101
|
Garg R, Liu Q, Van Kessel J, Asavajaru A, Uhlemann EM, Joessel M, Hamonic G, Khatooni Z, Kroeker A, Lew J, Scruten E, Pennington P, Deck W, Prysliak T, Nickol M, Apel F, Courant T, Kelvin AA, Van Kessel A, Collin N, Gerdts V, Köster W, Falzarano D, Racine T, Banerjee A. Efficacy of a stable broadly protective subunit vaccine platform against SARS-CoV-2 variants of concern. Vaccine 2024; 42:125980. [PMID: 38769033 DOI: 10.1016/j.vaccine.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
The emergence and ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid vaccine development platforms that can be updated to counteract emerging variants of currently circulating and future emerging coronaviruses. Here we report the development of a "train model" subunit vaccine platform that contains a SARS-CoV-2 Wuhan S1 protein (the "engine") linked to a series of flexible receptor binding domains (RBDs; the "cars") derived from SARS-CoV-2 variants of concern (VOCs). We demonstrate that these linked subunit vaccines when combined with Sepivac SWE™, a squalene in water emulsion (SWE) adjuvant, are immunogenic in Syrian hamsters and subsequently provide protection from infection with SARS-CoV-2 VOCs Omicron (BA.1), Delta, and Beta. Importantly, the bivalent and trivalent vaccine candidates offered protection against some heterologous SARS-CoV-2 VOCs that were not included in the vaccine design, demonstrating the potential for broad protection against a range of different VOCs. Furthermore, these formulated vaccine candidates were stable at 2-8 °C for up to 13 months post-formulation, highlighting their utility in low-resource settings. Indeed, our vaccine platform will enable the development of safe and broadly protective vaccines against emerging betacoronaviruses that pose a significant health risk for humans and agricultural animals.
Collapse
Affiliation(s)
- Ravendra Garg
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Jill Van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Akarin Asavajaru
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Eva-Maria Uhlemann
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Morgane Joessel
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Erin Scruten
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Paul Pennington
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - William Deck
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Tracy Prysliak
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Michaela Nickol
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Falko Apel
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Thomas Courant
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Nicolas Collin
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Trina Racine
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
102
|
Banho CA, de Carvalho Marques B, Sacchetto L, Lima AKS, Parra MCP, Lima ARJ, Ribeiro G, Martins AJ, Barros CRDS, Elias MC, Sampaio SC, Slavov SN, Rodrigues ES, Santos EV, Covas DT, Kashima S, Brassaloti RA, Petry B, Clemente LG, Coutinho LL, Assato PA, da Silva da Costa FA, Grotto RMT, Poleti MD, Lesbon JCC, Mattos EC, Fukumasu H, Giovanetti M, Alcantara LCJ, Souza-Neto JA, Rahal P, Araújo JP, Spilki FR, Althouse BM, Vasilakis N, Nogueira ML. Dynamic clade transitions and the influence of vaccination on the spatiotemporal circulation of SARS-CoV-2 variants. NPJ Vaccines 2024; 9:145. [PMID: 39127725 DOI: 10.1038/s41541-024-00933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Ana Karoline Sepedro Lima
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Alex Ranieri Jeronimo Lima
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Gabriela Ribeiro
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Antonio Jorge Martins
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Evandra Strazza Rodrigues
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Elaine Vieira Santos
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Bruna Petry
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Patricia Akemi Assato
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Rejane Maria Tommasini Grotto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
- Molecular Biology Laboratory, Applied Biotechnology Laboratory, Clinical Hospital of the Botucatu Medical School, Botucatu, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Jessika Cristina Chagas Lesbon
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Elisangela Chicaroni Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marta Giovanetti
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
- Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Selcetta, Italy
| | - Luiz Carlos Junior Alcantara
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
| | - Jayme A Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas StateUniversity, Manhattan, KS, USA
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - João Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Botucatu, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Information School, University of Washington, Seattle, WA, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
103
|
Wang Z, He Y, He Z, Guo Y, Zhao Y, Zhang Y. Development of highly adaptable RT-PCR methods for identifying Delta and BA.1 variants in inactivated COVID-19 vaccines. Mol Biol Rep 2024; 51:892. [PMID: 39110319 DOI: 10.1007/s11033-024-09799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/16/2024] [Indexed: 02/06/2025]
Abstract
Background The emergence and rapid spread of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), poses a significant threat to human health and public safety. While next-generation sequencing (NGS) is capable of detecting and tracking new COVID-19 variants for disease diagnosis and prevention, its high cost and time-consuming nature limit its widespread use. In this study, our aim was to develop a highly adaptable and accurate RT-PCR method for identifying the Delta or BA.1 variants in inactivated COVID-19 vaccine. We devised three two-plex RT-PCR methods targeting specific mutation sites: S: Δ156-157, S: N211-, L212I, and S: Δ142-144, Y145D. The RT-PCR method targeting the S: Δ156-157 mutation site was able to distinguish the Delta variant from other COVID-19 virus strains, while the RT-PCR methods targeting the S: N211-, L212I or S: Δ142-144, Y145D mutation sites were able to distinguish the BA.1 variant from other COVID-19 virus strains. We separately validated these three two-plex RT-PCR methods, and the results demonstrated good linearity, repeatability, reproducibility, and specificity for each method. Moreover, all three methods can be applied in the production of SARS-CoV-2 variant inactivated vaccines, enabling the identification of Delta or BA.1 variants in virus cultures as well as in inactivated vaccine stocks. This study presents a systematic approach to identify COVID-19 variants using multiple RT-PCR methods. We successfully developed three two-plex RT-PCR methods that can identify Delta and BA.1 variants based on specific mutation sites, and we completed the validation of these three methods.
Collapse
Affiliation(s)
- Zhanhui Wang
- Beijing Institute of Biological Products Company Limited, Beijing, 100176, China
| | - Yao He
- Beijing Institute of Biological Products Company Limited, Beijing, 100176, China
| | - Zhenyu He
- Beijing Institute of Biological Products Company Limited, Beijing, 100176, China
| | - Yancen Guo
- Beijing Institute of Biological Products Company Limited, Beijing, 100176, China
| | - Yuxiu Zhao
- Beijing Institute of Biological Products Company Limited, Beijing, 100176, China.
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, 100176, China.
| |
Collapse
|
104
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
105
|
He L, Wu Q, Zhang Z, Chen L, Yu K, Li L, Jia Q, Wang Y, Ni J, Wang C, Li Q, Zhai X, Zhao J, Liu Y, Fan R, Li YP. Development of Broad-Spectrum Nanobodies for the Therapy and Diagnosis of SARS-CoV-2 and Its Multiple Variants. Mol Pharm 2024; 21:3866-3879. [PMID: 38920116 DOI: 10.1021/acs.molpharmaceut.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.
Collapse
Affiliation(s)
- Lei He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qian Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lingling Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Leibin Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qiong Jia
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianqiang Ni
- China Animal Disease Control Center, Beijing 102618, China
| | - Chuanbin Wang
- China Animal Disease Control Center, Beijing 102618, China
| | - Qi Li
- China Animal Disease Control Center, Beijing 102618, China
| | - Xinyan Zhai
- China Animal Disease Control Center, Beijing 102618, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuliang Liu
- China Animal Disease Control Center, Beijing 102618, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yi-Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
106
|
van der Straten K, Guerra D, Kerster G, Claireaux M, Grobben M, Schriek AI, Boyd A, van Rijswijk J, Tejjani K, Eggink D, Beaumont T, de Taeye SW, de Bree GJ, Sanders RW, van Gils MJ. Primary SARS-CoV-2 variant of concern infections elicit broad antibody Fc-mediated effector functions and memory B cell responses. PLoS Pathog 2024; 20:e1012453. [PMID: 39146376 PMCID: PMC11349224 DOI: 10.1371/journal.ppat.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by human sera is a strong correlate of protection against symptomatic and severe Coronavirus Disease 2019 (COVID-19). The emergence of antigenically distinct SARS-CoV-2 variants of concern (VOCs) and the relatively rapid waning of serum antibody titers, however, raises questions about the sustainability of serum protection. In addition to serum neutralization, other antibody functionalities and the memory B cell (MBC) response are suggested to help maintaining this protection. In this study, we investigate the breadth of spike (S) protein-specific serum antibodies that mediate effector functions by interacting with Fc-gamma receptor IIa (FcγRIIa) and FcγRIIIa, and of the receptor binding domain (RBD)-specific MBCs, following a primary SARS-CoV-2 infection with the D614G, Alpha, Beta, Gamma, Delta, Omicron BA.1 or BA.2 variant. Irrespectively of the variant causing the infection, the breadth of S protein-specific serum antibodies that interact with FcγRIIa and FcγRIIIa and the RBD-specific MBC responses exceeded the breadth of serum neutralization, although the Alpha-induced B cell response seemed more strain-specific. Between VOC groups, both quantitative and qualitative differences in the immune responses were observed, suggesting differences in immunogenicity. Overall, this study contributes to the understanding of protective humoral and B cell responses in the light of emerging antigenically distinct VOCs, and highlights the need to study the immune system beyond serum neutralization to gain a better understanding of the protection against emerging variants.
Collapse
Affiliation(s)
- Karlijn van der Straten
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Denise Guerra
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gius Kerster
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marloes Grobben
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Anders Boyd
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Stichting HIV monitoring, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Dirk Eggink
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tim Beaumont
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Steven W. de Taeye
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location Academic Medical Center, Department of Internal Medicine, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Marit J. van Gils
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
107
|
Coelho LE, Luz PM, Pires DC, Jalil EM, Perazzo H, Torres TS, Cardoso SW, Peixoto EM, Nazer S, Massad E, Carvalho LM, Réquia WJ, Motta FC, Siqueira MM, Vasconcelos AT, da Fonseca GC, Cavalcante LT, Costa CA, Amancio RT, Villela DA, Pereira T, Goedert GT, Santos CV, Rodrigues NC, Bormann de Souza Filho BA, Csillag D, Grinsztejn B, Veloso VG, Struchiner CJ. SARS-CoV-2 transmission in a highly vulnerable population of Brazil: a household cohort study. LANCET REGIONAL HEALTH. AMERICAS 2024; 36:100824. [PMID: 38993539 PMCID: PMC11237915 DOI: 10.1016/j.lana.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Background Household transmission studies seek to understand the transmission dynamics of a pathogen by estimating the risk of infection from household contacts and community exposures. We estimated within/extra-household SARS-CoV-2 infection risk and associated factors in a household cohort study in one of the most vulnerable neighbourhoods in Rio de Janeiro city. Methods Individuals ≥1 years-old with suspected or confirmed COVID-19 in the past 30 days (index cases) and household members aged ≥1 year were enrolled and followed at 14 and 28 days (study period November/2020-December/2021). RT-PCR testing, COVID-19 symptoms, and SARS-CoV-2 serologies were ascertained in all visits. Chain binomial household transmission models were fitted using data from 2024 individuals (593 households). Findings Extra-household infection risk was 74.2% (95% credible interval [CrI] 70.3-77.8), while within-household infection risk was 11.4% (95% CrI 5.7-17.2). Participants reporting having received two doses of a COVID-19 vaccine had lower extra-household (68.9%, 95% CrI 57.3-77.6) and within-household (4.1%, 95% CrI 0.4-16.6) infection risk. Within-household infection risk was higher among participants aged 10-19 years, from overcrowded households, and with low family income. Contrastingly, extra-household infection risk was higher among participants aged 20-29 years, unemployed, and public transportation users. Interpretation Our study provides important insights into COVID-19 household/community transmission in a vulnerable population that resided in overcrowded households and who struggled to adhere to lockdown policies and social distancing measures. The high extra-household infection risk highlights the extreme social vulnerability of this population. Prioritising vaccination of the most socially vulnerable could protect these individuals and reduce widespread community transmission. Funding Fundação Oswaldo Cruz, CNPq, FAPERJ, Royal Society, Instituto Serrapilheira, FAPESP.
Collapse
Affiliation(s)
- Lara E. Coelho
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Paula M. Luz
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Débora C. Pires
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Emilia M. Jalil
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hugo Perazzo
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Thiago S. Torres
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Sandra W. Cardoso
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Eduardo M. Peixoto
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Sandro Nazer
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Eduardo Massad
- Escola de Matemática Aplicada, Fundação Getulio Vargas, Rio de Janeiro, Brazil
| | - Luiz Max Carvalho
- Escola de Matemática Aplicada, Fundação Getulio Vargas, Rio de Janeiro, Brazil
- Instituto de Ciências Matemáticas e Computação, Universidade de São Paulo, Brazil
| | - Weeberb J. Réquia
- Escola de Políticas Públicas e Governo, Fundação Getulio Vargas, Brasília, Brazil
| | - Fernando Couto Motta
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana T.R. Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
| | - Guilherme C. da Fonseca
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
| | - Liliane T.F. Cavalcante
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
| | - Carlos A.M. Costa
- Escola Nacional de Saúde Pública Sérgio Arouca, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Daniel A.M. Villela
- Programa de Computação Científica (PROCC), FIOCRUZ, Rio de Janeiro, Brazil
- Center for Health and Wellbeing, School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Tiago Pereira
- Instituto de Ciências Matemáticas e Computação, Universidade de São Paulo, Brazil
| | | | - Cleber V.B.D. Santos
- Instituto de Medicina Social Hesio Cordeiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nadia C.P. Rodrigues
- Escola Nacional de Saúde Pública Sérgio Arouca, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto de Medicina Social Hesio Cordeiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Breno Augusto Bormann de Souza Filho
- Escola Nacional de Saúde Pública Sérgio Arouca, FIOCRUZ, Rio de Janeiro, Brazil
- Departamento de Saúde Coletiva, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Daniel Csillag
- Escola de Matemática Aplicada, Fundação Getulio Vargas, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Valdilea G. Veloso
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Claudio J. Struchiner
- Escola de Matemática Aplicada, Fundação Getulio Vargas, Rio de Janeiro, Brazil
- Instituto de Medicina Social Hesio Cordeiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
108
|
Edwards CT, Karunakaran KA, Garcia E, Beutler N, Gagne M, Golden N, Aoued H, Pellegrini KL, Burnett MR, Honeycutt CC, Lapp SA, Ton T, Lin MC, Metz A, Bombin A, Goff K, Scheuermann SE, Wilkes A, Wood JS, Ehnert S, Weissman S, Curran EH, Roy M, Dessasau E, Paiardini M, Upadhyay AA, Moore I, Maness NJ, Douek DC, Piantadosi A, Andrabi R, Rogers TR, Burton DR, Bosinger SE. Passive infusion of an S2-Stem broadly neutralizing antibody protects against SARS-CoV-2 infection and lower airway inflammation in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605768. [PMID: 39109178 PMCID: PMC11302620 DOI: 10.1101/2024.07.30.605768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n=6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Christopher T. Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kirti A. Karunakaran
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, Minnesota 55356, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew Gagne
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Hadj Aoued
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kathryn L. Pellegrini
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Matthew R. Burnett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stacey A. Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Thang Ton
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mark C. Lin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Andrei Bombin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Amelia Wilkes
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stephanie Ehnert
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stacey Weissman
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Evan Dessasau
- Division of Histology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ian Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Daniel C. Douek
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas R. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
109
|
Nguyen HL, Hieu HK, Nguyen TQ, Nhung NTA, Li MS. Neuropilin-1 Protein May Serve as a Receptor for SARS-CoV-2 Infection: Evidence from Molecular Dynamics Simulations. J Phys Chem B 2024; 128:7141-7147. [PMID: 39010661 DOI: 10.1021/acs.jpcb.4c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The binding of the virus to host cells is the first step in viral infection. Human cell angiotensin converting enzyme 2 (ACE2) is the most popular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while other receptors have recently been observed in experiments. Neuropilin-1 protein (NRP1) is one of them, but the mechanism of its binding to the wild type (WT) and different variants of the virus remain unclear at the atomic level. In this work, all-atom umbrella sampling simulations were performed to clarify the binding mechanism of NRP1 to the spike protein fragments 679-685 of the WT, Delta, and Omicron BA.1 variants. We found that the Delta variant binds most strongly to NRP1, while the affinity for Omicron BA.1 slightly decreases for NRP1 compared to that of WT, and the van der Waals interaction plays a key role in stabilizing the studied complexes. The change in the protonation state of the His amino acid results in different binding free energies between variants. Consistent with the experiment, decreasing the pH was shown to increase the binding affinity of the virus to NRP1. Our results indicate that Delta and Omicron mutations not only affect fusogenicity but also affect NRP1 binding. In addition, we argue that viral evolution does not further improve NRP1 binding affinity which remains in the μM range but may increase immune evasion.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang 550000, Viet Nam
| | - Ho Khac Hieu
- Faculty of Environmental and Natural Sciences, Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang 550000, Viet Nam
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang 550000, Viet Nam
| | - Thai Quoc Nguyen
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap 81000, Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
110
|
Protopapas K, Thomas K, Moschopoulos CD, Oktapoda E, Marousi E, Marselou E, Stamoulis N, Filis C, Kazakou P, Oikonomopoulou C, Zampetas G, Efstratiadou O, Chavatza K, Kavatha D, Antoniadou A, Papadopoulos A. Breakthrough COVID-19 Infections after Booster SARS-CoV-2 Vaccination in a Greek Cohort of People Living with HIV during the Delta and Omicron Waves. Biomedicines 2024; 12:1614. [PMID: 39062187 PMCID: PMC11274973 DOI: 10.3390/biomedicines12071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Currently approved SARS-CoV-2 vaccines have been proven effective in protecting against severe COVID-19; however, they show variable efficacy against symptomatic infection and disease transmission. We studied the breakthrough COVID-19 infection (BTI) after booster vaccination against SARS-CoV-2 in people living with HIV (PWH). METHODS This was a retrospective, single-center, descriptive cohort study involving PWH, who were followed in the HIV Clinic of "Attikon" University Hospital in Athens, Greece. A BTI was defined as a case of laboratory-confirmed COVID-19 occurring at least 14 days after the third (booster) vaccine dose. RESULTS We studied 733 PWH [males: 89%, mean age: 45.2 ± 11.3 years, mean BMI: 26.1 ± 4.1, HIV stage at diagnosis (CDC classification): A/B/C = 80/9/11%, MSM: 72.6%] with well-controlled HIV infection. At least one comorbidity was recorded in 54% of cases. A history of ≥1 vaccination was reported by 90%, with 75% having been vaccinated with ≥3 vaccines. Four hundred and two (55%) PWH had a history of COVID-19 and 302 (41.2%) had a BTI, with only 15 (3.7%) needing hospitalization. Only one patient was admitted to the ICU, and no death was reported. Regarding BTI after booster dose, increased age (OR = 0.97, 95% CI: 0.96-0.99, per 1-year increase), and COVID-19 infection prior to booster dose (OR = 0.38, 95% CI: 0.21-0.68) were associated with a lower likelihood for BTI, whereas higher BMI (OR = 1.04, 95% CI: 1.01-1.08) and MSM as a mode of HIV transmission were associated with increased risk (OR = 2.59, 95% CI: 1.47-4.56). The incidence rate of total COVID-19 and BTI followed the epidemic curve of the general population, with the highest incidence recorded in June 2022. CONCLUSIONS A significant proportion of PWH with well-controlled HIV infection experienced a BTI, with the majority of them having mild infection. These data, which include the period of Omicron variant predominance, confirm the importance of vaccination in the protection against severe COVID-19.
Collapse
|
111
|
Hadley E, Yoo YJ, Patel S, Zhou A, Laraway B, Wong R, Preiss A, Chew R, Davis H, Brannock MD, Chute CG, Pfaff ER, Loomba J, Haendel M, Hill E, Moffitt R. Insights from an N3C RECOVER EHR-based cohort study characterizing SARS-CoV-2 reinfections and Long COVID. COMMUNICATIONS MEDICINE 2024; 4:129. [PMID: 38992084 PMCID: PMC11239932 DOI: 10.1038/s43856-024-00539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Although the COVID-19 pandemic has persisted for over 3 years, reinfections with SARS-CoV-2 are not well understood. We aim to characterize reinfection, understand development of Long COVID after reinfection, and compare severity of reinfection with initial infection. METHODS We use an electronic health record study cohort of over 3 million patients from the National COVID Cohort Collaborative as part of the NIH Researching COVID to Enhance Recovery Initiative. We calculate summary statistics, effect sizes, and Kaplan-Meier curves to better understand COVID-19 reinfections. RESULTS Here we validate previous findings of reinfection incidence (6.9%), the occurrence of most reinfections during the Omicron epoch, and evidence of multiple reinfections. We present findings that the proportion of Long COVID diagnoses is higher following initial infection than reinfection for infections in the same epoch. We report lower albumin levels leading up to reinfection and a statistically significant association of severity between initial infection and reinfection (chi-squared value: 25,697, p-value: <0.0001) with a medium effect size (Cramer's V: 0.20, DoF = 3). Individuals who experienced severe initial and first reinfection were older in age and at a higher mortality risk than those who had mild initial infection and reinfection. CONCLUSIONS In a large patient cohort, we find that the severity of reinfection appears to be associated with the severity of initial infection and that Long COVID diagnoses appear to occur more often following initial infection than reinfection in the same epoch. Future research may build on these findings to better understand COVID-19 reinfections.
Collapse
Affiliation(s)
| | | | - Saaya Patel
- Stony Brook University, Stony Brook, NY, USA
| | - Andrea Zhou
- University of Virginia, Charlottesville, VA, USA
| | | | - Rachel Wong
- Stony Brook University, Stony Brook, NY, USA
| | | | - Rob Chew
- RTI International, Durham, NC, USA
| | - Hannah Davis
- Patient Led Research Collaborative (PLRC), Calabasas, CA, USA
| | | | | | | | | | | | - Elaine Hill
- University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
112
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
113
|
Batchi-Bouyou AL, Djontu JC, Ingoba LL, Mougany JS, Mouzinga FH, Dollon Mbama Ntabi J, Kouikani FY, Christ Massamba Ndala A, Diafouka-Kietela S, Ampa R, Ntoumi F. Neutralizing antibody responses assessment after vaccination in people living with HIV using a surrogate neutralization assay. BMC Immunol 2024; 25:43. [PMID: 38987686 PMCID: PMC11234560 DOI: 10.1186/s12865-024-00625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/01/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE HIV has been reported to interfere with protective vaccination against multiple pathogens, usually through the decreased effectiveness of the antibody responses. We aimed to assess neutralizing antibody responses induced by COVID-19 vaccination in PLWH in Brazzaville, Republique of the Congo. METHOD The study was conducted at the Ambulatory Treatment Center of the National HIV Program, in charge of over 6000 PLWH, and the health center of FCRM in Brazzaville, Republic of the Congo. Participants were divided into two groups: PLWH with well-controlled HIV infection (CD4 counts no older than one week ≥ 800 / mm3, undetectable viral load of a period no older than one week and regularly taking Highly Active Antiretroviral Therapy for at least 6 months) and PLWOH. These groups were subdivided by vaccination status: fully vaccinated with adenovirus-based vaccines (Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac) or inactivated virus vaccine (Sinopharm/BBIP-CorV) and a control group of unvaccinated healthy individuals. All participants were RT-PCR negative at inclusion and/or with no documented history of SARS-CoV-2 infection. ELISA method was used for detecting IgG and neutralizing Antibodies against SARS-CoV-2 antigens using a commercial neutralizing assay. RESULTS We collected oropharyngeal and blood samples from 1016 participants including 684 PLWH and 332 PLWOH. Both PLWH and PLWOH elicited high levels of antibody responses after complete vaccination with inactivated virus vaccine (Sinopharm/BBIP-CorV) and adenovirus-based vaccines (Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac). Overall, no difference was observed in neutralization capacity between PLWOH and PLWH with well-controlled HIV infection. CONCLUSION The results from this study underline the importance of implementing integrated health systems that provide PLWH the opportunity to benefit HIV prevention and care, at the same time while monitoring their vaccine-induced antibody kinetics for appropriate booster schedules.
Collapse
Affiliation(s)
- Armel Landry Batchi-Bouyou
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo.
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo.
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, School of Medicine, Washington University in St Louis, St Louis, MO, 63130, USA.
| | - Jean Claude Djontu
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
| | - Line Lobaloba Ingoba
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Jiré Séphora Mougany
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Freisnel Hermeland Mouzinga
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Jacques Dollon Mbama Ntabi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Franck Yannis Kouikani
- Department of Health and Social Care, Ministry of Higher Education, Scientific Research and Technological Innovation, Brazzaville, Republic of the Congo
| | - Arcel Christ Massamba Ndala
- Ambulatory Treatment Center, National HIV Program, Ministry of Health and Population, Brazzaville, Republic of the Congo
| | - Steve Diafouka-Kietela
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo
| | - Raoul Ampa
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Villa D6, Campus OMS, Djoué, Brazzaville, Republic of the Congo.
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
114
|
Petros BA. Identifying changes in viral fitness using population genetic structure. Proc Natl Acad Sci U S A 2024; 121:e2410274121. [PMID: 38935582 PMCID: PMC11252975 DOI: 10.1073/pnas.2410274121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Affiliation(s)
- Brittany A. Petros
- Genomic Center for Infectious Diseases, Broad Institute of MIT and Harvard, Cambridge, MA02142
- Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA02115
- Department of Systems Biology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
115
|
Chao Z, Selivanovitch E, Kallitsis K, Lu Z, Pachaury A, Owens R, Daniel S. Recreating the biological steps of viral infection on a cell-free bioelectronic platform to profile viral variants of concern. Nat Commun 2024; 15:5606. [PMID: 38961055 PMCID: PMC11222515 DOI: 10.1038/s41467-024-49415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Viral mutations frequently outpace technologies used to detect harmful variants. Given the continual emergence of SARS-CoV-2 variants, platforms that can identify the presence of a virus and its propensity for infection are needed. Our electronic biomembrane sensing platform recreates distinct SARS-CoV-2 host cell entry pathways and reports the progression of entry as electrical signals. We focus on two necessary entry processes mediated by the viral Spike protein: virus binding and membrane fusion, which can be distinguished electrically. We find that closely related variants of concern exhibit distinct fusion signatures that correlate with trends in cell-based infectivity assays, allowing us to report quantitative differences in their fusion characteristics and hence their infectivity potentials. We use SARS-CoV-2 as our prototype, but we anticipate that this platform can extend to other enveloped viruses and cell lines to quantifiably assess virus entry.
Collapse
Affiliation(s)
- Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 124 Olin Hall, Ithaca, NY, 14853, USA
| | - Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 124 Olin Hall, Ithaca, NY, 14853, USA
| | - Konstantinos Kallitsis
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK
| | - Zixuan Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK
| | - Ambika Pachaury
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 124 Olin Hall, Ithaca, NY, 14853, USA
| | - Róisín Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 124 Olin Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
116
|
Liu P, Yue C, Meng B, Xiao T, Yang S, Liu S, Jian F, Zhu Q, Yu Y, Ren Y, Wang P, Li Y, Wang J, Mao X, Shao F, Wang Y, Gupta RK, Cao Y, Wang X. Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity. Natl Sci Rev 2024; 11:nwae206. [PMID: 39071099 PMCID: PMC11282955 DOI: 10.1093/nsr/nwae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/30/2024] Open
Abstract
Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity is recovered in the presence of heparin sulfate, which targets the 'N354 pocket' to ease restrictions of conformational transition resulting in a 'RBD-up' state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms.
Collapse
Affiliation(s)
- Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK
| | - Tianhe Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100080, China
- Changping Laboratory, Beijing 102206, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sijie Yang
- Changping Laboratory, Beijing 102206, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuo Liu
- Changping Laboratory, Beijing 102206, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100080, China
- Changping Laboratory, Beijing 102206, China
| | - Qianhui Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yanyan Ren
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Wang
- Changping Laboratory, Beijing 102206, China
| | - Yixin Li
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyue Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Mao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Shao
- Changping Laboratory, Beijing 102206, China
| | | | - Ravindra Kumar Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100080, China
- Changping Laboratory, Beijing 102206, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
117
|
Drouin N, Elfrink HL, Boers SA, van Hugten S, Wessels E, de Vries JJC, Groeneveld GH, Miggiels P, Van Puyvelde B, Dhaenens M, Budding AE, Ran L, Masius R, Takats Z, Boogaerds A, Bulters M, Muurlink W, Oostvogel P, Harms AC, van der Lubben M, Hankemeier T. A Targeted LC-MRM 3 Proteomic Approach for the Diagnosis of SARS-CoV-2 Infection in Nasopharyngeal Swabs. Mol Cell Proteomics 2024; 23:100805. [PMID: 38897290 PMCID: PMC11284538 DOI: 10.1016/j.mcpro.2024.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
Since its first appearance, severe acute respiratory syndrome coronavirus 2 quickly spread around the world and the lack of adequate PCR testing capacities, especially during the early pandemic, led the scientific community to explore new approaches such as mass spectrometry (MS). We developed a proteomics workflow to target several tryptic peptides of the nucleocapsid protein. A highly selective multiple reaction monitoring-cubed (MRM3) strategy provided a sensitivity increase in comparison to conventional MRM acquisition. Our MRM3 approach was first tested on an Amsterdam public health cohort (alpha-variant, 760 participants) detecting viral nucleocapsid protein peptides from nasopharyngeal swabs samples presenting a cycle threshold value down to 35 with sensitivity and specificity of 94.2% and 100.0%, without immunopurification. A second iteration of the MS-diagnostic test, able to analyze more than 400 samples per day, was clinically validated on a Leiden-Rijswijk public health cohort (delta-variant, 2536 participants) achieving 99.9% specificity and 93.1% sensitivity for patients with cycle threshold values up to 35. In this manuscript, we also developed and brought the first proof of the concept of viral variant monitoring in a complex matrix using targeted MS.
Collapse
Affiliation(s)
- Nicolas Drouin
- Metabolomics and Analytics Centre, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Hyung L Elfrink
- Metabolomics and Analytics Centre, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Stefan A Boers
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Sam van Hugten
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Els Wessels
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Jutte J C de Vries
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Geert H Groeneveld
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands; Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul Miggiels
- Metabolomics and Analytics Centre, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bart Van Puyvelde
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | | | | | | - Zoltan Takats
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | | | | | | - Paul Oostvogel
- Regional Laboratory, Municipal Health Service (GGD) Amsterdam, Amsterdam, The Netherlands
| | - Amy C Harms
- Metabolomics and Analytics Centre, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mariken van der Lubben
- Regional Laboratory, Municipal Health Service (GGD) Amsterdam, Amsterdam, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
118
|
Mukherjee V, Postelnicu R, Parker C, Rivers PS, Anesi GL, Andrews A, Ables E, Morrell ED, Brett-Major DM, Broadhurst MJ, Cobb JP, Irwin A, Kratochvil CJ, Krolikowski K, Kumar VK, Landsittel DP, Lee RA, Liebler JM, Segal LN, Sevransky JE, Srivastava A, Uyeki TM, Wurfel MM, Wyles D, Evans LE, Lutrick K, Bhatraju PK. COVID-19 Across Pandemic Variant Periods: The Severe Acute Respiratory Infection-Preparedness (SARI-PREP) Study. Crit Care Explor 2024; 6:e1122. [PMID: 39023121 PMCID: PMC11259394 DOI: 10.1097/cce.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has evolved through multiple phases in the United States, with significant differences in patient centered outcomes with improvements in hospital strain, medical countermeasures, and overall understanding of the disease. We describe how patient characteristics changed and care progressed over the various pandemic phases; we also emphasize the need for an ongoing clinical network to improve the understanding of known and novel respiratory viral diseases. OBJECTIVES To describe how patient characteristics and care evolved across the various COVID-19 pandemic periods in those hospitalized with viral severe acute respiratory infection (SARI). DESIGN Severe Acute Respiratory Infection-Preparedness (SARI-PREP) is a Centers for Disease Control and Prevention Foundation-funded, Society of Critical Care Medicine Discovery-housed, longitudinal multicenter cohort study of viral pneumonia. We defined SARI patients as those hospitalized with laboratory-confirmed respiratory viral infection and an acute syndrome of fever, cough, and radiographic infiltrates or hypoxemia. We collected patient-level data including demographic characteristics, comorbidities, acute physiologic measures, serum and respiratory specimens, therapeutics, and outcomes. Outcomes were described across four pandemic variant periods based on a SARS-CoV-2 sequenced subsample: pre-Delta, Delta, Omicron BA.1, and Omicron post-BA.1. SETTING Multicenter cohort of adult patients admitted to an acute care ward or ICU from seven hospitals representing diverse geographic regions across the United States. PARTICIPANTS Patients with SARI caused by infection with respiratory viruses. MAIN OUTCOMES AND RESULTS Eight hundred seventy-four adult patients with SARI were enrolled at seven study hospitals between March 2020 and April 2023. Most patients (780, 89%) had SARS-CoV-2 infection. Across the COVID-19 cohort, median age was 60 years (interquartile range, 48.0-71.0 yr) and 66% were male. Almost half (430, 49%) of the study population belonged to underserved communities. Most patients (76.5%) were admitted to the ICU, 52.5% received mechanical ventilation, and observed hospital mortality was 25.5%. As the pandemic progressed, we observed decreases in ICU utilization (94% to 58%), hospital length of stay (median, 26.0 to 8.5 d), and hospital mortality (32% to 12%), while the number of comorbid conditions increased. CONCLUSIONS AND RELEVANCE We describe increasing comorbidities but improved outcomes across pandemic variant periods, in the setting of multiple factors, including evolving care delivery, countermeasures, and viral variants. An understanding of patient-level factors may inform treatment options for subsequent variants and future novel pathogens.
Collapse
Affiliation(s)
- Vikramjit Mukherjee
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Radu Postelnicu
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Chelsie Parker
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Patrick S. Rivers
- Department of Family and Community Medicine, College of Medicine, University of Arizona, Tucson, AZ
| | - George L. Anesi
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Adair Andrews
- Society of Critical Care Medicine, Mount Prospect, IL
| | - Erin Ables
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Eric D. Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA
| | - David M. Brett-Major
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| | - M. Jana Broadhurst
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - J. Perren Cobb
- Departments of Surgery and Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Amy Irwin
- Division of Infectious Diseases, Denver Health Medical Center, Denver, CO
| | | | - Kelsey Krolikowski
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Vishakha K. Kumar
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Douglas P. Landsittel
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Richard A. Lee
- Division of Pulmonary Diseases and Critical Care Medicine, University of California, Irvine, School of Medicine, Irvine, CA
| | - Janice M. Liebler
- Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Leopoldo N. Segal
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Jonathan E. Sevransky
- Division of Pulmonary, Allergy, Critical Care and Sleep, School of Medicine, Emory University, Atlanta, GA
- Emory Critical Care Center, Emory Healthcare, Atlanta, GA
| | - Avantika Srivastava
- Institute of Implementation Science in Population Health, City University of New York, New York, NY
| | - Timothy M. Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA
| | - David Wyles
- Division of Infectious Diseases, Denver Health Medical Center, Denver, CO
| | - Laura E. Evans
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA
| | - Karen Lutrick
- Department of Family and Community Medicine, College of Medicine, University of Arizona, Tucson, AZ
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
119
|
Khan S, Partuk EO, Chiaravalli J, Kozer N, Shurrush KA, Elbaz-Alon Y, Scher N, Giraud E, Tran-Rajau J, Agou F, Barr HM, Avinoam O. High-throughput screening identifies broad-spectrum Coronavirus entry inhibitors. iScience 2024; 27:110019. [PMID: 38883823 PMCID: PMC11176637 DOI: 10.1016/j.isci.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The COVID-19 pandemic highlighted the need for antivirals against emerging coronaviruses (CoV). Inhibiting spike (S) glycoprotein-mediated viral entry is a promising strategy. To identify small molecule inhibitors that block entry downstream of receptor binding, we established a high-throughput screening (HTS) platform based on pseudoviruses. We employed a three-step process to screen nearly 200,000 small molecules. First, we identified hits that inhibit pseudoviruses bearing the SARS-CoV-2 S glycoprotein. Counter-screening against pseudoviruses with the vesicular stomatitis virus glycoprotein (VSV-G), yielded sixty-five SARS-CoV-2 S-specific inhibitors. These were further tested against pseudoviruses bearing the MERS-CoV S glycoprotein, which uses a different receptor. Out of these, five compounds, which included the known broad-spectrum inhibitor Nafamostat, were subjected to further validation and tested against pseudoviruses bearing the S glycoprotein of the Alpha, Delta, and Omicron variants as well as bona fide SARS-CoV-2. This rigorous approach revealed an unreported inhibitor and its derivative as potential broad-spectrum antivirals.
Collapse
Affiliation(s)
- Suman Khan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Efrat Ozer Partuk
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeanne Chiaravalli
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Noga Kozer
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Khriesto A Shurrush
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emilie Giraud
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Jaouen Tran-Rajau
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Fabrice Agou
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Haim Michael Barr
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
120
|
Lubinski B, Whittaker GR. Host Cell Proteases Involved in Human Respiratory Viral Infections and Their Inhibitors: A Review. Viruses 2024; 16:984. [PMID: 38932275 PMCID: PMC11209347 DOI: 10.3390/v16060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Bailey Lubinski
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Public & Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
121
|
Qu B, Miskey C, Gömer A, Kleinert RDV, Ibanez SC, Eberle R, Ebenig A, Postmus D, Nocke MK, Herrmann M, Itotia TK, Herrmann ST, Heinen N, Höck S, Hastert FD, von Rhein C, Schürmann C, Li X, van Zandbergen G, Widera M, Ciesek S, Schnierle BS, Tarr AW, Steinmann E, Goffinet C, Pfaender S, Locker JK, Mühlebach MD, Todt D, Brown RJP. TMPRSS2-mediated SARS-CoV-2 uptake boosts innate immune activation, enhances cytopathology, and drives convergent virus evolution. Proc Natl Acad Sci U S A 2024; 121:e2407437121. [PMID: 38814864 PMCID: PMC11161796 DOI: 10.1073/pnas.2407437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- European Virus Bioinformatics Center, 07743Jena, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | | | - Sara Calvo Ibanez
- Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Regina Eberle
- Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Aileen Ebenig
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Dylan Postmus
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Maximilian K. Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Maike Herrmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Tabitha K. Itotia
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- Department of Physical Sciences, Chuka University, 60400Chuka, Kenya
| | - Simon T. Herrmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Sebastian Höck
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | | | | | - Christoph Schürmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Xue Li
- Department of Cardiology, Medical University Hospital, 69120Heidelberg, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institut, 63225Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131Mainz, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596Frankfurt am Main, Germany
- German Center for Infection Research, 38124Braunschweig, Germany
| | | | - Alexander W. Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, NottinghamNG7 2UH, United Kingdom
- School of Life Sciences and National Institute for Health and Care Research, Nottingham Biomedical Research Centre, University of Nottingham, NottinghamNG7 2UH, United Kingdom
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Christine Goffinet
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology, 20251Hamburg, Germany
- University of Lübeck, 23562Lübeck, Germany
| | - Jacomina Krijnse Locker
- Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, 63225Langen, Germany
- Justus Liebig University Geissen, 35390Giessen, Germany
| | - Michael D. Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- German Center for Infection Research, 63225Giessen-Marburg-Langen, Germany
| | - Daniel Todt
- European Virus Bioinformatics Center, 07743Jena, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| |
Collapse
|
122
|
Biasetti L, Zervogiannis N, Shaw K, Trewhitt H, Serpell L, Bailey D, Wright E, Hall CN. Risk factors for severe COVID-19 disease increase SARS-CoV-2 infectivity of endothelial cells and pericytes. Open Biol 2024; 14:230349. [PMID: 38862017 DOI: 10.1098/rsob.230349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.
Collapse
Affiliation(s)
- Luca Biasetti
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Nikos Zervogiannis
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Kira Shaw
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Harry Trewhitt
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Louise Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex , East Sussex BN1 9QG, UK
| | | | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex , , East Sussex BN1 9QG, UK
| | - Catherine N Hall
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| |
Collapse
|
123
|
Liu Z, Cai L, Xing M, Qiao N, Liu J, Li X, Zhang C, Tang N, Xu Z, Guo Y, Lu R, Zhou D. Evaluation of antibody responses in healthy individuals receiving SARS-CoV-2 inactivated vaccines. BIOSAFETY AND HEALTH 2024; 6:153-164. [PMID: 40078728 PMCID: PMC11894967 DOI: 10.1016/j.bsheal.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 03/14/2025] Open
Abstract
Inactivated coronavirus disease 2019 (COVID-19) vaccines such as CoronaVac and BBIBP-CorV have been widely used in China. However, more investigation is still needed to understand antibodies' duration and effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in the real world. In this study, 575 participants who had been vaccinated with two or three doses of the inactivated vaccine were recruited. Serum samples were collected and tested for anti-spike IgG and neutralizing antibodies against SARS-CoV-2 (original strain, Dela, and Omicron). Unsurprisingly, a third dose of the vaccine significantly enhanced antibody responses against SARS-CoV-2 and its variants. However, despite a booster dose, the neutralizing antibody levels against Omicron, particularly the BA.5.2 subvariant, remained low. There was no sex bias, but an age bias was observed. Notably, the predominant IgG subclass antibodies were IgG1 and IgG2, with a much lower level of IgG4. After the booster shot, the ratio of IgG4 to IgG1 significantly increased. The observation of IgG1 to the IgG4 class switch after repeated inactivated vaccinations underscores the importance of continuous monitoring of subclass antibody responses. Further clinical investigations are required to understand the implications of this class switch for optimizing immunization strategies.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liyan Cai
- Physical examination center, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226000, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Nan Qiao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xuejun Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhelong Xu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Renfei Lu
- Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226000, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
124
|
Siqueira TS, Silva JRS, Silva IMO, Menezes DR, Santos PE, Gurgel RQ, Martins-Filho PR, Santos VS. Temporal trends and spatial clusters of high risk for maternal death due to COVID-19 pre and during COVID-19 vaccination in Brazil: a national population-based ecological study. Public Health 2024; 231:15-22. [PMID: 38593681 DOI: 10.1016/j.puhe.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE This study comprehensively analyzed the temporal and spatial dynamics of COVID-19 cases and deaths within the obstetric population in Brazil, comparing the periods before and during mass COVID-19 vaccination. We explored the trends and geographical patterns of COVID-19 cases and maternal deaths over time. We also examined their correlation with the SARS-CoV-2 variant circulating and the social determinants of health. STUDY DESIGN This is a nationwide population-based ecological study. METHODS We obtained data on COVID-19 cases, deaths, socioeconomic status, and vulnerability information for Brazil's 5570 municipalities for both the pre-COVID-19 vaccination and COVID-19 vaccination periods. A Bayesian model was used to mitigate indicator fluctuations. The spatial correlation of maternal cases and fatalities with socioeconomic and vulnerability indicators was assessed using bivariate Moran. RESULTS From March 2020 to June 2023, a total of 23,823 cases and 1991 maternal fatalities were recorded among pregnant and postpartum women. The temporal trends in maternal incidence and mortality rates fluctuated over the study period, largely influenced by widespread COVID-19 vaccination and the dominant SARS-CoV-2 variant. There was a significant reduction in maternal mortality due to COVID-19 following the introduction of vaccination. The geographical distribution of COVID-19 cases and maternal deaths exhibited marked heterogeneity in both periods, with distinct spatial clusters predominantly observed in the North, Northeast, and Central West regions. Municipalities with the highest Human Development Index reported the highest incidence rates, while those with the highest levels of social vulnerability exhibited elevated mortality and fatality rates. CONCLUSION Despite the circulation of highly transmissible variants of concern, maternal mortality due to COVID-19 was significantly reduced following the mass vaccination. There was a heterogeneous distribution of cases and fatalities in both periods (before and during mass vaccination). Smaller municipalities and those grappling with social vulnerability issues experienced the highest rates of maternal mortality and fatalities.
Collapse
Affiliation(s)
- T S Siqueira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - J R S Silva
- Department of Statistics and Actuarial Science, Federal University of Sergipe, Aracaju, Brazil
| | - I M O Silva
- Department of Medicine, Federal University of Sergipe, Lagarto, Brazil
| | - D R Menezes
- Department of Medicine, Federal University of Sergipe, Aracaju, Brazil
| | - P E Santos
- Department of Medicine, Federal University of Sergipe, Aracaju, Brazil
| | - R Q Gurgel
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil; Department of Medicine, Federal University of Sergipe, Aracaju, Brazil
| | - P R Martins-Filho
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil; Investigative Pathology Laboratory, Federal University of Sergipe, Aracaju, Brazil; Applied Health Sciences Graduate Program, Federal University of Sergipe, Lagarto, Brazil
| | - V S Santos
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil; Department of Medicine, Federal University of Sergipe, Lagarto, Brazil; Applied Health Sciences Graduate Program, Federal University of Sergipe, Lagarto, Brazil.
| |
Collapse
|
125
|
Jiang R, Han B, Xu W, Zhang X, Peng C, Dang Q, Sun W, Lin L, Lin Y, Fan L, Lv D, Shao L, Chen Y, Qiu Y, Han L, Kong W, Li G, Wang K, Peng J, Lin B, Tong Z, Lu X, Wang L, Gao F, Feng J, Li Y, Ma X, Wang J, Wang S, Shen W, Wang C, Yan K, Lin Z, Jin C, Mao L, Liu J, Kushnareva Y, Kotoi O, Zhu Z, Royal M, Brunswick M, Ji H, Xu X, Lu H. Olgotrelvir as a Single-Agent Treatment of Nonhospitalized Patients with Covid-19. NEJM EVIDENCE 2024; 3:EVIDoa2400026. [PMID: 38804790 DOI: 10.1056/evidoa2400026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Olgotrelvir is an oral antiviral with dual mechanisms of action targeting severe acute respiratory syndrome coronavirus 2 main protease (i.e., Mpro) and human cathepsin L. It has potential to serve as a single-agent treatment of coronavirus disease 2019 (Covid-19). METHODS We conducted a phase 3, double-blind, randomized, placebo-controlled trial to evaluate the efficacy and safety of olgotrelvir in 1212 nonhospitalized adult participants with mild to moderate Covid-19, irrespective of risk factors, who were randomly assigned to receive orally either 600 mg of olgotrelvir or placebo twice daily for 5 days. The primary and key secondary end points were time to sustained recovery of a panel of 11 Covid-19-related symptoms and the viral ribonucleic acid (RNA) load. The safety end point was incidence of treatment-emergent adverse events. RESULTS The baseline characteristics of 1212 participants were similar in the two groups. In the modified intention-to-treat population (567 patients in the placebo group and 558 in the olgotrelvir group), the median time to symptom recovery was 205 hours in the olgotrelvir group versus 264 hours in the placebo group (hazard ratio, 1.29; 95% confidence interval [CI], 1.13 to 1.46; P<0.001). The least squares mean (95% CI) changes of viral RNA load from baseline were -2.20 (-2.59 to -1.81) log10 copies/ml in olgotrelvir-treated participants and -1.40 (-1.79 to -1.01) in participants receiving placebo at day 4. Skin rash (3.3%) and nausea (1.5%) were more frequent in the olgotrelvir group than in the placebo group; there were no treatment-related serious adverse events, and no deaths were reported. CONCLUSIONS Olgotrelvir as a single-agent treatment significantly improved symptom recovery. Adverse effects were not dose limiting. (Funded by Sorrento Therapeutics, a parent company of ACEA Therapeutics; ClinicalTrials.gov number, NCT05716425.).
Collapse
Affiliation(s)
- Rongmeng Jiang
- Beijing Ditan Hospital Capital Medical University, China
| | - Bing Han
- Beijing Ditan Hospital Capital Medical University, China
| | - Wanhong Xu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Xiaoying Zhang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Chunxian Peng
- People's Hospital of Quzhou City, Quzhou, Zhejiang, China
| | - Qiang Dang
- Nanyang Central Hospital, Nanyang, Henan, China
| | - Wei Sun
- People's Hospital of Chongqing Banan District, Chongqing, China
| | - Ling Lin
- Hainan Third People's Hospital, Sanya, Hainan, China
| | - Yuanlong Lin
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, China
| | - Lingyan Fan
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Dongqing Lv
- Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Lei Shao
- Jinan Central Hospital, Jinan, Shandong, China
| | - Ying Chen
- The Second People's Hospital of Changde, Changde, Hunan, China
| | - Yunqing Qiu
- The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Limei Han
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Guangming Li
- The Sixth People's Hospital of Zhengzhou, Henan, China
| | - Kai Wang
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jie Peng
- Nangfang Hospital Southern Medical University, Guangzhou, Guangdong, China
| | - Bingliang Lin
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaowei Tong
- Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Xiaobo Lu
- The First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Feng Gao
- Linyi People's Hospital, Linyi, Shandong, China
| | - Jiemei Feng
- Guigang City People's Hospital, Guiyang, Guangxi, China
| | - Yongxia Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaojun Ma
- Linfen Central Hospital, Linfeng, Shanxi, China
| | - Jinxiang Wang
- Beijing Luhe Hospital Affiliated Capital Medical University, Beijing, China
| | - Shanbo Wang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Wei Shen
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Chao Wang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Kuan Yan
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Zhenhao Lin
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Can Jin
- ACEA Therapeutics, Inc., San Diego, CA
| | - Long Mao
- ACEA Therapeutics, Inc., San Diego, CA
| | - Jia Liu
- ACEA Therapeutics, Inc., San Diego, CA
| | | | | | | | - Mike Royal
- Sorrento Therapeutics, Inc., San Diego, CA
| | | | - Henry Ji
- Sorrento Therapeutics, Inc., San Diego, CA
| | - Xiao Xu
- ACEA Therapeutics, Inc., San Diego, CA
| | - Hongzhou Lu
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, China
| |
Collapse
|
126
|
Sayama Y, Sakagami A, Okamoto M, Sakamoto M, Koizumi H, Kimura Y, Dapat C, Saito M, Suzuki Y, Sasaki M, Sugawara N, Oshitani H. Identification of Various Recombinants in a Patient Coinfected With the Different SARS-CoV-2 Variants. Influenza Other Respir Viruses 2024; 18:e13340. [PMID: 38890805 PMCID: PMC11187932 DOI: 10.1111/irv.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Viral recombination that occurs by exchanging genetic materials between two viral genomes coinfecting the same host cells is associated with the emergence of new viruses with different virulence. Herein, we detected a patient coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants and identified various recombinants in the SARS-CoV-2 full-length spike gene using long-read and Sanger sequencing. METHODS Samples from five patients in Japan with household transmission of coronavirus disease 2019 (COVID-19) were analyzed using molecular assays for detection and identification of SARS-CoV-2. Whole-genome sequencing was conducted using multiplex PCR with short-read sequencing. RESULTS Among the five SARS-CoV-2-positive patients, the mutation-specific assay identified the Delta variant in three, the Omicron variant in one, and an undetermined in one. The undermined patient was identified as Delta using whole-genome sequencing, but samples showed a mixed population of Delta and Omicron variants. This patient was analyzed for viral quasispecies by long-read and Sanger sequencing using a full-length spike gene amplicon. In addition to the Delta and Omicron sequences, the viral quasispecies analysis identified nine different genetic recombinant sequences with various breakpoints between Delta and Omicron sequences. The nine detected recombinant sequences in the spike gene showed over 99% identity with viruses that were detected during the Delta and Omicron cocirculation period from the United States and Europe. CONCLUSIONS This study demonstrates that patients coinfected with different SARS-CoV-2 variants can generate various viral recombinants and that various recombinant viruses may be produced during the cocirculation of different variants.
Collapse
Affiliation(s)
- Yusuke Sayama
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Akie Sakagami
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Michiko Okamoto
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Masahiro Sakamoto
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Hikari Koizumi
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Yoko Kimura
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Clyde Dapat
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Mayuko Saito
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Yuko Suzuki
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Mie Sasaki
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Naoko Sugawara
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Hitoshi Oshitani
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| |
Collapse
|
127
|
Dalapati T, Williams CA, Giorgi EE, Hurst JH, Herbek S, Chen JL, Kosman C, Rotta AT, Turner NA, Pulido N, Aquino JN, Pfeiffer TS, Rodriguez J, Fouda GG, Permar SR, Kelly MS. Immunogenicity of Monovalent mRNA-1273 and BNT162b2 Vaccines in Children <5 Years of Age. Pediatrics 2024; 153:e2024066190. [PMID: 38548700 PMCID: PMC11153324 DOI: 10.1542/peds.2024-066190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The messenger RNA (mRNA)-based coronavirus disease 2019 vaccines approved for use in children <5 years of age have different antigen doses and administration schedules that could affect vaccine immunogenicity and effectiveness. We sought to compare the strength and breadth of serum binding and neutralizing antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicited by monovalent mRNA-based coronavirus disease 2019 vaccines in young children. METHODS We conducted a prospective cohort study of children 6 months to 4 years of age who completed primary series vaccination with monovalent mRNA-1273 or BNT162b2 vaccines. Serum was collected 1 month after primary vaccine series completion for the measurement of SARS-CoV-2-specific humoral immune responses, including antibody binding responses to Spike proteins from an ancestral strain (D614G) and major variants of SARS-CoV-2 and antibody neutralizing activity against D614G and Omicron subvariants (BA.1, BA.4/5). RESULTS Of 75 participants, 40 (53%) received mRNA-1273 and 35 (47%) received BNT162b2. Children receiving either primary vaccine series developed robust and broad SARS-CoV-2-specific binding and neutralizing antibodies, including to Omicron subvariants. Children with a previous history of SARS-CoV-2 infection developed significantly higher antibody binding responses and neutralization titers to Omicron subvariants, which is consistent with the occurrence of identified infections during the circulation of Omicron subvariants in the region. CONCLUSIONS Monovalent mRNA-1273 and BNT162b2 elicited similar antibody responses 1 month after vaccination in young children. In addition, previous infection significantly enhanced the strength of antibody responses to Omicron subvariants. The authors of future studies should evaluate incorporation of these vaccines into the standard childhood immunization schedule.
Collapse
Affiliation(s)
- Trisha Dalapati
- Medical Scientist Training Program
- Department of Molecular Genetics and Microbiology
| | - Caitlin A. Williams
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Elena E. Giorgi
- Department of Pediatrics, Division of Pediatric Critical Care Medicine
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, Washington
| | - Jillian H. Hurst
- Department of Pediatrics, Division of Infectious Diseases
- Department of Pediatrics, Children’s Health & Discovery Institute
| | - Savannah Herbek
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Jui-Lin Chen
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Christina Kosman
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | | | | | - Natalie Pulido
- Department of Pediatrics, Division of Infectious Diseases
| | | | | | - Javier Rodriguez
- Department of Pediatrics, Children’s Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina
| | - Genevieve G. Fouda
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Sallie R. Permar
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Matthew S. Kelly
- Department of Molecular Genetics and Microbiology
- Department of Pediatrics, Division of Infectious Diseases
| |
Collapse
|
128
|
Chen X, Mohapatra A, Nguyen HTV, Schimanski L, Kit Tan T, Rijal P, Chen CP, Cheng SH, Lee WH, Chou YC, Townsend AR, Ma C, Huang KYA. The presence of broadly neutralizing anti-SARS-CoV-2 RBD antibodies elicited by primary series and booster dose of COVID-19 vaccine. PLoS Pathog 2024; 20:e1012246. [PMID: 38857264 PMCID: PMC11192315 DOI: 10.1371/journal.ppat.1012246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/21/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Antibody-mediated immunity plays a key role in protection against SARS-CoV-2. We characterized B-cell-derived anti-SARS-CoV-2 RBD antibody repertoires from vaccinated and infected individuals and elucidate the mechanism of action of broadly neutralizing antibodies and dissect antibodies at the epitope level. The breadth and clonality of anti-RBD B cell response varies among individuals. The majority of neutralizing antibody clones lose or exhibit reduced activities against Beta, Delta, and Omicron variants. Nevertheless, a portion of anti-RBD antibody clones that develops after a primary series or booster dose of COVID-19 vaccination exhibit broad neutralization against emerging Omicron BA.2, BA.4, BA.5, BQ.1.1, XBB.1.5 and XBB.1.16 variants. These broadly neutralizing antibodies share genetic features including a conserved usage of the IGHV3-53 and 3-9 genes and recognize three clustered epitopes of the RBD, including epitopes that partially overlap the classically defined set identified early in the pandemic. The Fab-RBD crystal and Fab-Spike complex structures corroborate the epitope grouping of antibodies and reveal the detailed binding mode of broadly neutralizing antibodies. Structure-guided mutagenesis improves binding and neutralization potency of antibody with Omicron variants via a single amino-substitution. Together, these results provide an immunological basis for partial protection against severe COVID-19 by the ancestral strain-based vaccine and indicate guidance for next generation monoclonal antibody development and vaccine design.
Collapse
Affiliation(s)
- Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Pramila Rijal
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wen-Hsin Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Alain R. Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ying A. Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
129
|
Manu AA, Owusu IA, Oyawoye FO, Languon S, Barikisu IA, Tawiah-Eshun S, Quaye O, Donkor KJ, Paemka L, Amegatcher GA, Denyoh PM, Oduro-Mensah D, Awandare GA, Quashie PK. Development and utility of a SARS-CoV-2 pseudovirus assay for compound screening and antibody neutralization assays. Heliyon 2024; 10:e31392. [PMID: 38826759 PMCID: PMC11141373 DOI: 10.1016/j.heliyon.2024.e31392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Background The highly infectious nature of SARS-CoV-2 necessitates using bio-containment facilities to study viral pathogenesis and identify potent antivirals. However, the lack of high-level bio-containment laboratories across the world has limited research efforts into SARS-CoV-2 pathogenesis and the discovery of drug candidates. Previous research has reported that non-replicating SARS-CoV-2 Spike-pseudotyped viral particles are effective tools to screen for and identify entry inhibitors and neutralizing antibodies. Methods To generate SARS-CoV-2 pseudovirus, a lentiviral packaging plasmid p8.91, a luciferase expression plasmid pCSFLW, and SARS-CoV-2 Spike expression plasmids (Wild-type (D614G) or Delta strain) were co-transfected into HEK293 cells to produce a luciferase-expressing non-replicating pseudovirus which expresses SARS-CoV-2 spike protein on the surface. For relative quantitation, HEK293 cells expressing ACE2 (ACE2-HEK293) were infected with the pseudovirus, after which luciferase activity in the cells was measured as a relative luminescence unit. The ACE2-HEK293/Pseudovirus infection system was used to assess the antiviral effects of some compounds and plasma from COVID-19 patients to demonstrate the utility of this assay for drug discovery and neutralizing antibody screening. Results We successfully produced lentiviral-based SARS-CoV2 pseudoviruses and ACE2-expressing HEK293 cells. The system was used to screen compounds for SARS-CoV-2 entry inhibitors and identified two compounds with potent activity against SARS-CoV-2 pseudovirus entry into cells. The assay was also employed to screen patient plasma for neutralizing antibodies against SARS-CoV-2, as a precursor to live virus screening, using successful hits. Significance This assay is scalable and can perform medium-to high-throughput screening of antiviral compounds with neither severe biohazard risks nor the need for higher-level containment facilities. Now fully deployed in our resource-limited laboratory, this system can be applied to other highly infectious viruses by swapping out the envelope proteins in the plasmids used in pseudovirus production.
Collapse
Affiliation(s)
- Aaron A. Manu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Irene A. Owusu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Fatima O. Oyawoye
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
| | - Ibrahim Anna Barikisu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Sylvia Tawiah-Eshun
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Kwaku Jacob Donkor
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Gloria A. Amegatcher
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, Korle bu, University of Ghana, Legon, Accra, Ghana
| | - Prince M.D. Denyoh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Daniel Oduro-Mensah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Peter K. Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, United Kingdom
| |
Collapse
|
130
|
Tomezsko PJ, Ford CT, Meyer AE, Michaleas AM, Jaimes R. Human cytokine and coronavirus nucleocapsid protein interactivity using large-scale virtual screens. FRONTIERS IN BIOINFORMATICS 2024; 4:1397968. [PMID: 38855143 PMCID: PMC11157076 DOI: 10.3389/fbinf.2024.1397968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive in silico analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.
Collapse
Affiliation(s)
| | - Colby T. Ford
- Tuple LLC, Charlotte, NC, United States
- University of North Carolina at Charlotte, Department of Bioinformatics and Genomics, Charlotte, NC, United States
- University of North Carolina at Charlotte, Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), Charlotte, NC, United States
| | | | | | - Rafael Jaimes
- MIT Lincoln Laboratory, Lexington, MA, United States
| |
Collapse
|
131
|
Hamar Á, Mohammed D, Váradi A, Herczeg R, Balázsfalvi N, Fülesdi B, László I, Gömöri L, Gergely PA, Kovacs GL, Jáksó K, Gombos K. COVID-19 mortality prediction in Hungarian ICU settings implementing random forest algorithm. Sci Rep 2024; 14:11941. [PMID: 38789490 PMCID: PMC11126653 DOI: 10.1038/s41598-024-62791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024] Open
Abstract
The emergence of newer SARS-CoV-2 variants of concern (VOCs) profoundly changed the ICU demography; this shift in the virus's genotype and its correlation to lethality in the ICUs is still not fully investigated. We aimed to survey ICU patients' clinical and laboratory parameters in correlation with SARS-CoV-2 variant genotypes to lethality. 503 COVID-19 ICU patients were included in our study beginning in January 2021 through November 2022 in Hungary. Furthermore, we implemented random forest (RF) as a potential predictor regarding SARS-CoV-2 lethality among 649 ICU patients in two ICU centers. Survival analysis and comparison of hypertension (HT), diabetes mellitus (DM), and vaccination effects were conducted. Logistic regression identified DM as a significant mortality risk factor (OR: 1.55, 95% CI 1.06-2.29, p = 0.025), while HT showed marginal significance. Additionally, vaccination demonstrated protection against mortality (p = 0.028). RF detected lethality with 81.42% accuracy (95% CI 73.01-88.11%, [AUC]: 91.6%), key predictors being PaO2/FiO2 ratio, lymphocyte count, and chest Computed Tomography Severity Score (CTSS). Although a smaller number of patients require ICU treatment among Omicron cases, the likelihood of survival has not proportionately increased for those who are admitted to the ICU. In conclusion, our RF model supports more effective clinical decision-making among ICU COVID-19 patients.
Collapse
Affiliation(s)
- Ágoston Hamar
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Molecular Medicine Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Daryan Mohammed
- Molecular Medicine Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alex Váradi
- Molecular Medicine Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Róbert Herczeg
- Molecular Medicine Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Norbert Balázsfalvi
- Department of Anaesthesiology and Intensive Care, University of Debrecen, Debrecen, Hungary
| | - Béla Fülesdi
- Department of Anaesthesiology and Intensive Care, University of Debrecen, Debrecen, Hungary
| | - István László
- Department of Anaesthesiology and Intensive Care, University of Debrecen, Debrecen, Hungary
| | - Lídia Gömöri
- Doctoral School of Neuroscience, University of Debrecen, Debrecen, Hungary
| | | | - Gabor Laszlo Kovacs
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Molecular Medicine Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztián Jáksó
- Department of Anaesthesiology and Intensive Care, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Katalin Gombos
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
- Molecular Medicine Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| |
Collapse
|
132
|
Chang YH, Hsu MF, Chen WN, Wu MH, Kong WL, Lu MYJ, Huang CH, Chang FJ, Chang LY, Tsai HY, Tung CP, Yu JH, Kuo Y, Chou YC, Bai LY, Chang YC, Chen AY, Chen CC, Chen YH, Liao CC, Chang CS, Liang JJ, Lin YL, Angata T, Hsu STD, Lin KI. Functional and structural investigation of a broadly neutralizing SARS-CoV-2 antibody. JCI Insight 2024; 9:e179726. [PMID: 38775156 PMCID: PMC11141937 DOI: 10.1172/jci.insight.179726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Nan Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Wye-Lup Kong
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Ju Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Ho-Yang Tsai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jou-Hui Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yali Kuo
- Biomedical Translation Research Center (BioTReC)
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC)
| | - Li-Yang Bai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuan-Chih Chang
- Institute of Biological Chemistry and
- Academia Sinica Cryo-EM Center, and
| | - An-Yu Chen
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Biomedical Translation Research Center (BioTReC)
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and
| | - Shang-Te Danny Hsu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKC M2, ) Hiroshima University, Hiroshima, Japan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC)
| |
Collapse
|
133
|
Guo Z, Zeng T, Lu Y, Sun S, Liang X, Ran J, Wu Y, Chong MKC, Wang K, Zhao S. Transmission risks of Omicron BA.5 following inactivated COVID-19 vaccines among children and adolescents in China. COMMUNICATIONS MEDICINE 2024; 4:92. [PMID: 38762678 PMCID: PMC11102477 DOI: 10.1038/s43856-024-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND As SARS-CoV-2 Omicron variants circulating globally since 2022, assessing the transmission characteristics, and the protection of vaccines against emerging Omicron variants among children and adolescents are needed for guiding the control and vaccination policies. METHODS We conducted a retrospective cohort study for SARS-CoV-2 infections and close contacts aged <18 years from an outbreak seeded by Omicron BA.5 variants. The secondary attack rate (SAR) was calculated and the protective effects of two doses of inactivated vaccine (mainly Sinopharm /BBIBP-CorV) within a year versus one dose or two doses above a year after vaccination against the transmission and infection of Omicron BA.5 were estimated. RESULTS A total of 3442 all-age close contacts of 122 confirmed SARS-CoV-2 infections aged 0-17 years were included. The SAR was higher in the household setting and for individuals who received a one-dose inactivated vaccine or those who received a two-dose for more than one year, with estimates of 28.5% (95% credible interval [CrI]: 21.1, 37.7) and 55.3% (95% CrI: 24.4, 84.8), respectively. The second dose of inactivated vaccine conferred substantial protection against all infection and transmission of Omicron BA.5 variants within a year. CONCLUSIONS Our findings support the rollout of the second dose of inactivated vaccine for children and adolescents during the Omciron BA.5 predominant epidemic phase. Given the continuous emergence of SARS-CoV-2 variants, monitoring the transmission risk and corresponding vaccine effectiveness against SARS-CoV-2 variants among children and adolescents is important to inform control strategy.
Collapse
Affiliation(s)
- Zihao Guo
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Ting Zeng
- School of Public Health, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Yaoqin Lu
- School of Public Health, Xinjiang Medical University, Urumqi, China
- Urumqi Center for Disease Control and Prevention, Urumqi, China
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xiao Liang
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yushan Wu
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- Centre for Health Systems and Policy Research, Chinese University of Hong Kong, Hong Kong, China
| | - Marc K C Chong
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- Centre for Health Systems and Policy Research, Chinese University of Hong Kong, Hong Kong, China
- Clinical Trials and Biostatistics Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China
| | - Kai Wang
- School of Public Health, Xinjiang Medical University, Urumqi, China.
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China.
- MoE Key Laboratory of Prevention and Control of Major Diseases in the Population, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
134
|
Lei R, Qing E, Odle A, Yuan M, Gunawardene CD, Tan TJC, So N, Ouyang WO, Wilson IA, Gallagher T, Perlman S, Wu NC, Wong LYR. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. Nat Commun 2024; 15:4056. [PMID: 38744813 PMCID: PMC11094058 DOI: 10.1038/s41467-024-48104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we perform a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identify mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we show that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chaminda D Gunawardene
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA.
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
135
|
Chen W, Jiang X, Liang W, Bai H, Xu M, Liu Z, Yi L, Liu Y, Huang Y, Zhang Y, Xu L, Xie B, Zhang N, Yu J, Lu J, Xiao H, Li X. SARS-CoV-2 Omicron Variants Show Attenuated Neurovirulence Compared with the Wild-Type Strain in Elderly Human Brain Spheroids. RESEARCH (WASHINGTON, D.C.) 2024; 7:0376. [PMID: 38741604 PMCID: PMC11089278 DOI: 10.34133/research.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/13/2024] [Indexed: 05/16/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 Omicron variants still causes neurological complications in elderly individuals. However, whether and how aging brains are affected by Omicron variants in terms of neuroinvasiveness and neurovirulence are unknown. Here, we utilize resected paracarcinoma brain tissue from elderly individuals to generate primary brain spheroids (BSs) for investigating the replication capability of live wild-type (WT) strain and Omicron (BA.1/BA.2), as well as the mechanisms underlying their neurobiological effects. We find that both WT and Omicron BA.1/BA.2 are able to enter BSs but weakly replicate. There is no difference between Omicron BA.1/BA.2 and WT strains in neurotropism in aging BSs. However, Omicron BA.1/BA.2 exhibits ameliorating neurological damage. Transcriptional profiling indicates that Omicron BA.1/BA.2 induces a lower neuroinflammatory response than WT strain in elderly BSs, suggesting a mechanistic explanation for their attenuated neuropathogenicity. Moreover, we find that both Omicron BA.1/BA.2 and WT strain infections disrupt neural network activity associated with neurodegenerative disorders by causing neuron degeneration and amyloid-β deposition in elderly BSs. These results uncover Omicron-specific mechanisms and cellular immune responses associated with severe acute respiratory syndrome coronavirus 2-induced neurological complications.
Collapse
Affiliation(s)
- Weikang Chen
- Department of Neurosurgery,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiaobing Jiang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China,
Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou 510000, China
| | - Wei Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Haojie Bai
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Mingze Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhe Liu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510000, China
| | - Lina Yi
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510000, China
| | - Yanming Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yanxia Huang
- Department of Neurosurgery,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yongxin Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Lixia Xu
- Department of Oncology,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Baoshu Xie
- Department of Neurosurgery,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Nu Zhang
- Department of Neurosurgery,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
- Department of Medicine and Therapeutics and Institute of Digestive Disease, State Key Laboratory of Digestive Disease,
The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jing Lu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510000, China
| | - Haipeng Xiao
- Department of Endocrinology,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
136
|
Jarju S, Wenlock RD, Danso M, Jobe D, Jagne YJ, Darboe A, Kumado M, Jallow Y, Touray M, Ceesay EA, Gaye H, Gaye B, Tunkara A, Kandeh S, Gomes M, Sylva EL, Toure F, Hornsby H, Lindsey BB, Nicklin MJ, Sayers JR, Sesay AK, Kucharski A, Hodgson D, Kampmann B, de Silva TI. High SARS-CoV-2 incidence and asymptomatic fraction during Delta and Omicron BA.1 waves in The Gambia. Nat Commun 2024; 15:3814. [PMID: 38714680 PMCID: PMC11076623 DOI: 10.1038/s41467-024-48098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/19/2024] [Indexed: 05/10/2024] Open
Abstract
Little is known about SARS-CoV-2 infection risk in African countries with high levels of infection-driven immunity and low vaccine coverage. We conducted a prospective cohort study of 349 participants from 52 households in The Gambia between March 2021 and June 2022, with routine weekly SARS-CoV-2 RT-PCR and 6-monthly SARS-CoV-2 serology. Attack rates of 45% and 57% were seen during Delta and Omicron BA.1 waves respectively. Eighty-four percent of RT-PCR-positive infections were asymptomatic. Children under 5-years had a lower incidence of infection than 18-49-year-olds. One prior SARS-CoV-2 infection reduced infection risk during the Delta wave only, with immunity from ≥2 prior infections required to reduce the risk of infection with early Omicron lineage viruses. In an African population with high levels of infection-driven immunity and low vaccine coverage, we find high attack rates during SARS-CoV-2 waves, with a high proportion of asymptomatic infections and young children remaining relatively protected from infection.
Collapse
Affiliation(s)
- Sheikh Jarju
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Rhys D Wenlock
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Madikoi Danso
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Dawda Jobe
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Ya Jankey Jagne
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Alansana Darboe
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Michelle Kumado
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Yusupha Jallow
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Mamlie Touray
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Ebrima A Ceesay
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Hoja Gaye
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Biran Gaye
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Abdoulie Tunkara
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Sheriff Kandeh
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Marie Gomes
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Ellen Lena Sylva
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Fatoumata Toure
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Hailey Hornsby
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK
| | - Benjamin B Lindsey
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK
| | - Martin J Nicklin
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK
| | - Jon R Sayers
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK
| | - Abdul K Sesay
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia.
- Institute for International Health, Charité Universitätsmedizin, Berlin, Germany.
| | - Thushan I de Silva
- Vaccines and Immunity Theme, Medical Research Council The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Banjul, The Gambia.
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK.
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
137
|
Vlastarakos PV, Delides A, Sideris G, Tsiodras S. Spot Diagnosis for Suspected COVID-19 Cases: Is there a Place for a Traditional Weapon in Modern Combat? Balkan Med J 2024; 41:228-229. [PMID: 38282274 PMCID: PMC11077929 DOI: 10.4274/balkanmedj.galenos.2024.2023-11-133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Affiliation(s)
- Petros V. Vlastarakos
- 2nd University ENT Department, University General Hospital Attikon, Chaidari, Greece
| | - Alexandros Delides
- 2nd University ENT Department, University General Hospital Attikon, Chaidari, Greece
| | - Giorgos Sideris
- 2nd University ENT Department, University General Hospital Attikon, Chaidari, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, University General Hospital Attikon, Chaidari, Greece
| |
Collapse
|
138
|
Tamim H, Hashim R, Jamil N, Chong LY, Johari Z. Clinical outcomes and risk factors for SARS-CoV-2 breakthrough cases following vaccination with BNT162b2, CoronaVac, or ChAdOx1-S: A retrospective cohort study in Malaysia. Heliyon 2024; 10:e29574. [PMID: 38699728 PMCID: PMC11063388 DOI: 10.1016/j.heliyon.2024.e29574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Background The SARS-CoV-2 pandemic drove global vaccination. However, breakthrough infections raised concerns about vaccine performance, leading the World Health Organization (WHO) to recommend investigations thereof. This study aimed to evaluate the clinical outcomes (time to breakthrough infection, intensive care unit [ICU] admission, and in-hospital mortality) of hospitalised patients with SARS-CoV-2 breakthrough infection. This was the primary outcome and the risk factors associated with its severity were the secondary outcomes. Methods This retrospective cohort study at a multispecialty tertiary hospital in Selangor, Malaysia included 200 fully adult vaccinated patients, with confirmed SARS-CoV-2 infection, admitted from September 2021 to February 2022. Participants were selected by simple random sampling. Infection severity was categorised as CAT 2-3 (mild-moderate) and 4-5 (severe-critical). Results The time to breakthrough infection was significantly longer for BNT162B2 recipients (128.47 ± 46.21 days) compared to CoronaVac (94.09 ± 48.71 days; P = 0.001) and ChAdOx1-S recipients (90.80 ± 37.59 days; P = 0.019). No significant associations were found between SARS-CoV-2-related ICU admission, mortality, and the vaccines. Multivariable analysis identified vaccine type, variant of concern, ethnicity, and hypertension as significant predictors of severity. BNT162b2 and ChAdOx1-S recipients had significantly (81 % and 74 %, respectively) lower odds of CAT 4-5 infection compared to CoronaVac recipients. Indian patients had a significantly (83 %) lower chance of CAT 4-5 infection compared to Malay patients. Patients with breakthrough infections during the Omicron period had a significantly (58 %) lower risk of CAT 4-5 compared to those in the Delta period. The CAT 4-5 risk was significantly (nearly threefold) higher in hypertensive patients. Conclusion The results support the Malaysian Ministry of Health's recommended booster three months after primary vaccination and the WHO's recommended heterologous booster following CoronaVac. Certain ethnic groups, hypertensive patients, and viral variants may require attention in future pandemics.
Collapse
Affiliation(s)
- Hessa Tamim
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Rosnani Hashim
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Nurdiana Jamil
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Li Yin Chong
- Sultan Idris Shah Serdang Hospital, Jalan Puchong, 43000, Kajang, Selangor, Malaysia
| | - Zainol Johari
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| |
Collapse
|
139
|
Ogger PP, Martín MG, Jang S, Zhou J, Brown J, Sukhova K, Furnon W, Patel AH, Cowton V, Palmarini M, Barclay WS, Johansson C. SARS-CoV-2 strains bearing Omicron BA.1 spike replicate in C57BL/6 mice. Front Immunol 2024; 15:1383612. [PMID: 38742107 PMCID: PMC11089223 DOI: 10.3389/fimmu.2024.1383612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction SARS-CoV-2, the cause of the COVID pandemic, is an RNA virus with a high propensity to mutate. Successive virus variants, including variants of concern (VOC), have emerged with increased transmission or immune escape. The original pandemic virus and early variants replicated poorly, if at all, in mice at least partly due to a mismatch between the receptor binding domain on the viral spike protein and the murine angiotensin converting enzyme 2 (ACE2). Omicron VOC emerged in late 2021 harboring > 50 new mutations, 35 of them in the spike protein. This variant resulted in a very large wave of infections, even in the face of prior immunity, albeit being inherently less severe than earlier variants. Reflecting the lower severity reported in humans, Omicron displayed attenuated infection in hamsters and also in the K18-hACE2 mouse model. K18-hACE2 mice express both the human ACE2 as well as the endogenous mouse ACE2. Methods Here we infected hACE2 knock-in mice that express only human ACE2 and no murine ACE2, or C57BL/6 wildtype mice with SARS-CoV-2 D614G (first-wave isolate), Delta or Omicron BA.1 variants and assessed infectivity and downstream innate immune responses. Results While replication of SARS-CoV-2 Omicron was lower in the lungs of hACE2 knock-in mice compared with SARS-CoV-2 D614G and VOC Delta, it replicated more efficiently than the earlier variants in C57BL/6 wildtype mice. This opens the opportunity to test the effect of host genetics on SARS-CoV-2 infections in wildtype mice. As a proof of principle, we tested Omicron infection in mice lacking expression of the interferon-alpha receptor-1 (IFNAR1). In these mice we found that loss of type I IFN receptor signaling resulted in higher viral loads in the lungs were detected. Finally, using a chimeric virus of first wave SARS-CoV-2 harboring the Omicron spike protein, we show that Omicron spike increase infection of C57BL/6 wildtype mice, but non-spike genes of Omicron confer attenuation of viral replication. Discussion Since this chimeric virus efficiently infected C57BL/6 wildtype mice, and replicated in their lungs, our findings illustrate a pathway for genetic mapping of virushost interactions during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Patricia P. Ogger
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Minerva Garcia Martín
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Soyeon Jang
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jie Zhou
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jonathan Brown
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
140
|
Ambrożek-Latecka M, Kozlowski P, Hoser G, Bandyszewska M, Hanusek K, Nowis D, Gołąb J, Grzanka M, Piekiełko-Witkowska A, Schulz L, Hornung F, Deinhardt-Emmer S, Kozlowska E, Skirecki T. SARS-CoV-2 and its ORF3a, E and M viroporins activate inflammasome in human macrophages and induce of IL-1α in pulmonary epithelial and endothelial cells. Cell Death Discov 2024; 10:191. [PMID: 38664396 PMCID: PMC11045860 DOI: 10.1038/s41420-024-01966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammasome assembly is a potent mechanism responsible for the host protection against pathogens, including viruses. When compromised, it can allow viral replication, while when disrupted, it can perpetuate pathological responses by IL-1 signaling and pyroptotic cell death. SARS-CoV-2 infection was shown to activate inflammasome in the lungs of COVID-19 patients, however, potential mechanisms responsible for this response are not fully elucidated. In this study, we investigated the effects of ORF3a, E and M SARS-CoV-2 viroporins in the inflammasome activation in major populations of alveolar sentinel cells: macrophages, epithelial and endothelial cells. We demonstrated that each viroporin is capable of activation of the inflammasome in macrophages to trigger pyroptosis-like cell death and IL-1α release from epithelial and endothelial cells. Small molecule NLRP3 inflammasome inhibitors reduced IL-1 release but weakly affected the pyroptosis. Importantly, we discovered that while SARS-CoV-2 could not infect the pulmonary microvascular endothelial cells it induced IL-1α and IL-33 release. Together, these findings highlight the essential role of macrophages as the major inflammasome-activating cell population in the lungs and point to endothelial cell expressed IL-1α as a potential novel component driving the pulmonary immunothromobosis in COVID-19.
Collapse
Affiliation(s)
- Magdalena Ambrożek-Latecka
- Department of Translational Immunology and Experimental Intensive Care, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grażyna Hoser
- Department of Translational Immunology and Experimental Intensive Care, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Magdalena Bandyszewska
- Department of Translational Immunology and Experimental Intensive Care, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Faculty of Medicine, Medial University of Warsaw, Warsaw, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Luise Schulz
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Franziska Hornung
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | | | - Ewa Kozlowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
141
|
Inoue T, Yamamoto Y, Sato K, Okemoto-Nakamura Y, Shimizu Y, Ogawa M, Onodera T, Takahashi Y, Wakita T, Kaneko MK, Fukasawa M, Kato Y, Noguchi K. Overcoming antibody-resistant SARS-CoV-2 variants with bispecific antibodies constructed using non-neutralizing antibodies. iScience 2024; 27:109363. [PMID: 38500835 PMCID: PMC10946335 DOI: 10.1016/j.isci.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
A current challenge is the emergence of SARS-CoV-2 variants, such as BQ.1.1 and XBB.1.5, that can evade immune defenses, thereby limiting antibody drug effectiveness. Emergency-use antibody drugs, including the widely effective bebtelovimab, are losing their benefits. One potential approach to address this issue are bispecific antibodies which combine the targeting abilities of two antibodies with distinct epitopes. We engineered neutralizing bispecific antibodies in the IgG-scFv format from two initially non-neutralizing antibodies, CvMab-6 (which binds to the receptor-binding domain [RBD]) and CvMab-62 (targeting a spike protein S2 subunit epitope adjacent to the known anti-S2 antibody epitope). Furthermore, we created a bispecific antibody by incorporating the scFv of bebtelovimab with our anti-S2 antibody, demonstrating significant restoration of effectiveness against bebtelovimab-resistant BQ.1.1 variants. This study highlights the potential of neutralizing bispecific antibodies, which combine existing less effective anti-RBD antibodies with anti-S2 antibodies, to revive the effectiveness of antibody therapeutics compromised by immune-evading variants.
Collapse
Affiliation(s)
- Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Kaoru Sato
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku 164-8530, Japan
| | - Motohiko Ogawa
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takaji Wakita
- National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Masayoshi Fukasawa
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Kohji Noguchi
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
142
|
Du Z, Wang L, Bai Y, Liu Y, Lau EHY, Galvani AP, Krug RM, Cowling BJ, Meyers LA. A retrospective cohort study of Paxlovid efficacy depending on treatment time in hospitalized COVID-19 patients. eLife 2024; 13:e89801. [PMID: 38622989 PMCID: PMC11078542 DOI: 10.7554/elife.89801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.
Collapse
Affiliation(s)
- Zhanwei Du
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative RegionHong KongChina
- Laboratory of Data Discovery for Health LimitedHong KongChina
| | - Lin Wang
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Yuan Bai
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative RegionHong KongChina
- Laboratory of Data Discovery for Health LimitedHong KongChina
| | - Yunhu Liu
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative RegionHong KongChina
| | - Eric HY Lau
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative RegionHong KongChina
- Laboratory of Data Discovery for Health LimitedHong KongChina
- Center for Infectious Disease Modeling and Analysis, Yale School of Public HealthNew HavenUnited States
| | - Alison P Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public HealthNew HavenUnited States
| | - Robert M Krug
- Department of Molecular Biosciences, John Ring LaMontagne Center for Infectious Disease Institute for Cellular and Molecular Biology, University of Texas at AustinAustinUnited States
| | - Benjamin John Cowling
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative RegionHong KongChina
- Laboratory of Data Discovery for Health LimitedHong KongChina
| | - Lauren A Meyers
- Department of Integrative Biology, University of Texas at AustinAustinUnited States
- Santa Fe InstituteSanta FeUnited States
| |
Collapse
|
143
|
Tang S, Man Q, Zhu D, Yu X, Chen R, Wang S, Lu Y, Shi Q, Suo C, Xiong L. Risk factors for progression to severe infection and prolonged viral clearance time in hospitalized elderly patients infected with the Omicron variant of SARS-CoV-2: a retrospective study at Shanghai Fourth People's Hospital, School of Medicine, Tongji University. Front Microbiol 2024; 15:1361197. [PMID: 38686116 PMCID: PMC11056568 DOI: 10.3389/fmicb.2024.1361197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction In elderly patients infected with the Omicron variant, disease progression to severe infection can result in poor outcomes. This study aimed to identify risk and protective factors associated with disease progression to severe infection and viral clearance time in elderly Omicron-infected patients. Methods Shanghai Fourth People's Hospital, School of Medicine, Tongji University, was officially designated to provide treatment to patients with COVID-19. This study was conducted on confirmed Omicron cases admitted to the hospital between 10 April 2022 and 21 June 2022. In total, 1,568 patients aged 65 years or older were included. We conducted a retrospective, observational study using logistic regression to analyze risk and protective factors for the development of severe disease and Cox proportional hazards regression models to analyze factors influencing viral clearance time. Results Aged over 80 years, having 2 or more comorbidities, combined cerebrovascular disease, chronic neurological disease, and mental disorders were associated with the development of severe disease, and full vaccination was a protective factor. Furthermore, aged over 80 years, combined chronic respiratory disease, chronic renal disease, cerebrovascular disease, mental disorders, and high viral load were associated with prolonged viral clearance time, and full vaccination was a protective factor. Discussion This study analyzed risk factors for progression to severe infection and prolonged viral clearance time in hospitalized elderly Omicron-infected patients. Aged patients with comorbidities had a higher risk of developing severe infection and had longer viral clearance, while vaccination protected them against the Omicron infection.
Collapse
Affiliation(s)
- Siqi Tang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Epidemiology, Ministry of Education, Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongliang Zhu
- Department of Epidemiology, Ministry of Education, Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Xueying Yu
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruilin Chen
- Department of Epidemiology, Ministry of Education, Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Wang
- Department of Epidemiology, Ministry of Education, Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Yihan Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Epidemiology, Ministry of Education, Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Qiqing Shi
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Suo
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Epidemiology, Ministry of Education, Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
144
|
Pušnik J, Zorn J, Monzon-Posadas WO, Peters K, Osypchuk E, Blaschke S, Streeck H. Vaccination impairs de novo immune response to omicron breakthrough infection, a precondition for the original antigenic sin. Nat Commun 2024; 15:3102. [PMID: 38600072 PMCID: PMC11006949 DOI: 10.1038/s41467-024-47451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Several studies have suggested the imprinting of SARS-CoV-2 immunity by original immune challenge without addressing the formation of the de novo response to successive antigen exposures. As this is crucial for the development of the original antigenic sin, we assessed the immune response against the mutated epitopes of omicron SARS-CoV-2 after vaccine breakthrough. Our data demonstrate a robust humoral response in thrice-vaccinated individuals following omicron breakthrough which is a recall of vaccine-induced memory. The humoral and memory B cell responses against the altered regions of the omicron surface proteins are impaired. The T cell responses to mutated epitopes of the omicron spike protein are present due to the high cross-reactivity of vaccine-induced T cells rather than the formation of a de novo response. Our findings, therefore, underpin the speculation that the imprinting of SARS-CoV-2 immunity by vaccination may lead to the development of original antigenic sin if future variants overcome the vaccine-induced immunity.
Collapse
Affiliation(s)
- Jernej Pušnik
- Institute of Virology, University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany.
| | - Jasmin Zorn
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
| | - Werner O Monzon-Posadas
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
- Occupational Medicine Department, University Hospital Bonn, Bonn, Germany
| | - Kathrin Peters
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
| | - Emmanuil Osypchuk
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
| | - Sabine Blaschke
- Emergency Department, University Medical Center Goettingen, Goettingen, Germany
| | - Hendrik Streeck
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
| |
Collapse
|
145
|
Tanneti NS, Patel AK, Tan LH, Marques AD, Perera RAPM, Sherrill-Mix S, Kelly BJ, Renner DM, Collman RG, Rodino K, Lee C, Bushman FD, Cohen NA, Weiss SR. Comparison of SARS-CoV-2 variants of concern in primary human nasal cultures demonstrates Delta as most cytopathic and Omicron as fastest replicating. mBio 2024; 15:e0312923. [PMID: 38477472 PMCID: PMC11005367 DOI: 10.1128/mbio.03129-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses, including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation, and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN-stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper respiratory tract and least favorable in the lower respiratory cell line, and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals. IMPORTANCE Comparative analysis of infections by SARS-CoV-2 ancestral virus and variants of concern, including Alpha, Beta, Delta, and Omicron, indicated that variants were selected for efficiency in replication. In infections of patient-derived primary nasal cultures grown at air-liquid interface to model upper respiratory infection, Omicron reached the highest titers at early time points, a finding that was confirmed by parallel population sampling studies. While all infections overcame dsRNA-mediated host responses, infections with Omicron induced the strongest interferon and interferon-stimulated gene response. In both primary nasal cultures and lower respiratory cell line, infections by Delta were most damaging to the cells as indicated by syncytia formation, loss of cell barrier integrity, and nasal ciliary function.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anant K. Patel
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Li Hui Tan
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew D. Marques
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ranawaka A. P. M. Perera
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brendan J. Kelly
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle Rodino
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carole Lee
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Noam A. Cohen
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
146
|
Purwono PB, Vacharathit V, Manopwisedjaroen S, Ludowyke N, Suksatu A, Thitithanyanont A. Infection kinetics, syncytia formation, and inflammatory biomarkers as predictive indicators for the pathogenicity of SARS-CoV-2 Variants of Concern in Calu-3 cells. PLoS One 2024; 19:e0301330. [PMID: 38568894 PMCID: PMC10990222 DOI: 10.1371/journal.pone.0301330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
The ongoing COVID-19 pandemic has led to the emergence of new SARS-CoV-2 variants as a result of continued host-virus interaction and viral genome mutations. These variants have been associated with varying levels of transmissibility and disease severity. We investigated the phenotypic profiles of six SARS-CoV-2 variants (WT, D614G, Alpha, Beta, Delta, and Omicron) in Calu-3 cells, a human lung epithelial cell line. In our model demonstrated that all variants, except for Omicron, had higher efficiency in virus entry compared to the wild-type. The Delta variant had the greatest phenotypic advantage in terms of early infection kinetics and marked syncytia formation, which could facilitate cell-to-cell spreading, while the Omicron variant displayed slower replication and fewer syncytia formation. We also identified the Delta variant as the strongest inducer of inflammatory biomarkers, including pro-inflammatory cytokines/chemokines (IP-10/CXCL10, TNF-α, and IL-6), anti-inflammatory cytokine (IL-1RA), and growth factors (FGF-2 and VEGF-A), while these inflammatory mediators were not significantly elevated with Omicron infection. These findings are consistent with the observations that there was a generally more pronounced inflammatory response and angiogenesis activity within the lungs of COVID-19 patients as well as more severe symptoms and higher mortality rate during the Delta wave, as compared to less severe symptoms and lower mortality observed during the current Omicron wave in Thailand. Our findings suggest that early infectivity kinetics, enhanced syncytia formation, and specific inflammatory mediator production may serve as predictive indicators for the virulence potential of future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Priyo Budi Purwono
- Faculty of Science, Department of Microbiology, Mahidol University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Universitas Airlangga, Surabaya, Indonesia
| | - Vimvara Vacharathit
- Faculty of Science, Department of Microbiology, Mahidol University, Bangkok, Thailand
- Faculty of Science, Systems Biology of Diseases Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Natali Ludowyke
- Faculty of Science, Department of Microbiology, Mahidol University, Bangkok, Thailand
| | - Ampa Suksatu
- Faculty of Science, Department of Microbiology, Mahidol University, Bangkok, Thailand
| | - Arunee Thitithanyanont
- Faculty of Science, Department of Microbiology, Mahidol University, Bangkok, Thailand
- Faculty of Science, Department of Microbiology, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
147
|
Head JR, Collender PA, León TM, White LA, Sud SR, Camponuri SK, Lee V, Lewnard JA, Remais JV. COVID-19 Vaccination and Incidence of Pediatric SARS-CoV-2 Infection and Hospitalization. JAMA Netw Open 2024; 7:e247822. [PMID: 38652476 PMCID: PMC11040406 DOI: 10.1001/jamanetworkopen.2024.7822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 04/25/2024] Open
Abstract
Importance A SARS-CoV-2 vaccine was approved for adolescents aged 12 to 15 years on May 10, 2021, with approval for younger age groups following thereafter. The population level impact of the pediatric COVID-19 vaccination program has not yet been established. Objective To identify whether California's pediatric COVID-19 immunization program was associated with changes in pediatric COVID-19 incidence and hospitalizations. Design, Setting, and Participants A case series on COVID-19 vaccination including children aged 6 months to 15 years was conducted in California. Data were obtained on COVID-19 cases in California between April 1, 2020, and February 27, 2023. Exposure Postvaccination evaluation periods spanned 141 days (June 10 to October 29, 2021) for adolescents aged 12 to 15 years, 199 days (November 29, 2021, to June 17, 2022) for children aged 5 to 11 years, and 225 days (July 17, 2022, to February 27, 2023) for those aged 6 to 59 months. During these periods, statewide vaccine coverage reached 53.5% among adolescents aged 12 to 15 years, 34.8% among children aged 5 to 11 years, and 7.9% among those aged 6 to 59 months. Main Outcomes and Measures Age-stepped implementation of COVID-19 vaccination was used to compare observed county-level incidence and hospitalization rates during periods when each age group became vaccine eligible to counterfactual rates predicted from observations among other age groups. COVID-19 case and hospitalization data were obtained from the California reportable disease surveillance system. Results Between April 1, 2020, and February 27, 2023, a total of 3 913 063 pediatric COVID-19 cases and 12 740 hospitalizations were reported in California. Reductions of 146 210 cases (95% prediction interval [PI], 136 056-158 948) were estimated among adolescents aged 12 to 15 years, corresponding to a 37.1% (35.5%-39.1%) reduction from counterfactual predictions. Reductions of 230 134 (200 170-265 149) cases were estimated among children aged 5 to 11 years, corresponding to a 23.7% (20.6%-27.3%) reduction from counterfactual predictions. No evidence of reductions in COVID-19 cases statewide were found among children aged 6 to 59 months (estimated averted cases, -259; 95% PI, -1938 to 1019), although low transmission during the evaluation period may have limited the ability to do so. An estimated 168 hospitalizations (95% PI, 42-324) were averted among children aged 6 to 59 months, corresponding to a 24.4% (95% PI, 6.1%-47.1%) reduction. In meta-analyses, county-level vaccination coverage was associated with averted cases for all age groups. Despite low vaccination coverage, pediatric COVID-19 immunization in California averted 376 085 (95% PI, 348 355-417 328) reported cases and 273 (95% PI, 77-605) hospitalizations among children aged 6 months to 15 years over approximately 4 to 7 months following vaccination availability. Conclusions and Relevance The findings of this case series analysis of 3 913 063 cases suggest reduced pediatric SARS-CoV-2 transmission following immunization. These results support the use of COVID-19 vaccines to reduce COVID-19 incidence and hospitalization in pediatric populations.
Collapse
Affiliation(s)
- Jennifer R. Head
- Department of Epidemiology, University of Michigan, Ann Arbor
- Insitute for Global Change Biology, University of Michigan, Ann Arbor
| | - Philip A. Collender
- Division of Environmental Health Sciences, University of California, Berkeley
| | | | | | - Sohil R. Sud
- California Department of Public Health, Richmond
| | - Simon K. Camponuri
- Division of Environmental Health Sciences, University of California, Berkeley
| | - Vivian Lee
- College of Letters and Sciences, University of California, Berkeley
| | - Joseph A. Lewnard
- Division of Epidemiology, University of California, Berkeley
- Center for Computational Biology, University of California, Berkeley
| | - Justin V. Remais
- Division of Environmental Health Sciences, University of California, Berkeley
| |
Collapse
|
148
|
Steenblock C, Richter S, Lindemann D, Ehrlich H, Bornstein SR, Bechmann N. Marine Sponge-Derived Secondary Metabolites Modulate SARS-CoV-2 Entry Mechanisms. Horm Metab Res 2024; 56:308-317. [PMID: 37793428 DOI: 10.1055/a-2173-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The emergence of SARS-CoV 2 caused the COVID-19 pandemic, resulting in numerous global infections and deaths. In particular, people with metabolic diseases display an increased risk of severe COVID 19 and a fatal outcome. Treatment options for severe cases are limited, and the appearance of new virus variants complicates the development of novel therapies. To better manage viral infections like COVID 19, new therapeutic approaches are needed. Marine sponges offer a natural and renewable source of unique bioactive agents. These sponges produce secondary metabolites with various effects, including anti-viral, anti-inflammatory, and anti-tumorigenic properties. In the current study, we investigated the effect of five different marine sponge-derived secondary metabolites (four bromotyrosines and one sesquiterpenoid hydroquinone). Two of these, Avarol and Acetyl-dibromoverongiaquinol reduced the expression of ACE2, the main receptor for SARS-CoV 2, and the alternative receptor NRP1. Moreover, these substances derived from sponges demonstrated the ability to diminish the virus titer in SARS-CoV 2-infected cells, especially concerning the Omicron lineage. However, the reduction was not substantial enough to expect a significant impact on infected humans. Consequently, the investigated sponge-derived secondary metabolites are not likely to be effective to treat COVID 19 as a stand-alone therapy.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefanie Richter
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hermann Ehrlich
- Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
149
|
Wu X, Chen Y, Cao K, Shen Y, Wu X, Yang Y, Kuang Z, Li Q, Lu Z, Jia Y, Shao M, Gu G, Wang X, Yao Y, Wang Y, Chen S, Yu Z, Wei W, Ding L, Lan L, Gu T, Long X, Sun J, Xing L, Shen J, Han Y, Luo Y, Mu S, Lin M, Zhang X, Zeng R, Xu J, Zhao G, Huang L, Song Z. Reduced clinical severity during 2022 Shanghai Spring epidemic of SARS-CoV-2 omicron BA.2 variant infection-an integrated account of virus pathogenicity and vaccination effectiveness. Natl Sci Rev 2024; 11:nwae011. [PMID: 38699632 PMCID: PMC11065342 DOI: 10.1093/nsr/nwae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 05/05/2024] Open
Affiliation(s)
- Xingyue Wu
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Yao Chen
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Kangli Cao
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University, China
| | - Xueling Wu
- Department of Pulmonology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yilin Yang
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Zhongshu Kuang
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Qingrun Li
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | - Zhenzhen Lu
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Yichen Jia
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Mian Shao
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Guorong Gu
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Xiangwei Wang
- Shanghai Public Health Clinical Center, Fudan University, China
| | - Ye Yao
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Institute of Virology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, China
| | - Shaodie Chen
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Zhigao Yu
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Wei Wei
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center, Fudan University, China
| | - Lulu Lan
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Tianwen Gu
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Xiangyu Long
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Jian Sun
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Lingyu Xing
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Jiayuan Shen
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Yi Han
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Yue Luo
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Sucheng Mu
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Mengna Lin
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, China
| | - Xiaoyan Zhang
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | - Jianqing Xu
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
| | - Lihong Huang
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, China
| | - Zhenju Song
- Department of Emergency Medicine, Clinical Center for Bio-Therapy, Department of Biostatistics, and Department of Urology, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, China
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, China
| |
Collapse
|
150
|
Staroverov V, Galatenko A, Knyazev E, Tonevitsky A. Mathematical model explains differences in Omicron and Delta SARS-CoV-2 dynamics in Caco-2 and Calu-3 cells. PeerJ 2024; 12:e16964. [PMID: 38560455 PMCID: PMC10981414 DOI: 10.7717/peerj.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Within-host infection dynamics of Omicron dramatically differs from previous variants of SARS-CoV-2. However, little is still known about which parameters of virus-cell interplay contribute to the observed attenuated replication and pathogenicity of Omicron. Mathematical models, often expressed as systems of differential equations, are frequently employed to study the infection dynamics of various viruses. Adopting such models for results of in vitro experiments can be beneficial in a number of aspects, such as model simplification (e.g., the absence of adaptive immune response and innate immunity cells), better measurement accuracy, and the possibility to measure additional data types in comparison with in vivo case. In this study, we consider a refinement of our previously developed and validated model based on a system of integro-differential equations. We fit the model to the experimental data of Omicron and Delta infections in Caco-2 (human intestinal epithelium model) and Calu-3 (lung epithelium model) cell lines. The data include known information on initial conditions, infectious virus titers, and intracellular viral RNA measurements at several time points post-infection. The model accurately explains the experimental data for both variants in both cell lines using only three variant- and cell-line-specific parameters. Namely, the cell entry rate is significantly lower for Omicron, and Omicron triggers a stronger cytokine production rate (i.e., innate immune response) in infected cells, ultimately making uninfected cells resistant to the virus. Notably, differences in only a single parameter (e.g., cell entry rate) are insufficient to obtain a reliable model fit for the experimental data.
Collapse
Affiliation(s)
- Vladimir Staroverov
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexei Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| |
Collapse
|