101
|
Lee KW, Kang NJ, Heo YS, Rogozin EA, Angelo P, Hwang MK, Bowden GT, Bode AM, Lee HJ, Dong Z. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res 2008; 68:946-55. [PMID: 18245498 PMCID: PMC2276321 DOI: 10.1158/0008-5472.can-07-3140] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Considerable attention has focused on the health-promoting effects of red wine and its nonflavonoid polyphenol compound resveratrol. However, the underlying molecular mechanisms and molecular target(s) of red wine or other potentially active ingredients in red wine remain unknown. Here, we report that red wine extract (RWE) or the red wine flavonoid quercetin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced transformation of JB6 promotion-sensitive mouse skin epidermal (JB6 P+) cells. The activation of activator protein-1 and nuclear factor-kappaB induced by TPA was dose dependently inhibited by RWE or quercetin treatment. Western blot and kinase assay data revealed that RWE or quercetin inhibited mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) 1 and Raf1 kinase activities and subsequently attenuated TPA-induced phosphorylation of ERK/p90 ribosomal S6 kinase. Although either RWE or quercetin suppressed Raf1 kinase activity, they were more effective in inhibiting MEK1 activity. Importantly, quercetin exerted stronger inhibitory effects than PD098059, a well-known pharmacologic inhibitor of MEK. Resveratrol did not affect either MEK1 or Raf1 kinase activity. Pull-down assays revealed that RWE or quercetin (but not resveratrol) bound with either MEK1 or Raf1. RWE or quercetin also dose dependently suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are involved in the activation of MEK/ERK signaling. Docking data suggested that quercetin, but not resveratrol, formed a hydrogen bond with the backbone amide group of Ser(212), which is the key interaction for stabilizing the inactive conformation of the activation loop of MEK1.
Collapse
Affiliation(s)
- Ki Won Lee
- Hormel Institute, University of Minnesota, MN 55912, USA
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Nam Joo Kang
- Hormel Institute, University of Minnesota, MN 55912, USA
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | - Mun Kyung Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | - G. Tim Bowden
- Department of Cell Biology and Anatomy, Arizona Cancer Center, The University of Arizona, AZ 85724-5024, USA
| | - Ann M. Bode
- Hormel Institute, University of Minnesota, MN 55912, USA
| | - Hyong Joo Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Zigang Dong
- Hormel Institute, University of Minnesota, MN 55912, USA
| |
Collapse
|
102
|
Rundhaug JE, Pavone A, Kim E, Fischer SM. The effect of cyclooxygenase-2 overexpression on skin carcinogenesis is context dependent. Mol Carcinog 2007; 46:981-92. [PMID: 17583568 DOI: 10.1002/mc.20340] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The up-regulation of the inducible form of cyclooxygenase (COX-2), a central enzyme in the prostaglandin (PG) biosynthetic pathway, occurs in many epithelial tumors and has been associated with tumor cell proliferation and angiogenesis. To better understand the role of COX-2 in skin tumor development, we generated transgenic mice that overexpress COX-2 under the control of the keratin 14 promoter. We previously reported (Cancer Res. 62: 2516, 2002) that these mice, referred to as keratin 14 (K14).COX2 mice, were unexpectedly very resistant to 12-O-tetradecanoylphorbol 13-acetate (TPA) tumor promotion. The current studies were undertaken to determine the mechanism of this resistance and determine if it was restricted to TPA promotion. Transgenic and wild-type mice were subjected to a complete carcinogenesis protocol using 7,12-dimethylbenz[a]anthracene (DMBA) only, as well as a two-stage protocol using DMBA plus an unrelated tumor promoter, anthralin. In addition, the responses of transgenic and wild-type mice to TPA in terms of induction of proliferation and various down-stream mediators were examined. The TPA resistance phenotype correlated with a reduced ability to induce ornithine decarboxylase, interleukin-1alpha, and tumor necrosis factor-alpha and a reduced proliferation response. This resistance phenotype appears to be restricted to phorbol ester promotion because K14.COX2 mice developed six times more tumors than wild-type mice when anthralin was used as the tumor promoter. Additionally, K14.COX2 mice treated only with DMBA developed approximately 3.5 times more tumors than wild-type mice, suggesting that PGs have intrinsic tumor promoting activity. We conclude that the role of PGs in skin tumorigenesis is context dependent.
Collapse
Affiliation(s)
- Joyce E Rundhaug
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | | | |
Collapse
|
103
|
Gross ND, Boyle JO, Du B, Kekatpure VD, Lantowski A, Thaler HT, Weksler BB, Subbaramaiah K, Dannenberg AJ. Inhibition of Jun NH2-terminal kinases suppresses the growth of experimental head and neck squamous cell carcinoma. Clin Cancer Res 2007; 13:5910-7. [PMID: 17908987 DOI: 10.1158/1078-0432.ccr-07-0352] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study was carried out to investigate whether c-Jun NH2-terminal kinases (JNK) are potential targets for treating head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN JNK activity was first evaluated in 20 paired samples of human HNSCC. The antitumor activity of SP600125, a reversible nonselective ATP-competitive inhibitor of JNKs, was then investigated both in an HNSCC xenograft model and in vitro using immunohistochemistry, immunoblotting, enzyme immunoassay, flow cytometry, and a Matrigel assay of capillary tube formation. Complementary studies were carried out using small interfering RNA to JNK1/2. RESULTS JNK activity was increased in human HNSCC compared with normal-appearing epithelium. Treatment of mice bearing HNSCC xenografts with SP600125 resulted in >60% inhibition of tumor growth relative to vehicle-treated animals. Inhibition of tumor growth was associated with significant reductions in both cell proliferation and microvessel density. SP600125 inhibited tumor cell proliferation by causing delays in both the S and G2-M phases of the cell cycle. Inhibition of angiogenesis seemed to reflect effects on both tumor and endothelial cells. The JNK inhibitor suppressed the production of vascular endothelial growth factor and interleukin-8 by tumor cells and also inhibited endothelial cell proliferation and capillary tube formation. Reduced amounts and phosphorylation of epidermal growth factor receptor were found in tumor cells after treatment with SP600125. Small interfering RNA-mediated suppression of JNK1/2 led to reduced tumor cell proliferation and decreased levels of epidermal growth factor receptor, vascular endothelial growth factor, and interleukin-8. CONCLUSIONS JNK activity is commonly increased in HNSCC. Our preclinical results provide a rationale for evaluating JNK inhibition as an approach to treating HNSCC.
Collapse
Affiliation(s)
- Neil D Gross
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Gu Q, Bowden GT, Normolle D, Sun Y. SAG/ROC2 E3 ligase regulates skin carcinogenesis by stage-dependent targeting of c-Jun/AP1 and IkappaB-alpha/NF-kappaB. ACTA ACUST UNITED AC 2007; 178:1009-23. [PMID: 17846172 PMCID: PMC2064624 DOI: 10.1083/jcb.200612067] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sensitive to apoptosis gene (SAG)/regulator of cullins-2-Skp1-cullin-F-box protein (SCF) E3 ubiquitin ligase regulates cellular functions through ubiquitination and degradation of protein substrates. We report that, when expressed in mouse epidermis driven by the K14 promoter, SAG inhibited TPA-induced c-Jun levels and activator protein-1 (AP-1) activity in both in vitro primary culture, in vivo transgenic mice, and an AP-1- luciferase reporter mouse model. After AP-1 inactivation, epidermal proliferation induced by 7,12-dimethylbenz(a)-anthracene/12-O-tetradecanoylphorbol-13-acetate at the early stage of carcinogenesis was substantially inhibited. Later stage tumor formation was also substantially inhibited with prolonged latency and reduced frequency of tumor formation. Interestingly, SAG expression increased tumor size, not because of accelerated proliferation, but caused by reduced apoptosis resulting, at least in part, from nuclear factor kappaB (NF-kappaB) activation. Thus, SAG, in a manner depending on the availability of F-box proteins, demonstrated early-stage suppression of tumor formation by promoting c-Jun degradation, thereby inhibiting AP-1, and later-stage enhancement of tumor growth, by promoting inhibitor of kappaBalpha degradation to activate NF-kappaB and inhibit apoptosis.
Collapse
Affiliation(s)
- Qingyang Gu
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
105
|
Jin X, Song X, Li L, Wang Z, Tao Y, Deng L, Tang M, Yi W, Cao Y. Blockade of AP-1 activity by dominant-negative TAM67 can abrogate the oncogenic phenotype in latent membrane protein 1-positive human nasopharyngeal carcinoma. Mol Carcinog 2007; 46:901-11. [PMID: 17477349 DOI: 10.1002/mc.20319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although activating protein-1 (AP-1) transcription factors play an important role in mediating metastasis for nasopharyngeal carcinoma (NPC), the biological and physiological functions of AP-1, in relation to the oncogenic phenotype of NPC, are not fully understood. Our previous study showed that the latent membrane protein 1 (LMP1) mediated a primary dimer form of c-jun and jun B. In this study, we used a NPC cell line that express a specific inhibitor of AP-1, a dominant-negative c-jun mutant (TAM67), to investigate the role of AP-1 in regulating the NPC oncogenic phenotype. First, we observed that TAM67 inhibited cell growth in vitro and in vivo. Next, with Western blotting, we discovered that TAM67 impaired the cyclin D1/cdk4 complex but had little effect on the cyclin E/cdk2 complex, concomitantly with inhibiting Rb phosphorylation. RT-PCR and luciferase assay results demonstrated that the levels of cyclin D1 mRNA and the promoter activity in TAM67 transfectants were reduced as compared with control cells. Thereby, we show that blockade of AP-1 transcriptional activity has a negative impact on cyclin D1 transcription. We obtained the first evidence that TAM67 prevented NPC growth both in vitro and in vivo. AP-1 appears to be a novel target for treating or preventing LMP1-positive NPC effectively.
Collapse
Affiliation(s)
- Xin Jin
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Kang NJ, Lee KW, Rogozin EA, Cho YY, Heo YS, Bode AM, Lee HJ, Dong Z. Equol, a metabolite of the soybean isoflavone daidzein, inhibits neoplastic cell transformation by targeting the MEK/ERK/p90RSK/activator protein-1 pathway. J Biol Chem 2007; 282:32856-66. [PMID: 17724030 DOI: 10.1074/jbc.m701459200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Daidzein and genistein are isoflavones found in soybean. Genistein is known to exhibit anticarcinogenic activities and inhibit tyrosine kinase activity. However, the underlying molecular mechanisms of the chemopreventive activities of daidzein and its metabolite, equol, are not understood. Here we report that equol inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal cells by targeting the MEK/ERK/p90RSK/activator protein-1 signaling pathway. TPA-induced neoplastic cell transformation was inhibited by equol, but not daidzein, at noncytotoxic concentrations in a dose-dependent manner. Equol dose-dependently attenuated TPA-induced activation of activator protein-1 and c-fos, whereas daidzein did not exert any effect when tested at the same concentrations. The TPA-induced phosphorylation of ERK1/2, p90RSK, and Elk, but not MEK or c-Jun N-terminal kinase, was inhibited by equol but not by daidzein. In vitro kinase assays revealed that equol greatly inhibited MEK1, but not Raf1, kinase activity, and an ex vivo kinase assay also demonstrated that equol suppressed TPA-induced MEK1 kinase activity in JB6 P+ cell lysates. Equol dose-dependently inhibited neoplastic transformation of JB6 P+ cells induced by epidermal growth factor or H-Ras. Both in vitro and ex vivo pull-down assays revealed that equol directly bound with glutathione S-transferase-MEK1 to inhibit MEK1 activity without competing with ATP. These results suggested that the antitumor-promoting effect of equol is due to the inhibition of cell transformation mainly by targeting a MEK signaling pathway. These findings are the first to reveal a molecular basis for the anticancer action of equol and may partially account for the reported chemopreventive effects of soybean.
Collapse
Affiliation(s)
- Nam Joo Kang
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Cho YY, Yao K, Kim HG, Kang BS, Zheng D, Bode AM, Dong Z. Ribosomal S6 kinase 2 is a key regulator in tumor promoter induced cell transformation. Cancer Res 2007; 67:8104-12. [PMID: 17804722 PMCID: PMC2822657 DOI: 10.1158/0008-5472.can-06-4668] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ribosomal S6 kinase 2 (RSK2), a member of the p90(RSK) (RSK) family of proteins, is a widely expressed serine/threonine kinase that is activated by extracellular signal-regulated kinase 1/2 and phosphoinositide-dependent kinase 1 in response to many growth factors and peptide hormones. Its activation signaling enhances cell survival. However, the roles of RSK2 in cell transformation have not yet been elucidated. Here, we found that RSK2 is a critical serine/threonine kinase for the regulation of cell transformation. When cells were stimulated with tumor promoters, such as epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA), phosphorylation of RSK was increased within 5 min. Cell proliferation was suppressed in RSK2(-/-) mouse embryonic fibroblasts (MEFs) compared with RSK2(+/+) MEFs. Moreover, RSK2(-/-) MEFs accumulated at the G(1) phase of the cell cycle under normal cell culture conditions as well as after stimulation with EGF or TPA. In the anchorage-independent cell transformation assay (soft agar), stable expression of RSK2 in JB6 cells significantly enhanced colony formation in either the presence or absence of tumor promoters. Furthermore, knockdown of RSK2 with small interfering RNA-RSK2 suppressed constitutively active Ras (Ras(G12V))-induced foci formation in NIH3T3 cells. In addition, kaempferol, an inhibitor of RSK2, suppressed EGF-induced colony formation of JB6 Cl41 cells in soft agar, which was associated with inhibition of histone H3 phosphorylation (Ser(10)). These results showed that RSK2 is a key regulator for cell transformation induced by tumor promoters such as EGF and TPA.
Collapse
Affiliation(s)
- Yong-Yeon Cho
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
The JNK proteins are activated by multiple and diverse stimuli, leading to varied and seemingly contradictory cellular responses. In particular, JNKs have been reported to have a role in the induction of apoptosis, but have also been implicated in enhancing cell survival and proliferation. Thus the JNK proteins seem to represent an archetype of contrariety of intracellular signaling. The opposing roles of JNKs have been attributed to the observation that JNKs activate different substrates based on specific stimulus, cell type or temporal aspects. Because of their analogous expression in apparently almost every tissue, JNK1 and JNK2 have most often been considered to have overlapping or redundant functions. In spite of this assessment, research evidence suggests that the functions of JNKs should be addressed in a manner that differentiates between their precise contributions. Specifically in this review, we examine evidence regarding whether the JNKs proteins might play distinctive roles in cellular processes associated with carcinogenesis.
Collapse
Affiliation(s)
- Ann M Bode
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | |
Collapse
|
109
|
Ichimatsu D, Nomura M, Nakamura S, Moritani S, Yokogawa K, Kobayashi S, Nishioka T, Miyamoto KI. Structure-activity relationship of flavonoids for inhibition of epidermal growth factor-induced transformation of JB6 Cl 41 cells. Mol Carcinog 2007; 46:436-45. [PMID: 17219438 DOI: 10.1002/mc.20292] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We found that quercetin, myricetin, quercetagetin, fisetin, (-)-epigallocatechin gallate (EGCG), and theaflavins, among 24 flavonoids examined, markedly inhibited epidermal growth factor (EGF)-induced cell transformation of mouse epidermal JB6 Cl 41 cells. The six flavonoids suppressed the EGF-induced activation of activator protein 1 (AP-1). In addition, myricetin, quercetagetin, EGCG, and theaflavins directly inhibited EGF-induced phosphatidylinositol 3-kinase (PI3K) activation. The important structural features of flavonoids for cell transformation-inhibitory activity are 3'- and 4'-OH on the B-ring, 3-OH on the C-ring, C2=C3 double bond in the C-ring, and the phenylchromone (C6-C5-C6) skeleton in the flavonols, and the galloyl group in EGCG and theaflavins. Our results provide new insight into possible mechanisms of the anti-carcinogenic effects of flavonoids, and could help to provide a basis for the design of novel cancer chemopreventive agents.
Collapse
Affiliation(s)
- Daisuke Ichimatsu
- Department of Hospital Pharmacy, School of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Fedorov SN, Shubina LK, Bode AM, Stonik VA, Dong Z. Dactylone Inhibits Epidermal Growth Factor–Induced Transformation and Phenotype Expression of Human Cancer Cells and Induces G1-S Arrest and Apoptosis. Cancer Res 2007; 67:5914-20. [PMID: 17575161 DOI: 10.1158/0008-5472.can-06-3723] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The marine natural chamigrane-type sesquiterpenoid, dactylone, is closely related to secondary metabolites of some edible species of red algae. In the present study, the effect of dactylone was tested on the mouse skin epidermal JB6 P+ Cl41 cell line and its stable transfectants as well as on several human tumor cell lines, including lung (H460), colon (HCT-116), and skin melanomas (SK-MEL-5 and SK-MEL-28). This natural product was effective at nontoxic doses as a cancer-preventive agent, which exerted its actions, at least in part, through the inhibition of cyclin D3 and Cdk4 expression and retinoblastoma tumor suppressor protein (Rb) phosphorylation. The inhibition of these cell cycle components was followed by cell cycle arrest at the G1-S transition with subsequent p53-independent apoptosis. Therefore, these data showed that application of dactylone and related compounds may lead to decreased malignant cell transformation and/or decreased tumor cell proliferation.
Collapse
Affiliation(s)
- Sergey N Fedorov
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|
111
|
Gu Q, Tan M, Sun Y. SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation. Cancer Res 2007; 67:3616-25. [PMID: 17440073 DOI: 10.1158/0008-5472.can-06-4020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SAG (sensitive to apoptosis gene) was first identified as a stress-responsive protein that, when overexpressed, inhibited apoptosis both in vitro and in vivo. SAG was later found to be the second family member of ROC1 or Rbx1, a RING component of SCF and DCX E3 ubiquitin ligases. We report here that SAG/ROC2/Rbx2 is a novel transcriptional target of activator protein-1 (AP-1). AP-1 bound both in vitro and in vivo to two consensus binding sites in a 1.3-kb region of the mouse SAG promoter. The SAG promoter activity, as measured by luciferase reporter assay, was dependent on these sites. Consistently, endogenous SAG is induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) with an induction time course following the c-Jun induction in both mouse epidermal JB6-Cl.41 and human 293 cells. TPA-mediated SAG induction was significantly reduced in JB6-Cl.41 cells overexpressing a dominant-negative c-Jun, indicating a requirement of c-Jun/AP-1. On the other hand, SAG seemed to modulate the c-Jun levels. When overexpressed, SAG remarkably reduced both basal and TPA-induced c-Jun levels, whereas SAG small interfering RNA (siRNA) silencing increased substantially the levels of both basal and TPA-induced c-Jun. Consistently, SAG siRNA silencing reduced c-Jun polyubiquitination and blocked c-Jun degradation induced by Fbw7, an F-box protein of SCF E3 ubiquitin ligase. Finally, SAG overexpression inhibited, whereas SAG siRNA silencing enhanced, respectively, the TPA-induced neoplastic transformation in JB6-Cl.41 preneoplastic model. Thus, AP-1/SAG establishes an autofeedback loop, in which on induction by AP-1, SAG promotes c-Jun ubiquitination and degradation, thus inhibiting tumor-promoting activity of AP-1.
Collapse
Affiliation(s)
- Qingyang Gu
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
112
|
Matthews CP, Birkholz AM, Baker AR, Perella CM, Beck GR, Young MR, Colburn NH. Dominant-negative activator protein 1 (TAM67) targets cyclooxygenase-2 and osteopontin under conditions in which it specifically inhibits tumorigenesis. Cancer Res 2007; 67:2430-8. [PMID: 17363560 DOI: 10.1158/0008-5472.can-06-0522] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of activator protein 1 (AP-1) and nuclear factor kappaB (NFkappaB)-dependent transcription is required for tumor promotion in cell culture models and transgenic mice. Dominant-negative c-Jun (TAM67) blocks AP-1 activation by dimerizing with Jun or Fos family proteins and blocks NFkappaB activation by interacting with NFkappaB p65. Two-stage [7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)] skin carcinogenesis experiments in a model relevant to human cancer risk, transgenic mice expressing human papillomavirus 16 E7 oncogene (K14-HPV16-E7), show E7-enhanced tumor promotion. A cross to K14-TAM67-expressing mice results in dramatic inhibition of tumor promoter-induced AP-1 luciferase reporter activation and papillomagenesis. Epithelial specific TAM67 expression inhibits tumorigenesis without affecting TPA- or E7-induced hyperproliferation of the skin. Thus, the mouse model enriches for TAM67 targets relevant to tumorigenesis rather than to general cell proliferation or hyperplasia, implicating a subset of AP-1- and/or NFkappaB-dependent genes. The aim of the present study was to identify target genes responsible for TAM67 inhibition of DMBA-TPA-induced tumorigenesis. Microarray expression analysis of epidermal tissues revealed small sets of genes in which expression is both up-regulated by tumor promoter and down-regulated by TAM67. Among these, cyclooxygenase-2 (Cox-2/Ptgs2) and osteopontin (Opn/Spp1) are known to be functionally significant in driving carcinogenesis. Results identify both Cox-2 and Opn as transcriptional targets of TAM67 with CRE, but not NFkappaB sites important in the Cox-2 promoter and an AP-1 site important in the Opn promoter.
Collapse
Affiliation(s)
- Connie P Matthews
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
113
|
Kwon JY, Lee KW, Hur HJ, Lee HJ. Peonidin Inhibits Phorbol-Ester-Induced COX-2 Expression and Transformation in JB6 P+ Cells by Blocking Phosphorylation of ERK-1 and -2. Ann N Y Acad Sci 2007; 1095:513-20. [PMID: 17404064 DOI: 10.1196/annals.1397.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abnormal upregulation of cyclooxygenase-2 (COX-2) has been frequently observed in various types of transformed and cancerous cells. Numerous anti-inflammatory agents have been shown to exert chemopreventive effects by targeting COX-2, a rate-limiting enzyme involved in the inflammatory process. Anthocyanins are naturally occurring polyphenolic compounds that endow various fruits, vegetables, and plants with intense colors. Peonidin is another representative anthocyanidin, but its chemopreventive potential has not been fully described. This article investigated the effect of peonidin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced COX-2 expression and transformation in JB6 P(+) mouse epidermal cells (JB6 P(+) cells). Treatment of JB6 P(+) cells with peonidin inhibited TPA-induced COX-2 expression, and also decreased TPA-induced neoplastic transformation and blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs) in the cells. The inhibition of the signaling mechanism regulating the activation of ERKs strongly suggests that peonidin exhibits chemopreventive as well as anti-inflammatory activities.
Collapse
Affiliation(s)
- Jung Yeon Kwon
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Korea
| | | | | | | |
Collapse
|
114
|
Ruocco KM, Goncharova EI, Young MR, Colburn NH, McMahon JB, Henrich CJ. A high-throughput cell-based assay to identify specific inhibitors of transcription factor AP-1. ACTA ACUST UNITED AC 2006; 12:133-9. [PMID: 17175522 DOI: 10.1177/1087057106296686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The oncogenic transcription factor AP-1 (activator protein-1) is required for tumor promotion and progression. Identification of novel and specific AP-1 inhibitors would be beneficial for cancer prevention and therapy. The authors have developed a high-throughput assay to screen synthetic and natural product libraries for noncytotoxic inhibitors of mitogen-activated AP-1 activity. The cell-based high-throughput screen is conducted in a 384-well format using a fluorescent resonance energy transfer (FRET) substrate to quantify the activity of a beta-lactamase reporter under the control of an AP-1-dependent promoter. The ratiometric FRET readout makes this assay extremely robust and reproducible, particularly for use with natural product extracts. To eliminate false positives due to cell killing, a cytotoxicity assay was incorporated. The AP-1 beta-lactamase reporter was validated with inhibitors of kinases located upstream of AP-1 and with known natural product inhibitors of AP-1 (nordihydroguaiaretic acid and curcumin). The assay was able to identify other known AP-1 inhibitors and protein kinase C modulators, as well as a number of chemically diverse compounds with unknown mechanisms of action from natural products libraries. Application to natural product extracts identified hits from a range of taxonomic groups. Screening of synthetic compounds and natural products should identify novel AP-1 inhibitors that may be useful in the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Katie M Ruocco
- Laboratory of Cancer Prevention, Gene Regulation Section, National Cancer Institute-Frederick, Frederick, MD, USA
| | | | | | | | | | | |
Collapse
|
115
|
Fedorov SN, Radchenko OS, Shubina LK, Balaneva NN, Bode AM, Stonik VA, Dong Z. Evaluation of cancer-preventive activity and structure-activity relationships of 3-demethylubiquinone Q2, isolated from the ascidian Aplidium glabrum, and its synthetic analogs. Pharm Res 2006; 23:70-81. [PMID: 16320003 PMCID: PMC2227315 DOI: 10.1007/s11095-005-8813-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 09/28/2005] [Indexed: 01/03/2023]
Abstract
PURPOSE 3-Demethylubiquinone Q2 was isolated from the ascidian Aplidium glabrum. The cancer-preventive properties and the structure-activity relationship for 3-demethylubiquinone Q2 and 12 of its synthetic analogs are reported. METHODS Compounds, having one or several di- or triprenyl substitutions and quinone moieties with methoxyls in different positions, were synthesized. The cancer-preventive properties of compounds and were tested in JB6 Cl41 mouse skin cells, using a variety of assessments, including the methanethiosulfonate (MTS) assay, flow cytometry, and soft agar assay. Statistical nonparametric methods were used to confirm statistical significance. RESULTS All quinones tested were shown to inhibit JB6 Cl41 cell transformation, to induce apoptosis, AP-1, and NF-kappaB activity, and to inhibit p53 activity. The most promising effects were indicated for compounds containing two isoprene units in a side chain and a methoxyl group at the para-position to a polyprenyl substitution. CONCLUSIONS Quinones and demonstrated cancer-preventive activity in JB6 Cl41 cells, which may be attributed to the induction of p53-independent apoptosis. These activities depended on the length of side chains and on the positions of the methoxyl groups in the quinone part of the molecule.
Collapse
Affiliation(s)
- Sergey N. Fedorov
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
- Pacific Institute of Bioorganic Chemistry, 159 Prospect 100-let Vladivostoku, Vladivostok, 690022, Russia
| | - Oleg S. Radchenko
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
| | - Larisa K. Shubina
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
| | - Nadezhda N. Balaneva
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
| | - Ann M. Bode
- Pacific Institute of Bioorganic Chemistry, 159 Prospect 100-let Vladivostoku, Vladivostok, 690022, Russia
| | - Valentin A. Stonik
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
- To whom correspondence should be addressed. (e-mail: )
| | - Zigang Dong
- Pacific Institute of Bioorganic Chemistry, 159 Prospect 100-let Vladivostoku, Vladivostok, 690022, Russia
- To whom correspondence should be addressed. (e-mail: )
| |
Collapse
|
116
|
Young MR, Colburn NH. Fra-1 a target for cancer prevention or intervention. Gene 2006; 379:1-11. [PMID: 16784822 DOI: 10.1016/j.gene.2006.05.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 04/27/2006] [Accepted: 05/02/2006] [Indexed: 01/20/2023]
Abstract
The transcription factor activator protein-1 (AP-1) has been implicated as a driver of carcinogenesis since its original characterization. Oncogenic transcription factors like AP-1 are becoming new targets for cancer intervention. Inhibitors of AP-1 have been shown to block tumor promotion, transformation, progression and invasion. The Fos related antigen-1 (Fra-1) is activated in multiple cancers and gene ablation can suppress the invasive phenotypes of many tumor cell lines. This review focuses on the regulation of fosl1 expression, stabilization and activation of the Fra-1 polypeptide and on Fra-1-mediated tumorigenesis.
Collapse
Affiliation(s)
- Matthew R Young
- Laboratory of Cancer Prevention, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
117
|
Villanueva R, Morales-Peza N, Castelán-Sánchez I, García-Villa E, Tapia R, Cid-Arregui Á, García-Carrancá A, López-Bayghen E, Gariglio P. Heparin (GAG-hed) inhibits LCR activity of human papillomavirus type 18 by decreasing AP1 binding. BMC Cancer 2006; 6:218. [PMID: 16945153 PMCID: PMC1574339 DOI: 10.1186/1471-2407-6-218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/31/2006] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. METHODS Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. RESULTS We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G2/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. CONCLUSION Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data suggest that GAG-hed could have antitumoral and antiviral activity mainly by inhibiting AP1 binding to the HPV18-LCR.
Collapse
Affiliation(s)
- Rita Villanueva
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Néstor Morales-Peza
- Unidad de Investigación Biomedica en Cáncer, UNAM- Instituto Nacional de Cancerología, Av. San Fernando 22, México D.F. 14000, México
| | - Irma Castelán-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Enrique García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Rocio Tapia
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Ángel Cid-Arregui
- Tumor Gene Therapy German Cancer Research Center (DKFZ) Im Neuenheimer Feld 280 69120-Heidelberg, Germany
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomedica en Cáncer, UNAM- Instituto Nacional de Cancerología, Av. San Fernando 22, México D.F. 14000, México
| | - Esther López-Bayghen
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| |
Collapse
|
118
|
Lau TY, Leung LK. Soya isoflavones suppress phorbol 12-myristate 13-acetate-induced COX-2 expression in MCF-7 cells. Br J Nutr 2006; 96:169-76. [PMID: 16870006 DOI: 10.1079/bjn20061639] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological studies indicate that Asian women have a lower incidence of breast cancer compared with their counterparts in the West, and soya consumption has been suggested as a contributory factor. Clinical and animal studies have revealed that cyclooxygenase-2 (COX-2) expression is associated with a risk of breast cancer. In the present study, we investigated the effect of soya isoflavones on the expression of COX-2 in the breast cell line MCF-7. Genistein, daidzein and equol were found to inhibit COX-2 expression induced by phorbol 12-myristate 13-acetate (PMA). Similar findings were observed in the COX-2 protein analysis. In order to study transcriptional control, a fragment of the 5'-flanking region of the hCOX-2 gene was amplified and inserted into a firefly luciferase reporter plasmid. The reporter assay indicated that the transactivation of the hCOX-2 promoter was induced by PMA, and activity was inhibited with the co-administration of genistein, daidzein or equol. An activator protein-1 (AP-1)/cyclic AMP response element binding protein (CREB) binding site (-59/-53) was identified in hCOX-2 promoter, and this could be critical in PMA-induced COX-2 expression. Truncation reporter plasmids with (-70/-36) and without (-51/-36) AP-1/CREB were constructed for subsequent analysis. The results revealed that the hCOX-2 promoter transactivation suppressed by isoflavone could be dependent on AP-1/CREB binding. Nonetheless, this study illustrated that the soya isoflavones reduced COX-2 expression, which could be important in the post-initiation events of breast carcinogenesis.
Collapse
Affiliation(s)
- Tak Yi Lau
- Food and Nutritional Sciences Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | |
Collapse
|
119
|
Tatsumi Y, Cho YY, He Z, Mizuno H, Choi HS, Bode AM, Dong Z. Involvement of the paxillin pathway in JB6 Cl41 cell transformation. Cancer Res 2006; 66:5968-74. [PMID: 16740738 PMCID: PMC2239243 DOI: 10.1158/0008-5472.can-05-4664] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paxillin is a substrate of the Src tyrosine onco-kinase and is involved in cell transformation, cell spreading, migration, and cancer development mediated through the mitogen-activated protein kinase signaling cascades. Here, we showed that paxillin plays a key role in skin cell transformation induced by epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA). To investigate the mechanism of paxillin's role in cell transformation, we established a paxillin knockdown stably transfected cell line by introducing small interfering RNA-paxillin (si-paxillin). The si-paxillin cells displayed a dramatic suppression of cell proliferation and anchorage-independent cell transformation induced by EGF or TPA compared with si-mock control cells. In si-paxillin cells, decreased activator protein-1 (AP-1)-dependent luciferase activity corresponded with suppressed AP-1 DNA binding activity. Importantly, knockdown of paxillin inhibited EGF- or TPA-induced c-Jun phosphorylation at Ser(63) and Ser(73). Furthermore, total c-Jun protein level was dramatically decreased in si-paxillin cells and was dependent on serum deprivation time. The down-regulation of c-Jun was restored in si-paxillin cells by treatment with the proteasome inhibitor lactacystin but not by the lysosome inhibitor leupeptin. These results clearly provided evidence that paxillin regulates c-Jun protein level and plays a key role in cell transformation most likely through the regulation of c-Jun stability.
Collapse
Affiliation(s)
- Yasuaki Tatsumi
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912
| | - Yong-Yeon Cho
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912
| | - Zhiwei He
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912
| | - Hideya Mizuno
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912
| | - Hong Seok Choi
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912
| | - Ann M. Bode
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912
| | - Zigang Dong
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912
| |
Collapse
|
120
|
Abstract
Carcinogenesis is a multistage process consisting of initiation, promotion, and progression stages and each stage may be a possible target for chemopreventive agents. A significant outcome of these investigations on the elucidation of molecular and cellular mechanisms is the explication of signal transduction pathways induced by tumor promoters in cancer development. The current belief today is that cancer may be prevented or treated by targeting specific cancer genes, signaling proteins, and transcription factors. The molecular mechanisms explaining how normal cells undergo neoplastic transformation induced by tumor promoters are rapidly being clarified. Accumulating research evidence suggests that many of dietary factors, including tea compounds, may be used alone or in combination with traditional chemotherapeutic agents to prevent or treat cancer. The potential advantage of many natural or dietary compounds seems to focus on their potent anticancer activity combined with low toxicity and very few adverse side effects. This review summarizes some of our recent work regarding the effects of the various tea components on signal transduction pathways involved in neoplastic cell transformation and carcinogenesis.
Collapse
Affiliation(s)
- Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | |
Collapse
|
121
|
Hansen ME, Pessah IN, Matsumura F. Heptachlor epoxide induces a non-capacitative type of Ca2+ entry and immediate early gene expression in mouse hepatoma cells. Toxicology 2006; 220:218-31. [PMID: 16469423 DOI: 10.1016/j.tox.2006.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 01/02/2006] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
The effects of the organochlorine (OC) liver tumor promoter heptachlor epoxide (HE) and a related non-tumor promoting OC, delta-hexachlorocyclohexane (delta-HCH), on the dynamics of intracellular calcium (Ca2+) were investigated in mouse 1c1c7 hepatoma cells. HE induced a non-capacitative, Ca2+ entry-like phenomenon, which was transient and concentration-dependent with 10 and 50 microM HE. The plasma membrane Ca2+ channel blocker SKF-96365 antagonized this HE-induced Ca2+ entry. delta-HCH failed to induce Ca2+ entry, rather it antagonized the HE-induced Ca2+ entry. Both HE and delta-HCH induced Ca2+ release from endoplasmic reticulum (ER) at treatment concentrations as low as 10 microM; at 50 microM, the former induced 5x as much Ca2+ release as the latter. The HE-induced Ca2+ release from the ER was antagonized using the IP3 receptor/channel blocker xestospongin C, suggesting that HE induces ER Ca2+ release through the IP3 receptor/channel pore. These results show that the effect of HE on cellular Ca2+ mimics that of mitogens such as epidermal and hepatocyte growth factors. They also provide insight into the similarities and differences between tumorigenic and non-tumorigenic OCs, in terms of the mechanisms and the extent of the [Ca2+]i increased by these agents.
Collapse
Affiliation(s)
- Mark E Hansen
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
122
|
Shimizu M, Weinstein IB. Modulation of signal transduction by tea catechins and related phytochemicals. Mutat Res 2005; 591:147-60. [PMID: 15992833 DOI: 10.1016/j.mrfmmm.2005.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/01/2005] [Accepted: 04/12/2005] [Indexed: 04/10/2023]
Abstract
Epidemiologic studies in human populations and experimental studies in rodents provide evidence that green tea and its constituents can inhibit both the development and growth of tumors at a variety of tissue sites. In addition, EGCG, a major biologically active component of green tea, inhibits growth and induces apoptosis in a variety of cancer cell lines. The purpose of this paper is to review evidence that these effects are mediated, at least in part, through inhibition of the activity of specific receptor tyrosine kinases (RTKs) and related downstream pathways of signal transduction. We also review evidence indicating that the antitumor effects of the related polyphenolic phytochemicals resveratrol, genistein, curcumin, and capsaicin are exerted via similar mechanisms. Some of these agents (EGCG, genistein, and curcumin) appear to directly target specific RTKs, and all of these compounds cause inhibition of the activity of the transcription factors AP-1 and NF-kappaB, thus inhibiting cell proliferation and enhancing apoptosis. Critical areas of future investigation include: (1) identification of the direct molecular target(s) of EGCG and related polyphenolic compounds in cells; (2) the in vivo metabolism and bioavailability of these compounds; (3) the ancillary effects of these compounds on tumor-stromal interactions; (4) the development of synergistic combinations with other antitumor agents to enhance efficacy in cancer prevention and therapy, and also minimize potential toxicities.
Collapse
Affiliation(s)
- Masahito Shimizu
- Herbert Irving Comprehensive Cancer Center and Department of Medicine, Columbia University Medical Center, HHSC-1509, 701 West 168 Street, NY 10032-2704, USA
| | | |
Collapse
|
123
|
Shen G, Jeong WS, Hu R, Kong ANT. Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents. Antioxid Redox Signal 2005; 7:1648-63. [PMID: 16356127 DOI: 10.1089/ars.2005.7.1648] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The inhibition of carcinogenesis by chemopreventive agents has been demonstrated in many tumorigenesis animal models. The chemopreventive mechanisms of those phytochemicals have been investigated extensively, though mostly in in vitro cell culture systems. The cellular signaling cascades mediated by transcription factors, including nuclear factor E2-related factor 2 (Nrf2), nuclear factor-kappaB (NF-kappaB), and activator protein-1 (AP-1), have been shown to play pivotal roles in tumor initiation, promotion, and progression processes. Thus, as demonstrated by previous substantive mechanistic studies, they appear to be ideal targets for cancer chemoprevention. In this review, we discuss the current progress and future challenges on our understanding of the molecular mechanisms in cancer chemoprevention by phytochemicals, focusing on the regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways.
Collapse
Affiliation(s)
- Guoxiang Shen
- Department of Pharmaceutics and Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
124
|
Mukherjee JJ, Sikka HC. Attenuation of BPDE-induced p53 accumulation by TPA is associated with a decrease in stability and phosphorylation of p53 and downregulation of NFkappaB activation: role of p38 MAP kinase. Carcinogenesis 2005; 27:631-8. [PMID: 16244358 PMCID: PMC1383507 DOI: 10.1093/carcin/bgi247] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA damage caused by benzo[a]pyrene (B[a]P) or other polynuclear hydrocarbons (PAHs) induce p53 protein as a protective measure to eliminate the possibility of mutagenic fixation of the DNA damage. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits p53 response induced by B[a]P and other DNA-damaging agents and may cause tumor promotion. The molecular mechanism of attenuation of B[a]P-induced p53 response by TPA is not known. We investigated the effect of TPA on p53 response in (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE)-treated mouse epidermal JB6(P(+)) Cl 41 cells. BPDE treatment induced p53 accumulation which was attenuated significantly by TPA. Cells treated with BPDE and TPA showed increased ratio of Mdm2 to p53 proteins in p53 immunoprecipitate and decreased p53 life span compared to BPDE-treated cells indicating p53 destabilization by TPA. TPA also inhibited BPDE-induced p53 phosphorylation at serine15. Activation of both ERKs and p38 MAPK by BPDE and attenuation of BPDE-induced p53 accumulation by U0126 or SB202190, specific inhibitor of MEK1/2 or p38 MAPK, indicate the role of ERKs and p38 MAPK in p53 accumulation. Interestingly, TPA potentiated BPDE-induced activation of ERKs whereas p38 MAPK activation was significantly inhibited by TPA, suggesting that inhibition of p38 MAPK is involved in p53 attenuation by TPA. Furthermore, SB202190 treatment caused decreased p53 stability and inhibition of phosphorylation of p53 at serine15 in BPDE-treated cells. We also observed that TPA or SB202190 attenuated BPDE-induced nuclear factor kappa B (NFkappaB) activation in JB6 Cl 41 cells harboring NFkappaB reporter plasmid. To our knowledge this is the first report that TPA inhibits chemical carcinogen-induced NFkappaB activation. Interference of TPA with BPDE-induced NFkappaB activation implicates abrogation of p53 function which has been discussed. Overall, our data suggest that abrogation of BPDE-induced p53 response and of NFkappaB activation by TPA is mediated by impairment of the signaling pathway involving p38 MAPK.
Collapse
Affiliation(s)
- Jagat J Mukherjee
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, State University of New York College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222, USA.
| | | |
Collapse
|
125
|
Nomura M, Ichimatsu D, Moritani S, Koyama I, Dong Z, Yokogawa K, Miyamoto KI. Inhibition of epidermal growth factor-induced cell transformation and Akt activation by caffeine. Mol Carcinog 2005; 44:67-76. [PMID: 16044420 DOI: 10.1002/mc.20120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We found that caffeine significantly inhibited epidermal growth factor (EGF)- and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation in the JB6 mouse epidermal cell line. The tumor promoter-induced cell transformation was also blocked by treatment with an adenosine A1 receptor antagonist, 8-phenyltheophylline (8-PTH). Caffeine slightly attenuated activation of EGF-induced activator protein 1 (AP-1) activation, which play important roles in cell transformation, but only at the highest concentration examined (1 mM). Interestingly, pretreatment with caffeine suppressed EGF-induced phosphorylation and activation of Akt and ribosomal p 70 S6 protein kinase (p 70 S 6 K), a target of Akt, without inhibiting phosphatidylinositol 3-kinase (PI 3 K) activation. The inhibition of Akt activation of caffeine was not a result of its adenosine receptor antagonism. Because Akt plays a key role in signal transduction pathways leading to cell proliferation and apoptosis, our results provide novel insight into possible mechanisms of the chemotherapeutic effect of caffeine.
Collapse
Affiliation(s)
- Masaaki Nomura
- Department of Hospital Pharmacy, School of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
126
|
Nomura M, Tsukada H, Ichimatsu D, Ito H, Yoshida T, Miyamoto KI. Inhibition of epidermal growth factor-induced cell transformation by tannins. PHYTOCHEMISTRY 2005; 66:2038-46. [PMID: 16153407 DOI: 10.1016/j.phytochem.2005.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/03/2005] [Indexed: 05/04/2023]
Abstract
The mouse epidermal JB6 cell system is a well developed model for studying tumor promotion, and the JB6 Cl 41 promotion sensitive (P+) cell line, in which transformed colonies are induced by epidermal growth factor (EGF), was used to test the anti-tumor promoting effect of seven tannins and two triterpenoids. We found that six tannins, ellagitannins (compounds 1, 2, 3 and 4) and chromone gallates (compounds 6 and 7), significantly blocked EGF-induced cell transformation in a concentration-dependent manner. The inhibition of cell transformation by the tannins was not due to growth inhibition. The ellagitannins, but not the chromone gallates, significantly attenuated EGF-induced activator protein 1 (AP-1) activation, a transcription factor. Compounds 1 and 3, among the ellagitannins analysed, inhibited the EGF-induced phosphorylation of extracellular-signal regulated protein kinases and p38 kinases, which regulate AP-1 activation. On the other hand, compounds 3 and 4 suppressed EGF-induced phosphatidylinositol 3-kinase (PI3K) activation. In addition, all tannins that blocked cell transformation markedly inhibited EGF-induced activation of Akt, a downstream effector of PI3K. Because signal-transduction pathways, including AP-1 and PI3K pathways, have been focused as prime targets for chemopreventive phytochemicals, our results suggest that inhibition by tannins of EGF-induced neoplastic transformation in JB6 cells is related to blocking of Akt activation, and also attenuation of AP-1 activation for ellagitannins.
Collapse
Affiliation(s)
- Masaaki Nomura
- Department of Hospital Pharmacy, School of Medicine, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Choi BY, Choi HS, Ko K, Cho YY, Zhu F, Kang BS, Ermakova SP, Ma WY, Bode AM, Dong Z. The tumor suppressor p16(INK4a) prevents cell transformation through inhibition of c-Jun phosphorylation and AP-1 activity. Nat Struct Mol Biol 2005; 12:699-707. [PMID: 16007099 DOI: 10.1038/nsmb960] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 06/07/2005] [Indexed: 11/08/2022]
Abstract
Inactivation of the p16(INK4a) tumor suppressor protein is critical for the development of human cancers, including human melanoma. However, the molecular basis of the protein's inhibitory effect on cancer development is not clear. Here we investigated a possible mechanism for p16(INK4a) inhibition of neoplastic transformation and UV-induced skin cancer. We show that p16(INK4a) suppresses the activity of c-Jun N-terminal kinases (JNKs) and that it binds to the glycine-rich loop of the N-terminal domain of JNK3. Although p16(INK4a) does not affect the phosphorylation of JNKs, its interaction with JNK inhibits c-Jun phosphorylation induced by UV exposure. This, in turn, interferes with cell transformation promoted by the H-Ras-JNK-c-Jun-AP-1 signaling axis.
Collapse
Affiliation(s)
- Bu Young Choi
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Grandemange S, Seyer P, Carazo A, Bécuwe P, Pessemesse L, Busson M, Marsac C, Roger P, Casas F, Cabello G, Wrutniak-Cabello C. Stimulation of mitochondrial activity by p43 overexpression induces human dermal fibroblast transformation. Cancer Res 2005; 65:4282-91. [PMID: 15899820 DOI: 10.1158/0008-5472.can-04-3652] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondrial dysfunctions are frequently reported in cancer cells, but their direct involvement in tumorigenesis remains unclear. To understand this relation, we stimulated mitochondrial activity by overexpression of the mitochondrial triiodothyronine receptor (p43) in human dermal fibroblasts. In all clones, this stimulation induced morphologic changes and cell fusion in myotube-like structures associated with the expression of several muscle-specific genes (Myf5, desmin, connectin, myosin, AchRalpha). In addition, these clones displayed all the in vivo and in vitro features of cell transformation. This phenotype was related to an increase in c-Jun and c-Fos expression and extinction of tumor suppressor gene expression (p53, p21WAF1, Rb3). Lastly, reactive oxygen species (ROS) production was increased in positive correlation to the stimulation of mitochondrial activity. The direct involvement of mitochondrial activity in this cell behavior was studied by adding chloramphenicol, an inhibitor of mitochondrial protein synthesis, to the culture medium. This inhibition resulted in partial restoration of the normal phenotype, with the loss of the ability to fuse, a strong decrease in muscle-specific gene expression, and potent inhibition of the transformed phenotype. However, expression of tumor suppressor genes was not restored. Similar results were obtained by using N-acetylcysteine, an inhibitor of ROS production. These data indicate that stimulation of mitochondrial activity in human dermal fibroblasts induces cell transformation through events involving ROS production.
Collapse
Affiliation(s)
- Stéphanie Grandemange
- UMR 866, Différenciation Cellulaire et Croissance (INRA-UMII-ENSAM), Unité d'Endocrinologie Cellulaire, Institut National de la Recherche Agronomique, Montpelier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Feng G, Ohmori Y, Chang PL. Production of chemokine CXCL1/KC by okadaic acid through the nuclear factor-kappaB pathway. Carcinogenesis 2005; 27:43-52. [PMID: 16000401 DOI: 10.1093/carcin/bgi174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The murine chemokine CXCL1/KC is known as a chemoattractant for neutrophil infiltration and as a promoter of tumor growth. To determine its relevance in tumorigenesis, we first asked whether okadaic acid (OKA), a natural tumor promoter and a potent protein phosphatase 1 and 2A inhibitor, stimulates KC expression and if it does, through what pathway, in a promotable mouse epidermal-like JB6 cell line commonly used for studying molecules related to tumor promotion. We found that OKA stimulated the de novo synthesis of KC mRNA and protein in a dose- and time-dependent manner. To determine the mechanism by which OKA stimulated the expression of KC at the transcriptional level, transient transfection assays using serially deleted sections of KC promoter fused to luciferase reporter gene were performed. These studies showed that transactivation of KC promoter by OKA specifically involved the region between -104 and -59 containing the two nuclear factor-kappaB (NF-kappaB) response elements (kappaB1 and kappaB2). Further analyses using the mutated NF-kappaB response elements kappaB1 and kappaB2 indicated that both regions were required for optimum transactivation of KC by OKA with the former NF-kappaB response element playing a more significant role in regulating KC expression. Gel-shift and supershift analyses demonstrated the involvement of three NF-kappaB subunits, p65, p50 and c-Rel, with p65 as the major subunit in the NF-kappaB dimer complex. Additionally, immunohistochemistry and western blot analyses confirmed the presence of p65 in the nucleus with its transactivation domain phosphorylated at serine 536. In summary, this is the first report to show that the tumor promoter OKA can stimulate the de novo synthesis and secretion of KC, and that this stimulation is mediated through the NF-kappaB pathway in JB6 cells.
Collapse
Affiliation(s)
- Gong Feng
- Department of Nutrition Sciences and Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35294-3360, USA
| | | | | |
Collapse
|
130
|
Choi HS, Choi BY, Cho YY, Mizuno H, Kang BS, Bode AM, Dong Z. Phosphorylation of histone H3 at serine 10 is indispensable for neoplastic cell transformation. Cancer Res 2005; 65:5818-27. [PMID: 15994958 PMCID: PMC2227263 DOI: 10.1158/0008-5472.can-05-0197] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Very little is known about the role of histone H3 phosphorylation in malignant transformation and cancer development. Here, we examine the function of H3 phosphorylation in cell transformation in vivo. Introduction of small interfering RNA-H3 into JB6 cells resulted in decreased epidermal growth factor (EGF)-induced cell transformation. In contrast, wild-type histone H3 (H3 WT)-overexpressing cells markedly stimulated EGF-induced cell transformation, whereas the H3 mutant S10A cells suppressed transformation. When H3 WT was overexpressed, EGF induction of c-fos and c-jun promoter activity was significantly increased compared with control cells but not in the H3 mutant S10A or S28A cells. In addition, activator protein-1 activity in H3 WT-overexpressing cells was markedly up-regulated by EGF in contrast to the H3 mutant S10A or S28A cells. These results indicate that the phosphorylation of histone H3 at Ser10 is an essential regulatory mechanism for EGF-induced neoplastic cell transformation.
Collapse
Affiliation(s)
- Hong Seok Choi
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Bu Young Choi
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Yong-Yeon Cho
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Hideya Mizuno
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Bong Seok Kang
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Ann M. Bode
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Zigang Dong
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| |
Collapse
|
131
|
Feng R, Lu Y, Bowman LL, Qian Y, Castranova V, Ding M. Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem 2005; 280:27888-95. [PMID: 15944151 DOI: 10.1074/jbc.m503347200] [Citation(s) in RCA: 268] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chlorogenic acid, the ester of caffeic acid with quinic acid, is one of the most abundant polyphenols in the human diet. The antioxidant and anticarcinogenic properties of chlorogenic acid have been established in animal studies. However, little is known about the molecular mechanisms through which chlorogenic acid inhibits carcinogenesis. In this study, we found that chlorogenic acid inhibited the proliferation of A549 human cancer cells in vitro. The results of the soft agar assay indicated that chlorogenic acid suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ cells in a dose-dependent manner. Pretreatment of JB6 cells with chlorogenic acid blocked UVB- or TPA-induced transactivation of AP-1 and NF-kappaB over the same dose range. At low concentrations, chlorogenic acid decreased the phosphorylation of c-Jun NH2-terminal kinases, p38 kinase, and MAPK kinase 4 induced by UVB/12-O-tetradecanoylphorbol-13-acetate, yet higher doses were required to inhibit extracellular signal-regulated kinases. Chlorogenic acid also increased the enzymatic activities of glutathione S-transferases (GST) and NAD(P)H: quinone oxidoreductase. Further studies indicated that chlorogenic acid could stimulate the nuclear translocation of Nrf2 (NF-E2-related factor) as well as subsequent induction of GSTA1 antioxidant response element (ARE)-mediated GST activity. The phosphatidylinositol 3-kinase pathway might be involved in the activation of Nrf2 translocation. These results provide the first evidence that chlorogenic acid could protect against environmental carcinogen-induced carcinogenesis and suggest that the chemopreventive effects of chlorogenic acid may be through its up-regulation of cellular antioxidant enzymes and suppression of ROS-mediated NF-kappaB, AP-1, and MAPK activation.
Collapse
Affiliation(s)
- Rentian Feng
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | | | | | | | | | |
Collapse
|
132
|
Hsiang CY, Wu SL, Ho TY. Morin inhibits 12-O-tetradecanoylphorbol-13-acetate-induced hepatocellular transformation via activator protein 1 signaling pathway and cell cycle progression. Biochem Pharmacol 2005; 69:1603-11. [PMID: 15896340 DOI: 10.1016/j.bcp.2005.03.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 12/18/2022]
Abstract
Flavonoids are constituents of fruits, vegetables, and plant-derived beverages, as well as components in herbal containing dietary supplements. They exhibit a remarkable spectrum of biochemical and pharmacological activities. In this study, we examined morin (3,5,7,2',4'-pentahydroxyflavone) for its effect on 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated human hepatocytes. Morin inhibited TPA-induced cellular transformation in Chang liver cells in a dose-dependent manner. Luciferase assay and electrophoretic mobility shift assay revealed that morin suppressed TPA-induced AP-1 activity, and the inhibition of AP-1 activity by morin was mediated through the inhibition of p38 kinase. Moreover, morin induced the S-phase arrest and inhibited the DNA synthesis in TPA-treated hepatocytes, suggesting that a cell cycle checkpoint was activated by morin to block DNA synthesis in S phase. In conclusion, our results suggested that morin was a potent anti-hepatocellular transformation agent that inhibited cellular transformation by suppressing the AP-1 activity and inducing the S-phase arrest in human hepatocytes.
Collapse
Affiliation(s)
- Chien-Yun Hsiang
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan.
| | | | | |
Collapse
|
133
|
Feng R, Bowman LL, Lu Y, Leonard SS, Shi X, Jiang BH, Castranova V, Vallyathan V, Ding M. Blackberry extracts inhibit activating protein 1 activation and cell transformation by perturbing the mitogenic signaling pathway. Nutr Cancer 2005; 50:80-9. [PMID: 15572301 DOI: 10.1207/s15327914nc5001_11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Blackberries are natural rich sources of bioflavonoids and phenolic compounds that are commonly known as potential chemopreventive agents. Here, we investigated the effects of fresh blackberry extracts on proliferation of cancer cells and neoplastic transformation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), as well as the underlying mechanisms of signal transduction pathways. Using electron spin resonance, we found that blackberry extract is an effective scavenger of free radicals, including hydroxyl and superoxide radicals. Blackberry extract inhibited the proliferation of a human lung cancer cell line, A549. Pretreatment of A549 cells with blackberry extract resulted in an inhibition of 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation induced by ultraviolet B (UVB) irradiation. Blackberry extract decreased TPA-induced neoplastic transformation of JB6 P+ cells. Pretreatment of JB6 cells with blackberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 transactivation. Furthermore, blackberry extract also blocked UVB- or TPA-induced phosphorylation of ERKs and JNKs, but not p38 kinase. Overall, these results indicated that an extract from fresh blackberry may inhibit tumor promoter-induced carcinogenesis and associated cell signaling, and suggest that the chemopreventive effects of fresh blackberry may be through its antioxidant properties by blocking reactive oxygen species-mediated AP-1 and mitogen-activated protein kinase activation.
Collapse
Affiliation(s)
- Rentian Feng
- Pathology and Physiology Research Branch, Helath Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Darwiche N, Bazzi H, El-Touni L, Abou-Lteif G, Doueiri R, Hatoum A, Maalouf S, Gali-Muhtasib H. Regulation of Ultraviolet B Radiation-Mediated Activation of AP1 Signaling by Retinoids in Primary Keratinocytes. Radiat Res 2005; 163:296-306. [PMID: 15733037 DOI: 10.1667/rr3318] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The main cause of skin cancer and photo-aging is chronic exposure to ultraviolet B (UVB) radiation. Such damage can be ameliorated by retinoid treatment. UVB-radiation-induced skin carcinogenesis is associated with the induction of activator protein 1 (AP1) signaling and factors, namely FOS and JUN family members. We investigated the effects of several retinoids, all-trans-retinoic acid (tRA), 9-cis-retinoic acid (cRA), and N-(4-hydroxyphenyl)-retinamide (HPR), on UVB-induced damage in primary mouse keratinocytes. In addition, the interplay between UVB radiation, retinoid receptors, and AP1 signaling was assessed using Western blot analysis and ribonuclease protection and gene reporter assays. Exposure of keratinocytes to UVB radiation caused a down-regulation of the retinoid receptor protein levels in a proteasome-mediated manner. In contrast, FOS and JUN proteins were transiently induced shortly after exposure to UVB radiation. Retinoid treatment caused a dose-dependent reduction in the levels of retinoid receptor proteins. When irradiated cells were treated with retinoids, no significant effects on AP1 protein expression were noted. Interestingly, pretreatments with tRA and cRA, but not HPR, suppressed UVB-radiation-induced AP1 activity by more than 50%, whereas post-treatment failed to produce similar effects. Our findings indicate that the inhibition of AP1 activity by retinoids explains, at least in part, the chemopreventive potential of retinoids in UV-radiation-associated epidermal damage.
Collapse
Affiliation(s)
- Nadine Darwiche
- Department of Biology, American University of Beirut, Beirut, Lebanon.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
He Z, Cho YY, Ma WY, Choi HS, Bode AM, Dong Z. Regulation of Ultraviolet B-induced Phosphorylation of Histone H3 at Serine 10 by Fyn Kinase. J Biol Chem 2005; 280:2446-54. [PMID: 15537652 DOI: 10.1074/jbc.m402053200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ultraviolet B (UVB) induces phosphorylation of histone H3 at serine 10, and mitogen-activated protein kinases are involved in this signal transduction pathway. Here we provide evidence that Fyn kinase, a member of the Src kinase family, is involved in the UVB-induced phosphorylation of histone H3 at serine 10. UVB distinctly increased Fyn kinase activity and phosphorylation. Fyn kinase inhibitors 4-amino-5-(4-chlorophenyl)-7(t-butyl)pyrazol(3,4-d)pyramide and leflunomide, an Src kinase inhibitor, suppressed both UVB-induced phosphorylation of histone H3 at serine 10 and Fyn kinase activity and phosphorylation. UVB-induced phosphorylation of histone H3 at serine 10 was blocked by either a dominant-negative mutant of Fyn (DNM-Fyn) kinase or small interfering RNA of Fyn kinase. UVB-induced phosphorylation and activities of ERKs and protein kinase B/Akt were markedly inhibited by DNM-Fyn kinase. However, DNM-Fyn kinase did not inhibit UVB-induced phosphorylation of p38 MAPK or c-Jun N-terminal kinases. Active Fyn kinase phosphorylated histone H3 at serine 10 in vitro, and the phosphorylated Fyn kinase could translocate into the nucleus of HaCaT cells. These results indicate that Fyn kinase plays a key role in the UVB-induced phosphorylation of histone H3 at serine 10.
Collapse
Affiliation(s)
- Zhiwei He
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | |
Collapse
|
136
|
Weber TJ, Siegel RW, Markillie LM, Chrisler WB, Lei XC, Colburn NH. A paracrine signal mediates the cell transformation response to low dose gamma radiation in JB6 cells. Mol Carcinog 2005; 43:31-7. [PMID: 15800926 DOI: 10.1002/mc.20092] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The carcinogenic response to radiation is complex and may involve adaptive cellular responses as well as a bystander effect mediated by paracrine or intercellular signaling activities. Using a newly developed co-culture model we have examined whether low dose gamma radiation induces the transformation of JB6 mouse epidermal cells as well as non-irradiated bystander cells. Cell transformation response is defined as the acquisition of anchorage-independent growth properties and is quantified by counting colonies on soft agar. Exposure of JB6 cells to low dose (2-20 cGy) gamma radiation resulted in an approximate 1.9 +/- 0.1 and 2.8 +/- 0.5-fold increase in cell transformation response when cells were seeded at 1 x 10(4) or 1 x 10(5) cells/dish, relative to respective sham exposed controls. We developed a co-culture model where sham exposed or irradiated JB6 cells were mixed with non-irradiated JB6 cells that had been stably transfected with the enhanced yellow fluorescent protein (EYFP) to enable the distinction of fluorescent bystander-specific colonies. A significant increase in the number of bystander-specific colonies was observed in co-culture with 10 cGy irradiated JB6 cells (224 +/- 9), relative to the number of bystander-specific colonies arising in co-culture with sham exposed JB6 cells (55 +/- 16). Our results indicate that low dose radiation induces the transformation of JB6 cells and that a soluble paracrine factor that is secreted by irradiated cells induces the transformation of non-irradiated bystander cells.
Collapse
Affiliation(s)
- Thomas J Weber
- Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | | | | | | | | |
Collapse
|
137
|
Bode AM, Dong Z. Signal transduction pathways in cancer development and as targets for cancer prevention. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:237-97. [PMID: 16096030 DOI: 10.1016/s0079-6603(04)79005-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | |
Collapse
|
138
|
Bode AM, Dong Z. Targeting signal transduction pathways by chemopreventive agents. Mutat Res 2004; 555:33-51. [PMID: 15476850 DOI: 10.1016/j.mrfmmm.2004.05.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 04/30/2004] [Accepted: 05/01/2004] [Indexed: 01/10/2023]
Abstract
Cancer is a dynamic process that involves many complex factors, which may explain why a "magic bullet" cure for cancer has not been found. Death rates are still rising for many types of cancers, which possibly contributes to the increased interest in chemoprevention as an alternative approach to the control of cancer. This strategy for cancer control is based on the presumption that because cancer develops through a multi-step process, each step may be a prospective target for reversing or suppressing the process. Thus, the design and development of chemopreventive agents that act on specific and/or multiple molecular and cellular targets is gaining support as a rational approach to control cancer. Nutritional or dietary factors have attracted a great deal of interest because of their perceived ability to act as highly effective chemopreventive agents. They are professed as being generally safe and may have efficacy as chemopreventive agents by preventing or reversing premalignant lesions and/or reducing second primary tumor incidence. Many of these dietary compounds appear to act on multiple target signaling pathways. Some of the most interesting and well documented are resveratrol and components of tea, including EGCG, theaflavins and caffeine. This review will focus on recent work regarding three well-accepted cellular/molecular mechanisms that may at least partially explain the effectiveness of selected food factors, including those indicated above, as chemopreventive anti-promotion agents. These food compounds may act by: (1) inducing apoptosis in cancer cells; (2) inhibiting neoplastic transformation through the inhibition of AP-1 and/or NF-kappaB activation; and/or (3) suppressing COX-2 overexpression in cancer cells.
Collapse
Affiliation(s)
- A M Bode
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | | |
Collapse
|
139
|
Dai J, Huang C, Wu J, Yang C, Frenkel K, Huang X. Iron-induced interleukin-6 gene expression: possible mediation through the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways. Toxicology 2004; 203:199-209. [PMID: 15363595 DOI: 10.1016/j.tox.2004.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/29/2004] [Accepted: 06/05/2004] [Indexed: 01/06/2023]
Abstract
Increased iron store in the body may increase the risk of many diseases such as cancer and inflammation. However, the precise pathogenic mechanism of iron has not yet been elucidated. In the present study, the early biological responses of cells to iron treatment were investigated in AP-1 luciferase reporter stably transfected mouse epidermal JB6 cells and primary rat hepatocytes. It was shown that water-soluble iron compounds, such as FeSO4 and Fe2(SO4)3, were more active in inducing AP-1 in JB6 cells than water-insoluble iron compounds, such as Fe2O3 and FeS. Iron stimulated mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-jun NH2 terminal kinases (JNKs), both in JB6 cells and in primary rat hepatocytes, as determined by the phosphorylation assay. Interestingly, the increase in AP-1 luciferase activity by iron was inhibited by the pretreatment of the cells with PD98059, a specific MEK1 inhibitor, and SB202190, a p38 kinase inhibitor. Levels of interleukin-6 (IL-6), a pro-inflammatory cytokine, were increased in JB6 cells by iron in a dose-dependent manner. The increase in IL-6 and its mRNA by iron was also eliminated by the pretreatment of the cells with PD98059 and SB202190. Since the IL-6 promoter contains an AP-1 binding site, our studies indicate that the iron-induced IL-6 gene expression may be mediated through ERKs and p38 MAPK pathways, possibly one of the important mechanisms for the pathogenesis of iron overload.
Collapse
Affiliation(s)
- Jisen Dai
- Department of Environmental Medicine, NYU Cancer Institute, New York University School of Medicine, PHL Room 802, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
140
|
Surh YJ. Transcription factors in the cellular signaling network as prime targets of chemopreventive phytochemicals. Cancer Res Treat 2004; 36:275-86. [PMID: 20368816 DOI: 10.4143/crt.2004.36.5.275] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence from epidemiologic and laboratory studies support an inverse relationship between a regular consumption of fruits and vegetables and the risk of specific cancers. Numerous phytochemicals derived from edible plants have been reported to possess ability to interfere with a specific stage of carcinogenic process. Multiple mechanisms have been proposed to account for the anti-carcinogenic actions of dietary constituents, but more attention has recently focussed on intracellular signaling cascades as common molecular targets of a wide variety of chemopreventive phytochemicals.
Collapse
Affiliation(s)
- Young-Joon Surh
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Seoul, Korea.
| |
Collapse
|
141
|
Abstract
Arsenic is a metalloid compound that is widely distributed in the environment. Human exposure of this compound has been associated with increased cancer incidence. Although the exact mechanisms remain to be investigated, numerous carcinogenic pathways have been proposed. Potential carcinogenic actions for arsenic include oxidative stress, genotoxic damage, DNA repair inhibition, epigenetic events, and activation of certain signal transduction pathways leading to abberrant gene expression. In this article, we summarize current knowledge on the molecular mechanisms of arsenic carcinogenesis with an emphasis on ROS and signal transduction pathways.
Collapse
Affiliation(s)
- Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | | | | | | |
Collapse
|
142
|
Cho YY, Bode AM, Mizuno H, Choi BY, Choi HS, Dong Z. A novel role for mixed-lineage kinase-like mitogen-activated protein triple kinase alpha in neoplastic cell transformation and tumor development. Cancer Res 2004; 64:3855-64. [PMID: 15172994 DOI: 10.1158/0008-5472.can-04-0201] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Previously, no member of the mixed-lineage kinase (MLK) protein family was known to function as an oncogene. Here, we demonstrate that MLK-like mitogen-activated protein triple kinase (MLTK)-alpha, a member of the MLK family, induced neoplastic cell transformation and tumorigenesis in athymic nude mice. Introduction of small interference RNA (siRNA)-MLTK-alpha into MLTK-alpha-overexpressing cells dramatically suppressed cell transformation. Nuclear accumulation of the pHisG-MLTK-alpha fusion protein was observed after epidermal growth factor or 12-O-tetradecanoylphorbol-13-acetate treatment. Phosphorylation of downstream mitogen-activated protein kinase-targeted transcription factors including c-Myc, Elk-1, c-Jun, and activating transcription factor (ATF) 2 was also differentially enhanced in MLTK-alpha-overexpressing cells exposed to epidermal growth factor or 12-O-tetradecanoylphorbol-13-acetate stimulation compared with cells expressing mock vector or siRNA-MLTK-alpha. Very importantly, MLTK-alpha-overexpressing cells formed fibrosarcomas when injected s.c. into athymic nude mice, whereas almost no tumor formation was observed in mice that received injections of mock or siRNA-MLTK-alpha stably transfected cells. These results are the first to indicate that MLTK-alpha plays a key role in neoplastic cell transformation and cancer development.
Collapse
Affiliation(s)
- Yong-Yeon Cho
- Hormel Institute University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | |
Collapse
|
143
|
Dhar A, Hu J, Reeves R, Resar LMS, Colburn NH. Dominant-negative c-Jun (TAM67) target genes: HMGA1 is required for tumor promoter-induced transformation. Oncogene 2004; 23:4466-76. [PMID: 15064752 DOI: 10.1038/sj.onc.1207581] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Activation of the transcription factor AP-1 (activator protein-1) is required for tumor promotion and maintenance of malignant phenotype. A number of AP-1-regulated genes that play a role in tumor progression have been identified. However, AP-1-regulated genes driving tumor induction are yet to be defined. Previous studies have established that expression of a dominant-negative c-Jun (TAM67) inhibits phorbol 12-tetradecanoyl-13-acetate (TPA)-induced AP-1 transactivation as well as transformation in mouse epidermal JB6/P+ cells and tumor promotion in mouse skin carcinogenesis. In this study, we utilized the tumor promotion-sensitive JB6/P+ cells to identify AP-1-regulated TAM67 target genes and to establish causal significance in transformation for one target gene. A 2700 cDNA microarray was queried with RNA from TPA-treated P+ cells with or without TAM67 expression. Under conditions in which TAM expression inhibited TPA-induced transformation, microarray analysis identified a subset of six genes induced by TPA and suppressed by TAM67. One of the identified genes, the high-mobility group protein A1 (Hmga1) is induced by TPA in P+, but not in transformation-resistant P cells. We show that TPA induction of the architectural transcription factor HMGA1 is inhibited by TAM67, is extracellular-signal-regulated kinase (ERK)-activation dependent, and is mediated by AP-1. HMGA1 antisense construct transfected into P+ cells blocked HMGA1 protein expression and inhibited TPA-induced transformation indicating that HMGA1 is required for transformation. HMGA1 is not however sufficient as HMGA1a or HMGA1b overexpression did not confer transformation sensitivity on P- cells. Although HMGA1 expression is ERK dependent, it is not the only ERK-dependent event required for transformation because it does not suffice to rescue ERK-deficient P- cells. Our study shows (a) TAM 67 when it inhibits AP-1 and transformation, targets a relatively small number of genes; (b) HMGA1, a TAM67 target gene, is causally related to transformation and therefore a potentially important target for cancer prevention.
Collapse
Affiliation(s)
- Arindam Dhar
- Gene Regulation Section, Laboratory of Cancer Prevention, NCI at Frederick, Frederick, MD 21702-1201, USA.
| | | | | | | | | |
Collapse
|
144
|
|
145
|
Silvers AL, Bachelor MA, Bowden GT. The role of JNK and p38 MAPK activities in UVA-induced signaling pathways leading to AP-1 activation and c-Fos expression. Neoplasia 2004; 5:319-29. [PMID: 14511403 PMCID: PMC1502419 DOI: 10.1016/s1476-5586(03)80025-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To further delineate ultraviolet A (UVA) signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs) in UVA-induced activator protein-1 (AP-1) transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor) and SP600125 (JNK inhibitor), were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25-0.5 microM) and SP600125 (62-125 nM) treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer.
Collapse
Affiliation(s)
- Amy L Silvers
- Department of Radiation Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
146
|
Brellier F, Marionnet C, Chevallier-Lagente O, Toftgard R, Mauviel A, Sarasin A, Magnaldo T. Ultraviolet Irradiation Represses PATCHED Gene Transcription in Human Epidermal Keratinocytes through an Activator Protein-1-Dependent Process. Cancer Res 2004; 64:2699-704. [PMID: 15087382 DOI: 10.1158/0008-5472.can-03-3477] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basal cell carcinoma (BCC) is one of the major types of skin cancer arising from keratinocytes. The SONIC HEDGEHOG pathway is deregulated in 100% of sporadic BCCs, as indicated by the overexpression of PATCHED, whose product encodes the receptor of SONIC HEDGEHOG, in 100% of analyzed BCCs. Reverse transcription-PCR analysis revealed that exposure to UVB irradiation, which is a risk factor known to contribute to BCC development, induces a strong and sharp decrease of PATCHED mRNA level both in vitro and ex vivo. Transcription of a reporter gene driven by the 4.4-kb 5'-regulatory region of the human PATCHED gene was shown to be down-regulated after UVB irradiation. Furthermore, overexpression of c-JUN, a member of the activator protein (AP)-1 family, induced repression of the PATCHED promoter. The role of AP-1 in UVB-induced PATCHED repression was confirmed in mouse embryonic fibroblasts knocked out for c-JUN NH(2)-terminal protein kinase. This study thus provides the first evidence of UV-induced down-regulation at the transcriptional level of the BCC-associated tumor suppressor PATCHED relying on activation of the AP-1 oncogenic pathway.
Collapse
Affiliation(s)
- Florence Brellier
- Laboratory of Genetic Instability and Cancer, Centre National de la Recherche Scientifique UPR2169, Institut Gustave Roussy, Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
147
|
Li J, Tang MS, Liu B, Shi X, Huang C. A critical role of PI-3K/Akt/JNKs pathway in benzo[a]pyrene diol-epoxide (B[a]PDE)-induced AP-1 transactivation in mouse epidermal Cl41 cells. Oncogene 2004; 23:3932-44. [PMID: 15021902 DOI: 10.1038/sj.onc.1207501] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mouse skin tumorigenicity studies indicate that benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE) contributes to carcinogenesis as both a tumor initiator and promoter. However, the mechanisms that mediate B[a]PDE tumor promotion effects remain unclear. Our results demonstrated that in mouse epidermal Cl41 cells, B[a]PDE treatment resulted in marked activation of AP-1 and its upstream MAPKs, including ERKs, JNKs and p38K. B[a]PDE exposure also led to activation of phosphotidylinositol 3-kinase (PI-3K), Akt and p70 S6 kinase (p70S6k). B[a]PDE-induced AP-1 transactivation was inhibited by pretreatment of cells with PI-3K inhibitors, wortmannin or Ly294002. In contrast, inhibition of p70S6k with rapamycin did not show any inhibitory effects. An overexpression of dominant-negative mutant of PI-3K, Deltap85, impaired B[a]PDE-induced activation of PI-3K, Akt and AP-1 transactivation. Furthermore, an overexpression of dominant-negative Akt mutant, Akt-T308A/S473A, blocked B[a]PDE-induced activation of Akt, AP-1 and JNKs, while it did not affect the activation of p70S6k, ERKs and p38 kinase. These results demonstrated that B[a]PDE was able to induce AP-1 transactivation and this AP-1 induction was specific through PI-3K/Akt/JNKs-dependent and p70S6k-independent pathways. This study also indicated that Akt-T308A/S473A blocks B[a]PDE-induced AP-1 activation specific through impairing JNK pathway. These findings will help us to understand the signal transduction pathways involved in the carcinogenic effects of B[a]PDE.
Collapse
Affiliation(s)
- Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | |
Collapse
|
148
|
Li J, Chen H, Tang MS, Shi X, Amin S, Desai D, Costa M, Huang C. PI-3K and Akt are mediators of AP-1 induction by 5-MCDE in mouse epidermal Cl41 cells. ACTA ACUST UNITED AC 2004; 165:77-86. [PMID: 15067018 PMCID: PMC2172097 DOI: 10.1083/jcb.200401004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5-Methylchrysene has been found to be a complete carcinogen in laboratory animals. However, the tumor promotion effects of (+/-)-anti-5-methylchrysene-1,2-diol-3,4-epoxide (5-MCDE) remain unclear. In the present work, we found that 5-MCDE induced marked activator protein-1 (AP-1) activation in Cl41 cells. 5-MCDE also induced a marked activation of phosphatidylinositol 3-kinase (PI-3K). Inhibition of PI-3K impaired 5-MCDE-induced AP-1 transactivation, suggesting that PI-3K is an upstream kinase involved in AP-1 activation by 5-MCDE. Furthermore, we found that Akt is a PI-3K downstream mediator for 5-MCDE-induced AP-1 transactivation, whereas another PI-3K downstream kinase, p70(S6K), was not involved in AP-1 activation by 5-MCDE. Moreover, inhibition of Akt activation blocked 5-MCDE-induced activation of extracellular signal-regulated protein kinases (ERKs) and c-Jun NH(2)-terminal kinases (JNKs), whereas it did not affect p38K activation. Consistently, overexpression of a dominant-negative mutant of ERK2 or JNK1 blocked the AP-1 activation by 5-MCDE. These results demonstrate that 5-MCDE is able to induce AP-1 activation, and the AP-1 induction is specifically through a PI-3K/Akt-dependent and p70(S6K)-independent pathway.
Collapse
Affiliation(s)
- Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd., Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Hou DX, Fujii M, Terahara N, Yoshimoto M. Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins. J Biomed Biotechnol 2004; 2004:321-325. [PMID: 15577196 PMCID: PMC1082887 DOI: 10.1155/s1110724304403040] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Anthocyanins are polyphenolic ring-based flavonoids, and are widespread in fruits and vegetables of red-blue color. Epidemiological investigations and animal experiments have indicated that anthocyanins may contribute to cancer chemoprevention. The studies on the mechanism have been done recently at molecular level. This review summarizes current molecular bases for anthocyanidins on several key steps involved in cancer chemoprevention: (i) inhibition of anthocyanidins in cell transformation through targeting mitogen-activated protein kinase (MAPK) pathway and activator protein 1 (AP-1) factor; (ii) suppression of anthocyanidins in inflammation and carcinogenesis through targeting nuclear factor kappa B (NF- $\kappa$ B) pathway and cyclooxygenase 2 (COX-2) gene; (iii) apoptotic induction of cancer cells by anthocyanidins through reactive oxygen species (ROS) / c-Jun NH(2)-terminal kinase (JNK)-mediated caspase activation. These data provide a first molecular view of anthocyanidins contributing to cancer chemoprevention.
Collapse
Affiliation(s)
- De-Xing Hou
- Department of Biochemical
Science and Technology,
Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
- De-Xing Hou:
| | - Makoto Fujii
- Department of Biochemical
Science and Technology,
Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Norihiko Terahara
- Department of Food Science
for Health, Faculty of
Health and Nutrition, Minami-Kyushu University, 5-1-2 Kirishima, Miyazaki 880-0032, Japan
| | - Makoto Yoshimoto
- Department of Upland
Farming Research, National
Agricultural Research Center for Kyushu Okinawa Region, Miyazaki, Miyakonojo 885-0091, Japan
| |
Collapse
|
150
|
Affiliation(s)
- Ann M Bode
- University of Minnesota, Hormel Institute, Austin, Minnesota 55912, USA
| | | |
Collapse
|