101
|
Kane JK, Konu O, Ma JZ, Li MD. Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain. ACTA ACUST UNITED AC 2004; 132:181-91. [PMID: 15582157 DOI: 10.1016/j.molbrainres.2004.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2004] [Indexed: 10/26/2022]
Abstract
Previously, we used cDNA microarrays to demonstrate that the phosphatidylinositol and MAP kinase signaling pathways are regulated by nicotine in different rat brain regions. In the present report, we show that, after exposure to nicotine for 14 days, ubiquitin, ubiquitin-conjugating enzymes, 20S and 19S proteasomal subunits, and chaperonin-containing TCP-1 protein (CCT) complex members are upregulated in rat prefrontal cortex (PFC) while being downregulated in the medial basal hypothalamus (MBH). In particular, relative to saline controls, ubiquitins B and C were upregulated by 33% and 47% (P<0.01), respectively, in the PFC. The proteasome beta subunit 1 (PSMB1) and 26S ATPase 3 (PSMC3) genes were upregulated in the PFC by 95% and 119% (P<0.001), respectively. In addition to the protein degradation pathway of the ubiquitin-proteasome complexes, we observed in the PFC an increase in the expression of small, ubiquitin-related modifiers (SUMO) 1 and 2 by 80% and 33%, respectively (P<0.001), and in 3 of 6 CCT subunits by up to 150% (P<0.0001). To a lesser extent, a change in the opposite direction was obtained in the expression of the same gene families in the MBH. Quantitative real-time RT-PCR was used to validate the microarray results obtained with some representative genes involved in these pathways. Taken together, our results suggest that, in response to systemic nicotine administration, the ubiquitin-proteasome, SUMO, and chaperonin complexes provide an intricate control mechanism to maintain cellular homeostasis, possibly by regulating the composition and signaling of target neurons in a region-specific manner.
Collapse
Affiliation(s)
- Justin K Kane
- Program in Genomics and Bioinformatics on Drug Addiction, Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | | | | | | |
Collapse
|
102
|
Dorssers LCJ, van Agthoven T, Brinkman A, Veldscholte J, Smid M, Dechering KJ. Breast cancer oestrogen independence mediated by BCAR1 or BCAR3 genes is transmitted through mechanisms distinct from the oestrogen receptor signalling pathway or the epidermal growth factor receptor signalling pathway. Breast Cancer Res 2004; 7:R82-92. [PMID: 15642172 PMCID: PMC1064102 DOI: 10.1186/bcr954] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 09/02/2004] [Accepted: 09/30/2004] [Indexed: 11/10/2022] Open
Abstract
Introduction Tamoxifen is effective for endocrine treatment of oestrogen receptor-positive breast cancers but ultimately fails due to the development of resistance. A functional screen in human breast cancer cells identified two BCAR genes causing oestrogen-independent proliferation. The BCAR1 and BCAR3 genes both encode components of intracellular signal transduction, but their direct effect on breast cancer cell proliferation is not known. The aim of this study was to investigate the growth control mediated by these BCAR genes by gene expression profiling. Methods We have measured the expression changes induced by overexpression of the BCAR1 or BCAR3 gene in ZR-75-1 cells and have made direct comparisons with the expression changes after cell stimulation with oestrogen or epidermal growth factor (EGF). A comparison with published gene expression data of cell models and breast tumours is made. Results Relatively few changes in gene expression were detected in the BCAR-transfected cells, in comparison with the extensive and distinct differences in gene expression induced by oestrogen or EGF. Both BCAR1 and BCAR3 regulate discrete sets of genes in these ZR-75-1-derived cells, indicating that the proliferation signalling proceeds along distinct pathways. Oestrogen-regulated genes in our cell model showed general concordance with reported data of cell models and gene expression association with oestrogen receptor status of breast tumours. Conclusions The direct comparison of the expression profiles of BCAR transfectants and oestrogen or EGF-stimulated cells strongly suggests that anti-oestrogen-resistant cell proliferation is not caused by alternative activation of the oestrogen receptor or by the epidermal growth factor receptor signalling pathway.
Collapse
Affiliation(s)
- Lambert CJ Dorssers
- Department of Pathology, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | - Ton van Agthoven
- Department of Pathology, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | - Arend Brinkman
- Department of Pathology, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | - Jos Veldscholte
- Department of Pathology, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Pathology, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | | |
Collapse
|
103
|
Jurata LW, Bukhman YV, Charles V, Capriglione F, Bullard J, Lemire AL, Mohammed A, Pham Q, Laeng P, Brockman JA, Altar CA. Comparison of microarray-based mRNA profiling technologies for identification of psychiatric disease and drug signatures. J Neurosci Methods 2004; 138:173-88. [PMID: 15325126 DOI: 10.1016/j.jneumeth.2004.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 03/31/2004] [Accepted: 04/01/2004] [Indexed: 11/24/2022]
Abstract
The gene expression profiles of human postmortem parietal and prefrontal cortex samples of normal controls and patients with bipolar disease, or human neuroblastoma flat (NBFL) cells treated with the mood-stabilizing drug, valproate, were used to compare the performance of Affymetrix oligonucleotide U133A GeneChips and Agilent Human 1 cDNA microarrays. Among those genes represented on both platforms, the oligo array identified 26-53% more differentially expressed genes compared to the cDNA array in the three experiments, when identical fold change and t-test criteria were applied. The increased sensitivity was primarily the result of more robust fold changes measured by the oligonucleotide system. Essentially all gene changes overlapping between the two platforms were co-directional, and ranged from 4 to 19% depending upon the amount of biological variability within and between the comparison groups. Q-PCR validation rates were virtually identical for the two platforms, with 23-24% validation in the prefrontal cortex experiment, and 56% for both platforms in the cell culture experiment. Validated genes included dopa decarboxylase, dopamine beta-hydroxylase, and dihydropyrimidinase-related protein 3, which were decreased in NBFL cells exposed to valproate, and spinocerebellar ataxia 7, which was increased in bipolar disease. The modest overlap but similar validation rates show that each microarray system identifies a unique set of differentially expressed genes, and thus the greatest information is obtained from the use of both platforms.
Collapse
Affiliation(s)
- Linda W Jurata
- Psychiatric Genomics Inc., 19 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Wei Q, Liu S, Huang J, Mao X, Chu X, Wang Y, Qiu M, Mao Y, Xie Y, Li Y. Comparison of hybridization behavior between double and single strands of targets and the application of asymmetric PCR targets in cDNA microarray. BMB Rep 2004; 37:439-44. [PMID: 15469731 DOI: 10.5483/bmbrep.2004.37.4.439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Double stranded targets on the cDNA microarray contain representatives of both the coding and noncoding strands, which will introduce hybridization competition with probes. Here, the effect of double and single strands of targets on the signal intensity and the ratios of Cy5/Cy3 within the same slide were compared. The results show that single stranded targets can increase the hybridization efficiency without changing the Cy5/Cy3 ratio. Based on these results, a new strategy was established by generating cDNA targets with asymmetric PCR, instead of conventional PCR, to increase the sensitivity of the cDNA microarray. Furthermore, the feasibility of this approach was validated. The results indicate that the cDNA microarray system based on asymmetric PCR is more sensitive, with no decrease in the reliability and reproducibility as compared with that based on conventional symmetric PCR.
Collapse
Affiliation(s)
- Qing Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Wang X, Jiang N, Feng X, Xie Y, Tonellato PJ, Ghosh S, Hessner MJ. A novel approach for high-quality microarray processing using third-dye array visualization technology. IEEE Trans Nanobioscience 2004; 2:193-201. [PMID: 15376909 DOI: 10.1109/tnb.2003.816233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Historically, microarray image processing has been technically challenging in obtaining quality gene expression data. After hybridization of Cy3- and Cy5-labeled samples, images are collected and processed to obtain gene expression ratio measurements for each of the elements on the array. The hybridization process often brings in contaminating noise, which can make correct identification of the signal difficult. In addition, spot intensity levels are highly variable due to the expression differences of different genes, and weak spots are often difficult to detect. These conditions are further complicated by inherent irregularities in spot position, shape, and size commonly found on high-density microarrays, making image processing an often labor-intensive task that is difficult to reliably automate. We previously reported a novel third-dye array visualization (TDAV) technology that allows prehybridization visualization and quality control of printed arrays. Here, we present a new microarray image processing approach utilizing TDAV. By incorporating the third-dye image, we show that overall quality of the microarray data is significantly improved, and automation of processing is feasible and reliable. Furthermore, we demonstrate use of the third-dye image to better quality control microarray image analysis. Both the principle and implementation of the approach are presented in detail, with experimental results.
Collapse
Affiliation(s)
- Xujing Wang
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
106
|
Wilson CL, Pepper SD, Hey Y, Miller CJ. Amplification protocols introduce systematic but reproducible errors into gene expression studies. Biotechniques 2004; 36:498-506. [PMID: 15038166 DOI: 10.2144/04363rn05] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The desire to perform microarray experiments with small starting amounts of RNA has led to the development of a variety of protocols for preparing and amplifying mRNA. This has consequences not only for the standardization of experimental design, but also for reproducibility and comparability between experiments. Here we investigate the differences between the Affymetrix standard and small sample protocols and address the data analysis issues that arise when comparing samples and experiments that have been processed in different ways. We show that data generated on the same platform using different protocols are not directly comparable. Further, protocols introduce systematic biases that can be largely accounted for by using the correct data analysis techniques.
Collapse
Affiliation(s)
- Claire L Wilson
- Paterson Institute for Cancer Research, Withington, Manchester, UK
| | | | | | | |
Collapse
|
107
|
Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM. Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 2004; 70:4961-70. [PMID: 15294836 PMCID: PMC492332 DOI: 10.1128/aem.70.8.4961-4970.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed and successfully implemented the use of in situ-synthesized 45-mer oligonucleotide DNA microarrays (XeoChips) for genome-wide expression profiling of Burkholderia xenovorans LB400, which is among the best aerobic polychlorinated biphenyl degraders known so far. We conducted differential gene expression profiling during exponential growth on succinate, benzoate, and biphenyl as sole carbon sources and investigated the transcriptome of early-stationary-phase cells grown on biphenyl. Based on these experiments, we outlined metabolic pathways and summarized other cellular functions in the organism relevant for biphenyl and benzoate degradation. All genes previously identified as being directly involved in biphenyl degradation were up-regulated when cells were grown on biphenyl compared to expression in succinate-grown cells. For benzoate degradation, however, genes for an aerobic coenzyme A activation pathway were up-regulated in biphenyl-grown cells, while the pathway for benzoate degradation via hydroxylation was up-regulated in benzoate-grown cells. The early-stationary-phase biphenyl-grown cells showed similar expression of biphenyl pathway genes, but a surprising up-regulation of C(1) metabolic pathway genes was observed. The microarray results were validated by quantitative reverse transcription PCR with a subset of genes of interest. The XeoChips showed a chip-to-chip variation of 13.9%, compared to the 21.6% variation for spotted oligonucleotide microarrays, which is less variation than that typically reported for PCR product microarrays.
Collapse
Affiliation(s)
- V J Denef
- Center for Microbial Ecology, 540 Plant and Soil Sciences Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Park PJ, Cao YA, Lee SY, Kim JW, Chang MS, Hart R, Choi S. Current issues for DNA microarrays: platform comparison, double linear amplification, and universal RNA reference. J Biotechnol 2004; 112:225-45. [PMID: 15313001 DOI: 10.1016/j.jbiotec.2004.05.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 04/26/2004] [Accepted: 05/12/2004] [Indexed: 11/17/2022]
Abstract
DNA microarray technology has been widely used to simultaneously determine the expression levels of thousands of genes. A variety of approaches have been used, both in the implementation of this technology and in the analysis of the large amount of expression data. However, several practical issues still have not been resolved in a satisfactory manner, and among the most critical is the lack of agreement in the results obtained in different array platforms. In this study, we present a comparison of several microarray platforms [Affymetrix oligonucleotide arrays, custom complementary DNA (cDNA) arrays, and custom oligo arrays printed with oligonucleotides from three different sources] as well as analysis of various methods used for microarray target preparation and the reference design. The results indicate that the pairwise correlations of expression levels between platforms are relative low overall but that the log ratios of the highly expressed genes are strongly correlated, especially between Affymetrix and cDNA arrays. The microarray measurements were compared with quantitative real-time-polymerase chain reaction (QRT-PCR) results for 23 genes, and the varying degrees of agreement for each platform were characterized. We have also developed and tested a double amplification method which allows the use of smaller amounts of starting material. The added round of amplification produced reproducible results as compared to the arrays hybridized with single round amplified targets. Finally, the reliability of using a universal RNA reference for two-channel microarrays was tested and the results suggest that comparisons of multiple experimental conditions using the same control can be accurate.
Collapse
Affiliation(s)
- Peter J Park
- Children's Hospital Informatics Program and Harvard Medical School, 320 Longwood Ave, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Gellhaus A, Dong X, Propson S, Maass K, Klein-Hitpass L, Kibschull M, Traub O, Willecke K, Perbal B, Lye SJ, Winterhager E. Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J Biol Chem 2004; 279:36931-42. [PMID: 15181016 DOI: 10.1074/jbc.m404073200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gap junction protein connexin43 (Cx43) is thought to be involved in growth control in several tissues. Using the doxycycline inducible tet-on system, we generated human malignant trophoblast Jeg3 cells transfected with either Cx40, Cx43, or C-terminal truncated Cx43 (trCx43). Cx43, but not Cx40 or trCx43, displayed a reduced cell growth of Jeg3 cells in vitro and tumor growth in nude mice, suggesting a role of the C terminus of Cx43 in growth regulation. Using gene array analysis, the growth regulator NOV (CCN3), a member of the CCN gene family, was found to be up-regulated only in the Cx43-transfected cells. Validation by reverse transcriptase-PCR confirmed an up-regulation of the NOV transcript exclusively upon Cx43 induction. In contrast to Cx40 or trCx43, induction of Cx43 led to a switch in localization of NOV from the nucleus to the cell membrane, where it is colocalized with Cx43. Coimmunoprecipitation showed a binding of NOV to the C terminus of Cx43 in vitro as well as in transfected cells. Jeg3 cells transfected only with NOV revealed that NOV itself acts as a growth regulator. We suggest that Cx43 is able to regulate cell growth via an up-regulation of NOV transcription, a change in localization of the NOV protein and a binding of NOV to the C terminus of Cx43.
Collapse
Affiliation(s)
- Alexandra Gellhaus
- Institute of Anatomy and Cell Biology, University Hospital Essen, 55 Hufelandstrasse, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Hessner MJ, Meyer L, Tackes J, Muheisen S, Wang X. Immobilized probe and glass surface chemistry as variables in microarray fabrication. BMC Genomics 2004; 5:53. [PMID: 15294027 PMCID: PMC512283 DOI: 10.1186/1471-2164-5-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 08/04/2004] [Indexed: 11/23/2022] Open
Abstract
Background Global gene expression studies with microarrays can offer biological insights never before possible. However, the technology possesses many sources of technical variability that are an obstacle to obtaining high quality data sets. Since spotted microarrays offer design/content flexibility and potential cost savings over commercial systems, we have developed prehybridization quality control strategies for spotted cDNA and oligonucleotide arrays. These approaches utilize a third fluorescent dye (fluorescein) to monitor key fabrication variables, such as print/spot morphology, DNA retention, and background arising from probe redistributed during blocking. Here, our labeled cDNA array platform is used to study, 1) compression of array data using known input ratios of Arabidopsis in vitro transcripts and arrayed serial dilutions of homologous probes; 2) how curing time of in-house poly-L-lysine coated slides impacts probe retention capacity; and 3) the retention characteristics of 13 commercially available surfaces. Results When array element fluorescein intensity drops below 5,000 RFU/pixel, gene expression measurements become increasingly compressed, thereby validating this value as a prehybridization quality control threshold. We observe that the DNA retention capacity of in-house poly-L-lysine slides decreases rapidly over time (~50% reduction between 3 and 12 weeks post-coating; p < 0.0002) and that there are considerable differences in retention characteristics among commercially available poly-L-lysine and amino silane-coated slides. Conclusions High DNA retention rates are necessary for accurate gene expression measurements. Therefore, an understanding of the characteristics and optimization of protocols to an array surface are prerequisites to fabrication of high quality arrays.
Collapse
Affiliation(s)
- Martin J Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, The Medical College of Wisconsin and Children's Hospital of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lisa Meyer
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jennifer Tackes
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Sanaa Muheisen
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Xujing Wang
- The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, The Medical College of Wisconsin and Children's Hospital of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
111
|
Dumur CI, Garrett CT, Archer KJ, Nasim S, Wilkinson DS, Ferreira-Gonzalez A. Evaluation of a linear amplification method for small samples used on high-density oligonucleotide microarray analysis. Anal Biochem 2004; 331:314-21. [PMID: 15265737 DOI: 10.1016/j.ab.2004.03.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 10/26/2022]
Abstract
High-density oligonucleotide microarray analysis has proven to be an excellent approach for gene expression profiling in human cancers. This technique assesses the expression of thousands of genes simultaneously, from at least 5 microg of total RNA per sample per experiment. This total RNA requirement poses a challenge when studying small, unique clinical samples, like biopsies. Recently, a new standardized protocol for small samples was released by Affymetrix, which includes a linear amplification step. To evaluate the impact of such amplification in the gene expression profiling of human ovarian cancer, we compared results obtained from 5 microg and 100 ng of total RNA from the same tumor sample, using the standard Affymetrix protocol and the new linear RNA amplification protocol, respectively. We identified a small bias in gene expression data caused by linear amplification, potentially due to shorter elongation products leading to misclassification of probe sets directed to the middle-5' region of the transcripts. Interestingly, the magnitude of the bias varied when different normalization and expression summary algorithms were used. However, this bias does not affect tumor gene expression profiling. Consequently, linear amplification may be of utility in cases of extremely low RNA recovery from critical and unique samples, such as small biopsies.
Collapse
Affiliation(s)
- Catherine I Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
112
|
Zhang Z, Stanley SL. Stereotypic and specific elements of the human colonic response to Entamoeba histolytica and Shigella flexneri. Cell Microbiol 2004; 6:535-54. [PMID: 15104595 DOI: 10.1111/j.1462-5822.2004.00381.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clinical presentations of bacillary dysentery caused by shigella, and amoebic dysentery caused by the protozoan parasite Entamoeba histolytica, can be indistinguishable, with both organisms causing colonic mucosal damage and ulceration. However, the two organisms are quite distinct, and have very different pathogenic mechanisms. This raises the fundamental question of whether the similar clinical manifestations reflect a stereotypic response of the human gut to mucosal injury, or whether there are differences at the molecular level in the host response to individual gut pathogens. To characterize the human colonic response to each pathogen at the molecular level, we measured the differential transcription of nearly 40,000 human genes in sections of human colonic xenografts obtained 4 and 24 h following infection with Shigella flexneri or E. histolytica. Our results indicate that much of the human colonic response to these two pathogens is stereotypic, with increased expression of genes activated in cells undergoing stress and/or hypoxic responses, genes encoding cytokines, chemokines, and mediators that are involved in immune and inflammatory responses, and genes encoding proteins involved in responses to tissue injury and in tissue repair. The responses to amoeba and Shigella were not identical however, and we found unique elements in each response that may provide new insights into the distinct pathogenic mechanisms of E. histolytica and S. flexneri.
Collapse
MESH Headings
- Animals
- Colon/metabolism
- Colon/microbiology
- Colon/parasitology
- Colon/transplantation
- Dysentery, Amebic/genetics
- Dysentery, Amebic/immunology
- Dysentery, Amebic/parasitology
- Dysentery, Amebic/pathology
- Dysentery, Bacillary/genetics
- Dysentery, Bacillary/immunology
- Dysentery, Bacillary/microbiology
- Dysentery, Bacillary/pathology
- Entamoeba histolytica/growth & development
- Gene Expression Profiling
- Gene Expression Regulation
- Genes
- Humans
- Inflammation
- Mice
- Mice, SCID
- Oligonucleotide Array Sequence Analysis
- Shigella flexneri/growth & development
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Medicine, Washington University School of Medicine, USA
| | | |
Collapse
|
113
|
Chou CC, Chen CH, Lee TT, Peck K. Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucleic Acids Res 2004; 32:e99. [PMID: 15243142 PMCID: PMC484198 DOI: 10.1093/nar/gnh099] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/05/2004] [Accepted: 06/21/2004] [Indexed: 11/13/2022] Open
Abstract
Gene-specific oligonucleotide probes are currently used in microarrays to avoid cross-hybridization of highly similar sequences. We developed an approach to determine the optimal number and length of gene-specific probes for accurate transcriptional profiling studies. The study surveyed probe lengths from 25 to 1000 nt. Long probes yield better signal intensity than short probes. The signal intensity of short probes can be improved by addition of spacers or using higher probe concentration for spotting. We also found that accurate gene expression measurement can be achieved with multiple probes per gene and fewer probes are needed if longer probes rather than shorter probes are used. Based on theoretical considerations that were confirmed experimentally, our results showed that 150mer is the optimal probe length for expression measurement. Gene-specific probes can be identified using a computational approach for 150mer probes and they can be treated like long cDNA probes in terms of the hybridization reaction for high sensitivity detection. Our experimental data also show that probes which do not generate good signal intensity give erroneous expression ratio measurement results. To use microarray probes without experimental validation, gene-specific probes approximately 150mer in length are necessary. However, shorter oligonucleotide probes also work well in gene expression analysis if the probes are validated by experimental selection or if multiple probes per gene are used for expression measurement.
Collapse
Affiliation(s)
- Cheng-Chung Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | | | | | | |
Collapse
|
114
|
Baum M, Bielau S, Rittner N, Schmid K, Eggelbusch K, Dahms M, Schlauersbach A, Tahedl H, Beier M, Güimil R, Scheffler M, Hermann C, Funk JM, Wixmerten A, Rebscher H, Hönig M, Andreae C, Büchner D, Moschel E, Glathe A, Jäger E, Thom M, Greil A, Bestvater F, Obermeier F, Burgmaier J, Thome K, Weichert S, Hein S, Binnewies T, Foitzik V, Müller M, Stähler CF, Stähler PF. Validation of a novel, fully integrated and flexible microarray benchtop facility for gene expression profiling. Nucleic Acids Res 2004; 31:e151. [PMID: 14627841 PMCID: PMC290286 DOI: 10.1093/nar/gng151] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we describe a novel microarray platform that integrates all functions needed to perform any array-based experiment in a compact instrument on the researcher's laboratory benchtop. Oligonucle otide probes are synthesized in situ via a light- activated process within the channels of a three-dimensional microfluidic reaction carrier. Arrays can be designed and produced within hours according to the user's requirements. They are processed in a fully automatic workflow. We have characterized this new platform with regard to dynamic range, discrimination power, reproducibility and accuracy of biological results. The instrument detects sample RNAs present at a frequency of 1:100 000. Detection is quantitative over more than two orders of magnitude. Experiments on four identical arrays with 6398 features each revealed a mean coefficient of variation (CV) value of 0.09 for the 6398 unprocessed raw intensities indicating high reproducibility. In a more elaborate experiment targeting 1125 yeast genes from an unbiased selection, a mean CV of 0.11 on the fold change level was found. Analyzing the transcriptional response of yeast to osmotic shock, we found that biological data acquired on our platform are in good agreement with data from Affymetrix GeneChips, quantitative real-time PCR and--albeit somewhat less clearly--to data from spotted cDNA arrays obtained from the literature.
Collapse
Affiliation(s)
- Michael Baum
- febit ag, Käfertaler Strasse 190, 68167 Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Li H, Singh AK, McIntyre LM, Sherman LA. Differential gene expression in response to hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803. J Bacteriol 2004; 186:3331-45. [PMID: 15150218 PMCID: PMC415769 DOI: 10.1128/jb.186.11.3331-3345.2004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We utilized a full genome cDNA microarray to identify the genes that comprise the peroxide stimulon in the cyanobacterium Synechocystis sp. strain PCC 6803. We determined that a gene (slr1738) encoding a protein similar to PerR in Bacillus subtilis was induced by peroxide. We constructed a PerR knockout strain and used it to help identify components of the PerR regulon, and we found that the regulatory properties were consistent with the hypothesis that PerR functions as a repressor. This effort was guided by finding putative PerR boxes in positions upstream of specific genes and by careful statistical analysis. PerR and sll1621 (ahpC), which codes for a peroxiredoxin, share a divergent promoter that is regulated by PerR. We found that isiA, encoding a Chl protein that is induced under low-iron conditions, was strongly induced by a short-term peroxide stress. Other genes that were strongly induced by peroxide included sigD, sigB, and genes encoding peroxiredoxins and Dsb-like proteins that have not been studied yet in this strain. A gene (slr1894) that encoded a protein similar to MrgA in B. subtilis was upregulated by peroxide, and a strain containing an mrgA knockout mutation was highly sensitive to peroxide. A number of genes were downregulated, including key genes in the chlorophyll biosynthesis pathway and numerous regulatory genes, including those encoding histidine kinases. We used PerR mutants and a thioredoxin mutant (TrxA1) to study differential expression in response to peroxide and determined that neither PerR nor TrxA1 is essential for the peroxide protective response.
Collapse
Affiliation(s)
- Hong Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
116
|
Marciano PG, Brettschneider J, Manduchi E, Davis JE, Eastman S, Raghupathi R, Saatman KE, Speed TP, Stoeckert CJ, Eberwine JH, McIntosh TK. Neuron-specific mRNA complexity responses during hippocampal apoptosis after traumatic brain injury. J Neurosci 2004; 24:2866-76. [PMID: 15044525 PMCID: PMC6729833 DOI: 10.1523/jneurosci.5051-03.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In an effort to understand the complexity of genomic responses within selectively vulnerable regions after experimental brain injury, we examined whether single apoptotic neurons from both the CA3 and dentate differed from those in an uninjured brain. The mRNA from individual active caspase 3(+)/terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling [TUNEL(-)] and active caspase 3(+)/TUNEL(+) pyramidal and granule neurons in brain-injured mice were amplified and compared with those from nonlabeled neurons in uninjured brains. Gene analysis revealed that overall expression of mRNAs increased with activation of caspase 3 and decreased to below uninjured levels with TUNEL reactivity. Cell type specificity of the apoptotic response was observed with both regionally distinct expression of mRNAs and differences in those mRNAs that were maximally regulated. Immunohistochemical analysis for two of the most highly differentially expressed genes (prion and Sos2) demonstrated a correlation between the observed differential gene expression after traumatic brain injury and corresponding protein translation.
Collapse
Affiliation(s)
- Paolo G Marciano
- Departments of Neuroscience, Center for Bioinformatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Shetzline SE, Rallapalli R, Dowd KJ, Zou S, Nakata Y, Swider CR, Kalota A, Choi JK, Gewirtz AM. Neuromedin U: a Myb-regulated autocrine growth factor for human myeloid leukemias. Blood 2004; 104:1833-40. [PMID: 15187020 DOI: 10.1182/blood-2003-10-3577] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-myb proto-oncogene has been implicated in leukemogenesis, but possible mechanisms remain ill defined. To gain further insight to this process, we used transcript profiling in K562 cells expressing a dominant-negative Myb (MERT) protein. A total of 105 potential Myb gene targets were identified. Neuromedin U (NmU), a peptide affecting calcium transport, underwent the greatest expression change ( approximately 5-fold decrease). To verify a linkage between c-myb and NmU, their mRNA levels were quantitated using real-time polymerase chain reaction in primary acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), as well as normal hematopoietic cells. We found that c-myb was elevated in AML and ALL samples, but NmU expression was increased only in AML cells. Significantly, only AML cells expressed the cognate receptor of NmU, NMU1R, suggesting the presence of a novel autocrine loop. We examined this possibility in detail. Exogenous NmU "rescued" growth suppression in K562-MERT cells and stimulated the growth of primary AML cells. Short interfering RNA "knockdown" of NmU in K562 cells arrested cell growth. Exposing Indo-1-labeled K562 cells to NmU induced an intracellular Ca(++) flux consistent with engagement of the NMU1R. Combined, these results suggest that NmU expression is related to Myb and that the NmU/NMU1R axis constitutes a previously unknown growth-promoting autocrine loop in myeloid leukemia cells.
Collapse
Affiliation(s)
- Susan E Shetzline
- Department of Internal Medicine, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Parisi M, Nuttall R, Edwards P, Minor J, Naiman D, Lü J, Doctolero M, Vainer M, Chan C, Malley J, Eastman S, Oliver B. A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biol 2004; 5:R40. [PMID: 15186491 PMCID: PMC463073 DOI: 10.1186/gb-2004-5-6-r40] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/08/2004] [Accepted: 05/12/2004] [Indexed: 11/15/2022] Open
Abstract
A global analysis of sex-biased transcription in Drosophila shows extensive differential expression between the sexes. Most sex-differential expression is due to germ cells and nearly all genes with germline expression show sex-bias. Background Sexual dimorphism results in the formation of two types of individuals with specialized reproductive roles and is most evident in the germ cells and gonads. Results We have undertaken a global analysis of transcription between the sexes using a 31,464 element FlyGEM microarray to determine what fraction of the genome shows sex-biased expression, what tissues express these genes, the predicted functions of these genes, and where these genes map onto the genome. Females and males (both with and without gonads), dissected testis and ovary, females and males with genetically ablated germlines, and sex-transformed flies were sampled. Conclusions Using any of a number of criteria, we find extensive sex-biased expression in adults. The majority of cases of sex differential gene expression are attributable to the germ cells. There is also a large class of genes with soma-biased expression. There is little germline-biased expression indicating that nearly all genes with germline expression also show sex-bias. Monte Carlo simulations show that some genes with sex-biased expression are non-randomly distributed in the genome.
Collapse
Affiliation(s)
- Michael Parisi
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Chen ZJ, Vulevic B, Ile KE, Soulika A, Davis W, Reiner PB, Connop BP, Nathwani P, Trojanowski JQ, Tew KD. Association of ABCA2 expression with determinants of Alzheimer's disease. FASEB J 2004; 18:1129-31. [PMID: 15155565 DOI: 10.1096/fj.03-1490fje] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the use of a novel method for detecting differential gene expression, alterations in functional gene clusters related to transport or oxidative stress response and beta-amyloid (Abeta) peptide metabolism were identified in a HEK293 cell line engineered to overexpress the human ATP binding cassette transporter ABCA2. These included fatty acid binding protein, phospholipid binding protein, phospholipid synthesis protein, transporter cofactors, seladin-1, Abeta precursor protein (APP), vimentin, and low-density lipoprotein receptor-related protein. ABCA2 was highly expressed in neuroblastoma cells and colocalized with Abeta and APP. Additionally, increased APP protein levels were detected within ABCA2/APP double-transfected cells, and increased Abeta was detected in the media of ABCA2-transfected cells relative to controls. The transporter was abundant in the temporal and frontal regions of both normal and Alzheimer's disease (AD) brain but was detected at lower concentrations in the parietal, occipital, and cerebellar regions. The ABCA2 transfected cell line expressed resistance to a free radical initiator, confirming involvement in protection against reactive oxygen species and suggesting a further possible link to AD.
Collapse
Affiliation(s)
- Zhijian J Chen
- Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Slobedman B, Stern JL, Cunningham AL, Abendroth A, Abate DA, Mocarski ES. Impact of human cytomegalovirus latent infection on myeloid progenitor cell gene expression. J Virol 2004; 78:4054-62. [PMID: 15047822 PMCID: PMC374258 DOI: 10.1128/jvi.78.8.4054-4062.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Herpesviruses establish lifelong latent infections in their hosts. Human cytomegalovirus (CMV) targets a population of bone marrow-derived myeloid lineage progenitor cells that serve as a reservoir for reactivation; however, the mechanisms by which latent CMV infection is maintained are unknown. To gain insights into mechanisms of maintenance and reactivation, we employed microarrays of approximately 26,900 sequence-verified human cDNAs to assess global changes in cellular gene expression during experimental CMV latent infection of granulocyte-macrophage progenitors (GM-Ps). This analysis revealed at least 29 host cell genes whose expression was increased and six whose expression was decreased during CMV latency. These changes in transcript levels appeared to be authentic, judging on the basis of further analysis of a subset by semiquantitative reverse transcription-PCR. This study provides a comprehensive snapshot of changes in host cell gene expression that result from latent infection and suggest that CMV regulates genes that encode proteins involved in immunity and host defense, cell growth, signaling, and transcriptional regulation. The host genes whose expression we found altered are likely to contribute to an environment that sustains latent infection.
Collapse
Affiliation(s)
- Barry Slobedman
- Centre for Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia.
| | | | | | | | | | | |
Collapse
|
121
|
Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, Virgili F. Tocotrienol-rich fraction from palm oil affects gene expression in tumors resulting from MCF-7 cell inoculation in athymic mice. Lipids 2004; 39:459-67. [PMID: 15506241 DOI: 10.1007/s11745-004-1251-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has recently been shown that tocotrienols are the components of vitamin E responsible for inhibiting the growth of human breast cancer cells in vitro, through an estrogen-independent mechanism. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. To investigate the molecular basis of the effect of tocotrienols, we injected MCF-7 breast cancer cells into athymic nude mice. Mice were fed orally with 1 mg/d of tocotrienol-rich fraction (TRF) for 20 wk. At end of the 20 wk, there was a significant delay in the onset, incidence, and size of the tumors in nude mice supplemented with TRF compared with the controls. At autopsy, the tumor tissue was excised and analyzed for gene expression by means of a cDNA array technique. Thirty out of 1176 genes were significantly affected. Ten genes were downregulated and 20 genes up-regulated with respect to untreated animals, and some genes in particular were involved in regulating the immune system and its function. The expression of the interferon-inducible transmembrane protein-1 gene was significantly up-regulated in tumors excised from TRF-treated animals compared with control mice. Within the group of genes related to the immune system, we also found that the CD59 glycoprotein precursor gene was up-regulated. Among the functional class of intracellular transducers/effectors/modulators, the c-myc gene was significantly down-regulated in tumors by TRF treatment. Our observations indicate that TRF supplementation significantly and specifically affects MCF-7 cell response after tumor formation in vivo and therefore the host immune function. The observed effect on gene expression is possibly exerted independently from the antioxidant activity typical of this family of molecules.
Collapse
|
122
|
Ahmed AA, Vias M, Iyer NG, Caldas C, Brenton JD. Microarray segmentation methods significantly influence data precision. Nucleic Acids Res 2004; 32:e50. [PMID: 15028803 PMCID: PMC390347 DOI: 10.1093/nar/gnh047] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Little consideration has been given to the effect of different segmentation methods on the variability of data derived from microarray images. Previous work has suggested that the significant source of variability from microarray image analysis is from estimation of local background. In this study, we used Analysis of Variance (ANOVA) models to investigate the effect of methods of segmentation on the precision of measurements obtained from replicate microarray experiments. We used four different methods of spot segmentation (adaptive, fixed circle, histogram and GenePix) to analyse a total number of 156 172 spots from 12 microarray experiments. Using a two-way ANOVA model and the coefficient of repeatability, we show that the method of segmentation significantly affects the precision of the microarray data. The histogram method gave the lowest variability across replicate spots compared to other methods, and had the lowest pixel-to-pixel variability within spots. This effect on precision was independent of background subtraction. We show that these findings have direct, practical implications as the variability in precision between the four methods resulted in different numbers of genes being identified as differentially expressed. Segmentation method is an important source of variability in microarray data that directly affects precision and the identification of differentially expressed genes.
Collapse
Affiliation(s)
- Ahmed Ashour Ahmed
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | | | | | | | | |
Collapse
|
123
|
Loguinov AV, Mian IS, Vulpe CD. Exploratory differential gene expression analysis in microarray experiments with no or limited replication. Genome Biol 2004; 5:R18. [PMID: 15003121 PMCID: PMC395768 DOI: 10.1186/gb-2004-5-3-r18] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 12/01/2003] [Accepted: 12/11/2003] [Indexed: 11/19/2022] Open
Abstract
We describe an exploratory, data-oriented approach for identifying candidates for differential gene expression in cDNA microarray experiments in terms of alpha-outliers and outlier regions, using simultaneous tolerance intervals relative to the line of equivalence (Cy5 = Cy3). We demonstrate the improved performance of our approach over existing single-slide methods using public datasets and simulation studies.
Collapse
Affiliation(s)
- Alexander V Loguinov
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Morgan Hall, Berkeley, CA 94720, USA
| | - I Saira Mian
- Life Sciences Division, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA
| | - Chris D Vulpe
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Morgan Hall, Berkeley, CA 94720, USA
| |
Collapse
|
124
|
Johnston R, Wang B, Nuttall R, Doctolero M, Edwards P, Lü J, Vainer M, Yue H, Wang X, Minor J, Chan C, Lash A, Goralski T, Parisi M, Oliver B, Eastman S. FlyGEM, a full transcriptome array platform for the Drosophila community. Genome Biol 2004; 5:R19. [PMID: 15003122 PMCID: PMC395769 DOI: 10.1186/gb-2004-5-3-r19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 01/16/2004] [Accepted: 01/27/2004] [Indexed: 11/25/2022] Open
Abstract
We have constructed a DNA microarray to monitor expression of predicted genes in Drosophila. By using homotypic hybridizations, we show that the array performs reproducibly, that dye effects are minimal, and that array results agree with systematic northern blotting. The array gene list has been extensively annotated and linked-out to other databases. Incyte and the NIH have made the platform available to the community via academic microarray facilities selected by an NIH committee.
Collapse
Affiliation(s)
| | - Bruce Wang
- Incyte Genomics, Palo Alto, CA 94304, USA
| | | | | | - Pamela Edwards
- Laboratory of Developmental and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Room 3339, Bethesda, MD 20892, USA
| | - Jining Lü
- Laboratory of Developmental and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Room 3339, Bethesda, MD 20892, USA
| | | | - Huibin Yue
- Incyte Genomics, Palo Alto, CA 94304, USA
| | | | | | - Cathy Chan
- Incyte Genomics, Palo Alto, CA 94304, USA
| | - Alex Lash
- Gene Expression Omnibus, National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20892, USA
| | | | - Michael Parisi
- Laboratory of Developmental and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Room 3339, Bethesda, MD 20892, USA
| | - Brian Oliver
- Laboratory of Developmental and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Room 3339, Bethesda, MD 20892, USA
| | | |
Collapse
|
125
|
Hessner MJ, Singh VK, Wang X, Khan S, Tschannen MR, Zahrt TC. Utilization of a labeled tracking oligonucleotide for visualization and quality control of spotted 70-mer arrays. BMC Genomics 2004; 5:12. [PMID: 15018646 PMCID: PMC362869 DOI: 10.1186/1471-2164-5-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 02/09/2004] [Indexed: 02/02/2023] Open
Abstract
Background Spotted 70-mer oligonucleotide arrays offer potentially greater specificity and an alternative to expensive cDNA library maintenance and amplification. Since microarray fabrication is a considerable source of data variance, we previously directly tagged cDNA probes with a third fluorophore for prehybridization quality control. Fluorescently modifying oligonucleotide sets is cost prohibitive, therefore, a co-spotted Staphylococcus aureus-specific fluorescein-labeled "tracking" oligonucleotide is described to monitor fabrication variables of a Mycobacterium tuberculosis oligonucleotide microarray. Results Significantly (p < 0.01) improved DNA retention was achieved printing in 15% DMSO/1.5 M betaine compared to the vendor recommended buffers. Introduction of tracking oligonucleotide did not effect hybridization efficiency or introduce ratio measurement bias in hybridizations between M. tuberculosis H37Rv and M. tuberculosis mprA. Linearity between the mean log Cy3/Cy5 ratios of genes differentially expressed from arrays either possessing or lacking the tracking oligonucleotide was observed (R2 = 0.90, p < 0.05) and there were no significant differences in Pearson's correlation coefficients of ratio data between replicates possessing (0.72 ± 0.07), replicates lacking (0.74 ± 0.10), or replicates with and without (0.70 ± 0.04) the tracking oligonucleotide. ANOVA analysis confirmed the tracking oligonucleotide introduced no bias. Titrating target-specific oligonucleotide (40 μM to 0.78 μM) in the presence of 0.5 μM tracking oligonucleotide, revealed a fluorescein fluorescence inversely related to target-specific oligonucleotide molarity, making tracking oligonucleotide signal useful for quality control measurements and differentiating false negatives (synthesis failures and mechanical misses) from true negatives (no gene expression). Conclusions This novel approach enables prehybridization array visualization for spotted oligonucleotide arrays and sets the stage for more sophisticated slide qualification and data filtering applications.
Collapse
Affiliation(s)
- Martin J Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, The Medical College of Wisconsin and Children's Hospital of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vineet K Singh
- Department of Microbiology and Molecular Genetics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Xujing Wang
- The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, The Medical College of Wisconsin and Children's Hospital of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Shehnaz Khan
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael R Tschannen
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Thomas C Zahrt
- Department of Microbiology and Molecular Genetics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
126
|
Lyng H, Badiee A, Svendsrud DH, Hovig E, Myklebost O, Stokke T. Profound influence of microarray scanner characteristics on gene expression ratios: analysis and procedure for correction. BMC Genomics 2004; 5:10. [PMID: 15018648 PMCID: PMC356910 DOI: 10.1186/1471-2164-5-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 02/03/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High throughput gene expression data from spotted cDNA microarrays are collected by scanning the signal intensities of the corresponding spots by dedicated fluorescence scanners. The major scanner settings for increasing the spot intensities are the laser power and the voltage of the photomultiplier tube (PMT). It is required that the expression ratios are independent of these settings. We have investigated the relationships between PMT voltage, spot intensities, and expression ratios for different scanners, in order to define an optimal scanning procedure. RESULTS All scanners showed a limited intensity range from 200 to 50 000 (mean spot intensity), for which the expression ratios were independent of PMT voltage. This usable intensity range was considerably less than the maximum detection range of the PMTs. The use of spot and background intensities outside this range led to errors in the ratios. The errors at high intensities were caused by saturation of pixel intensities within the spots. An algorithm was developed to correct the intensities of these spots, and, hence, extend the upper limit of the usable intensity range. CONCLUSIONS It is suggested that the PMT voltage should be increased to avoid intensities of the weakest spots below the usable range, allowing the brightest spots to reach the level of saturation. Subsequently, a second set of images should be acquired with a lower PMT setting such that no pixels are in saturation. Reliable data for spots with saturation in the first set of images can easily be extracted from the second set of images by the use of our algorithm. This procedure would lead to an increase in the accuracy of the data and in the number of data points achieved in each experiment compared to traditional procedures.
Collapse
Affiliation(s)
- Heidi Lyng
- Department of Biophysics, The Norwegian Radium Hospital, Oslo, Norway
| | - Azadeh Badiee
- Centre for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Eivind Hovig
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo, Norway
| | - Ola Myklebost
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo, Norway
| | - Trond Stokke
- Department of Biophysics, The Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
127
|
Brown JS, Kuhn D, Wisser R, Power E, Schnell R. Quantification of sources of variation and accuracy of sequence discrimination in a replicated microarray experiment. Biotechniques 2004; 36:324-32. [PMID: 14989098 DOI: 10.2144/04362mt04] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
cDNA microarray spot variability arises from many sources, and different systems have varying requirements for achieving the desired level of precision. We determined relative contributions to variance and investigated sequence discrimination using a multiple-array experimental design, with arrays subdivided to determine position and pin effect. Related fragments of 67 resistance gene homologs (RGHs) isolated from Theobroma cacao L. and grouped by sequence similarity were spotted onto arrays, using two of the same RGHs in the fluorescent dye channels (Cy™3, Cy5) of the hybridization solution in a “dye-flip” design. A comprehensive statistical model accounted for variability well, giving a coefficient of variation (CV) based on experimental error of 2.12%. Although we were able to separate 85% of RGH group means clearly, some groups more similar to the target were indistinguishable due to nonspecific hybridization. Genetic factors together contributed 72.2% of the total variation, while position and pin effects and their interactions contributed 9.8%. Replication effect was statistically significant. Otherwise, no tests for position effects were significant. The results of the analysis indicate that our Genetic Microsystems 417™ arrayer and Affymetrix 428™ scanner are performing with sufficient precision, and we produced useful information for planning efficient future experiments.
Collapse
Affiliation(s)
- J Steven Brown
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA.
| | | | | | | | | |
Collapse
|
128
|
Pagliarulo V, George B, Beil SJ, Groshen S, Laird PW, Cai J, Willey J, Cote RJ, Datar RH. Sensitivity and reproducibility of standardized-competitive RT-PCR for transcript quantification and its comparison with real time RT-PCR. Mol Cancer 2004; 3:5. [PMID: 14741054 PMCID: PMC344741 DOI: 10.1186/1476-4598-3-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 01/23/2004] [Indexed: 01/12/2023] Open
Abstract
Background Probe based detection assays form the mainstay of transcript quantification. Problems with these assays include varying hybridization efficiencies of the probes used for transcript quantification and the expense involved. We examined the ability of a standardized competitive RT-PCR (StaRT PCR) assay to quantify transcripts of 4 cell cycle associated genes (RB, E2F1, CDKN2A and PCNA) in two cell lines (T24 & LD419) and compared its efficacy with the established Taqman real time quantitative RT-PCR assay. We also assessed the sensitivity, reproducibility and consistency of StaRT PCR. StaRT PCR assay is based on the incorporation of competitive templates (CT) in precisely standardized quantities along with the native template (NT) in a PCR reaction. This enables transcript quantification by comparing the NT and CT band intensities at the end of the PCR amplification. The CT serves as an ideal internal control. The transcript numbers are expressed as copies per million transcripts of a control gene such as β-actin (ACTB). Results The NT and CT were amplified at remarkably similar rates throughout the StaRT PCR amplification cycles, and the coefficient of variation was least (<3.8%) when the NT/CT ratio was kept as close to 1:1 as possible. The variability between the rates of amplification in different tubes subjected to the same StaRT PCR reaction was very low and within the range of experimental noise. Further, StaRT PCR was sensitive enough to detect variations as low as 10% in endogenous actin transcript quantity (p < 0.01 by the paired student's t-test). StaRT PCR correlated well with Taqman real time RT-PCR assay in terms of transcript quantification efficacy (p < 0.01 for all 4 genes by the Spearman Rank correlation method) and the ability to discriminate between cell types and confluence patterns. Conclusion StaRT PCR is thus a reliable and sensitive technique that can be applied to medium-high throughput quantitative transcript measurement. Further, it correlates well with Taqman real time PCR in terms of quantitative and discriminatory ability. This label-free, inexpensive technique may provide the ability to generate prognostically important molecular signatures unique to individual tumors and may enable identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Vincenzo Pagliarulo
- Department of Pathology, University of Southern California, Keck School of Medicine, 2011 Zonal Ave, HMR 312C, Los Angeles CA 90033, USA
| | - Ben George
- Department of Pathology, University of Southern California, Keck School of Medicine, 2011 Zonal Ave, HMR 312C, Los Angeles CA 90033, USA
| | - Stephen J Beil
- Department of Pathology, University of Southern California, Keck School of Medicine, 2011 Zonal Ave, HMR 312C, Los Angeles CA 90033, USA
| | - Susan Groshen
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Kenneth Norris Comprehensive Cancer Center 3419 A, Los Angeles CA 90033, USA
| | - Peter W Laird
- Department of Surgery and Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine, Kenneth Norris Comprehensive Cancer Center 6418, Los Angeles CA 90033, USA
| | - Jie Cai
- Department of Urology, University of Southern California, Keck School of Medicine, Kenneth Norris Comprehensive Cancer Center 3418, Los Angeles CA 90033, USA
| | - James Willey
- Division of Pulmonary & Critical Care Medicine, Medical College of Ohio Hospitals, Ruppert Health Center, Room 0012, 3120 Glendale Ave., Toledo, OH 43614, USA
| | - Richard J Cote
- Department of Pathology, University of Southern California, Keck School of Medicine, 2011 Zonal Ave, HMR 312C, Los Angeles CA 90033, USA
| | - Ram H Datar
- Department of Pathology, University of Southern California, Keck School of Medicine, 2011 Zonal Ave, HMR 312C, Los Angeles CA 90033, USA
| |
Collapse
|
129
|
Klevecz RR, Bolen J, Forrest G, Murray DB. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci U S A 2004; 101:1200-5. [PMID: 14734811 PMCID: PMC337030 DOI: 10.1073/pnas.0306490101] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microarray analysis from a yeast continuous synchrony culture system shows a genomewide oscillation in transcription. Maximums in transcript levels occur at three nearly equally spaced intervals in this approximately 40-min cycle of respiration and reduction. Two temporal clusters (4,679 of 5,329) are maximally expressed during the reductive phase of the cycle, whereas a third cluster (650) is maximally expressed during the respiratory phase. Transcription is organized functionally into redox-state superclusters with genes known to be important in respiration or reduction being synthesized in opposite phases of the cycle. The transcriptional cycle gates synchronous bursts in DNA replication in a constant fraction of the population at 40-min intervals. Restriction of DNA synthesis to the reductive phase of the cycle may be an evolutionarily important mechanism for reducing oxidative damage to DNA during replication.
Collapse
Affiliation(s)
- Robert R Klevecz
- Dynamics Group, Department of Biology, Beckman Research Institute of the City of Hope Medical Center, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
130
|
Ståhlberg A, Håkansson J, Xian X, Semb H, Kubista M. Properties of the reverse transcription reaction in mRNA quantification. Clin Chem 2004; 50:509-15. [PMID: 14726469 DOI: 10.1373/clinchem.2003.026161] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND In most measurements of gene expression, mRNA is first reverse-transcribed into cDNA. We studied the reverse transcription reaction and its consequences for quantitative measurements of gene expression. METHODS We used SYBR green I-based quantitative real-time PCR (QPCR) to measure the properties of reverse transcription reaction for the beta-tubulin, glyceraldehyde-3-phosphate dehydrogenase, Glut2, CaV1D, and insulin II genes, using random hexamers, oligo(dT), and gene-specific reverse transcription primers. RESULTS Experimental variation in reverse transcription-QPCR (RT-QPCR) was mainly attributable to the reverse transcription step. Reverse transcription efficiency depended on priming strategy, and the dependence was different for the five genes studied. Reverse transcription yields also depended on total RNA concentration. CONCLUSIONS RT-QPCR gene expression measurements are comparable only when the same priming strategy and reaction conditions are used in all experiments and the samples contain the same total amount of RNA. Experimental accuracy is improved by running samples in (at least) duplicate starting with the reverse transcription reaction.
Collapse
Affiliation(s)
- Anders Ståhlberg
- Department of Chemistry and Bioscience, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
131
|
Konishi T. Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment. BMC Bioinformatics 2004; 5:5. [PMID: 14718068 PMCID: PMC333424 DOI: 10.1186/1471-2105-5-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 01/13/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To cancel experimental variations, microarray data must be normalized prior to analysis. Where an appropriate model for statistical data distribution is available, a parametric method can normalize a group of data sets that have common distributions. Although such models have been proposed for microarray data, they have not always fit the distribution of real data and thus have been inappropriate for normalization. Consequently, microarray data in most cases have been normalized with non-parametric methods that adjust data in a pair-wise manner. However, data analysis and the integration of resultant knowledge among experiments have been difficult, since such normalization concepts lack a universal standard. RESULTS A three-parameter lognormal distribution model was tested on over 300 sets of microarray data. The model treats the hybridization background, which is difficult to identify from images of hybridization, as one of the parameters. A rigorous coincidence of the model to data sets was found, proving the model's appropriateness for microarray data. In fact, a closer fitting to Northern analysis was obtained. The model showed inconsistency only at very strong or weak data intensities. Measurement of z-scores as well as calculated ratios was reproducible only among data in the model-consistent intensity range; also, the ratios were independent of signal intensity at the corresponding range. CONCLUSION The model could provide a universal standard for data, simplifying data analysis and knowledge integration. It was deduced that the ranges of inconsistency were caused by experimental errors or additive noise in the data; therefore, excluding the data corresponding to those marginal ranges will prevent misleading analytical conclusions.
Collapse
Affiliation(s)
- Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
| |
Collapse
|
132
|
Karsten SL, Kudo LC, Geschwind DH. Microarray Platforms: Introduction and Application to Neurobiology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 60:1-23. [PMID: 15474585 DOI: 10.1016/s0074-7742(04)60001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Stanislav L Karsten
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | | | | |
Collapse
|
133
|
Karpf AR, Lasek AW, Ririe TO, Hanks AN, Grossman D, Jones DA. Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine. Mol Pharmacol 2004; 65:18-27. [PMID: 14722233 DOI: 10.1124/mol.65.1.18] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It remains unclear to what extent drugs targeting transcriptional repressor complexes affect global gene expression in cells derived from target and nontarget human tissues. To address this question, we used genome-wide expression analysis using microarrays to analyze the response of three tumor and one normal epithelial cell line to treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR). Notably, we found that 5-aza-CdR treatment induced a limited number of genes (mean, 0.67%; range, 0.17-1.8% of 25,940 genes screened) in each cell line tested. The majority of the gene expression changes that followed 5-aza-CdR treatment were conserved in tumor and normal cells, including genes that function in cell proliferation, differentiation, immune presentation, and cytokine signaling. In contrast, 5-aza-CdR treatment induced the expression of cancer-testis class tumor antigens only in tumor cell lines. To explain this tissue-specific response, we analyzed the mechanism of transcriptional regulation of the prototype member of this tumor antigen gene family, MAGE-1. Taken from our analysis of MAGE-1 gene regulation, we propose that 5-aza-CdR-mediated gene activation has two distinct requirements: 1) the reversal of promoter hypermethylation, and 2) the presence of transcriptional activators competent for the activation of hypomethylated target promoters. This latter requirement for gene activation by 5-aza-CdR is probably mediated by sequence-specific transcription factors and may account for the limited number of human genes induced by 5-aza-CdR treatment. This revised model for gene activation by 5-aza-CdR has important implications for the use of DNA methyltransferase inhibitors in clinical settings.
Collapse
Affiliation(s)
- Adam R Karpf
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
134
|
Badiee A, Eiken HG, Steen VM, Løvlie R. Evaluation of five different cDNA labeling methods for microarrays using spike controls. BMC Biotechnol 2003; 3:23. [PMID: 14670089 PMCID: PMC324411 DOI: 10.1186/1472-6750-3-23] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 12/11/2003] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Several different cDNA labeling methods have been developed for microarray based gene expression analysis. We have examined the accuracy and reproducibility of such five commercially available methods in detection of predetermined ratio values from target spike mRNAs (A. thaliana) in a background of total RNA. The five different labeling methods were: direct labeling (CyScribe), indirect labeling (FairPlay--aminoallyl), two protocols with dendrimer technology (3DNA Array 50 and 3DNA submicro), and hapten-antibody enzymatic labeling (Micromax TSA). Ten spike controls were mixed to give expected Cy5/Cy3 ratios in the range 0.125 to 6.0. The amounts of total RNA used in the labeling reactions ranged from 5-50 microg. RESULTS The 3DNA array 50 and CyScribe labeling methods performed best with respect to relative deviation from the expected values (16% and 17% respectively). These two methods also displayed the best overall accuracy and reproducibility. The FairPlay method had the lowest total experimental variation (22%), but the estimated values were consistently higher than the expected values (36%). TSA had both the largest experimental variation and the largest deviation from the expected values (45% and 48% respectively). CONCLUSION We demonstrate the usefulness of spike controls in validation and comparison of cDNA labeling methods for microarray experiments.
Collapse
Affiliation(s)
- Azadeh Badiee
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Hans Geir Eiken
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Vidar M Steen
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, University of Bergen, Bergen, Norway
- Dr. E. Martens Research Group for Biological Psychiatry and Locus on Neuroscience, University of Bergen, Bergen, Norway
| | - Roger Løvlie
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, University of Bergen, Bergen, Norway
- Dr. E. Martens Research Group for Biological Psychiatry and Locus on Neuroscience, University of Bergen, Bergen, Norway
| |
Collapse
|
135
|
Mor O, Nativ O, Stein A, Novak L, Lehavi D, Shiboleth Y, Rozen A, Berent E, Brodsky L, Feinstein E, Rahav A, Morag K, Rothenstein D, Persi N, Mor Y, Skaliter R, Regev A. Molecular analysis of transitional cell carcinoma using cDNA microarray. Oncogene 2003; 22:7702-10. [PMID: 14576834 DOI: 10.1038/sj.onc.1207039] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incidence of transitional cell carcinoma (TCC), the fourth most common neoplasm diagnosed in men, is rising. Despite the development of several noninvasive diagnostic tests, none have gained full recognition by the clinicians. Gene expression profiling of tumors can identify new molecular markers for early diagnosis and disease follow-up. It also allows the classification of tumors into subclasses assisting in disease diagnosis and prognosis, as well as in treatment selection. In this paper, we employed expression profiling for molecular analysis of TCC. A TCC-derived cDNA microarray was constructed and hybridized with 19 probes from normal urothelium and TCC tissues. Hierarchical clustering analysis identified all normal urothelium samples to be tightly clustered and separated from the TCC samples, with 29 of the genes significantly induced (t-test, P<10(-5)) in noninvasive TCC compared to normal urothelium. The identified genes are involved in epithelial cells' functions, tumorigenesis or apoptosis, and could become molecular tools for noninvasive TCC diagnosis. Principal components analysis of the noninvasive and invasive TCC expression profiles further revealed sets of genes that are specifically induced in different tumor subsets, thus providing molecular fingerprints that expand the information gained from classical staging and grading.
Collapse
Affiliation(s)
- Orna Mor
- QBI Enterprises Ltd, PO Box 4071, Nes Ziona 70400, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Francois P, Bento M, Vaudaux P, Schrenzel J. Comparison of fluorescence and resonance light scattering for highly sensitive microarray detection of bacterial pathogens. J Microbiol Methods 2003; 55:755-62. [PMID: 14607418 DOI: 10.1016/j.mimet.2003.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microarrays have emerged as potential tools for bacterial detection and identification. Given their high parallelism, they might represent a breakthrough in current diagnostic methods, provided they can be coupled to simplified labeling protocols and detected with adequate sensitivities. We describe here a technique to directly label total bacterial RNA, thus avoiding the multiple steps and possible biases associated with enzymatic amplification (e.g. PCR). We have then compared the performances of one white-light source and two laser-based fluorescence scanners for detection reliability and sensitivity. Our study reveals that nanoparticle-labeled bacterial RNA generates reproducible resonance light scattering signals that are at least 50 times more intense than state-of-the-art confocal-based fluorescence signals.
Collapse
Affiliation(s)
- Patrice Francois
- Genomic Research Laboratory, Division of Infectious Diseases, University Hospitals of Geneva, CH-1211 Geneva 14, Switzerland.
| | | | | | | |
Collapse
|
137
|
Jiao Y, Yang H, Ma L, Sun N, Yu H, Liu T, Gao Y, Gu H, Chen Z, Wada M, Gerstein M, Zhao H, Qu LJ, Deng XW. A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. PLANT PHYSIOLOGY 2003; 133:1480-93. [PMID: 14605227 PMCID: PMC300705 DOI: 10.1104/pp.103.029439] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 08/04/2003] [Accepted: 09/12/2003] [Indexed: 05/17/2023]
Abstract
A microarray based on PCR amplicons of 1864 confirmed and predicted Arabidopsis transcription factor genes was produced and used to profile the global expression pattern in seedlings, specifically their light regulation. We detected expression of 1371 and 1241 genes in white-light- and dark-grown 6-d-old seedlings, respectively. Together they account for 84% of the transcription factor genes examined. This array was further used to study the kinetics of transcription factor gene expression change of dark-grown seedlings in response to blue light and the role of specific photoreceptors in this blue-light regulation. The expression of about 20% of those transcription factor genes are responsive to blue-light exposure, with 249 and 115 genes up or down-regulated, respectively. A large portion of blue-light-responsive transcription factor genes exhibited very rapid expression changes in response to blue light, earlier than the bulk of blue-light-regulated genes. This result suggests the involvement of transcription cascades in blue-light control of genome expression. Comparative analysis of the expression profiles of wild type and various photoreceptor mutants demonstrated that during early seedling development cryptochromes are the major photoreceptors for blue-light control of transcription factor gene expression, whereas phytochrome A and phototropins play rather limited roles.
Collapse
Affiliation(s)
- Yuling Jiao
- Peking-Yale Joint Research Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Spiess AN, Mueller N, Ivell R. Amplified RNA degradation in T7-amplification methods results in biased microarray hybridizations. BMC Genomics 2003; 4:44. [PMID: 14606961 PMCID: PMC280674 DOI: 10.1186/1471-2164-4-44] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 11/10/2003] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The amplification of RNA with the T7-System is a widely used technique for obtaining increased amounts of RNA starting from limited material. The amplified RNA (aRNA) can subsequently be used for microarray hybridizations, warranting sufficient signal for image analysis. We describe here an amplification-time dependent degradation of aRNA in prolonged standard T7 amplification protocols, that results in lower average size aRNA and decreased yields. RESULTS A time-dependent degradation of amplified RNA (aRNA) could be observed when using the classical "Eberwine" T7-Amplification method. When the amplification was conducted for more than 4 hours, the resulting aRNA showed a significantly smaller size distribution on gel electrophoresis and a concomitant reduction of aRNA yield. The degradation of aRNA could be correlated to the presence of the T7 RNA Polymerase in the amplification cocktail. The aRNA degradation resulted in a strong bias in microarray hybridizations with a high coefficient of variation and a significant reduction of signals of certain transcripts, that seem to be susceptible to this RNA degrading activity. The time-dependent degradation of these transcripts was verified by a real-time PCR approach. CONCLUSIONS It is important to perform amplifications not longer than 4 hours as there is a characteristic 'quality vs. yield' situation for longer amplification times. When conducting microarray hybridizations it is important not to compare results obtained with aRNA from different amplification times.
Collapse
Affiliation(s)
- Andrej-Nikolai Spiess
- Institute for Hormone and Fertility Research, Centre of Innovative Medicine, Falkenried 88, 20251 Hamburg, Germany
| | - Nadine Mueller
- Institute for Hormone and Fertility Research, Centre of Innovative Medicine, Falkenried 88, 20251 Hamburg, Germany
| | - Richard Ivell
- Institute for Hormone and Fertility Research, Centre of Innovative Medicine, Falkenried 88, 20251 Hamburg, Germany
| |
Collapse
|
139
|
Young MB, DiSilvestro MR, Sendera TJ, Freund J, Kriete A, Magnuson SR. Analysis of gene expression in carbon tetrachloride-treated rat livers using a novel bioarray technology. THE PHARMACOGENOMICS JOURNAL 2003; 3:41-52. [PMID: 12629582 DOI: 10.1038/sj.tpj.6500147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study successfully utilizes a new ADME Rat Expression Bioarray, containing 1040 metabolism- and toxicology-linked genes, to monitor gene expression from the livers of rats treated with carbon tetrachloride (CCl(4)). Histopathological analysis, hierarchical clustering methods, and gene expression profiling are compared between the control and CCl(4)-treated animals. A total of 44 transcripts were found to be altered in response to the hepatotoxin, 19 of which were upregulated and 25 were downregulated. Some of these gene expression changes were expected and concurred with previously published data while others were novel findings.
Collapse
Affiliation(s)
- M B Young
- Motorola Life Sciences, Northbrook, IL, USA
| | | | | | | | | | | |
Collapse
|
140
|
Mukherjee S, Belbin TJ, Spray DC, Iacobas DA, Weiss LM, Kitsis RN, Wittner M, Jelicks LA, Scherer PE, Ding A, Tanowitz HB. Microarray analysis of changes in gene expression in a murine model of chronic chagasic cardiomyopathy. Parasitol Res 2003; 91:187-96. [PMID: 12910413 DOI: 10.1007/s00436-003-0937-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Accepted: 05/30/2003] [Indexed: 12/20/2022]
Abstract
Chagas' disease, caused by infection with Trypanosoma cruzi, is a major cause of cardiomyopathy in endemic regions. Infection leads to cardiac remodeling associated with congestive heart failure and dilated cardiomyopathy. In order to study the changes in the gene expression profile due to infection, C57BL/6 x 129sv male mice were infected with 1 x 10(3) trypomastigotes of the Brazil strain of T. cruzi. Histopathological examination of the myocardium revealed chronic inflammation, vasculitis and fibrosis 100 days post-infection. Cardiac magnetic resonance imaging revealed a significantly dilated heart compared with uninfected mice. The relative abundance or depletion of myocardial mRNAs was evaluated using high-density microarrays consisting of 27,400 mouse cDNAs, which were hybridized with fluorescent probes generated from mRNAs of T. cruzi infected and uninfected hearts. Differentially expressed genes were sorted according to their normalized expression patterns and functional groups including those involved in transcription, intracellular transport, structure/junction/adhesion or extracellular matrix, signaling, host defense, energetics, metabolism, cell shape and death. The regulated genes are interpreted in the pathogenesis of chagasic heart disease.
Collapse
Affiliation(s)
- Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
McQuain MK, Seale K, Peek J, Levy S, Haselton FR. Effects of relative humidity and buffer additives on the contact printing of microarrays by quill pins. Anal Biochem 2003; 320:281-91. [PMID: 12927835 DOI: 10.1016/s0003-2697(03)00348-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA microarrays printed with quill pins exhibit significant variation in probe DNA spots. Interspot variations and nonuniform distribution of probe within spots are major sources of experimental uncertainty in microarray analysis. To gain better insight into the sources of variation, we analyzed 450 consecutive depositions printed at relative humidities between 40 and 80% using three print buffers. Increasing relative humidity improved printing performance by delaying pin failure but did not reduce the variability in spot characteristics. Adding either betaine or dimethyl sulfoxide (DMSO) to the print buffer also improved quill pin performance. Least interspot variation was observed with the DMSO additive printed at 80% relative humidity, but this additive also resulted in the greatest intraspot variation. Least intraspot variation was observed with 1.5M betaine printed at 60% relative humidity, but these conditions produced microarrays with high interspot variability. Evaporation of printing solution from the quill reservoir appeared to be the primary cause of interspot and intraspot variations. Our studies indicate that relative humidity and printing solution additives reduce evaporation. Based on the spot variability requirements for a particular application, humidity and additives may be chosen to optimize either inter- or intraspot variability.
Collapse
Affiliation(s)
- Mark K McQuain
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | |
Collapse
|
142
|
Otsuki M, Gao H, Dahlman-Wright K, Ohlsson C, Eguchi N, Urade Y, Gustafsson JA. Specific regulation of lipocalin-type prostaglandin D synthase in mouse heart by estrogen receptor beta. Mol Endocrinol 2003; 17:1844-55. [PMID: 12829806 DOI: 10.1210/me.2003-0016] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogens have important physiological roles in the cardiovascular system. We use DNA microarray technology to study the molecular mechanism of estrogen action in the heart and to identify novel estrogen-regulated genes. In this investigation we identify genes that are regulated by chronic estrogen treatment of mouse heart. We present our detailed characterization of one of these genes, lipocalin-type prostaglandin D synthase (L-PGDS). Northern and Western blot analysis revealed that L-PGDS was induced both by acute and chronic estrogen treatment. Northern blot analysis, using estrogen receptor (ER)-disrupted mice, suggests that L-PGDS is specifically induced by ERbeta in vivo. In further support of ERbeta-selective regulation, we identify a functional estrogen-responsive element in the L-PGDS promoter, the activity of which is up-regulated by ERbeta, but not by ERalpha. We demonstrate that a one-nucleotide change (A to C) in the L-PGDS estrogen-responsive element affects receptor selectivity.
Collapse
Affiliation(s)
- Michio Otsuki
- Department of Biosciences at Novum, Karolinska Institutet Huddinge SE-14157, Sweden.
| | | | | | | | | | | | | |
Collapse
|
143
|
Gu G, Deutch AY, Franklin J, Levy S, Wallace DC, Zhang J. Profiling genes related to mitochondrial function in mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 2003; 308:197-205. [PMID: 12890501 DOI: 10.1016/s0006-291x(03)01233-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since mitochondrial dysfunction plays an important role in the pathogenesis of dopaminergic neurodegeneration in Parkinson's disease, we determined the expression of genes related to mitochondrial function in the substantia nigra of mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a cDNA array. MPTP treatment significantly depleted striatal dopamine, but did not result in apparent neuronal loss in the substantia nigra at 3 and 18 days post-treatment. We also examined changes in genes in the hypothalamus, a region containing dopaminergic neurons that are relatively resistant to MPTP. Finally, we confirmed those genes identified by microarrays as differentially expressed in the substantia nigra but not in the hypothalamus using in situ hybridization. Our results demonstrated that MPTP significantly changed the expressions of six genes in nigral neurons, four of which were related to the mitochondrial electron transport chain: the NADH-ubiquinone oxidoreductase 13 kDa B subunit, the NADH-ubiquinone oxidoreductase MNLL subunit, cytochrome c, and the cytochrome c oxidase Va subunit. Two other differentially expressed genes were the dihydropyridine-sensitive L-type calcium channel alpha-2 subunit precursor and type III alpha-1 procollagen. None of these six genes are encoded by mitochondrial DNA. The potential significance of these gene alterations in the context of Parkinson's disease is discussed.
Collapse
Affiliation(s)
- Guangyu Gu
- Division of Neuropathology, Department of Pathology, University of Washington School of Medicine, Box 359660, Harborview Medical Center, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
144
|
Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci 2003. [PMID: 12832546 DOI: 10.1523/jneurosci.23-12-05219.2003] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A critical question in Alzheimer's disease (AD) research is the cause of memory loss that leads to dementia. The amyloid precursor protein + presenilin-1 (APP+PS1) transgenic mouse is a model for amyloid deposition, and like AD, the mice develop memory deficits as amyloid deposits accumulate. We profiled gene expression in these transgenic mice by microarray and quantitative RT-PCR (qRT-PCR). At the age when these animals developed cognitive dysfunction, they had reduced mRNA expression of several genes essential for long-term potentiation and memory formation (Arc, Zif268, NR2B, GluR1, Homer-1a, Nur77/TR3). These changes appeared to be related to amyloid deposition, because mRNA expression was unchanged in the regions that did not accumulate amyloid. Transgene expression was similar in both amyloid-containing and amyloid-free regions of the brain. Interestingly, these changes occurred without apparent changes in synaptic structure, because a number of presynaptic marker mRNAs (growth-associated protein-43, synapsin, synaptophysin, synaptopodin, synaptotagmin, syntaxin) remained stable. Additionally, a number of genes related to inflammation were elevated in transgenic mice, primarily in the regions containing amyloid. In AD cortical tissue, the same memory-associated genes were downregulated. However, all synaptic and neuronal transcripts were reduced, implying that the loss of neurons and synapses contributed to these changes. We conclude that reduced expression of selected genes associated with memory consolidation are linked to memory loss in both circumstances. This suggests that the memory loss in APP+PS1 transgenic mice may model the early memory dysfunction in AD before the degeneration of synapses and neurons.
Collapse
|
145
|
Locker J, Tian J, Carver R, Concas D, Cossu C, Ledda-Columbano GM, Columbano A. A common set of immediate-early response genes in liver regeneration and hyperplasia. Hepatology 2003; 38:314-25. [PMID: 12883475 DOI: 10.1053/jhep.2003.50299] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Partial hepatectomy (PH) and some tumor-promoting agents stimulate hepatocyte cell proliferation, but each treatment acts through distinct transcription factors. We compared mouse immediate-early gene expression changes after PH with those induced by 1,4-bis[2-(3,5-dichoropyridyloxy)]benzene (TCPOBOP), a tumor-promoting liver mitogen. PH activates nuclear factor kappa B (NF-kappa B) and Stat3, whereas TCPOBOP is a ligand for the nuclear receptor, constitutive androstane receptor (CAR). RNA from 1 and 3 hours after each treatment was hybridized to a 9,000 complementary DNA (cDNA) microarray. Of about 6,000 messenger RNAs that had detectable expression, 127 showed reproducible up-regulation or down-regulation at a significant level. The TCPOBOP response was more discrete than the PH response; they amounted to 1% and 1.9% of positive hybridizations, respectively. Twenty-three genes were regulated only by TCPOBOP, 57 only by PH, and 59 by both treatments. More detailed analysis defined 16 clusters with common patterns of expression. These patterns and quantification of hybridization levels on the array were confirmed by Northern blots. TCPOBOP selectively activated expression of a number of detoxification enzymes. In conclusion, the genes that were regulated by both treatments suggest down-regulation of apoptosis, altered signal transduction, and early biogenesis of critical cell components.
Collapse
Affiliation(s)
- Joseph Locker
- Department of Pathology and the Marion Bessin Liver Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
146
|
Singh AK, McIntyre LM, Sherman LA. Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2003; 132:1825-39. [PMID: 12913140 PMCID: PMC181269 DOI: 10.1104/pp.103.024018] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 04/21/2003] [Accepted: 05/12/2003] [Indexed: 05/17/2023]
Abstract
A full-genome microarray of the (oxy)photosynthetic cyanobacterium Synechocystis sp. PCC 6803 was used to identify genes that were transcriptionally regulated by growth in iron (Fe)-deficient versus Fe-sufficient media. Transcript accumulation for 3,165 genes in the genome was analyzed using an analysis of variance model that accounted for slide and replicate (random) effects and dye (a fixed) effect in testing for differences in the four time periods. We determined that 85 genes showed statistically significant changes in the level of transcription (P </= 0.05/3,165 = 0.0000158) across the four time points examined, whereas 781 genes were characterized as interesting (P </= 0.05 but greater than 0.0000158; 731 of these had a fold change >1.25 x). The genes identified included those known previously to be Fe regulated, such as isiA that encodes a novel chlorophyll-binding protein responsible for the pigment characteristics of low-Fe (LoFe) cells. ATP synthetase and phycobilisome genes were down-regulated in LoFe, and there were interesting changes in the transcription of genes involved in chlorophyll biosynthesis, in photosystem I and II assembly, and in energy metabolism. Hierarchical clustering demonstrated that photosynthesis genes, as a class, were repressed in LoFe and induced upon the re-addition of Fe. Specific regulatory genes were transcriptionally active in LoFe, including two genes that show homology to plant phytochromes (cph1 and cph2). These observations established the existence of a complex network of regulatory interactions and coordination in response to Fe availability.
Collapse
Affiliation(s)
- Abhay K Singh
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
147
|
Tsubakihara M, Williams NK, Keogh A, dos Remedios CG. Comparison of gene expression between left atria and left ventricles from non-diseased humans. Proteomics 2003; 4:261-70. [PMID: 14730688 DOI: 10.1002/pmic.200300539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We examine the reliability and accuracy of gene array technology in analyzing differences in gene expression between human non-diseased left atrium and left ventricle. We have used cDNA gene arrays and validated those data by carefully designed quantitative real-time polymerase chain reaction (PCR). We have identified pitfalls using cDNA gene array technology based on comparisons with other gene array studies and with changes reported for the levels of expression of the genes corresponding to these cDNAs. The high error rate reported here underscores the cautionary comments reported by others in this field.
Collapse
Affiliation(s)
- Masako Tsubakihara
- Institute for Biomedical Research, University of Sydney, Sydney, Australia.
| | | | | | | |
Collapse
|
148
|
Chen ZJ, Gaté L, Davis W, Ile KE, Tew KD. Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE). BMC Genomics 2003; 4:28. [PMID: 12859795 PMCID: PMC179896 DOI: 10.1186/1471-2164-4-28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Accepted: 07/14/2003] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray) and compared it with regular microarray. RESULTS When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. CONCLUSION ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray.
Collapse
Affiliation(s)
- Zhijian J Chen
- Department of Pharmacology, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | - Laurent Gaté
- Department of Pharmacology, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | - Warren Davis
- Department of Pharmacology, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | - Kristina E Ile
- Department of Pharmacology, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | - Kenneth D Tew
- Department of Pharmacology, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
149
|
Detours V, Dumont JE, Bersini H, Maenhaut C. Integration and cross-validation of high-throughput gene expression data: comparing heterogeneous data sets. FEBS Lett 2003; 546:98-102. [PMID: 12829243 DOI: 10.1016/s0014-5793(03)00522-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Data analysis--not data production--is becoming the bottleneck in gene expression research. Data integration is necessary to cope with an ever increasing amount of data, to cross-validate noisy data sets, and to gain broad interdisciplinary views of large biological data sets. New Internet resources may help researchers to combine data sets across different gene expression platforms. However, noise and disparities in experimental protocols strongly limit data integration. A detailed review of four selected studies reveals how some of these limitations may be circumvented and illustrates what can be achieved through data integration.
Collapse
Affiliation(s)
- Vincent Detours
- IRIBHM, Free University of Brussels, Bldg C, Campus Erasme, 808 route de Lennik, B-1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
150
|
Korchynskyi O, Dechering KJ, Sijbers AM, Olijve W, ten Dijke P. Gene array analysis of bone morphogenetic protein type I receptor-induced osteoblast differentiation. J Bone Miner Res 2003; 18:1177-85. [PMID: 12854827 DOI: 10.1359/jbmr.2003.18.7.1177] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED The genomic response to BMP was investigated by ectopic expression of activated BMP type I receptors in C2C12 myoblast using cDNA microarrays. Novel BMP receptor target genes with possible roles in inhibition of myoblast differentiation and stimulation of osteoblast differentiation were identified. INTRODUCTION Bone morphogenetic proteins (BMPs) have an important role in controlling mesenchymal cell fate and mediate these effects by regulating gene expression. BMPs signal through three distinct specific BMP type I receptors (also termed activin receptor-like kinases) and their downstream nuclear effectors, termed Smads. The critical target genes by which activated BMP receptors mediate change cell fate are poorly characterized. MATERIALS AND METHODS We performed transcriptional profiling of C2C12 myoblasts differentiation into osteoblast-like cells by ectopic expression of three distinct constitutively active (ca)BMP type I receptors using adenoviral gene transfer. Cells were harvested 48 h after infection, which allowed detection of both early and late response genes. Expression analysis was performed using the mouse GEM1 microarray, which is comprised of approximately 8700 unique sequences. Hybridizations were performed in duplicate with a reverse fluor labeling. Genes were considered to be significantly regulated if the p value for differential expression was less than 0.01 and inverted expression ratios per duplicate successful reciprocal hybridizations differed by less than 25%. RESULTS AND CONCLUSIONS Each of the three caBMP type I receptors stimulated equal levels of R-Smad phosphorylation and alkaline phosphatase activity, an early marker for osteoblast differentiation. Interestingly, all three type I receptors induced identical transcriptional profiles; 97 genes were significantly upregulated and 103 genes were downregulated. Many extracellular matrix genes were upregulated, muscle-related genes downregulated, and transcription factors/signaling components modulated. In addition to 41 expressed sequence tags without known function and a number of known BMP target genes, including PPAR-gamma and fibromodulin, a large number of novel BMP target genes with an annotated function were identified, including transcription factors HesR1, ITF-2, and ICSBP, apoptosis mediators DRP-1 death kinase and ZIP kinase, IkappaB alpha, Edg-2, ZO-1, and E3 ligase Dactylin. These target genes, some of them unexpected, offer new insights into how BMPs elicit biological effects, in particular into the mechanism of inhibition of myoblast differentiation and stimulation of osteoblast differentiation.
Collapse
Affiliation(s)
- Olexander Korchynskyi
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|