101
|
Barna B, Fodor J, Harrach BD, Pogány M, Király Z. The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:37-43. [PMID: 22321616 DOI: 10.1016/j.plaphy.2012.01.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/17/2012] [Indexed: 05/19/2023]
Abstract
Plant pathogens can be divided into biotrophs and necrotrophs according to their different life styles; biotrophs prefer living, while necrotrophs prefer dead cells for nutritional purposes. Therefore tissue necrosis caused by reactive oxygen species (ROS) during pathogen infection increases host susceptibility to necrotrophic, but resistance to biotrophic pathogen. Consequently, elevation of antioxidant capacity of plants enhances their tolerance to development of necroses caused by necrotrophic pathogens. Plant hormones can strongly influence induction of ROS and antioxidants, thereby influencing susceptibility or resistance of plants to pathogens. Pathogen-induced ROS themselves are considered as signaling molecules. Generally, salicylic acid (SA) signaling induces defense against biotrophic pathogens, whereas jasmonic acid (JA) against necrotrophic pathogens. Furthermore pathogens can modify plant's defense signaling network for their own benefit by changing phytohormone homeostasis. On the other hand, ROS are harmful also to the pathogens, consequently they try to defend themselves by elevating antioxidant activity and secreting ROS scavengers in the infected tissue. The Janus face nature of ROS and plant cell death on biotrophic and on necrotrophic pathogens is also supported by the experiments with BAX inhibitor-1 and the mlo mutation of Mlo gene in barley. It was found that ROS and elevated plant antioxidant activity play an important role in systemic acquired resistance (SAR) and induced systemic resistance (ISR), as well as in mycorrhiza induced abiotic and biotic stress tolerance of plants.
Collapse
Affiliation(s)
- B Barna
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, 1525 Budapest, Hungary.
| | | | | | | | | |
Collapse
|
102
|
Agustí J, Gimeno J, Merelo P, Serrano R, Cercós M, Conesa A, Talón M, Tadeo FR. Early gene expression events in the laminar abscission zone of abscission-promoted citrus leaves after a cycle of water stress/rehydration: involvement of CitbHLH1. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6079-91. [PMID: 23028022 PMCID: PMC3481208 DOI: 10.1093/jxb/ers270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf abscission is a common response of plants to drought stress. Some species, such as citrus, have evolved a specific behaviour in this respect, keeping their leaves attached to the plant body during water stress until this is released by irrigation or rain. This study successfully reproduced this phenomenon under controlled conditions (24h of water stress followed by 24h of rehydration) and used it to construct a suppression subtractive hybridization cDNA library enriched in genes involved in the early stages of rehydration-promoted leaf abscission after water stress. Sequencing of the library yielded 314 unigenes, which were spotted onto nylon membranes. Membrane hybridization with petiole (Pet)- and laminar abscission zone (LAZ)-enriched RNA samples corresponding to early steps in leaf abscission revealed an almost exclusive preferential gene expression programme in the LAZ. The data identified major processes such as protein metabolism, cell-wall modification, signalling, control of transcription and vesicle production, and transport as the main biological processes activated in LAZs during the early steps of rehydration-promoted leaf abscission after water stress. Based on these findings, a model for the early steps of citrus leaf abscission is proposed. In addition, it is suggested that CitbHLH1, the putative citrus orthologue of Arabidopsis BIGPETAL, may play major roles in the control of abscission-related events in citrus abscission zones.
Collapse
Affiliation(s)
- Javier Agustí
- Institut Valencià d’Investigacions Agràries (IVIA), Centre de Genómica. Apartat Oficial 46113, Montcada (València), Spain
| | - Jacinta Gimeno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC-Universidad Politécnica de Valencia. Avda. Tarongers s/n, 46022. Valencia, Spain
| | - Paz Merelo
- Institut Valencià d’Investigacions Agràries (IVIA), Centre de Genómica. Apartat Oficial 46113, Montcada (València), Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC-Universidad Politécnica de Valencia. Avda. Tarongers s/n, 46022. Valencia, Spain
| | - Manuel Cercós
- Institut Valencià d’Investigacions Agràries (IVIA), Centre de Genómica. Apartat Oficial 46113, Montcada (València), Spain
| | - Ana Conesa
- Institut Valencià d’Investigacions Agràries (IVIA), Centre de Genómica. Apartat Oficial 46113, Montcada (València), Spain
| | - Manuel Talón
- Institut Valencià d’Investigacions Agràries (IVIA), Centre de Genómica. Apartat Oficial 46113, Montcada (València), Spain
| | - Francisco R. Tadeo
- Institut Valencià d’Investigacions Agràries (IVIA), Centre de Genómica. Apartat Oficial 46113, Montcada (València), Spain
- § To whom correspondence should be addressed. E-mail:
| |
Collapse
|
103
|
Tamás L, Bočová B, Huttová J, Liptáková Ľ, Mistrík I, Valentovičová K, Zelinová V. Impact of the auxin signaling inhibitor p-chlorophenoxyisobutyric acid on short-term Cd-induced hydrogen peroxide production and growth response in barley root tip. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1375-81. [PMID: 22795748 DOI: 10.1016/j.jplph.2012.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/27/2012] [Accepted: 05/16/2012] [Indexed: 05/22/2023]
Abstract
Short-term treatment (30 min) of barley roots with a low 10 μM Cd concentration induced significant H(2)O(2) production in the elongation and differentiation zone of the root tip 3h after treatment. This elevated H(2)O(2) production was accompanied by root growth inhibition and probably invoked root swelling in the elongation zone of the root tip. By contrast, a high 60 μM Cd concentration induced robust H(2)O(2) production in the elongation zone of the root tip already 1h after short-term treatment. This robust H(2)O(2) generation caused extensive cell death 6 h after short-term treatment. Similarly to low Cd concentration, exogenously applied H(2)O(2) caused marked root growth inhibition, which at lower H(2)O(2) concentration was accompanied by root swelling. The auxin signaling inhibitor p-chlorophenoxyisobutyric acid effectively inhibited 10 μM Cd-induced root growth inhibition, H(2)O(2) production and root swelling, but was ineffective in the alleviation of 60 μM Cd-induced root growth inhibition and H(2)O(2) production. Our results demonstrated that Cd-induced mild oxidative stress caused root growth inhibition, likely trough the rapid reorientation of cell growth in which a crucial role was played by IAA signaling in the root tip. Strong oxidative stress induced by high Cd concentration caused extensive cell death in the elongation zone of the root tip, resulting in the cessation of root growth or even in root death.
Collapse
Affiliation(s)
- Ladislav Tamás
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
104
|
Speranza A, Scoccianti V. New insights into an old story: pollen ROS also play a role in hay fever. PLANT SIGNALING & BEHAVIOR 2012; 7:994-998. [PMID: 22827950 PMCID: PMC3474702 DOI: 10.4161/psb.20674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reactive oxygen species (ROS) can exhibit negative and benign traits. In plants, ROS levels increase markedly during periods of environmental stress, and defense against pathogen attack. ROS form naturally as a by-product of normal oxygen metabolism, and evenly play an essential role in cell growth. The short ROS lifespan makes them ideal molecules to act in cell signaling, a role they share in both plants and animals. A particular plant organism, the pollen grain, may closely interact with human mucosa and an allergic inflammatory response often results. Pollen grain ROS represent a first, crucial signal which primes and magnifies a cascade of events in the allergic response.
Collapse
Affiliation(s)
- Anna Speranza
- Dipartimento di Biologia Evoluzionistica Sperimentale, Alma Mater Studiorum, Università di Bologna, Bologna, Italy.
| | | |
Collapse
|
105
|
Wenke K, Wanke D, Kilian J, Berendzen K, Harter K, Piechulla B. Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:445-59. [PMID: 22188129 DOI: 10.1111/j.1365-313x.2011.04891.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Interactions with the (a)biotic environment play key roles in a plant's fitness and vitality. In addition to direct surface-to-surface contact, volatile chemicals can also affect the physiology of organism. Volatiles of Serratia plymuthica and Stenotrophomonas maltophilia significantly inhibited growth and induced H(2) O(2) production in Arabidopsis in dual culture. Within 1 day, transcriptional changes were observed by promoter-GUS assays using a stress-inducible W-box-containing 4xGST1 construct. Expression studies performed at 6, 12 and 24 h revealed altered transcript levels for 889 genes and 655 genes in response to Se. plymuthica or St. maltophilia volatiles, respectively. Expression of 162 genes was altered in both treatments. Meta-analysis revealed that specifically volatile-responsive genes were significantly overlapping with those affected by abiotic stress. We use the term mVAMP (microbial volatile-associated molecular pattern) to describe these volatile-specific responses. Genes responsive to both treatments were enriched for W-box motifs in their promoters, and were significantly enriched for transcription factors (ERF2, ZAT10, MYB73 and WRKY18). The susceptibility of wrky18 mutant lines to volatiles was significantly delayed, suggesting an indispensable role for WRKY18 in bacterial volatile responses.
Collapse
Affiliation(s)
- Katrin Wenke
- Institute of Biological Sciences, Biochemistry, University of Rostock, Albert Einstein Straße 3, D-18059 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
106
|
Choi WG, Swanson SJ, Gilroy S. High-resolution imaging of Ca2+ , redox status, ROS and pH using GFP biosensors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:118-28. [PMID: 22449047 DOI: 10.1111/j.1365-313x.2012.04917.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many plant response systems are linked to complex dynamics in signaling molecules such as Ca(2+) and reactive oxygen species (ROS) and to pH. Regulatory changes in these molecules can occur in the timeframe of seconds and are often limited to specific subcellular locales. Thus, to understand how Ca(2+) , ROS and pH form part of plants' regulatory networks, it is essential to capture their rapid dynamics with resolutions that span the whole plant to subcellular dimensions. Defining the spatio-temporal signaling 'signatures' of these regulators at high resolution has now been greatly facilitated by the generation of plants expressing a range of GFP-based bioprobes. For Ca(2+) and pH, probes such as the yellow cameleon Ca(2+) sensors (principally YC2.1 and 3.6) or the pHluorin and H148D pH sensors provide a robust suite of tools to image changes in these ions. For ROS, the tools are much more limited, with the GFP-based H(2) O(2) sensor Hyper representing a significant advance for the field. However, with this probe, its marked pH sensitivity provides a key challenge to interpretation without using appropriate controls to test for potentially coupled pH-dependent changes. Most of these Ca(2+) -, ROS- and pH-imaging biosensors are compatible with the standard configurations of confocal microscopes available to many researchers. These probes therefore represent a readily accessible toolkit to monitor cellular signaling. Their use does require appreciation of a minimal set of controls but these are largely related to ensuring that neither the probe itself nor the imaging conditions used perturb the biology of the plant under study.
Collapse
Affiliation(s)
- Won-Gyu Choi
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
107
|
Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng SH, Yuasa T, Iwaya-Inoue M. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. PLANT PHYSIOLOGY 2012; 158:1705-14. [PMID: 22291200 PMCID: PMC3320179 DOI: 10.1104/pp.111.192740] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/27/2012] [Indexed: 05/19/2023]
Abstract
Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling.
Collapse
Affiliation(s)
- Yushi Ishibashi
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Liu J, Zhou J, Xing D. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity. PLoS One 2012; 7:e33817. [PMID: 22448275 PMCID: PMC3309022 DOI: 10.1371/journal.pone.0033817] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 02/17/2012] [Indexed: 12/30/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination.
Collapse
Affiliation(s)
| | | | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- * E-mail:
| |
Collapse
|
109
|
Djebbar R, Rzigui T, Pétriacq P, Mauve C, Priault P, Fresneau C, De Paepe M, Florez-Sarasa I, Benhassaine-Kesri G, Streb P, Gakière B, Cornic G, De Paepe R. Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances. PLANTA 2012; 235:603-14. [PMID: 22002624 DOI: 10.1007/s00425-011-1524-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/18/2011] [Indexed: 05/31/2023]
Abstract
To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.
Collapse
Affiliation(s)
- Reda Djebbar
- Laboratoire de Physiologie et Biologie des Organismes, Université des Sciences et de la Technologie Houari Boumediene, BP 39, El Alia, Bab Ezzouar, Algiers, Algeria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Rodríguez-Serrano M, Bárány I, Prem D, Coronado MJ, Risueño MC, Testillano PS. NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2007-24. [PMID: 22197894 PMCID: PMC3295391 DOI: 10.1093/jxb/err400] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/01/2011] [Accepted: 11/14/2011] [Indexed: 05/18/2023]
Abstract
Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores.
Collapse
Affiliation(s)
| | | | | | | | | | - Pilar S. Testillano
- Plant Development and Nuclear Architecture, Centro de Investigaciones Biológicas, CIB-CSIC. Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
111
|
Xu YH, Liu R, Yan L, Liu ZQ, Jiang SC, Shen YY, Wang XF, Zhang DP. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1095-106. [PMID: 22143917 PMCID: PMC3276081 DOI: 10.1093/jxb/err315] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 05/18/2023]
Abstract
The light-harvesting chlorophyll a/b binding proteins (LHCB) are perhaps the most abundant membrane proteins in nature. It is reported here that the down-regulation or disruption of any member of the LHCB family, LHCB1, LHCB2, LHCB3, LHCB4, LHCB5, or LHCB6, reduces responsiveness of stomatal movement to ABA, and therefore results in a decrease in plant tolerance to drought stress in Arabidopsis thaliana. By contrast, over-expression of a LHCB member, LHCB6, enhances stomatal sensitivity to ABA. In addition, the reactive oxygen species (ROS) homeostasis and a set of ABA-responsive genes are altered in the lhcb mutants. These data demonstrate that LHCBs play a positive role in guard cell signalling in response to ABA and suggest that they may be involved in ABA signalling partly by modulating ROS homeostasis.
Collapse
Affiliation(s)
- Yan-Hong Xu
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Liu
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi-Qiang Liu
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shang-Chuan Jiang
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan-Yue Shen
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Fang Wang
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Da-Peng Zhang
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
112
|
Zhao X, Wang M, Quan T, Xia G. The role of TaCHP in salt stress responsive pathways. PLANT SIGNALING & BEHAVIOR 2012; 7:71-4. [PMID: 22301971 PMCID: PMC3357374 DOI: 10.4161/psb.7.1.18547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In our previous study, we found wheat TaCHP confers salt tolerance through regulating salt responsive signaling pathways. TaCHP possesses three divergent C1 domains that can specifically bind to phospholipid signaling molecule diacylglycerol (DAG) in animal cells, and most of proteins with this domain have kinase activity. Here, we found that TaCHP localizes both at cytoplasmatic membrane and in nuclei; it has no kinase activity but transcriptional activation activity, and the latter owes to C-terminal two C1 domains. TaCHP transcription was reduced by H2O2 application, but its ectopic expression in Arabidopsis improved both ROS production and scavenging capacity, and enhanced tolerance to H2O2 application. We suggest that TaCHP serve as both a transcription factor and a putative DAG binding protein to confer salt tolerance in part through improving ROS scavenging capacity; which is a component of the cross-talk machinery in the phospholipids-ROS-salt responsive signaling pathways.
Collapse
|
113
|
Barba-Espín G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA. Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach. PLANT, CELL & ENVIRONMENT 2011; 34:1907-19. [PMID: 21711356 DOI: 10.1111/j.1365-3040.2011.02386.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels.
Collapse
|
114
|
Abstract
Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress.
Collapse
Affiliation(s)
- Rup Kumar Kar
- Department of Botany, Visva-Bharati, Santiniketan, India.
| |
Collapse
|
115
|
Jammes F, Yang X, Xiao S, Kwak JM. Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. PLANT SIGNALING & BEHAVIOR 2011; 6:1875-7. [PMID: 22067989 PMCID: PMC3343731 DOI: 10.4161/psb.6.11.17933] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) plays a major role in plant development and adaptation to severe environmental conditions. ABA evokes cellular events to regulate stomatal apertures and thus contributes to the plant's ability to respond to abiotic stresses. Reactive oxygen species (ROS) are produced in response to ABA and mediate ABA-induced stomatal closure. We have shown that two MAP kinases, MPK9 and MPK12, are highly and preferentially expressed in guard cells and function as positive regulators of ROS-mediated ABA signaling in guard cells. Cell biological and electrophysiological analyses demonstrated that MPK9 and MPK12 act downstream of ROS and cytosolic Ca2+ and upstream of anion channels in the guard cell ABA signaling cascade. Plant pathogens use stomata as the primary gateway to enter into their hosts, and previous studies have indicated crosstalk between ABA and defense signaling. Here we show that mpk9-1/12-1 double mutants are highly susceptible to Pseudomonas syringae DC3000 compared to WT plants. These results suggest that the regulation of stomatal apertures by MPK9 and MPK12 contributes to the first line of defense against pathogens.
Collapse
Affiliation(s)
- Fabien Jammes
- University of Maryland; College Park, MD, USA
- Department of Cell Biology and Molecular Genetics
| | - Xiaohua Yang
- University of Maryland; College Park, MD, USA; Institute for Bioscience and Biotechnology Research
| | - Shunyuan Xiao
- University of Maryland; College Park, MD, USA; Institute for Bioscience and Biotechnology Research
| | - June M. Kwak
- University of Maryland; College Park, MD, USA; Institute for Bioscience and Biotechnology Research; Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute; Kyung Hee University; Yongin, Korea
| |
Collapse
|
116
|
Carvalho LC, Vilela BJ, Mullineaux PM, Amâncio S. Comparative transcriptomic profiling of Vitis vinifera under high light using a custom-made array and the Affymetrix GeneChip. MOLECULAR PLANT 2011; 4:1038-1051. [PMID: 21498622 DOI: 10.1093/mp/ssr027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Understanding abiotic stress responses is one of the most important issues in plant research nowadays. Abiotic stress, including excess light, can promote the onset of oxidative stress through the accumulation of reactive oxygen species. Oxidative stress also arises when in vitro propagated plants are exposed to high light upon transfer to ex vitro. To determine whether the underlying pathways activated at the transfer of in vitro grapevine to ex vitro conditions reflect the processes occurring upon light stress, we used Vitis vinifera Affymetrix GeneChip (VvGA) and a custom array of genes responsive to light stress (LSCA) detected by real-time reverse transcriptase PCR (qRT-PCR). When gene-expression profiles were compared, 'protein metabolism and modification', 'signaling', and 'anti-oxidative' genes were more represented in LSCA, while, in VvGA, 'cell wall metabolism' and 'secondary metabolism' were the categories in which gene expression varied more significantly. The above functional categories confirm previous studies involving other types of abiotic stresses, enhancing the common attributes of abiotic stress defense pathways. The LSCA analysis of our experimental system detected strong response of heat shock genes, particularly the protein rescuing mechanism involving the cooperation of two ATP-dependent chaperone systems, Hsp100 and Hsp70, which showed an unusually late response during the recovery period, of extreme relevance to remove non-functional, potentially harmful polypeptides arising from misfolding, denaturation, or aggregation brought about by stress. The success of LSCA also proves the feasibility of a custom-made qRT-PCR approach, particularly for species for which no GeneChip is available and for researchers dealing with a specific and focused problem.
Collapse
Affiliation(s)
- Luísa C Carvalho
- CBAA, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | | | | | | |
Collapse
|
117
|
Livanos P, Galatis B, Quader H, Apostolakos P. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton (Hoboken) 2011; 69:1-21. [PMID: 21976360 DOI: 10.1002/cm.20538] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022]
Abstract
In this study, the effects of disturbance of the reactive oxygen species (ROS) homeostasis on the organization of tubulin cytoskeleton in interphase and mitotic root-tip cells of Triticum turgidum and Arabidopsis thaliana were investigated. Reduced ROS levels were obtained by treatment with diphenylene iodonium (DPI) and N-acetyl-cysteine, whereas menadione was applied to achieve ROS overproduction. Both increased and low ROS levels induced: (a) Macrotubule formation in cells with low ROS levels and tubulin paracrystals under oxidative stress. The protein MAP65-1 was detected in treated cells, exhibiting a conformation comparable to that of the atypical tubulin polymers. (b) Disappearance of microtubules (MTs). (c) Inhibition of preprophase band formation. (d) Delay of the nuclear envelope breakdown at prometaphase. (e) Prevention of perinuclear tubulin polymer assembly in prophase cells. (f) Loss of bipolarity of prophase, metaphase and anaphase spindles. Interestingly, examination of the A. thaliana rhd2/At respiratory burst oxidase homolog C (rbohc) NADPH oxidase mutant, lacking RHD2/AtRBOHC, gave comparable results. Similarly to DPI, the decreased ROS levels in rhd2 root-tip cells, interfered with MT organization and induced macrotubule assembly. These data indicate, for first time in plants, that ROS are definitely implicated in: (a) mechanisms controlling the assembly/disassembly of interphase, preprophase and mitotic MT systems and (b) mitotic spindle function. The probable mechanisms, by which ROS affect these processes, are discussed.
Collapse
Affiliation(s)
- Pantelis Livanos
- Department of Botany, Faculty of Biology, University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
118
|
Bykova NV, Hoehn B, Rampitsch C, Hu J, Stebbing JA, Knox R. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat. PHYTOCHEMISTRY 2011; 72:1162-1172. [PMID: 21295800 DOI: 10.1016/j.phytochem.2010.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/06/2010] [Accepted: 12/28/2010] [Indexed: 05/27/2023]
Abstract
The thiol redox-sensitive and the total proteome in harvest-ripe grains of closely related genotypes of wheat (Triticum aestivum L.), with either a dormant or a non-dormant phenotype, were investigated using hybrid lines of spring wheat double haploid population segregating transgressively, to gain further insight into seed dormancy controlling events. Redox signalling by reactive oxygen species has been shown to play a role in seed dormancy alleviation. Thiol-disulfide proteins are of particular importance in the context of redox-dependent regulation as a central and flexible mechanism to control metabolic and developmental activities of the cells. Here we describe functional proteomic profiling of reversible oxidoreductive changes and characterize in vivo intrinsic reactivity of cysteine residues using thiol-specific fluorescent labelling, solubility-based protein fractionation, two-dimensional electrophoresis, and mass spectrometry analysis in conjunction with wheat EST sequence libraries. Quantitative differences between genotypes were found for 106 spots containing 64 unique proteins. Forty seven unique proteins displayed distinctive abundance pattern, and among them 31 proteins contained 78 unique redox active cysteines. Seventeen unique proteins with 19 reactive modified cysteines were found to have differential post-translational thiol redox modification. The results provide an insight into the alteration of thiol-redox profiles in proteins that function in major processes in seeds and include groups of redox- and stress-responsive, genetic information processing and cell cycle control, transport and storage proteins, enzymes of carbohydrate metabolism, proteases and their inhibitors.
Collapse
Affiliation(s)
- Natalia V Bykova
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | | | | | | | | | | |
Collapse
|
119
|
Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE. Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of papaver. PLANT PHYSIOLOGY 2011; 156:404-16. [PMID: 21386034 PMCID: PMC3091060 DOI: 10.1104/pp.110.167510] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/04/2011] [Indexed: 05/17/2023]
Abstract
Pollen-pistil interactions are critical early events regulating pollination and fertilization. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization and inbreeding in higher plants. Although data implicate the involvement of reactive oxygen species (ROS) and nitric oxide (NO) in pollen-pistil interactions and the regulation of pollen tube growth, there has been a lack of studies investigating ROS and NO signaling in pollen tubes in response to defined, physiologically relevant stimuli. We have used live-cell imaging to visualize ROS and NO in growing Papaver rhoeas pollen tubes using chloromethyl-2'7'-dichlorodihydrofluorescein diacetate acetyl ester and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and demonstrate that SI induces relatively rapid and transient increases in ROS and NO, with each showing a distinctive "signature" within incompatible pollen tubes. Investigating how these signals integrate with the SI responses, we show that Ca(2+) increases are upstream of ROS and NO. As ROS/NO scavengers alleviated both the formation of SI-induced actin punctate foci and also the activation of a DEVDase/caspase-3-like activity, this demonstrates that ROS and NO act upstream of these key SI markers and suggests that they signal to these SI events. These data represent, to our knowledge, the first steps in understanding ROS/NO signaling triggered by this receptor-ligand interaction in pollen tubes.
Collapse
|
120
|
Cheng NH, Liu JZ, Liu X, Wu Q, Thompson SM, Lin J, Chang J, Whitham SA, Park S, Cohen JD, Hirschi KD. Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response. J Biol Chem 2011; 286:20398-406. [PMID: 21515673 DOI: 10.1074/jbc.m110.201707] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Global environmental temperature changes threaten innumerable plant species. Although various signaling networks regulate plant responses to temperature fluctuations, the mechanisms unifying these diverse processes are largely unknown. Here, we demonstrate that an Arabidopsis monothiol glutaredoxin, AtGRXS17 (At4g04950), plays a critical role in redox homeostasis and hormone perception to mediate temperature-dependent postembryonic growth. AtGRXS17 expression was induced by elevated temperatures. Lines altered in AtGRXS17 expression were hypersensitive to elevated temperatures and phenocopied mutants altered in the perception of the phytohormone auxin. We show that auxin sensitivity and polar auxin transport were perturbed in these mutants, whereas auxin biosynthesis was not altered. In addition, atgrxs17 plants displayed phenotypes consistent with defects in proliferation and/or cell cycle control while accumulating higher levels of reactive oxygen species and cellular membrane damage under high temperature. Together, our findings provide a nexus between reactive oxygen species homeostasis, auxin signaling, and temperature responses.
Collapse
Affiliation(s)
- Ning-Hui Cheng
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Changes in Energy Metabolism and Antioxidant Defense Systems During Seed Germination of the Weed Species Ipomoea triloba L. and the Responses to Allelochemicals. J Chem Ecol 2011; 37:500-13. [DOI: 10.1007/s10886-011-9945-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 03/16/2011] [Accepted: 03/28/2011] [Indexed: 01/20/2023]
|
122
|
Maruta T, Inoue T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S. Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:655-60. [PMID: 21421415 DOI: 10.1016/j.plantsci.2011.01.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/15/2011] [Accepted: 01/19/2011] [Indexed: 05/06/2023]
Abstract
To clarify genetically the involvement of two Arabidopsis NADPH oxidases (AtrbohD and AtrbohF) in the jasmonic acid (JA) signaling pathway, we characterized single knockout mutants lacking either Atrboh. The accumulation of reactive oxygen species (ROS) and expression of the genes regulated by MYC2, a transcription factor involved in the JA-evoked response, were significantly suppressed by treatment with methyl JA (MeJA) in both mutants. Further experiments using knockout mutants lacking CORONATINE-INSENSITIVE1 (COI1), a master regulator of the JA-evoked response, and MYC2 indicated a possibility that the production of ROS via Atrbohs depends on the function of COI1, but not MYC2.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
123
|
Jiang T, Zhang XF, Wang XF, Zhang DP. Arabidopsis 3-ketoacyl-CoA thiolase-2 (KAT2), an enzyme of fatty acid β-oxidation, is involved in ABA signal transduction. PLANT & CELL PHYSIOLOGY 2011; 52:528-38. [PMID: 21257607 DOI: 10.1093/pcp/pcr008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The phytohormone ABA plays an important role in plant development and adaptation to diverse environmental stresses. Many of the components involved in ABA signaling remain to be discovered, and knowledge of these is needed to understand fully the highly complex ABA signaling network. Here, we report that an enzyme catalyzing β-oxidation of fatty acids, 3-ketoacyl-CoA thiolase-2 (KAT2/PED1/PKT3) (EC 2.3.1.16), is involved in ABA signaling. We provide genetic evidence that KAT2 positively regulates ABA signaling in all the major ABA responses, including ABA-induced inhibition of seed germination and post-germination growth arrest, and ABA-induced stomatal closure and stomatal opening inhibition in Arabidopsis thaliana. KAT2 was shown to be important for reactive oxygen species (ROS) production in response to ABA, suggesting that KAT2 regulates ABA signaling at least partly through modulating ROS homeostasis in plant cells. Additionally, we provide data suggesting that KAT2 may function downstream of an important WRKY transcription repressor WRKY40, which may link KAT2 with the ABA receptor ABAR/CHLH-mediated signaling.
Collapse
Affiliation(s)
- Tao Jiang
- College of Biological Sciences, China Agricultural University, Beijing 100094, PR China
| | | | | | | |
Collapse
|
124
|
Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing JA, Fan T, Knox R. Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 2011; 11:865-82. [DOI: 10.1002/pmic.200900810] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 11/15/2010] [Accepted: 11/29/2010] [Indexed: 11/10/2022]
|
125
|
Benitez-Alfonso Y, Jackson D, Maule A. Redox regulation of intercellular transport. PROTOPLASMA 2011; 248:131-40. [PMID: 21107619 DOI: 10.1007/s00709-010-0243-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/10/2010] [Indexed: 05/19/2023]
Abstract
Plant cells communicate with each other via plasmodesmata (PDs) in order to orchestrate specific responses to environmental and developmental cues. At the same time, environmental signals regulate this communication by promoting changes in PD structure that modify symplastic permeability and, in extreme cases, isolate damaged cells. Reactive oxygen species (ROS) are key messengers in plant responses to a range of biotic and abiotic stresses. They are also generated during normal metabolism, and mediate signaling pathways that modulate plant growth and developmental transitions. Recent research has suggested the participation of ROS in the regulation of PD transport. The study of several developmental and stress-induced processes revealed a co-regulation of ROS and callose (a cell wall polymer that regulates molecular flux through PDs). The identification of Arabidopsis mutants simultaneously affected in cell redox homeostasis and PD transport, and the histological detection of hydrogen peroxide and peroxidases in the PDs of the tomato vascular cambium provide new information in support of this novel regulatory mechanism. Here, we describe the evidence that supports a role for ROS in the regulation of callose deposition and/or in the formation of secondary PD, and discuss the potential importance of this mechanism during plant growth or defense against environmental stresses.
Collapse
|
126
|
Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J, Jiang M. ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4399-411. [PMID: 20693409 PMCID: PMC2955750 DOI: 10.1093/jxb/erq243] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Brassinosteroids (BRs) have been shown to induce hydrogen peroxide (H(2)O(2)) accumulation, and BR-induced H(2)O(2) up-regulates antioxidant defence systems in plants. However, the mechanisms by which BR-induced H(2)O(2) regulates antioxidant defence systems in plants remain to be determined. In the present study, the role of ZmMPK5, a mitogen-activated protein kinase, in BR-induced anitioxidant defence and the relationship between the activation of ZmMPK5 and H(2)O(2) production in BR signalling were investigated in leaves of maize (Zea mays) plants. BR treatment activated ZmMPK5, induced apoplastic and chloroplastic H(2)O(2) accumulation, and enhanced the total activities of antioxidant enzymes. Such enhancements were blocked by pre-treatment with mitogen-activated protein kinase kinase (MAPKK) inhibitors and H(2)O(2) inhibitors or scavengers. Pre-treatment with MAPKK inhibitors substantially arrested the BR-induced apoplastic H(2)O(2) production after 6 h of BR treatment, but did not affect the levels of apoplastic H(2)O(2) within 1 h of BR treatment. BR-induced gene expression of NADPH oxidase was also blocked by pre-treatment with MAPKK inhibitors and an apoplastic H(2)O(2) inhibitor or scavenger after 120 min of BR treatment, but was not affected within 30 min of BR treatment. These results suggest that the BR-induced initial apoplastic H(2)O(2) production activates ZmMPK5, which is involved in self-propagation of apoplastic H(2)O(2) via regulation of NADPH oxidase gene expression in BR-induced antioxidant defence systems.
Collapse
Affiliation(s)
- Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nenghui Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong, PR China
| | - Jianmei Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, PR China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
127
|
Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernández JA. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. PLANT, CELL & ENVIRONMENT 2010; 33:981-94. [PMID: 20102539 DOI: 10.1111/j.1365-3040.2010.02120.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) increased the germination percentage of pea seeds, as well as the growth of seedlings in a concentration-dependent manner. The effect of H(2)O(2) on seedling growth was removed by incubation with 10 microm ABA. The H(2)O(2)-pretreatment produced an increase in ascorbate peroxidase (APX), peroxidase (POX) and ascorbate oxidase (AAO). The increases in these ascorbate-oxidizing enzymes correlated with the increase in the growth of the pea seedlings as well as with the decrease in the redox state of ascorbate. Moreover, the increase in APX activity was due to increases in the transcript levels of cytosolic and stromal APX (cytAPX, stAPX). The proteomic analysis showed that H(2)O(2) induced proteins related to plant signalling and development, cell elongation and division, and cell cycle control. A strong correlation between the effect of H(2)O(2) on plant growth and the decreases in ABA and zeatin riboside (ZR) was observed. The results suggest an interaction among the redox state and plant hormones, orchestrated by H(2)O(2), in the induction of proteins related to plant signalling and development during the early growth of pea seedlings.
Collapse
Affiliation(s)
- G Barba-Espin
- Centro de Edafología y Biología Aplicada del Segura, CSIC, Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal, E-30100 Murcia
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Graeber K, Linkies A, Müller K, Wunchova A, Rott A, Leubner-Metzger G. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. PLANT MOLECULAR BIOLOGY 2010; 73:67-87. [PMID: 20013031 DOI: 10.1007/s11103-009-9583-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/22/2009] [Indexed: 05/20/2023]
Abstract
Seed dormancy is genetically determined with substantial environmental influence mediated, at least in part, by the plant hormone abscisic acid (ABA). The ABA-related transcription factor ABI3/VP1 (ABA INSENSITIVE3/VIVIPAROUS1) is widespread among green plants. Alternative splicing of its transcripts appears to be involved in regulating seed dormancy, but the role of ABI3/VP1 goes beyond seeds and dormancy. In contrast, DOG1 (DELAY OF GERMINATION 1), a major quantitative trait gene more specifically involved in seed dormancy, was so far only known from Arabidopsis thaliana (AtDOG1) and whether it also has roles during the germination of non-dormant seeds was not known. Seed germination of Lepidium sativum ('garden cress') is controlled by ABA and its antagonists gibberellins and ethylene and involves the production of apoplastic hydroxyl radicals. We found orthologs of AtDOG1 in the Brassicaceae relatives L. sativum (LesaDOG1) and Brassica rapa (BrDOG1) and compared their gene structure and the sequences of their transcripts expressed in seeds. Tissue-specific analysis of LesaDOG1 transcript levels in L. sativum seeds showed that they are degraded upon imbibition in the radicle and the micropylar endosperm. ABA inhibits germination in that it delays radicle protrusion and endosperm weakening and it increased LesaDOG1 transcript levels during early germination due to enhanced transcription and/or inhibited degradation. A reduced decrease in LesaDOG1 transcript levels upon ABA treatment is evident in the late germination phase in both tissues. This temporal and ABA-related transcript expression pattern suggests a role for LesaDOG1 in the control of germination timing of non-dormant L. sativum seeds. The possible involvement of the ABA-related transcription factors ABI3 and ABI5 in the regulation of DOG1 transcript expression is discussed. Other species of the monophyletic genus Lepidium showed coat or embryo dormancy and are therefore highly suited for comparative seed biology.
Collapse
Affiliation(s)
- Kai Graeber
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
129
|
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 2010; 123:1468-79. [PMID: 20375061 DOI: 10.1242/jcs.064352] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Reactive oxygen species (ROS) are central to plant stress response, signalling, development and a multitude of other processes. In this study, the plasma-membrane hydroxyl radical (HR)-activated K(+) channel responsible for K(+) efflux from root cells during stress accompanied by ROS generation is characterised. The channel showed 16-pS unitary conductance and was sensitive to Ca(2+), tetraethylammonium, Ba(2+), Cs(+) and free-radical scavengers. The channel was not found in the gork1-1 mutant, which lacks a major plasma-membrane outwardly rectifying K(+) channel. In intact Arabidopsis roots, both HRs and stress induced a dramatic K(+) efflux that was much smaller in gork1-1 plants. Tests with electron paramagnetic resonance spectroscopy showed that NaCl can stimulate HR generation in roots and this might lead to K(+)-channel activation. In animals, activation of K(+)-efflux channels by HRs can trigger programmed cell death (PCD). PCD symptoms in Arabidopsis roots developed much more slowly in gork1-1 and wild-type plants treated with K(+)-channel blockers or HR scavengers. Therefore, similar to animal counterparts, plant HR-activated K(+) channels are also involved in PCD. Overall, this study provides new insight into the regulation of plant cation transport by ROS and demonstrates possible physiological properties of plant HR-activated K(+) channels.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Biological Sciences, University of Essex, Colchester, Essex CO4 5AP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Potters G, Horemans N, Jansen MAK. The cellular redox state in plant stress biology--a charging concept. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:292-300. [PMID: 20137959 DOI: 10.1016/j.plaphy.2009.12.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 12/23/2009] [Accepted: 12/28/2009] [Indexed: 05/20/2023]
Abstract
Different redox-active compounds, such as ascorbate, glutathione, NAD(P)H and proteins from the thioredoxin superfamily, contribute to the general redox homeostasis in the plant cell. The myriad of interactions between redox-active compounds, and the effect of environmental parameters on them, has been encapsulated in the concept of a cellular redox state. This concept has facilitated progress in understanding stress signalling and defence in plants. However, despite the proven usefulness of the concept of a redox state, there is no single, operational definition that allows for quantitative analysis and hypothesis testing.
Collapse
Affiliation(s)
- Geert Potters
- Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | |
Collapse
|
131
|
Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem 2010; 285:9190-201. [PMID: 20089852 DOI: 10.1074/jbc.m109.051938] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H(2)O(2)-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Violante-Mota F, Tellechea E, Moran JF, Sarath G, Arredondo-Peter R. Analysis of peroxidase activity of rice (Oryza sativa) recombinant hemoglobin 1: implications for in vivo function of hexacoordinate non-symbiotic hemoglobins in plants. PHYTOCHEMISTRY 2010; 71:21-26. [PMID: 19833360 DOI: 10.1016/j.phytochem.2009.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/07/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH 6.0 and compared it to that from horseradish peroxidase (HRP). Results showed that the affinity of rice Hb1 for H2O2 was 86-times lower than that of HRP (K(m)=23.3 and 0.27 mM, respectively) and that the catalytic efficiency of rice Hb1 for the oxidation of guaiacol using H2O2 as electron donor was 2838-times lower than that of HRP (k(cat)/K(m)=15.8 and 44,833 mM(-1) min(-1), respectively). Also, results from this work showed that rice Hb1 is not chemically modified and binds CO after incubation with high H2O2 concentration, and that it poorly protects recombinant Escherichia coli from H2O2 stress. These observations indicate that rice Hb1 inefficiently scavenges H2O2 as compared to a typical plant peroxidase, thus indicating that non-symbiotic Hbs are unlikely to function as peroxidases in planta.
Collapse
Affiliation(s)
- Fernando Violante-Mota
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
133
|
Linkies A, Schuster-Sherpa U, Tintelnot S, Leubner-Metzger G, Müller K. Peroxidases identified in a subtractive cDNA library approach show tissue-specific transcript abundance and enzyme activity during seed germination of Lepidium sativum. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:491-502. [PMID: 19884228 PMCID: PMC2803213 DOI: 10.1093/jxb/erp318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 05/06/2023]
Abstract
The micropylar endosperm is a major regulator of seed germination in endospermic species, to which the close Brassicaceae relatives Arabidopsis thaliana and Lepidium sativum (cress) belong. Cress seeds are about 20 times larger than the seeds of Arabidopsis. This advantage was used to construct a tissue-specific subtractive cDNA library of transcripts that are up-regulated late in the germination process specifically in the micropylar endosperm of cress seeds. The library showed that a number of transcripts known to be up-regulated late during germination are up-regulated in the micropylar endosperm cap. Detailed germination kinetics of SALK lines carrying insertions in genes present in our library showed that the identified transcripts do indeed play roles during germination. Three peroxidases were present in the library. These peroxidases were identified as orthologues of Arabidopsis AtAPX01, AtPrx16, and AtPrxIIE. The corresponding SALK lines displayed significant germination phenotypes. Their transcripts were quantified in specific cress seed tissues during germination in the presence and absence of ABA and they were found to be regulated in a tissue-specific manner. Peroxidase activity, and particularly its regulation by ABA, also differed between radicles and micropylar endosperm caps. Possible implications of this tissue-specificity are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Kerstin Müller
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
134
|
Ishikawa K, Ogawa T, Hirosue E, Nakayama Y, Harada K, Fukusaki E, Yoshimura K, Shigeoka S. Modulation of the poly(ADP-ribosyl)ation reaction via the Arabidopsis ADP-ribose/NADH pyrophosphohydrolase, AtNUDX7, is involved in the response to oxidative stress. PLANT PHYSIOLOGY 2009; 151:741-54. [PMID: 19656905 PMCID: PMC2754630 DOI: 10.1104/pp.109.140442] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/03/2009] [Indexed: 05/18/2023]
Abstract
Here, we assessed modulation of the poly(ADP-ribosyl)ation (PAR) reaction by an Arabidopsis (Arabidopsis thaliana) ADP-ribose (Rib)/NADH pyrophosphohydrolase, AtNUDX7 (for Arabidopsis Nudix hydrolase 7), in AtNUDX7-overexpressed (Pro(35S):AtNUDX7) or AtNUDX7-disrupted (KO-nudx7) plants under normal conditions and oxidative stress caused by paraquat treatment. Levels of NADH and ADP-Rib were decreased in the Pro(35S):AtNUDX7 plants but increased in the KO-nudx7 plants under normal conditions and oxidative stress compared with the control plants, indicating that AtNUDX7 hydrolyzes both ADP-Rib and NADH as physiological substrates. The Pro(35S):AtNUDX7 and KO-nudx7 plants showed increased and decreased tolerance, respectively, to oxidative stress compared with the control plants. Levels of poly(ADP-Rib) in the Pro(35S):AtNUDX7 and KO-nudx7 plants were markedly higher and lower, respectively, than those in the control plants. Depletion of NAD(+) and ATP resulting from the activation of the PAR reaction under oxidative stress was completely suppressed in the Pro(35S):AtNUDX7 plants. Accumulation of NAD(+) and ATP was observed in the KO-nudx7- and 3-aminobenzamide-treated plants, in which the PAR reaction was suppressed. The expression levels of DNA repair factors, AtXRCC1 and AtXRCC2 (for x-ray repair cross-complementing factors 1 and 2), paralleled that of AtNUDX7 under both normal conditions and oxidative stress, although an inverse correlation was observed between the levels of AtXRCC3, AtRAD51 (for Escherichia coli RecA homolog), AtDMC1 (for disrupted meiotic cDNA), and AtMND1 (for meiotic nuclear divisions) and AtNUDX7. These findings suggest that AtNUDX7 controls the balance between NADH and NAD(+) by NADH turnover under normal conditions. Under oxidative stress, AtNUDX7 serves to maintain NAD(+) levels by supplying ATP via nucleotide recycling from free ADP-Rib molecules and thus regulates the defense mechanisms against oxidative DNA damage via modulation of the PAR reaction.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Wilkinson S, Davies WJ. Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism. PLANT, CELL & ENVIRONMENT 2009; 32:949-59. [PMID: 19302171 DOI: 10.1111/j.1365-3040.2009.01970.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Elevated atmospheric ozone concentrations (70 ppb) reduced the sensitivity of stomatal closure to abscisic acid (ABA) in Leontodon hispidus after at least 24 h exposure (1) when detached leaves were fed ABA, and (2) when intact plants were sprayed or injected with ABA. They also reduced the sensitivity of stomatal closure to soil drying around the roots. Such effects could already be occurring under current northern hemisphere peak ambient ozone concentrations. Leaves detached from plants which had been exposed to elevated ozone concentrations generated higher concentrations of ethylene, although leaf tissue ABA concentrations were unaffected. When intact plants were pretreated with the ethylene receptor binding antagonist 1-methylcyclopropene, the stomatal response to both applied ABA and soil drying was fully restored in the presence of elevated ozone. Implications of ethylene's antagonism of the stomatal response to ABA under oxidative stress are discussed. We suggest that this may be one mechanism whereby elevated ozone induces visible injury in sensitive species. We emphasize that drought linked to climate change and tropospheric ozone pollution, are both escalating problems. Ozone will exacerbate the deleterious effects of drought on the many plant species including valuable crops that respond to this pollutant by emitting more ethylene.
Collapse
Affiliation(s)
- Sally Wilkinson
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | |
Collapse
|
136
|
Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. THE PLANT CELL 2009; 21:2357-77. [PMID: 19690149 PMCID: PMC2751945 DOI: 10.1105/tpc.108.062992] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 07/21/2009] [Accepted: 07/31/2009] [Indexed: 05/17/2023]
Abstract
We determined the role of Phospholipase Dalpha1 (PLDalpha1) and its lipid product phosphatidic acid (PA) in abscisic acid (ABA)-induced production of reactive oxygen species (ROS) in Arabidopsis thaliana guard cells. The pldalpha1 mutant failed to produce ROS in guard cells in response to ABA. ABA stimulated NADPH oxidase activity in wild-type guard cells but not in pldalpha1 cells, whereas PA stimulated NADPH oxidase activity in both genotypes. PA bound to recombinant Arabidopsis NADPH oxidase RbohD (respiratory burst oxidase homolog D) and RbohF. The PA binding motifs were identified, and mutation of the Arg residues 149, 150, 156, and 157 in RbohD resulted in the loss of PA binding and the loss of PA activation of RbohD. The rbohD mutant expressing non-PA-binding RbohD was compromised in ABA-mediated ROS production and stomatal closure. Furthermore, ABA-induced production of nitric oxide (NO) was impaired in pldalpha1 guard cells. Disruption of PA binding to ABI1 protein phosphatase 2C did not affect ABA-induced production of ROS or NO, but the PA-ABI1 interaction was required for stomatal closure induced by ABA, H(2)O(2), or NO. Thus, PA is as a central lipid signaling molecule that links different components in the ABA signaling network in guard cells.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Posé D, Castanedo I, Borsani O, Nieto B, Rosado A, Taconnat L, Ferrer A, Dolan L, Valpuesta V, Botella MA. Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:63-76. [PMID: 19309460 DOI: 10.1111/j.1365-313x.2009.03849.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Squalene epoxidase enzymes catalyse the conversion of squalene into 2,3-oxidosqualene, the precursor of cyclic triterpenoids. Here we report that the Arabidopsis drought hypersensitive/squalene epoxidase 1-5 (dry2/sqe1-5) mutant, identified by its extreme hypersensitivity to drought stress, has altered stomatal responses and root defects because of a point mutation in the SQUALENE EPOXIDASE 1 (SQE1) gene. GC-MS analysis indicated that the dry2/sqe1-5 mutant has altered sterol composition in roots but wild-type sterol composition in shoots, indicating an essential role for SQE1 in root sterol biosynthesis. Importantly, the stomatal and root defects of the dry2/sqe1-5 mutant are associated with altered production of reactive oxygen species. As RHD2 NADPH oxidase is de-localized in dry2/sqe1-5 root hairs, we propose that sterols play an essential role in the localization of NADPH oxidases required for regulation of reactive oxygen species, stomatal responses and drought tolerance.
Collapse
Affiliation(s)
- David Posé
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ. Reactive Oxygen Species Are Involved in Brassinosteroid-Induced Stress Tolerance in Cucumber. PLANT PHYSIOLOGY 2009; 150:801-14. [PMID: 19386805 PMCID: PMC2689980 DOI: 10.1104/pp.109.138230] [Citation(s) in RCA: 379] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Abstract
Brassinosteroids (BRs) induce plant tolerance to a wide spectrum of stresses. To study how BR induces stress tolerance, we manipulated the BR levels in cucumber (Cucumis sativus) through a chemical genetics approach and found that BR levels were positively correlated with the tolerance to photo-oxidative and cold stresses and resistance to Cucumber mosaic virus. We also showed that BR treatment enhanced NADPH oxidase activity and elevated H2O2 levels in apoplast. H2O2 levels were elevated as early as 3 h and returned to basal levels 3 d after BR treatment. BR-induced H2O2 accumulation was accompanied by increased tolerance to oxidative stress. Inhibition of NADPH oxidase and chemical scavenging of H2O2 reduced BR-induced oxidative and cold tolerance and defense gene expression. BR treatment induced expression of both regulatory genes, such as RBOH, MAPK1, and MAPK3, and genes involved in defense and antioxidant responses. These results strongly suggest that elevated H2O2 levels resulting from enhanced NADPH oxidase activity are involved in the BR-induced stress tolerance.
Collapse
Affiliation(s)
- Xiao-Jian Xia
- Department of Horticulture, Zhejiang University, Hangzhou 310029, China (X.-J.X., Y.-J.W., Y.-H.Z., Y.T., W.-H.M., K.S., J.-Q.Y.); Key Laboratory of Horticultural Plant Growth, Development, and Biotechnology, Agricultural Ministry of China, Hangzhou 310029, China (Y.-H.Z., J.-Q.Y.); Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan (T.A.); and Depart
| | - Yan-Jie Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310029, China (X.-J.X., Y.-J.W., Y.-H.Z., Y.T., W.-H.M., K.S., J.-Q.Y.); Key Laboratory of Horticultural Plant Growth, Development, and Biotechnology, Agricultural Ministry of China, Hangzhou 310029, China (Y.-H.Z., J.-Q.Y.); Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan (T.A.); and Depart
| | - Yan-Hong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310029, China (X.-J.X., Y.-J.W., Y.-H.Z., Y.T., W.-H.M., K.S., J.-Q.Y.); Key Laboratory of Horticultural Plant Growth, Development, and Biotechnology, Agricultural Ministry of China, Hangzhou 310029, China (Y.-H.Z., J.-Q.Y.); Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan (T.A.); and Depart
| | - Yuan Tao
- Department of Horticulture, Zhejiang University, Hangzhou 310029, China (X.-J.X., Y.-J.W., Y.-H.Z., Y.T., W.-H.M., K.S., J.-Q.Y.); Key Laboratory of Horticultural Plant Growth, Development, and Biotechnology, Agricultural Ministry of China, Hangzhou 310029, China (Y.-H.Z., J.-Q.Y.); Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan (T.A.); and Depart
| | - Wei-Hua Mao
- Department of Horticulture, Zhejiang University, Hangzhou 310029, China (X.-J.X., Y.-J.W., Y.-H.Z., Y.T., W.-H.M., K.S., J.-Q.Y.); Key Laboratory of Horticultural Plant Growth, Development, and Biotechnology, Agricultural Ministry of China, Hangzhou 310029, China (Y.-H.Z., J.-Q.Y.); Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan (T.A.); and Depart
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310029, China (X.-J.X., Y.-J.W., Y.-H.Z., Y.T., W.-H.M., K.S., J.-Q.Y.); Key Laboratory of Horticultural Plant Growth, Development, and Biotechnology, Agricultural Ministry of China, Hangzhou 310029, China (Y.-H.Z., J.-Q.Y.); Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan (T.A.); and Depart
| | - Tadao Asami
- Department of Horticulture, Zhejiang University, Hangzhou 310029, China (X.-J.X., Y.-J.W., Y.-H.Z., Y.T., W.-H.M., K.S., J.-Q.Y.); Key Laboratory of Horticultural Plant Growth, Development, and Biotechnology, Agricultural Ministry of China, Hangzhou 310029, China (Y.-H.Z., J.-Q.Y.); Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan (T.A.); and Depart
| | - Zhixiang Chen
- Department of Horticulture, Zhejiang University, Hangzhou 310029, China (X.-J.X., Y.-J.W., Y.-H.Z., Y.T., W.-H.M., K.S., J.-Q.Y.); Key Laboratory of Horticultural Plant Growth, Development, and Biotechnology, Agricultural Ministry of China, Hangzhou 310029, China (Y.-H.Z., J.-Q.Y.); Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan (T.A.); and Depart
| | - Jing-Quan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310029, China (X.-J.X., Y.-J.W., Y.-H.Z., Y.T., W.-H.M., K.S., J.-Q.Y.); Key Laboratory of Horticultural Plant Growth, Development, and Biotechnology, Agricultural Ministry of China, Hangzhou 310029, China (Y.-H.Z., J.-Q.Y.); Department of Applied Biological Chemistry, University of Tokyo, Bunkyo Ku, Tokyo 1138657, Japan (T.A.); and Depart
| |
Collapse
|
139
|
Mortimer JC, Coxon KM, Laohavisit A, Davies JM. Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation. PLANT SIGNALING & BEHAVIOR 2009; 4:428-30. [PMID: 19816107 PMCID: PMC2676756 DOI: 10.1105/tpc.108.059550] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 12/11/2008] [Accepted: 02/26/2009] [Indexed: 05/18/2023]
Abstract
Annexins are cytosolic proteins capable of reversible, Ca(2+)-dependent membrane binding or insertion. Animal annexins form and regulate Ca(2+)-permeable ion channels and may therefore participate in signaling. Zea mays (maize) annexins (ZmANN33 and ZmANN35) have recently been shown to form a Ca(2+)-permeable conductance in planar lipid bilayers and also exhibit in vitro peroxidase activity. Peroxidases form a superfamily of intra- or extracellular heme-containing enzymes that use H(2)O(2) as the electron acceptor in a number of oxidative reactions. Maize annexin peroxidase activity appears independent of heme and persists after membrane association, the latter suggesting a role in reactive oxygen species signaling.
Collapse
|
140
|
Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. PLANT PHYSIOLOGY 2009; 150:494-505. [PMID: 19329562 PMCID: PMC2675718 DOI: 10.1104/pp.109.138107] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/26/2009] [Indexed: 05/20/2023]
Abstract
The physiological dormancy of sunflower (Helianthus annuus) embryos can be overcome during dry storage (after-ripening) or by applying exogenous ethylene or hydrogen cyanide (HCN) during imbibition. The aim of this work was to provide a comprehensive model, based on oxidative signaling by reactive oxygen species (ROS), for explaining the cellular mode of action of HCN in dormancy alleviation. Beneficial HCN effect on germination of dormant embryos is associated with a marked increase in hydrogen peroxide and superoxide anion generation in the embryonic axes. It is mimicked by the ROS-generating compounds methylviologen and menadione but suppressed by ROS scavengers. This increase results from an inhibition of catalase and superoxide dismutase activities and also involves activation of NADPH oxidase. However, it is not related to lipid reserve degradation or gluconeogenesis and not associated with marked changes in the cellular redox status controlled by the glutathione/glutathione disulfide couple. The expression of genes related to ROS production (NADPHox, POX, AO1, and AO2) and signaling (MAPK6, Ser/ThrPK, CaM, and PTP) is differentially affected by dormancy alleviation either during after-ripening or by HCN treatment, and the effect of cyanide on gene expression is likely to be mediated by ROS. It is also demonstrated that HCN and ROS both activate similarly ERF1, a component of the ethylene signaling pathway. We propose that ROS play a key role in the control of sunflower seed germination and are second messengers of cyanide in seed dormancy release.
Collapse
Affiliation(s)
- Krystyna Oracz
- UPMC Univ Paris 06, Unité de Recherche 5, Germination et Dormance des Semences, Site d'Ivry, F-75005 Paris, France
| | | | | | | | | | | |
Collapse
|
141
|
Mortimer JC, Coxon KM, Laohavisit A, Davies JM. Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation. PLANT SIGNALING & BEHAVIOR 2009; 4:428-430. [PMID: 19816107 PMCID: PMC2676756 DOI: 10.4161/psb.4.5.8297] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 02/26/2009] [Indexed: 05/20/2023]
Abstract
Annexins are cytosolic proteins capable of reversible, Ca(2+)-dependent membrane binding or insertion. Animal annexins form and regulate Ca(2+)-permeable ion channels and may therefore participate in signaling. Zea mays (maize) annexins (ZmANN33 and ZmANN35) have recently been shown to form a Ca(2+)-permeable conductance in planar lipid bilayers and also exhibit in vitro peroxidase activity. Peroxidases form a superfamily of intra- or extracellular heme-containing enzymes that use H(2)O(2) as the electron acceptor in a number of oxidative reactions. Maize annexin peroxidase activity appears independent of heme and persists after membrane association, the latter suggesting a role in reactive oxygen species signaling.
Collapse
|
142
|
Vickers CE, Gershenzon J, Lerdau MT, Loreto F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 2009; 5:283-91. [DOI: 10.1038/nchembio.158] [Citation(s) in RCA: 505] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
143
|
Zhu M, Dai S, McClung S, Yan X, Chen S. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics 2009; 8:752-66. [PMID: 19106087 PMCID: PMC2667361 DOI: 10.1074/mcp.m800343-mcp200] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/02/2008] [Indexed: 12/28/2022] Open
Abstract
Guard cells are highly specialized cells that form tiny pores called stomata on the leaf surface. The opening and closing of stomata control leaf gas exchange and water transpiration as well as allow plants to quickly respond and adjust to new environmental conditions. Mesophyll cells are specialized for photosynthesis. Despite the phenotypic and obvious functional differences between the two types of cells, the full protein components and their functions have not been explored but are addressed here through a global comparative proteomics analysis of purified guard cells and mesophyll cells. With the use of isobaric tags for relative and absolute quantification (iTRAQ) tagging and two-dimensional liquid chromatography mass spectrometry, we identified 1458 non-redundant proteins in both guard cells and mesophyll cells of Brassica napus leaves. Based on stringent statistical criteria, a total of 427 proteins were quantified, and 74 proteins were found to be enriched in guard cells. Proteins involved in energy (respiration), transport, transcription (nucleosome), cell structure, and signaling are preferentially expressed in guard cells. We observed several well characterized guard cell proteins. By contrast, proteins involved in photosynthesis, starch synthesis, disease/defense/stress, and other metabolisms are preferentially represented in mesophyll cells. Of the identified proteins, 110 have corresponding microarray data obtained from Arabidopsis guard cells and mesophyll cells. About 72% of these proteins follow the same trend of expression at the transcript and protein levels. For the rest of proteins, the correlation between proteomics data and the microarray data is poor. This highlights the importance of quantitative profiling at the protein level. Collectively this work represents the most extensive proteomic description of B. napus guard cells and has improved our knowledge of the functional specification of guard cells and mesophyll cells.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Botany, Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
144
|
Garg N, Manchanda G. ROS generation in plants: Boon or bane? PLANT BIOSYSTEMS - AN INTERNATIONAL JOURNAL DEALING WITH ALL ASPECTS OF PLANT BIOLOGY 2009. [PMID: 0 DOI: 10.1080/11263500802633626] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
145
|
Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS. Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. PLANTA 2009; 229:757-65. [PMID: 19084995 DOI: 10.1007/s00425-008-0855-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 10/28/2008] [Indexed: 05/18/2023]
Abstract
The effects of chitosan (beta-1,4 linked glucosamine, a fungal elicitor), on the patterns of stomatal movement and signaling components were studied. cPTIO (NO scavenger), sodium tungstate (nitrate reductase inhibitor) or L: -NAME (NO synthase inhibitor) restricted the chitosan induced stomatal closure, demonstrating that NO is an essential factor. Similarly, catalase (H(2)O(2) scavenger) or DPI [NAD(P)H oxidase inhibitor] and BAPTA-AM or BAPTA (calcium chelators) prevented chitosan induced stomatal closure, suggesting that reactive oxygen species (ROS) and calcium were involved during such response. Monitoring the NO and ROS production in guard cells by fluorescent probes (DAF-2DA and H(2)DCFDA) indicated that on exposure to chitosan, the levels of NO rose after only 10 min, while those of ROS increased already by 5 min. cPTIO or sodium tungstate or L: -NAME prevented the rise in NO levels but did not restrict the ROS production. In contrast, catalase or DPI restricted the chitosan-induced production of both ROS and NO in guard cells. The calcium chelators, BAPTA-AM or BAPTA, did not have a significant effect on the chitosan induced rise in NO or ROS. We propose that the production of NO is an important signaling component and participates downstream of ROS production. The effects of chitosan strike a marked similarity with those of ABA or MJ on guard cells and indicate the convergence of their signal transduction pathways leading to stomatal closure.
Collapse
Affiliation(s)
- Nupur Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | |
Collapse
|
146
|
Potters G, Pasternak TP, Guisez Y, Jansen MAK. Different stresses, similar morphogenic responses: integrating a plethora of pathways. PLANT, CELL & ENVIRONMENT 2009; 32:158-69. [PMID: 19021890 DOI: 10.1111/j.1365-3040.2008.01908.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exposure of plants to mild chronic stress can cause induction of specific, stress-induced morphogenic responses (SIMRs). These responses are characterized by a blockage of cell division in the main meristematic tissues, an inhibition of elongation and a redirected outgrowth of lateral organs. Key elements in the ontogenesis of this phenotype appear to be stress-affected gradients of reactive oxygen species (ROS), antioxidants, auxin and ethylene. These gradients are present at the the organismal level, but are integrated on the cellular level, affecting cell division, cell elongation and/or cell differentiation. Our analysis of the literature indicates that stress-induced modulation of plant growth is mediated by a plethora of molecular interactions, whereby different environmental signals can trigger similar morphogenic responses. At least some of the molecular interactions that underlie morphogenic responses appear to be interchangeable. We speculate that this complexity can be viewed in terms of a thermodynamic model, in which not the specific pathway, but the achieved metabolic state is biologically conserved.
Collapse
Affiliation(s)
- Geert Potters
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
147
|
|
148
|
Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3221-38. [PMID: 19592501 PMCID: PMC2718220 DOI: 10.1093/jxb/erp157] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In maize (Zea mays), abscisic acid (ABA)-induced H(2)O(2) production activates a 46 kDa mitogen-activated protein kinase (p46MAPK), and the activation of p46MAPK also regulates the production of H(2)O(2). However, the mechanism for the regulation of H(2)O(2) production by MAPK in ABA signalling remains to be elucidated. In this study, four reactive oxygen species (ROS)-producing NADPH oxidase (rboh) genes (ZmrbohA-D) were isolated and characterized in maize leaves. ABA treatment induced a biphasic response (phase I and phase II) in the expression of ZmrbohA-D and the activity of NADPH oxidase. Phase II induced by ABA was blocked by pretreatments with two MAPK kinase (MPKKK) inhibitors and two H(2)O(2) scavengers, but phase I was not affected by these inhibitors or scavengers. Treatment with H(2)O(2) alone also only induced phase II, and the induction was arrested by the MAPKK inhibitors. Furthermore, the ABA-activated p46MAPK was partially purified. Using primers corresponding to the sequences of internal tryptic peptides, the p46MAPK gene was cloned. Analysis of the tryptic peptides and the p46MAPK sequence indicate it is the known ZmMPK5. Treatments with ABA and H(2)O(2) led to a significant increase in the activity of ZmMPK5, although ABA treatment only induced a slight increase in the expression of ZmMPK5. The data indicate that H(2)O(2)-activated ZmMPK5 is involved in the activation of phase II in ABA signalling, but not in phase I. The results suggest that there is a positive feedback loop involving NADPH oxidase, H(2)O(2), and ZmMPK5 in ABA signalling.
Collapse
Affiliation(s)
- Fan Lin
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Haidong Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jinxiang Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hong Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wen Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
149
|
Bouchabke-Coussa O, Quashie ML, Seoane-Redondo J, Fortabat MN, Gery C, Yu A, Linderme D, Trouverie J, Granier F, Téoulé E, Durand-Tardif M. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance. BMC PLANT BIOLOGY 2008; 8:125. [PMID: 19061521 PMCID: PMC2630945 DOI: 10.1186/1471-2229-8-125] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/07/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. RESULTS All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. CONCLUSION Overall our findings suggest that the ESKIMO1 gene plays a major role in plant response to water shortage and in whole plant water economy. Further experiments are being undertaken to elucidate the function of the ESKIMO1 protein and the way it modulates plant water uptake.
Collapse
Affiliation(s)
- Oumaya Bouchabke-Coussa
- Cell Biology Laboratory, IJPB, INRA-CIRAD, UR0501, Route de St Cyr, F-78026 Versailles, France
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Marie-Luce Quashie
- Physiology and Biotechnologies Laboratory, Faculty of Sciences, University of Lomé BP 1515 Lomé, Togo
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Jose Seoane-Redondo
- Danmarks Tekniske Universitet, Institut for Vand og Miljøteknologi, Bygningstorvet, B115, DK-2800 KGS. Lyngby, Danmark
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Marie-Noelle Fortabat
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Carine Gery
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Agnes Yu
- URGV, Plant Genomics Research Unit, INRA/CNRS, UMR11, 2 rue Gaston Crémieux CP5708, F-91057 Evry, France
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Daphné Linderme
- CIRAD, Pôle de Protection des Plantes, Ligne Paradis, F-97410 St Pierre, France
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Jacques Trouverie
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Fabienne Granier
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Evelyne Téoulé
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| | - Mylène Durand-Tardif
- Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026 Versailles, France
| |
Collapse
|
150
|
Jubany-Marí T, Munné-Bosch S, López-Carbonell M, Alegre L. Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to summer drought. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:107-20. [PMID: 19043066 PMCID: PMC3071765 DOI: 10.1093/jxb/ern274] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/15/2008] [Accepted: 10/08/2008] [Indexed: 05/20/2023]
Abstract
This study evaluated the possible role of hydrogen peroxide (H(2)O(2)) in the acclimation of a Mediterranean shrub, Cistus albidus L., to summer drought growing under Mediterranean field conditions. For this purpose, changes in H(2)O(2) concentrations and localization throughout a year were analysed. H(2)O(2) changes in response to environmental conditions in parallel with changes in abscisic acid (ABA) and oxidative stress markers, together with lignin accumulation, xylem and sclerenchyma differentiation, and leaf area were also investigated. During the summer drought, leaf H(2)O(2) concentrations increased 11-fold, reaching values of 10 micromol g(-1) dry weight (DW). This increase occurred mainly in mesophyll cell walls, xylem vessels, and sclerenchyma cells in the differentiation stage. An increase in ABA levels preceded that of H(2)O(2), but both peaked at the same time in conditions of prolonged stress. C. albidus plants tolerated high concentrations of H(2)O(2) because of its localization in the apoplast of mesophyll cells, xylem vessels, and in differentiating sclerenchyma cells. The increase in ABA, and consequently of H(2)O(2), in plants subjected to drought stress might induce a 3.5-fold increase in ascorbic acid (AA), which maintained and even decreased its oxidative status, thus protecting plants from oxidative damage. After recovery from drought following late-summer and autumn rainfall, a decrease in ABA, H(2)O(2), and AA to their basal levels (approximately 60 pmol g(-1) DW, approximately 1 micromol g(-1) DW, and approximately 20 micromol g(-1) DW) was observed.
Collapse
Affiliation(s)
- Tana Jubany-Marí
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|