoimmune diseases is associated with an increased risk of reactivation tuberculosis (TB). Besides interleukin (IL-17)A, IL-22 represents a classical T helper (TH)17 cytokine and shares similar pathological effects in inflammatory diseases such as psoriasis or arthritis. Whereas IL-17A supports protective immune responses during mycobacterial infections, the role of IL-22 after infection with Mycobacterium tuberculosis (Mtb) is yet poorly characterized. Therefore, we here characterize the cell types producing IL-22 and the protective function of this cytokine during experimental TB in mice. Like IL-17A, IL-22 is expressed early after infection with Mtb in an IL-23-dependent manner. Surprisingly, the majority of IL-22-producing cells are not positive for IL-17A but have rather functional characteristics of interferon-gamma-producing TH1 cells. Although we found minor differences in the number of naive and central memory T cells as well as in the frequency of TH1 and polyfunctional T cells in mice deficient for IL-22, the absence of IL-22 does not affect the outcome of Mtb infection. Our study revealed that although produced by TH1 cells, IL-22 is dispensable for protective immune responses during TB. Therefore, targeting of IL-22 in inflammatory disease may represent a therapeutic approach that does not incur the danger of reactivation TB.
Collapse
Affiliation(s)
- Jochen Behrends
- Infection Immunology, Research Center Borstel (RCB), Borstel, Germany
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Stefan Ehlers
- Microbial Inflammation Research, RCB, Borstel, Germany
- Molecular Inflammation Medicine, Christian-Albrechts-University, Kiel, Germany
- Cluster of Excellence Inflammation-at-Interfaces (Borstel-Kiel-Lübeck-Plön), Germany
| | - Christoph Hölscher
- Infection Immunology, Research Center Borstel (RCB), Borstel, Germany
- Cluster of Excellence Inflammation-at-Interfaces (Borstel-Kiel-Lübeck-Plön), Germany
| |
Collapse
|
150
|
Mühl H. Pro-Inflammatory Signaling by IL-10 and IL-22: Bad Habit Stirred Up by Interferons? Front Immunol 2013; 4:18. [PMID: 23382730 PMCID: PMC3562761 DOI: 10.3389/fimmu.2013.00018] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/09/2013] [Indexed: 12/15/2022] Open
Abstract
Interleukin (IL)-10 and IL-22 are key members of the IL-10 cytokine family that share characteristic properties such as defined structural features, usage of IL-10R2 as one receptor chain, and activation of signal transducer and activator of transcription (STAT)-3 as dominant signaling mode. IL-10, formerly known as cytokine synthesis inhibitory factor, is key to deactivation of monocytes/macrophages and dendritic cells. Accordingly, pre-clinical studies document its anti-inflammatory capacity. However, the outcome of clinical trials assessing the therapeutic potential of IL-10 in prototypic inflammatory disorders has been disappointing. In contrast to IL-10, IL-22 acts primarily on non-leukocytic cells, in particular epithelial cells of intestine, skin, liver, and lung. STAT3-driven proliferation, anti-apoptosis, and anti-microbial tissue protection is regarded a principal function of IL-22 at host/environment interfaces. In this hypothesis article, hidden/underappreciated pro-inflammatory characteristics of IL-10 and IL-22 are outlined and related to cellular priming by type I interferon. It is tempting to speculate that an inherent inflammatory potential of IL-10 and IL-22 confines their usage in tissue protective therapy and beyond that determines in some patients efficacy of type I interferon treatment.
Collapse
Affiliation(s)
- Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|