101
|
Xiao J, Yang SS, Wu JX, Wu N, Yu X, Shang W, Gu ZY. Sn-based metal-organic framework for highly selective capture of monophosphopeptides. Talanta 2021; 224:121812. [PMID: 33379037 DOI: 10.1016/j.talanta.2020.121812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/28/2022]
Abstract
Sn-based metal-organic framework (MOF) was utilized to effectively capture monophosphopeptides due to the unique affinity. The Sn-based MOF demonstrated the good sensitivity and selectivity in the model phosphoproteins enrichment and was successfully applied in the biological fluids.
Collapse
Affiliation(s)
- Jing Xiao
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shi-Shu Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian-Xiang Wu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Nan Wu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
102
|
Mao Y, Chen P, Ke M, Chen X, Ji S, Chen W, Tian R. Fully Integrated and Multiplexed Sample Preparation Technology for Sensitive Interactome Profiling. Anal Chem 2021; 93:3026-3034. [DOI: 10.1021/acs.analchem.0c05076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yiheng Mao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peizhong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Mi Ke
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shanping Ji
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wendong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Academy for Advanced Interdisciplinary Studies, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
103
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
104
|
Schueder F, Lara‐Gutiérrez J, Haas D, Beckwith KS, Yin P, Ellenberg J, Jungmann R. Superaufgelöste Erkennung räumlicher Nähe mit Proximity‐PAINT. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Schueder
- Faculty of Physics and Center for Nanoscience LMU Munich Geschwister-Scholl-Platz 1 80539 Munich Deutschland
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Juanita Lara‐Gutiérrez
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
- Department of Systems Biology and Wyss Institute for Biologically Inspired Engineering Harvard Medical School 3 Blackfan Circle Boston MA 02115 USA
| | - Daniel Haas
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Kai Sandvold Beckwith
- Cell Biology and Biophysics Unit European Molecular Biology Laboratory (EMBL) Meyerhofstraße 1 69117 Heidelberg Germany
| | - Peng Yin
- Department of Systems Biology and Wyss Institute for Biologically Inspired Engineering Harvard Medical School 3 Blackfan Circle Boston MA 02115 USA
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit European Molecular Biology Laboratory (EMBL) Meyerhofstraße 1 69117 Heidelberg Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience LMU Munich Geschwister-Scholl-Platz 1 80539 Munich Deutschland
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
105
|
Schueder F, Lara‐Gutiérrez J, Haas D, Beckwith KS, Yin P, Ellenberg J, Jungmann R. Super-Resolution Spatial Proximity Detection with Proximity-PAINT. Angew Chem Int Ed Engl 2021; 60:716-720. [PMID: 32936507 PMCID: PMC7839522 DOI: 10.1002/anie.202009031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Visualizing the functional interactions of biomolecules such as proteins and nucleic acids is key to understanding cellular life on the molecular scale. Spatial proximity is often used as a proxy for the direct interaction of biomolecules. However, current techniques to visualize spatial proximity are either limited by spatial resolution, dynamic range, or lack of single-molecule sensitivity. Here, we introduce Proximity-PAINT (pPAINT), a variation of the super-resolution microscopy technique DNA-PAINT. pPAINT uses a split-docking-site configuration to detect spatial proximity with high sensitivity, low false-positive rates, and tunable detection distances. We benchmark and optimize pPAINT using designer DNA nanostructures and demonstrate its cellular applicability by visualizing the spatial proximity of alpha- and beta-tubulin in microtubules using super-resolution detection.
Collapse
Affiliation(s)
- Florian Schueder
- Faculty of Physics and Center for NanoscienceLMU MunichGeschwister-Scholl-Platz 180539MunichGermany
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Juanita Lara‐Gutiérrez
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Department of Systems Biology and Wyss Institute for Biologically Inspired EngineeringHarvard Medical School3 Blackfan CircleBostonMA02115USA
| | - Daniel Haas
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Kai Sandvold Beckwith
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)Meyerhofstraße 169117HeidelbergGermany
| | - Peng Yin
- Department of Systems Biology and Wyss Institute for Biologically Inspired EngineeringHarvard Medical School3 Blackfan CircleBostonMA02115USA
| | - Jan Ellenberg
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)Meyerhofstraße 169117HeidelbergGermany
| | - Ralf Jungmann
- Faculty of Physics and Center for NanoscienceLMU MunichGeschwister-Scholl-Platz 180539MunichGermany
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
106
|
Struk S, De Cuyper C, Jacobs A, Braem L, Walton A, De Keyser A, Depuydt S, Vu LD, De Smet I, Boyer FD, Eeckhout D, Persiau G, Gevaert K, De Jaeger G, Goormachtig S. Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor. Mol Cell Proteomics 2021; 20:100040. [PMID: 33372050 PMCID: PMC7950214 DOI: 10.1074/mcp.ra119.001766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
The F-box protein MORE AXILLARY GROWTH 2 (MAX2) is a central component in the signaling cascade of strigolactones (SLs) as well as of the smoke-derived karrikins (KARs) and the so far unknown endogenous KAI2 ligand (KL). The two groups of molecules are involved in overlapping and unique developmental processes, and signal-specific outcomes are attributed to perception by the paralogous α/β-hydrolases DWARF14 (D14) for SL and KARRIKIN INSENSITIVE 2/HYPOSENSITIVE TO LIGHT (KAI2/HTL) for KAR/KL. In addition, depending on which receptor is activated, specific members of the SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE (SMXL) family control KAR/KL and SL responses. As proteins that function in the same signal transduction pathway often occur in large protein complexes, we aimed at discovering new players of the MAX2, D14, and KAI2 protein network by tandem affinity purification in Arabidopsis cell cultures. When using MAX2 as a bait, various proteins were copurified, among which were general components of the Skp1-Cullin-F-box complex and members of the CONSTITUTIVE PHOTOMORPHOGENIC 9 signalosome. Here, we report the identification of a novel interactor of MAX2, a type 5 serine/threonine protein phosphatase, designated PHYTOCHROME-ASSOCIATED PROTEIN PHOSPHATASE 5 (PAPP5). Quantitative affinity purification pointed at PAPP5 as being more present in KAI2 rather than in D14 protein complexes. In agreement, mutant analysis suggests that PAPP5 modulates KAR/KL-dependent seed germination under suboptimal conditions and seedling development. In addition, a phosphopeptide enrichment experiment revealed that PAPP5 might dephosphorylate MAX2 in vivo independently of the synthetic SL analog, rac-GR24. Together, by analyzing the protein complexes to which MAX2, D14, and KAI2 belong, we revealed a new MAX2 interactor, PAPP5, that might act through dephosphorylation of MAX2 to control mainly KAR/KL-related phenotypes and, hence, provide another link with the light pathway.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Carolien De Cuyper
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Lukas Braem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Alan Walton
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Stephen Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Versailles, France; Institut de Chimie des Substances Naturelles, CNRS Unité Propre de Recherche 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
107
|
Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics. Nat Commun 2021; 12:71. [PMID: 33397984 PMCID: PMC7782698 DOI: 10.1038/s41467-020-20367-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/27/2020] [Indexed: 02/02/2023] Open
Abstract
Signaling complexes are often organized in a spatiotemporal manner and on a minute timescale. Proximity labeling based on engineered ascorbate peroxidase APEX2 pioneered in situ capture of spatiotemporal membrane protein complexes in living cells, but its application to cytosolic proteins remains limited due to the high labeling background. Here, we develop proximity labeling probes with increased labeling selectivity. These probes, in combination with label-free quantitative proteomics, allow exploring cytosolic protein assemblies such as phosphotyrosine-mediated protein complexes formed in response to minute-scale EGF stimulation. As proof-of-concept, we systematically profile the spatiotemporal interactome of the EGFR signaling component STS1. For STS1 core complexes, our proximity proteomics approach shows comparable performance to affinity purification-mass spectrometry-based temporal interactome profiling, while also capturing additional—especially endosomally-located—protein complexes. In summary, we provide a generic approach for exploring the interactome of mobile cytosolic proteins in living cells at a temporal resolution of minutes. APEX-based proximity labeling allows capturing protein interaction dynamics but its high labeling background limits its utility for cytosolic proteins. Here, the authors develop more selective proximity labeling probes, enabling the APEX-based characterization of time-resolved cytosolic protein interactomes.
Collapse
|
108
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
109
|
Ear J, Abd El-Hafeez AA, Roy S, Ngo T, Rajapakse N, Choi J, Khandelwal S, Ghassemian M, McCaffrey L, Kufareva I, Sahoo D, Ghosh P. A long isoform of GIV/Girdin contains a PDZ-binding module that regulates localization and G-protein binding. J Biol Chem 2021; 296:100493. [PMID: 33675748 PMCID: PMC8042451 DOI: 10.1016/j.jbc.2021.100493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
PDZ domains are one of the most abundant protein domains in eukaryotes and are frequently found on junction-localized scaffold proteins. Various signaling molecules bind to PDZ proteins via PDZ-binding motifs (PBM) and fine-tune cellular signaling. However, how such interaction affects protein function is difficult to predict and must be solved empirically. Here we describe a long isoform of the guanine nucleotide exchange factor GIV/Girdin (CCDC88A) that we named GIV-L, which is conserved throughout evolution, from invertebrates to vertebrates, and contains a PBM. Unlike GIV, which lacks PBM and is cytosolic, GIV-L localizes onto cell junctions and has a PDZ interactome (as shown through annotating Human Cell Map and BioID-proximity labeling studies), which impacts GIV-L's ability to bind and activate trimeric G-protein, Gαi, through its guanine-nucleotide exchange modulator (GEM) module. This GEM module is found exclusively in vertebrates. We propose that the two functional modules in GIV may have evolved sequentially: the ability to bind PDZ proteins via the PBM evolved earlier in invertebrates, whereas G-protein binding and activation may have evolved later only among vertebrates. Phenotypic studies in Caco-2 cells revealed that GIV and GIV-L may have antagonistic effects on cell growth, proliferation (cell cycle), and survival. Immunohistochemical analysis in human colon tissues showed that GIV expression increases with a concomitant decrease in GIV-L during cancer initiation. Taken together, these findings reveal how regulation in GIV/CCDC88A transcript helps to achieve protein modularity, which allows the protein to play opposing roles either as a tumor suppressor (GIV-L) or as an oncogene (GIV).
Collapse
Affiliation(s)
- Jason Ear
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA; Biological Sciences Department, California State Polytechnic University, Pomona, California, USA.
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA; Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Julie Choi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Soni Khandelwal
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA; Department of Medicine, University of California San Diego, La Jolla, California, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, California, USA; Veterans Affairs Medical Center, La Jolla, California, USA.
| |
Collapse
|
110
|
Abstract
Intrinsically disordered proteins, defying the traditional protein structure-function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has Fmax = 0.483 on the full dataset and Fmax = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with Fmax = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude.
Collapse
|
111
|
Kjaergaard M, Glavina J, Chemes LB. Predicting the effect of disordered linkers on effective concentrations and avidity with the "C eff calculator" app. Methods Enzymol 2020; 647:145-171. [PMID: 33482987 DOI: 10.1016/bs.mie.2020.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Linkers are crucial to the functions of multidomain proteins as they couple functional units to encode regulation such as auto-inhibition, enzyme targeting or tuning of interaction strength. A linker changes reactions from bimolecular to unimolecular, and the equilibrium and kinetics is thus determined by the properties of the linker rather than concentrations. We present a theoretical workflow for estimating the functional consequences of tethering by a linker. We discuss how to: (1) Identify flexible linkers from sequence. (2) Model the end-to-end distance distribution for a flexible linker using a worm-like chain. (3) Estimate the effective concentration of a ligand tethered by a flexible linker. (4) Calculate the decrease in binding affinity caused by auto-inhibition. (5) Calculate the expected avidity enhancement of a bivalent interaction from effective concentration. The worm-like chain modeling is available through a web application called the "Ceff calculator" (http://ceffapp.chemeslab.org), which will allow user-friendly prediction of experimentally inaccessible parameters.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus, Denmark; Center for Proteins in Memory (PROMEMO), Aarhus, Denmark.
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, San Martín, Argentina
| | - Lucia Beatriz Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, San Martín, Argentina.
| |
Collapse
|
112
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
113
|
Yang F, Wang C. Profiling of post-translational modifications by chemical and computational proteomics. Chem Commun (Camb) 2020; 56:13506-13519. [PMID: 33084662 DOI: 10.1039/d0cc05447j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational modifications (PTMs) diversify the molecular structures of proteins and play essential roles in regulating their functions. Abnormal PTM status has been linked to a variety of developmental disorders and human diseases, highlighting the importance of studying PTMs in understanding physiological processes and discovering novel nodes and links with therapeutic intervention potential. Classical biochemical methods are suitable for studying PTMs on individual proteins; however, global profiling of PTMs in proteomes remains a challenging task. In this feature article, we start with a brief review of the traditional affinity-based strategies and shift the emphasis to summarizing recent progress in the development and application of chemical and computational proteomic strategies to delineate the global landscapes of functional PTMs. Finally, we discuss current challenges in PTM detection and provide future perspectives on how the field can be further advanced.
Collapse
Affiliation(s)
- Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | |
Collapse
|
114
|
Omar MH, Scott JD. AKAP Signaling Islands: Venues for Precision Pharmacology. Trends Pharmacol Sci 2020; 41:933-946. [PMID: 33082006 DOI: 10.1016/j.tips.2020.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Regulatory enzymes often have different roles in distinct subcellular compartments. Yet, most drugs indiscriminately saturate the cell. Thus, subcellular drug-delivery holds promise as a means to reduce off-target pharmacological effects. A-kinase anchoring proteins (AKAPs) sequester combinations of signaling enzymes within subcellular microdomains. Targeting drugs to these 'signaling islands' offers an opportunity for more precise delivery of therapeutics. Here, we review mechanisms that bestow protein kinase A (PKA) versatility inside the cell, appraise recent advances in exploiting AKAPs as platforms for precision pharmacology, and explore the impact of methodological innovations on AKAP research.
Collapse
Affiliation(s)
- Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
115
|
Bucko PJ, Garcia I, Manocha R, Bhat A, Wordeman L, Scott JD. Gravin-associated kinase signaling networks coordinate γ-tubulin organization at mitotic spindle poles. J Biol Chem 2020; 295:13784-13797. [PMID: 32732289 PMCID: PMC7535905 DOI: 10.1074/jbc.ra120.014791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
Mitogenic signals that regulate cell division often proceed through multienzyme assemblies within defined intracellular compartments. The anchoring protein Gravin restricts the action of mitotic kinases and cell-cycle effectors to defined mitotic structures. In this report we discover that genetic deletion of Gravin disrupts proper accumulation and asymmetric distribution of γ-tubulin during mitosis. We utilize a new precision pharmacology tool, Local Kinase Inhibition, to inhibit the Gravin binding partner polo-like kinase 1 at spindle poles. Using a combination of gene-editing approaches, quantitative imaging, and biochemical assays, we provide evidence that disruption of local polo-like kinase 1 signaling underlies the γ-tubulin distribution defects observed with Gravin loss. Our study uncovers a new role for Gravin in coordinating γ-tubulin recruitment during mitosis and illuminates the mechanism by which signaling enzymes regulate this process at a distinct subcellular location.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Irvin Garcia
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Ridhima Manocha
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Akansha Bhat
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
116
|
Ear J, Ali Abd El-hafeez A, Roy S, Ngo T, Rajapakse N, Choi J, Khandelwal S, Ghassemian M, Mccaffrey L, Kufareva I, Sahoo D, Ghosh P. Evolution of Modularity, Interactome and Functions of GIV/Girdin (CCDC88A) from Invertebrates to Vertebrates.. [DOI: 10.1101/2020.09.28.317172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractPDZ domains are one of the most abundant protein domains in eukaryotes and frequently found on junction-localized scaffold proteins. Various signaling molecules bind to PDZ proteins via PDZ-binding motifs (PBM) and finetune cellular signaling. Here we describe the presence of a PBM on GIV/Girdin (CCDC88A) that is conserved throughout evolution, from invertebrates to vertebrates, and is generated as a long isoform-variant in humans, which we named GIV-L. Unlike GIV, which lacks PBM and is cytosolic, GIV-L localizes to the cell junctions, and has a unique PDZ-interactome, which impacts GIV-L’s ability to bind and activate trimeric G-protein, Gi through its guanine-nucleotide exchange modulator (GEM) module; the GEM module is found exclusively in vertebrates. Thus, the two functional modules in GIV evolved sequentially: the ability to bind PDZ proteins via the PBM evolved earlier in invertebrates, whereas G-protein binding and activation may have evolved later only among vertebrates. Phenotypic studies in Caco-2 cells revealed that GIV and GIV-L may have antagonistic effects on cell growth, proliferation (cell cycle), and survival. Immunohistochemical analyses in human colon tissues showed that GIV expression increases with a concomitant decrease in GIV-L during cancer initiation. Taken together, these findings reveal how GIV/CCDC88A in humans displays evolutionary flexibility in modularity, which allows the resultant isoforms to play opposing roles either as a tumor suppressor (GIV-L) or as an oncogene (GIV).
Collapse
|
117
|
Abstract
Serine hydroxymethyltransferase 2 (SHMT2) converts serine plus tetrahydrofolate (THF) into glycine plus methylene-THF and is upregulated at the protein level in lung and other cancers. In order to better understand the role of SHMT2 in cancer a model system of HeLa cells engineered for inducible over-expression or knock-down of SHMT2 was characterized for cell proliferation and changes in metabolites and proteome as a function of SHMT2. Ectopic over-expression of SHMT2 increased cell proliferation in vitro and tumor growth in vivo. Knockdown of SHMT2 expression in vitro caused a state of glycine auxotrophy and accumulation of phosphoribosylaminoimidazolecarboxamide (AICAR), an intermediate of folate/1-carbon-pathway-dependent de novo purine nucleotide synthesis. Decreased glycine in the HeLa cell-based xenograft tumors with knocked down SHMT2 was potentiated by administration of the anti-hyperglycinemia agent benzoate. However, tumor growth was not affected by SHMT2 knockdown with or without benzoate treatment. Benzoate inhibited cell proliferation in vitro, but this was independent of SHMT2 modulation. The abundance of proteins of mitochondrial respiration complexes 1 and 3 was inversely correlated with SHMT2 levels. Proximity biotinylation in vivo (BioID) identified 48 mostly mitochondrial proteins associated with SHMT2 including the mitochondrial enzymes Acyl-CoA thioesterase (ACOT2) and glutamate dehydrogenase (GLUD1) along with more than 20 proteins from mitochondrial respiration complexes 1 and 3. These data provide insights into possible mechanisms through which elevated SHMT2 in cancers may be linked to changes in metabolism and mitochondrial function.
Collapse
|
118
|
Extraction of Membrane Components from Neisseria gonorrhoeae Using Catanionic Surfactant Vesicles: A New Approach for the Study of Bacterial Surface Molecules. Pharmaceutics 2020; 12:pharmaceutics12090787. [PMID: 32825235 PMCID: PMC7559012 DOI: 10.3390/pharmaceutics12090787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 01/11/2023] Open
Abstract
Identification of antigens is important for vaccine production. We tested extraction protocols using cetyltrimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS) to formulate surfactant vesicles (SVs) containing components from Neisseria gonorrhoeae. Carbohydrate and protein assays demonstrated that protein and carbohydrates were incorporated into the vesicle leaflet. Depending on the extraction protocol utilized, 100–400 µg of protein/mL of SVs solution was obtained. Gel electrophoresis followed by silver staining demonstrated that SV extracts contained lipooligosaccharide and a subset of bacterial proteins and lipoproteins. Western blotting and mass spectral analysis indicated that the majority of the proteins were derived from the outer membrane. Mass spectrometric and bioinformatics analysis of SVs identified 29 membrane proteins, including porin and opacity-associated protein. Proteins embedded in the SVs leaflet could be degraded by the addition of trypsin or proteinase K. Our data showed that the incorporation of CTAT and SDBS into vesicles eliminated their toxicity as measured by a THP-1 killing assay. Incorporation of gonococcal cell surface components into SVs reduced toxicity as compared to the whole cell extracts, as measured by cytokine induction, while retaining the immunogenicity. This process constitutes a general method for extracting bacterial surface components and identification of antigens that might be included in vaccines.
Collapse
|
119
|
Gabrovsek L, Collins KB, Aggarwal S, Saunders LM, Lau HT, Suh D, Sancak Y, Trapnell C, Ong SE, Smith FD, Scott JD. A-kinase-anchoring protein 1 (dAKAP1)-based signaling complexes coordinate local protein synthesis at the mitochondrial surface. J Biol Chem 2020; 295:10749-10765. [PMID: 32482893 PMCID: PMC7397098 DOI: 10.1074/jbc.ra120.013454] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Compartmentalization of macromolecules is a ubiquitous molecular mechanism that drives numerous cellular functions. The appropriate organization of enzymes in space and time enables the precise transmission and integration of intracellular signals. Molecular scaffolds constrain signaling enzymes to influence the regional modulation of these physiological processes. Mitochondrial targeting of protein kinases and protein phosphatases provides a means to locally control the phosphorylation status and action of proteins on the surface of this organelle. Dual-specificity protein kinase A anchoring protein 1 (dAKAP1) is a multivalent binding protein that targets protein kinase A (PKA), RNAs, and other signaling enzymes to the outer mitochondrial membrane. Many AKAPs recruit a diverse set of binding partners that coordinate a broad range of cellular processes. Here, results of MS and biochemical analyses reveal that dAKAP1 anchors additional components, including the ribonucleoprotein granule components La-related protein 4 (LARP4) and polyadenylate-binding protein 1 (PABPC1). Local translation of mRNAs at organelles is a means to spatially control the synthesis of proteins. RNA-Seq data demonstrate that dAKAP1 binds mRNAs encoding proteins required for mitochondrial metabolism, including succinate dehydrogenase. Functional studies suggest that the loss of dAKAP1-RNA interactions reduces mitochondrial electron transport chain activity. Hence, dAKAP1 plays a previously unappreciated role as a molecular interface between second messenger signaling and local protein synthesis machinery.
Collapse
Affiliation(s)
- Laura Gabrovsek
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Kerrie B Collins
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Stacey Aggarwal
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Lauren M Saunders
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Danny Suh
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - F Donelson Smith
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
120
|
Sukumaran A, Choi K, Dasgupta B. Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Front Cell Dev Biol 2020; 8:671. [PMID: 32903688 PMCID: PMC7438746 DOI: 10.3389/fcell.2020.00671] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
The Adenosine Monophosphate-activated Protein Kinase (AMPK) and the Mechanistic Target of Rapamycin (mTOR) are two evolutionarily conserved kinases that together regulate nearly every aspect of cellular and systemic metabolism. These two kinases sense cellular energy and nutrient levels that in turn are determined by environmental nutrient availability. Because AMPK and mTOR are kinases, the large majority of studies remained focused on downstream substrate phosphorylation by these two proteins, and how AMPK and mTOR regulate signaling and metabolism in normal and disease physiology through phosphorylation of their substrates. Compared to the wealth of information known about the signaling and metabolic pathways modulated by these two kinases, much less is known about how the transcription of AMPK and mTOR pathway genes themselves are regulated, and the extent to which AMPK and mTOR regulate gene expression to cause durable changes in phenotype. Acute modification of cellular systems can be achieved through phosphorylation, however, induction of chronic changes requires modulation of gene expression. In this review we will assemble evidence from published studies on transcriptional regulation by AMPK and mTOR and discuss about the putative transcription factors that regulate expression of AMPK and mTOR complex genes.
Collapse
Affiliation(s)
- Abitha Sukumaran
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
121
|
Bucko PJ, Scott JD. Drugs That Regulate Local Cell Signaling: AKAP Targeting as a Therapeutic Option. Annu Rev Pharmacol Toxicol 2020; 61:361-379. [PMID: 32628872 DOI: 10.1146/annurev-pharmtox-022420-112134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells respond to environmental cues by mobilizing signal transduction cascades that engage protein kinases and phosphoprotein phosphatases. Correct organization of these enzymes in space and time enables the efficient and precise transmission of chemical signals. The cyclic AMP-dependent protein kinase A is compartmentalized through its association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of multivalent scaffolds that constrain signaling enzymes and effectors at subcellular locations to drive essential physiological events. More recently, it has been recognized that defective signaling in certain endocrine disorders and cancers proceeds through pathological AKAP complexes. Consequently, pharmacologically targeting these macromolecular complexes unlocks new therapeutic opportunities for a growing number of clinical indications. This review highlights recent findings on AKAP signaling in disease, particularly in certain cancers, and offers an overview of peptides and small molecules that locally regulate AKAP-binding partners.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
122
|
Enzler F, Tschaikner P, Schneider R, Stefan E. KinCon: Cell-based recording of full-length kinase conformations. IUBMB Life 2020; 72:1168-1174. [PMID: 32027084 PMCID: PMC7318358 DOI: 10.1002/iub.2241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/16/2020] [Indexed: 01/26/2023]
Abstract
The spectrum of kinase alterations displays distinct functional characteristics and requires kinase mutation-oriented strategies for therapeutic interference. Besides phosphotransferase activity, protein abundance, and intermolecular interactions, particular patient-mutations promote pathological kinase conformations. Despite major advances in identifying lead molecules targeting clinically relevant oncokinase functions, still many kinases are neglected and not part of drug discovery efforts. One explanation is attributed to challenges in tracking kinase activities. Chemical probes are needed to functionally annotate kinase functions, whose activities may not always depend on catalyzing phospho-transfer. Such non-catalytic kinase functions are related to transitions of full-length kinase conformations. Recent findings underline that cell-based reporter systems can be adapted to record conformation changes of kinases. Here, we discuss the possible applications of an extendable kinase conformation (KinCon) reporter toolbox for live-cell recording of kinase states. KinCon is a genetically encoded bioluminescence-based biosensor platform, which can be subjected for measurements of conformation dynamics of mutated kinases upon small molecule inhibitor exposure. We hypothesize that such biosensors can be utilized to delineate the molecular modus operandi for kinase and pseudokinase regulation. This should pave the path for full-length kinase-targeted drug discovery efforts aiming to identify single and combinatory kinase inhibitor therapies with increased specificity and efficacy.
Collapse
Affiliation(s)
- Florian Enzler
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Philipp Tschaikner
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Rainer Schneider
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| |
Collapse
|
123
|
Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J, Diakogianni A, Valverde JA, Bukirova D, Čalyševa J, Palopoli N, Davey NE, Chemes LB, Gibson TJ. ELM-the eukaryotic linear motif resource in 2020. Nucleic Acids Res 2020; 48:D296-D306. [PMID: 31680160 PMCID: PMC7145657 DOI: 10.1093/nar/gkz1030] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic linear motif (ELM) resource is a repository of manually curated experimentally validated short linear motifs (SLiMs). Since the initial release almost 20 years ago, ELM has become an indispensable resource for the molecular biology community for investigating functional regions in many proteins. In this update, we have added 21 novel motif classes, made major revisions to 12 motif classes and added >400 new instances mostly focused on DNA damage, the cytoskeleton, SH2-binding phosphotyrosine motifs and motif mimicry by pathogenic bacterial effector proteins. The current release of the ELM database contains 289 motif classes and 3523 individual protein motif instances manually curated from 3467 scientific publications. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Marc Gouw
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas (IIBio) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín. Av. 25 de Mayo y Francia, CP1650, Buenos Aires, Argentina
| | - Athina Diakogianni
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Dayana Bukirova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Nicolas Palopoli
- Department of Science and Technology, Universidad Nacional de Quilmes - CONICET, Bernal B1876BXD, Buenos Aires, Argentina
| | - Norman E Davey
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas (IIBio) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín. Av. 25 de Mayo y Francia, CP1650, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
124
|
Christie SM, Ham TR, Gilmore GT, Toth PD, Leipzig ND, Smith AW. Covalently Immobilizing Interferon-γ Drives Filopodia Production through Specific Receptor-Ligand Interactions Independently of Canonical Downstream Signaling. Bioconjug Chem 2020; 31:1362-1369. [PMID: 32329609 PMCID: PMC10243121 DOI: 10.1021/acs.bioconjchem.0c00105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immobilizing a signaling protein to guide cell behavior has been employed in a wide variety of studies. This approach draws inspiration from biology, where specific, affinity-based interactions between membrane receptors and immobilized proteins in the extracellular matrix guide many developmental and homeostatic processes. Synthetic immobilization approaches, however, do not necessarily recapitulate the in vivo signaling system and potentially lead to artificial receptor-ligand interactions. To investigate the effects of one example of engineered receptor-ligand interactions, we focus on the immobilization of interferon-γ (IFN-γ), which has been used to drive differentiation of neural stem cells (NSCs). To isolate the effect of ligand immobilization, we transfected Cos-7 cells with only interferon-γ receptor 1 (IFNγR1), not IFNγR2, so that the cells could bind IFN-γ but were incapable of canonical signal transduction. We then exposed the cells to surfaces containing covalently immobilized IFN-γ and studied membrane morphology, receptor-ligand dynamics, and receptor activation. We found that exposing cells to immobilized but not soluble IFN-γ drove the formation of filopodia in both NSCs and Cos-7, showing that covalently immobilizing IFN-γ is enough to affect cell behavior, independently of canonical downstream signaling. Overall, this work suggests that synthetic growth factor immobilization can influence cell morphology beyond enhancing canonical cell responses through the prolonged signaling duration or spatial patterning enabled by protein immobilization. This suggests that differentiation of NSCs could be driven by canonical and non-canonical pathways when IFN-γ is covalently immobilized. This finding has broad implications for bioengineering approaches to guide cell behavior, as one ligand has the potential to impact multiple pathways even when cells lack the canonical signal transduction machinery.
Collapse
Affiliation(s)
- Shaun M. Christie
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| | - Trevor R. Ham
- Department of Biomedical Engineering, The University of Akron, Auburn Science and Engineering Center #275, West Tower, Akron, OH 44325, United States
| | - Grant T. Gilmore
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| | - Paul D. Toth
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| | - Nic D. Leipzig
- Department of Biomedical Engineering, The University of Akron, Auburn Science and Engineering Center #275, West Tower, Akron, OH 44325, United States
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 Buchtel Common, Akron, Ohio, 44325, United States
| | - Adam W. Smith
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| |
Collapse
|
125
|
Liu K, Xu C, Liu J. Regulation of cell binding and entry by DNA origami mediated spatial distribution of aptamers. J Mater Chem B 2020; 8:6802-6809. [PMID: 32373880 DOI: 10.1039/d0tb00663g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the effects of surface density and distribution of ligands on their recognition and binding is critical for the regulation of cellular behaviors. However, the correlation of spatial distribution of ligands particularly with cell binding and subsequent entry has been rarely explored. Here, we describe the use of DNA origami mediated spatial distribution of aptamers to regulate receptor ligand binding. Aptamers with tunable yet accurate density and orientation are anchored by virtue of the convenience and precision of DNA origami nanoboxes (DONs) to tailor their attachments. Cell assays demonstrate that the binding of DONs depends on both the density and orientation of aptamers, in which two adjacent aptamers exhibit the highest cellular uptake. The spatial distribution dependent uptake is further validated by utilizing two human cancer cell lines expressed with different levels of membrane receptors. Additionally, anticancer doxorubicin loaded DONs show internalization dependent proliferation inhibition of tumor cells. DNA origami mediated spatial distribution of ligands not only provides a unique method to tune cellular behaviors, but also offers new insights for the optimization of targeted drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Ke Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | | | | |
Collapse
|
126
|
Abstract
Small-molecule inhibitors are a key resource in the cell signaling toolbox. However, because of their global distribution in the cell, they cannot provide a refined understanding of signaling at distinct subcellular locations. Bucko and colleagues have designed a novel tool to localize inhibitors to specific protein scaffolds, opening a new avenue to study localized kinase activity.
Collapse
Affiliation(s)
- Agnieszka T Kawashima
- Department of Pharmacology, University of California at San Diego, San Diego, CA 92093, USA; Biomedical Sciences Graduate Program, University of California at San Diego, San Diego, CA 92093
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
127
|
Cluet D, Amri I, Vergier B, Léault J, Audibert A, Grosjean C, Calabrési D, Spichty M. A Quantitative Tri-fluorescent Yeast Two-hybrid System: From Flow Cytometry to In cellula Affinities. Mol Cell Proteomics 2020; 19:701-715. [PMID: 32015065 PMCID: PMC7124468 DOI: 10.1074/mcp.tir119.001692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
We present a technological advancement for the estimation of the affinities of Protein-Protein Interactions (PPIs) in living cells. A novel set of vectors is introduced that enables a quantitative yeast two-hybrid system based on fluorescent fusion proteins. The vectors allow simultaneous quantification of the reaction partners (Bait and Prey) and the reporter at the single-cell level by flow cytometry. We validate the applicability of this system on a small but diverse set of PPIs (eleven protein families from six organisms) with different affinities; the dissociation constants range from 117 pm to 17 μm After only two hours of reaction, expression of the reporter can be detected even for the weakest PPI. Through a simple gating analysis, it is possible to select only cells with identical expression levels of the reaction partners. As a result of this standardization of expression levels, the mean reporter levels directly reflect the affinities of the studied PPIs. With a set of PPIs with known affinities, it is straightforward to construct an affinity ladder that permits rapid classification of PPIs with thus far unknown affinities. Conventional software can be used for this analysis. To permit automated analysis, we provide a graphical user interface for the Python-based FlowCytometryTools package.
Collapse
Affiliation(s)
- David Cluet
- Laboratoire de Biologie et Modé lisation de la Cellule, Ecole Normale Supé rieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Ikram Amri
- Laboratoire de Biologie et Modé lisation de la Cellule, Ecole Normale Supé rieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Blandine Vergier
- Laboratoire de Biologie et Modé lisation de la Cellule, Ecole Normale Supé rieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Jérémie Léault
- Laboratoire de Biologie et Modé lisation de la Cellule, Ecole Normale Supé rieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Astrid Audibert
- Laboratoire de Biologie et Modé lisation de la Cellule, Ecole Normale Supé rieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Clémence Grosjean
- Laboratoire de Biologie et Modé lisation de la Cellule, Ecole Normale Supé rieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Dylan Calabrési
- Laboratoire de Biologie et Modé lisation de la Cellule, Ecole Normale Supé rieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Martin Spichty
- Laboratoire de Biologie et Modé lisation de la Cellule, Ecole Normale Supé rieure de Lyon, CNRS, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France.
| |
Collapse
|
128
|
Mei L, Montoya MR, Quanrud GM, Tran M, Villa-Sharma A, Huang M, Genereux JC. Bait Correlation Improves Interactor Identification by Tandem Mass Tag-Affinity Purification-Mass Spectrometry. J Proteome Res 2020; 19:1565-1573. [PMID: 32138514 DOI: 10.1021/acs.jproteome.9b00825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quantitative multiplexing capacity of isobaric tandem mass tags (TMT) has increased the throughput of affinity purification mass spectrometry (AP-MS) to characterize protein interaction networks of immunoprecipitated bait proteins. However, variable bait levels between replicates can convolute interactor identification. We compared the Student's t-test and Pearson's R correlation as methods to generate t-statistics and assessed the significance of interactors following TMT-AP-MS. Using a simple linear model of protein recovery in immunoprecipitates to simulate reporter ion ratio distributions, we found that correlation-derived t-statistics protect against bait variance while robustly controlling type I errors (false positives). We experimentally determined the performance of these two approaches for determining t-statistics under two experimental conditions: irreversible prey association to the Hsp40 mutant DNAJB8H31Q followed by stringent washing, and reversible association to 14-3-3ζ with gentle washing. Correlation-derived t-statistics performed at least as well as Student's t-statistics for each sample and with substantial improvement in performance for experiments with high bait-level variance. Deliberately varying bait levels over a large range fails to improve selectivity but does increase the robustness between runs. The use of correlation-derived t-statistics should improve identification of interactors using TMT-AP-MS. Data are available via ProteomeXchange with identifier PXD016613.
Collapse
Affiliation(s)
- Liangyong Mei
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Maureen R Montoya
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Guy M Quanrud
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Minh Tran
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Athena Villa-Sharma
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States.,Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
129
|
Aptamer-based optical manipulation of protein subcellular localization in cells. Nat Commun 2020; 11:1347. [PMID: 32165631 PMCID: PMC7067792 DOI: 10.1038/s41467-020-15113-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 02/14/2020] [Indexed: 01/03/2023] Open
Abstract
Protein-dominant cellular processes cannot be fully decoded without precise manipulation of their activity and localization in living cells. Advances in optogenetics have allowed spatiotemporal control over cellular proteins with molecular specificity; however, these methods require recombinant expression of fusion proteins, possibly leading to conflicting results. Instead of modifying proteins of interest, in this work, we focus on design of a tunable recognition unit and develop an aptamer-based near-infrared (NIR) light-responsive nanoplatform for manipulating the subcellular localization of specific proteins in their native states. Our results demonstrate that this nanoplatform allows photocontrol over the cytoplasmic-nuclear shuttling behavior of the target RelA protein (a member of the NF-κβ family), enabling regulation of RelA-related signaling pathways. With a modular design, this aptamer-based nanoplatform can be readily extended for the manipulation of different proteins (e.g., lysozyme and p53), holding great potential to develop a variety of label-free protein photoregulation strategies for studying complex biological events. Optogenetic manipulation of protein localisation in cells involves the creation of fusions that can influence activity. Here the authors develop a near-infrared light-responsive aptamer-based system to regulate the nuclear-cytoplasmic shuttling of NF-κB subunit RelA.
Collapse
|
130
|
Cilleros-Mañé V, Just-Borràs L, Tomàs M, Garcia N, Tomàs JM, Lanuza MA. The M 2 muscarinic receptor, in association to M 1 , regulates the neuromuscular PKA molecular dynamics. FASEB J 2020; 34:4934-4955. [PMID: 32052889 DOI: 10.1096/fj.201902113r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 01/13/2023]
Abstract
Muscarinic acetylcholine receptor 1 subtype (M1 ) and muscarinic acetylcholine receptor 2 subtype (M2 ) presynaptic muscarinic receptor subtypes increase and decrease, respectively, neurotransmitter release at neuromuscular junctions. M2 involves protein kinase A (PKA), although the muscarinic regulation to form and inactivate the PKA holoenzyme is unknown. Here, we show that M2 signaling inhibits PKA by downregulating Cβ subunit, upregulating RIIα/β and liberating RIβ and RIIα to the cytosol. This promotes PKA holoenzyme formation and reduces the phosphorylation of the transmitter release target synaptosome-associated protein 25 and the gene regulator cAMP response element binding. Instead, M1 signaling, which is downregulated by M2 , opposes to M2 by recruiting R subunits to the membrane. The M1 and M2 reciprocal actions are performed through the anchoring protein A kinase anchor protein 150 as a common node. Interestingly, M2 modulation on protein expression needs M1 signaling. Altogether, these results describe the dynamics of PKA subunits upon M2 muscarinic signaling in basal and under presynaptic nerve activity, uncover a specific involvement of the M1 receptor and reveal the M1 /M2 balance to activate PKA to regulate neurotransmission. This provides a molecular mechanism to the PKA holoenzyme formation and inactivation which could be general to other synapses and cellular models.
Collapse
Affiliation(s)
- Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Maria Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Angel Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
131
|
Biophysical prediction of protein-peptide interactions and signaling networks using machine learning. Nat Methods 2020; 17:175-183. [PMID: 31907444 PMCID: PMC7004877 DOI: 10.1038/s41592-019-0687-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
In mammalian cells, much of signal transduction is mediated by weak protein-protein interactions between globular peptide-binding domains (PBDs) and unstructured peptidic motifs in partner proteins. The number and diversity of these PBDs (over 1,800 are known), low binding affinities, and sensitivity of binding properties to minor sequence variation represent a substantial challenge to experimental and computational analysis of PBD specificity and the networks PBDs create. Here we introduce a bespoke machine learning approach, hierarchical statistical mechanical modelling (HSM), capable of accurately predicting the affinities of PBD-peptide interactions across multiple protein families. By synthesizing biophysical priors within a modern machine learning framework, HSM outperforms existing computational methods and high-throughput experimental assays. HSM models are interpretable in familiar biophysical terms at three spatial scales: the energetics of protein-peptide binding, the multi-dentate organization of protein-protein interactions, and the global architecture of signaling networks.
Collapse
|
132
|
Tschaikner P, Enzler F, Torres-Quesada O, Aanstad P, Stefan E. Hedgehog and Gpr161: Regulating cAMP Signaling in the Primary Cilium. Cells 2020; 9:E118. [PMID: 31947770 PMCID: PMC7017137 DOI: 10.3390/cells9010118] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Compartmentalization of diverse types of signaling molecules contributes to the precise coordination of signal propagation. The primary cilium fulfills this function by acting as a spatiotemporally confined sensory signaling platform. For the integrity of ciliary signaling, it is mandatory that the ciliary signaling pathways are constantly attuned by alterations in both oscillating small molecules and the presence or absence of their sensor/effector proteins. In this context, ciliary G protein-coupled receptor (GPCR) pathways participate in coordinating the mobilization of the diffusible second messenger molecule 3',5'-cyclic adenosine monophosphate (cAMP). cAMP fluxes in the cilium are primarily sensed by protein kinase A (PKA) complexes, which are essential for the basal repression of Hedgehog (Hh) signaling. Here, we describe the dynamic properties of underlying signaling circuits, as well as strategies for second messenger compartmentalization. As an example, we summarize how receptor-guided cAMP-effector pathways control the off state of Hh signaling. We discuss the evidence that a macromolecular, ciliary-localized signaling complex, composed of the orphan GPCR Gpr161 and type I PKA holoenzymes, is involved in antagonizing Hh functions. Finally, we outline how ciliary cAMP-linked receptor pathways and cAMP-sensing signalosomes may become targets for more efficient combinatory therapy approaches to counteract dysregulation of Hh signaling.
Collapse
Affiliation(s)
- Philipp Tschaikner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
- Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Florian Enzler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
| | - Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
| | - Pia Aanstad
- Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
| |
Collapse
|
133
|
McCutcheon DC, Lee G, Carlos A, Montgomery JE, Moellering RE. Photoproximity Profiling of Protein-Protein Interactions in Cells. J Am Chem Soc 2019; 142:146-153. [PMID: 31820968 DOI: 10.1021/jacs.9b06528] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a novel photoproximity protein interaction (PhotoPPI) profiling method to map protein-protein interactions in vitro and in live cells. This approach utilizes a bioorthogonal, multifunctional chemical probe that can be targeted to a genetically encoded protein of interest (POI) through a modular SNAP-Tag/benzylguanine covalent interaction. A first generation photoproximity probe, PP1, responds to 365 nm light to simultaneously cleave a central nitroveratryl linker and a peripheral diazirine group, resulting in diffusion of a highly reactive carbene nucleophile away from the POI. We demonstrate facile probe loading, and subsequent interaction- and light-dependent proximal labeling of a model protein-protein interaction (PPI) in vitro. Integration of the PhotoPPI workflow with quantitative LC-MS/MS enabled unbiased interaction mapping for the redox regulated sensor protein, KEAP1, for the first time in live cells. We validated known and novel interactions between KEAP1 and the proteins PGAM5 and HK2, among others, under basal cellular conditions. By contrast, comparison of PhotoPPI profiles in cells experiencing metabolic or redox stress confirmed that KEAP1 sheds many basal interactions and becomes associated with known lysosomal trafficking and proteolytic proteins like SQSTM1, CTSD, and LGMN. Together, these data establish PhotoPPI as a method capable of tracking the dynamic subcellular and protein interaction "social network" of a redox-sensitive protein in cells with high temporal resolution.
Collapse
|
134
|
Bucko PJ, Lombard CK, Rathbun L, Garcia I, Bhat A, Wordeman L, Smith FD, Maly DJ, Hehnly H, Scott JD. Subcellular drug targeting illuminates local kinase action. eLife 2019; 8:e52220. [PMID: 31872801 PMCID: PMC6930117 DOI: 10.7554/elife.52220] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/30/2019] [Indexed: 01/02/2023] Open
Abstract
Deciphering how signaling enzymes operate within discrete microenvironments is fundamental to understanding biological processes. A-kinase anchoring proteins (AKAPs) restrict the range of action of protein kinases within intracellular compartments. We exploited the AKAP targeting concept to create genetically encoded platforms that restrain kinase inhibitor drugs at distinct subcellular locations. Local Kinase Inhibition (LoKI) allows us to ascribe organelle-specific functions to broad specificity kinases. Using chemical genetics, super resolution microscopy, and live-cell imaging we discover that centrosomal delivery of Polo-like kinase 1 (Plk1) and Aurora A (AurA) inhibitors attenuates kinase activity, produces spindle defects, and prolongs mitosis. Targeted inhibition of Plk1 in zebrafish embryos illustrates how centrosomal Plk1 underlies mitotic spindle assembly. Inhibition of kinetochore-associated pools of AurA blocks phosphorylation of microtubule-kinetochore components. This versatile precision pharmacology tool enhances investigation of local kinase biology.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| | - Chloe K Lombard
- Department of ChemistryUniversity of WashingtonSeattleUnited States
| | - Lindsay Rathbun
- Department of BiologySyracuse UniversitySyracuseUnited States
| | - Irvin Garcia
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| | - Akansha Bhat
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| | - Linda Wordeman
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleUnited States
| | - F Donelson Smith
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| | - Dustin J Maly
- Department of ChemistryUniversity of WashingtonSeattleUnited States
| | - Heidi Hehnly
- Department of BiologySyracuse UniversitySyracuseUnited States
| | - John D Scott
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| |
Collapse
|
135
|
Höfig H, Yukhnovets O, Remes C, Kempf N, Katranidis A, Kempe D, Fitter J. Brightness-gated two-color coincidence detection unravels two distinct mechanisms in bacterial protein translation initiation. Commun Biol 2019; 2:459. [PMID: 31840104 PMCID: PMC6897966 DOI: 10.1038/s42003-019-0709-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/22/2019] [Indexed: 01/19/2023] Open
Abstract
Life on the molecular scale is based on a complex interplay of biomolecules under which the ability of binding is crucial. Fluorescence based two-color coincidence detection (TCCD) is commonly used to characterize molecular binding, but suffers from an underestimation of coincident events. Here, we introduce a brightness-gated TCCD which overcomes this limitation and benchmark our approach with two custom-made calibration samples. Applied to a cell-free protein synthesis assay, brightness-gated TCCD unraveled a previously disregarded mode of translation initiation in bacteria.
Collapse
Affiliation(s)
- Henning Höfig
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
| | - Olessya Yukhnovets
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
| | - Cristina Remes
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
- Present Address: Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Noemie Kempf
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
- Present Address: Laboratoire de Biologie Moléculaire Eucaryote LBME—Center for Integrative Biology CBI, University of Toulouse, Toulouse, France
| | | | - Daryan Kempe
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Present Address: EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Jörg Fitter
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
136
|
Dwivedi-Agnihotri H, Srivastava A, Shukla AK. Reversible biotinylation of purified proteins for measuring protein-protein interactions. Methods Enzymol 2019; 633:281-294. [PMID: 32046851 DOI: 10.1016/bs.mie.2019.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Measuring protein-protein interactions using purified proteins in vitro is one of the most frequently used approach to understand the biochemical and mechanistic details of cellular signaling pathways. Typically, affinity tags are genetically fused to proteins of interest, and they are used to capture and detect them. However, in some cases, fusion of bulky affinity tags might present a significant limitation in these experiments, especially if the regions in close proximity of tags are involved in protein-protein interactions. Here, we present a step-by-step protocol for an alternative approach that involves reversible biotinylation of purified proteins using a simple chemical-conjugation of cleavable biotin moiety. Biotinylated proteins can be directly used as bait for selective immobilization on solid support for measuring protein-protein interactions. Furthermore, biotinylation of protein of interest also allows specific detection in standard biochemical assays. This simple, straightforward and modular protocol can be directly adapted and applied to facilitate the detection of novel protein-protein interactions as well as measuring apparent affinities of such interactions.
Collapse
Affiliation(s)
| | - Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
137
|
Linker Dependence of Avidity in Multivalent Interactions Between Disordered Proteins. J Mol Biol 2019; 431:4784-4795. [DOI: 10.1016/j.jmb.2019.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/13/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022]
|
138
|
Verma NK, Chalasani MLS, Scott JD, Kelleher D. CG-NAP/Kinase Interactions Fine-Tune T Cell Functions. Front Immunol 2019; 10:2642. [PMID: 31781123 PMCID: PMC6861388 DOI: 10.3389/fimmu.2019.02642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
CG-NAP, also known as AKAP450, is an anchoring/adaptor protein that streamlines signal transduction in various cell types by localizing signaling proteins and enzymes with their substrates. Great efforts are being devoted to elucidating functional roles of this protein and associated macromolecular signaling complex. Increasing understanding of pathways involved in regulating T lymphocytes suggests that CG-NAP can facilitate dynamic interactions between kinases and their substrates and thus fine-tune T cell motility and effector functions. As a result, new binding partners of CG-NAP are continually being uncovered. Here, we review recent advances in CG-NAP research, focusing on its interactions with kinases in T cells with an emphasis on the possible role of this anchoring protein as a target for therapeutic intervention in immune-mediated diseases.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, United States
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Departments of Medicine and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
139
|
Köster T, Henning P, Uhrmacher AM. Potential based, spatial simulation of dynamically nested particles. BMC Bioinformatics 2019; 20:607. [PMID: 31775608 PMCID: PMC6880518 DOI: 10.1186/s12859-019-3092-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND To study cell biological phenomena which depend on diffusion, active transport processes, or the locations of species, modeling and simulation studies need to take space into account. To describe the system as a collection of discrete objects moving and interacting in continuous space, various particle-based reaction diffusion simulators for cell-biological system have been developed. So far the focus has been on particles as solid spheres or points. However, spatial dynamics might happen at different organizational levels, such as proteins, vesicles or cells with interrelated dynamics which requires spatial approaches that take this multi-levelness of cell biological systems into account. RESULTS Based on the perception of particles forming hollow spheres, ML-Force contributes to the family of particle-based simulation approaches: in addition to excluded volumes and forces, it also supports compartmental dynamics and relating dynamics between different organizational levels explicitly. Thereby, compartmental dynamics, e.g., particles entering and leaving other particles, and bimolecular reactions are modeled using pair-wise potentials (forces) and the Langevin equation. In addition, forces that act independently of other particles can be applied to direct the movement of particles. Attributes and the possibility to define arbitrary functions on particles, their attributes and content, to determine the results and kinetics of reactions add to the expressiveness of ML-Force. Its implementation comprises a rudimentary rule-based embedded domain-specific modeling language for specifying models and a simulator for executing models continuously. Applications inspired by cell biological models from literature, such as vesicle transport or yeast growth, show the value of the realized features. They facilitate capturing more complex spatial dynamics, such as the fission of compartments or the directed movement of particles, and enable the integration of non-spatial intra-compartmental dynamics as stochastic events. CONCLUSIONS By handling all dynamics based on potentials (forces) and the Langevin equation, compartmental dynamics, such as dynamic nesting, fusion and fission of compartmental structures are handled continuously and are seamlessly integrated with traditional particle-based reaction-diffusion dynamics within the cell. Thereby, attributes and arbitrary functions allow to flexibly describe diverse spatial phenomena, and relate dynamics across organizational levels. Also they prove crucial in modeling intra-cellular or intra-compartmental dynamics in a non-spatial manner, and, thus, to abstract from spatial dynamics, on demand which increases the range of multi-compartmental processes that can be captured.
Collapse
Affiliation(s)
- Till Köster
- Institute of Computer Science, University of Rostock, Albert-Einstein-Straße 22, Rostock, 18059 Germany
| | - Philipp Henning
- Institute of Computer Science, University of Rostock, Albert-Einstein-Straße 22, Rostock, 18059 Germany
| | - Adelinde M. Uhrmacher
- Institute of Computer Science, University of Rostock, Albert-Einstein-Straße 22, Rostock, 18059 Germany
| |
Collapse
|
140
|
Morello G, Siritanaratkul B, Megarity CF, Armstrong FA. Efficient Electrocatalytic CO2 Fixation by Nanoconfined Enzymes via a C3-to-C4 Reaction That Is Favored over H2 Production. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03532] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giorgio Morello
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford 0X13QR, U.K
| | - Bhavin Siritanaratkul
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford 0X13QR, U.K
| | - Clare F. Megarity
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford 0X13QR, U.K
| | - Fraser A. Armstrong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford 0X13QR, U.K
| |
Collapse
|
141
|
Shu X. Imaging dynamic cell signaling in vivo with new classes of fluorescent reporters. Curr Opin Chem Biol 2019; 54:1-9. [PMID: 31678813 DOI: 10.1016/j.cbpa.2019.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022]
Abstract
Dynamical features of cell signaling are the essence of living organisms. To understand animal development, it is fundamental to investigate signaling dynamics in vivo. Robust reporters are required to visualize spatial and temporal dynamics of enzyme activities and protein-protein interactions involved in signaling pathways. In this review, we summarize recent development in the design of new classes of fluorescent reporters for imaging dynamic activities of proteases, kinases, and protein-protein interactions. These reporters operate on new physical and/or chemical principles; achieve large dynamic range, high brightness, and fast kinetics; and reveal spatiotemporal dynamics of signaling that is correlated with developmental events such as embryonic morphogenesis in live animals including Drosophila and zebrafish. Therefore, many of these reporters are great tools for biological discovery and mechanistic understanding of animal development and disease progression.
Collapse
Affiliation(s)
- Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA, United States; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA, United States.
| |
Collapse
|
142
|
Vitrac H, Mallampalli VKPS, Dowhan W. Importance of phosphorylation/dephosphorylation cycles on lipid-dependent modulation of membrane protein topology by posttranslational phosphorylation. J Biol Chem 2019; 294:18853-18862. [PMID: 31645436 DOI: 10.1074/jbc.ra119.010785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Posttranslational modifications of proteins, such as phosphorylation and dephosphorylation, play critical roles in cellular functions through diverse cell signaling pathways. Protein kinases and phosphatases have been described early on as key regulatory elements of the phosphorylated state of proteins. Tight spatial and temporal regulation of protein kinase and phosphatase activities has to be achieved in the cell to ensure accurate signal transduction. We demonstrated previously that phosphorylation of a membrane protein can lead to its topological rearrangement. Additionally, we found that both the rate and extent of topological rearrangement upon phosphorylation are lipid charge- and lipid environment-dependent. Here, using a model membrane protein (the bacterial lactose permease LacY reconstituted in proteoliposomes) and a combination of real-time measurements and steady-state assessments of protein topology, we established a set of experimental conditions to dissect the effects of phosphorylation and dephosphorylation of a membrane protein on its topological orientation. We also demonstrate that the phosphorylation-induced topological switch of a membrane protein can be reversed upon protein dephosphorylation, revealing a new regulatory role for phosphorylation/dephosphorylation cycles. Furthermore, we determined that the rate of topological rearrangement reversal is correlated with phosphatase activity and is influenced by the membrane's lipid composition, presenting new insights into the spatiotemporal control of the protein phosphorylation state. Together, our results highlight the importance of the compartmentalization of phosphorylation/dephosphorylation cycles in controlling membrane protein topology and, therefore, function, which are influenced by the local lipid environment of the membrane protein.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, McGovern Medical School, University of Texas Houston, Texas 77030.
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, McGovern Medical School, University of Texas Houston, Texas 77030
| | - William Dowhan
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, McGovern Medical School, University of Texas Houston, Texas 77030.
| |
Collapse
|
143
|
Davey NE, Babu MM, Blackledge M, Bridge A, Capella-Gutierrez S, Dosztanyi Z, Drysdale R, Edwards RJ, Elofsson A, Felli IC, Gibson TJ, Gutmanas A, Hancock JM, Harrow J, Higgins D, Jeffries CM, Le Mercier P, Mészáros B, Necci M, Notredame C, Orchard S, Ouzounis CA, Pancsa R, Papaleo E, Pierattelli R, Piovesan D, Promponas VJ, Ruch P, Rustici G, Romero P, Sarntivijai S, Saunders G, Schuler B, Sharan M, Shields DC, Sussman JL, Tedds JA, Tompa P, Turewicz M, Vondrasek J, Vranken WF, Wallace BA, Wichapong K, Tosatto SCE. An intrinsically disordered proteins community for ELIXIR. F1000Res 2019; 8. [PMID: 31824649 PMCID: PMC6880265 DOI: 10.12688/f1000research.20136.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/20/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled “An intrinsically disordered protein user community proposal for ELIXIR” held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders.
Collapse
Affiliation(s)
- Norman E Davey
- Division of Cancer Biology, Institute of Cancer Research, UK, London, SW3 6JB, UK
| | - M Madan Babu
- MRC Laboratory of Molecular Biology,, Cambridge, CB2 0QH, UK
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, 38000, France
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | - Zsuzsanna Dosztanyi
- Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | | | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Isabella C Felli
- Department of Chemistry and CERM "Ugo Schiff", University of Florence, Florence, Italy
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Cambridge, CB10 1SD, UK
| | - John M Hancock
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Jen Harrow
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Desmond Higgins
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, D4, Ireland
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Philippe Le Mercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Balint Mészáros
- Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Marco Necci
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Cambridge, CB10 1SD, UK
| | - Christos A Ouzounis
- BCPL-CPERI, Centre for Research & Technology Hellas (CERTH), Thessalonica, 57001, Greece
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Roberta Pierattelli
- Department of Chemistry and CERM "Ugo Schiff", University of Florence, Florence, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | - Patrick Ruch
- HES-SO/HEG and SIB Text Mining, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Gabriella Rustici
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Pedro Romero
- University of Wisconsin-Madison, Madison, WI, 53706-1544, USA
| | | | - Gary Saunders
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Malvika Sharan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Denis C Shields
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, D4, Ireland
| | - Joel L Sussman
- Department of Structural Biology and the Israel Structural Proteomics, Center (ISPC), Weizmann Institute of Science, Reḥovot, 7610001, Israel
| | | | - Peter Tompa
- VIB Center for Structural Biology (CSB), VIB Flemish Institute for Biotechnology, Brussels, 1050, Belgium
| | - Michael Turewicz
- Faculty of Medicine, Medizinisches Proteom-Center, Ruhr University Bochum, GesundheitsCampus 4, Bochum, 44801, Germany
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Wim F Vranken
- VUB/ULB Interuniversity Institute of Bioinformatics in Brussels and Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
| | - Bonnie Ann Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1H 0HA, UK
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
144
|
Molecular recognition of ubiquitin and Lys63-linked diubiquitin by STAM2 UIM-SH3 dual domain: the effect of its linker length and flexibility. Sci Rep 2019; 9:14645. [PMID: 31601934 PMCID: PMC6787221 DOI: 10.1038/s41598-019-51182-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022] Open
Abstract
Multidomain proteins represent a broad spectrum of the protein landscape and are involved in various interactions. They could be considered as modular building blocks assembled in distinct fashion and connected by linkers of varying lengths and sequences. Due to their intrinsic flexibility, these linkers provide proteins a subtle way to modulate interactions and explore a wide range of conformational space. In the present study, we are seeking to understand the effect of the flexibility and dynamics of the linker involved in the STAM2 UIM-SH3 dual domain protein with respect to molecular recognition. We have engineered several constructs of UIM-SH3 with different length linkers or domain deletion. By means of SAXS and NMR experiments, we have shown that the modification of the linker modifies the flexibility and the dynamics of UIM-SH3. Indeed, the global tumbling of both the UIM and SH3 domain is different but not independent from each other while the length of the linker has an impact on the ps-ns time scale dynamics of the respective domains. Finally, the modification of the flexibility and dynamics of the linker has a drastic effect on the interaction of UIM-SH3 with Lys63-linked diubiquitin with a roughly eight-time weaker dissociation constant.
Collapse
|
145
|
Marchant A, Cisneros AF, Dubé AK, Gagnon-Arsenault I, Ascencio D, Jain H, Aubé S, Eberlein C, Evans-Yamamoto D, Yachie N, Landry CR. The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. eLife 2019; 8:46754. [PMID: 31454312 PMCID: PMC6711710 DOI: 10.7554/elife.46754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/11/2019] [Indexed: 01/07/2023] Open
Abstract
Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Axelle Marchant
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Angel F Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | - Alexandre K Dubé
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Isabelle Gagnon-Arsenault
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Diana Ascencio
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Honey Jain
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India
| | - Simon Aubé
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | - Chris Eberlein
- PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Daniel Evans-Yamamoto
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Nozomu Yachie
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| |
Collapse
|
146
|
Storti B, Civita S, Faraci P, Maroni G, Krishnan I, Levantini E, Bizzarri R. Fluorescence imaging of biochemical relationship between ubiquitinated histone 2A and Polycomb complex protein BMI1. Biophys Chem 2019; 253:106225. [PMID: 31323431 DOI: 10.1016/j.bpc.2019.106225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023]
Abstract
Several in vitro experiments have highlighted that the Polycomb group protein BMI1 plays a pivotal role in determining the biological functions of the Polycomb Repressor Complex 1 (PRC1), including its E3-ligase activity towards the Lys119 of histone H2A to yield ubiquitinated uH2A. The role of BMI1 in the epigenetic activity of PRC1 is particularly relevant in several cancers, particularly Non-Small Cell Lung Cancer (NSCLC). In this study, using indirect immunofluorescence protocols implemented on a confocal microscopy apparatus, we investigated the relationship between BMI1 and uH2A at different resolutions, in cultured (A549) and clinical NSCLC tissues, at the single cell level. In both cases, we observed a linear dependence of uH2A concentration upon BMI1 expression at the single nucleus level, indicating that the association of BMI1 to PRC1, which is needed for E3-ligase activity, occurs linearly in the physiological BMI1 concentration range. Additionally, in the NSCLC cell line model, a minor pool of uH2A may exist in absence of concurrent BMI1 expression, indicating non-exclusive, although predominant, role of BMI1 in the amplification of the E3-ligase activity of PRC1. A pharmacological downregulator of BMI1, PTC-209, was also tested in this context. Finally, the absence of significant colocalization (as measured by the Pearson's coefficient) between BMI1 and uH2A submicron clusters hints to a dynamic model where PRC1 resides transiently at ubiquitination sites. Beside unveiling subtle functional relationships between BMI1 and uH2A, these results also validate the use of uH2A as downstream "reporter" for BMI1 activity at the nuclear level in NSCLC contexts.
Collapse
Affiliation(s)
- Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Simone Civita
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Paolo Faraci
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giorgia Maroni
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, MA, Boston 02215, USA; Harvard Medical School, 25 Shattuck St, MA, Boston 02115, USA; Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, via Moruzzi 1, 56124 Pisa, Italy
| | - Indira Krishnan
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, MA, Boston 02215, USA; Harvard Medical School, 25 Shattuck St, MA, Boston 02115, USA
| | - Elena Levantini
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, MA, Boston 02215, USA; Harvard Medical School, 25 Shattuck St, MA, Boston 02115, USA; Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, via Moruzzi 1, 56124 Pisa, Italy; Harvard Stem Cell Institute, 7 Divinity Ave, MA, Cambridge 02138, USA
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy; Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, via Roma 67, Pisa 56126, Italy
| |
Collapse
|
147
|
|
148
|
Dodge-Kafka K, Gildart M, Tokarski K, Kapiloff MS. mAKAPβ signalosomes - A nodal regulator of gene transcription associated with pathological cardiac remodeling. Cell Signal 2019; 63:109357. [PMID: 31299211 PMCID: PMC7197268 DOI: 10.1016/j.cellsig.2019.109357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022]
Abstract
Striated myocytes compose about half of the cells of the heart, while contributing the majority of the heart's mass and volume. In response to increased demands for pumping power, including in diseases of pressure and volume overload, the contractile myocytes undergo non-mitotic growth, resulting in increased heart mass, i.e. cardiac hypertrophy. Myocyte hypertrophy is induced by a change in the gene expression program driven by the altered activity of transcription factors and co-repressor and co-activator chromatin-associated proteins. These gene regulatory proteins are subject to diverse post-translational modifications and serve as nuclear effectors for intracellular signal transduction pathways, including those controlled by cyclic nucleotides and calcium ion. Scaffold proteins contribute to the underlying architecture of intracellular signaling networks by targeting signaling enzymes to discrete intracellular compartments, providing specificity to the regulation of downstream effectors, including those regulating gene expression. Muscle A-kinase anchoring protein β (mAKAPβ) is a well-characterized scaffold protein that contributes to the regulation of pathological cardiac hypertrophy. In this review, we discuss the mechanisms how this prototypical scaffold protein organizes signalosomes responsible for the regulation of class IIa histone deacetylases and cardiac transcription factors such as NFAT, MEF2, and HIF-1α, as well as how this signalosome represents a novel therapeutic target for the prevention or treatment of heart failure.
Collapse
Affiliation(s)
- Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, University of Connecticut Health Center, Farmington, CT, USA.
| | - Moriah Gildart
- Calhoun Center for Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, University of Connecticut Health Center, Farmington, CT, USA
| | - Kristin Tokarski
- Calhoun Center for Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
149
|
Nair A, Chauhan P, Saha B, Kubatzky KF. Conceptual Evolution of Cell Signaling. Int J Mol Sci 2019; 20:E3292. [PMID: 31277491 PMCID: PMC6651758 DOI: 10.3390/ijms20133292] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.
Collapse
Affiliation(s)
- Arathi Nair
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Prashant Chauhan
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
150
|
Interactions between carboxypeptidase M and kinin B1 receptor in endothelial cells. Inflamm Res 2019; 68:845-855. [DOI: 10.1007/s00011-019-01264-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022] Open
|