101
|
DePalma TJ, Hisey CL, Hughes K, Fraas D, Tawfik M, Scharenberg J, Wiggins S, Nguyen KT, Hansford DJ, Reátegui E, Skardal A. Tuning a bioengineered hydrogel for studying astrocyte reactivity in glioblastoma. Acta Biomater 2024; 189:155-167. [PMID: 39370091 PMCID: PMC11801334 DOI: 10.1016/j.actbio.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Astrocytes play many essential roles in the central nervous system (CNS) and are altered significantly in disease. These reactive astrocytes contribute to neuroinflammation and disease progression in many pathologies, including glioblastoma (GB), an aggressive form of brain cancer. Current in vitro platforms do not allow for accurate modeling of reactive astrocytes. In this study, we sought to engineer a simple bioengineered hydrogel platform that would support the growth of primary human astrocytes and allow for accurate analysis of various reactive states. After validating this platform using morphological analysis and qPCR, we then used the platform to begin investigating how astrocytes respond to GB derived extracellular vesicles (EVs) and soluble factors (SF). These studies reveal that EVs and SFs induce distinct astrocytic states. In future studies, this platform can be used to study how astrocytes transform the tumor microenvironment in GB and other diseases of the CNS. STATEMENT OF SIGNIFICANCE: Recent work has shown that astrocytes help maintain brain homeostasis and may contribute to disease progression in diseases such as glioblastoma (GB), a deadly primary brain cancer. In vitro models allow researchers to study basic mechanisms of astrocyte biology in healthy and diseased conditions, however current in vitro systems do not accurately mimic the native brain microenvironment. In this study, we show that our hydrogel system supports primary human astrocyte culture with an accurate phenotype and allows us to study how astrocytes change in response to a variety of inflammatory signals in GB. This platform could be used further investigate astrocyte behavior and possible therapeutics that target reactive astrocytes in GB and other brain diseases.
Collapse
Affiliation(s)
- Thomas J DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Colin L Hisey
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kennedy Hughes
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David Fraas
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Marie Tawfik
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Scharenberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Wiggins
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kim Truc Nguyen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek J Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Reátegui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
102
|
Schroeder ME, McCormack DM, Metzner L, Kang J, Li KX, Yu E, Levandowski KM, Zaniewski H, Zhang Q, Boyden ES, Krienen FM, Feng G. Astrocyte regional specialization is shaped by postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617802. [PMID: 39416060 PMCID: PMC11482951 DOI: 10.1101/2024.10.11.617802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Astrocytes are an abundant class of glial cells with critical roles in neural circuit assembly and function. Though many studies have uncovered significant molecular distinctions between astrocytes from different brain regions, how this regionalization unfolds over development is not fully understood. We used single-nucleus RNA sequencing to characterize the molecular diversity of brain cells across six developmental stages and four brain regions in the mouse and marmoset brain. Our analysis of over 170,000 single astrocyte nuclei revealed striking regional heterogeneity among astrocytes, particularly between telencephalic and diencephalic regions, at all developmental time points surveyed in both species. At the stages sampled, most of the region patterning was private to astrocytes and not shared with neurons or other glial types. Though astrocytes were already regionally patterned in late embryonic stages, this region-specific astrocyte gene expression signature changed dramatically over postnatal development, and its composition suggests that regional astrocytes further specialize postnatally to support their local neuronal circuits. Comparing across species, we found divergence in the expression of astrocytic region- and age-differentially expressed genes and the timing of astrocyte maturation relative to birth between mouse and marmoset, as well as hundreds of species differentially expressed genes. Finally, we used expansion microscopy to show that astrocyte morphology is largely conserved across gray matter regions of prefrontal cortex, striatum, and thalamus in the mouse, despite substantial molecular divergence.
Collapse
Affiliation(s)
- Margaret E Schroeder
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | | | - Lukas Metzner
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Jinyoung Kang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Katelyn X Li
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Eunah Yu
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Kirsten M Levandowski
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Qiangge Zhang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
103
|
Marichal N, Péron S, Beltrán Arranz A, Galante C, Franco Scarante F, Wiffen R, Schuurmans C, Karow M, Gascón S, Berninger B. Reprogramming astroglia into neurons with hallmarks of fast-spiking parvalbumin-positive interneurons by phospho-site-deficient Ascl1. SCIENCE ADVANCES 2024; 10:eadl5935. [PMID: 39454007 PMCID: PMC11506222 DOI: 10.1126/sciadv.adl5935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/19/2024] [Indexed: 10/27/2024]
Abstract
Cellular reprogramming of mammalian glia to an induced neuronal fate holds the potential for restoring diseased brain circuits. While the proneural factor achaete-scute complex-like 1 (Ascl1) is widely used for neuronal reprogramming, in the early postnatal mouse cortex, Ascl1 fails to induce the glia-to-neuron conversion, instead promoting the proliferation of oligodendrocyte progenitor cells (OPC). Since Ascl1 activity is posttranslationally regulated, here, we investigated the consequences of mutating six serine phospho-acceptor sites to alanine (Ascl1SA6) on lineage reprogramming in vivo. Ascl1SA6 exhibited increased neurogenic activity in the glia of the early postnatal mouse cortex, an effect enhanced by coexpression of B cell lymphoma 2 (Bcl2). Genetic fate-mapping revealed that most induced neurons originated from astrocytes, while only a few derived from OPCs. Many Ascl1SA6/Bcl2-induced neurons expressed parvalbumin and were capable of high-frequency action potential firing. Our study demonstrates the authentic conversion of astroglia into neurons featuring subclass hallmarks of cortical interneurons, advancing our scope of engineering neuronal fates in the brain.
Collapse
Affiliation(s)
- Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Sophie Péron
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Ana Beltrán Arranz
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Chiara Galante
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Franciele Franco Scarante
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rebecca Wiffen
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sergio Gascón
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute – CSIC, Madrid, Spain
| | - Benedikt Berninger
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- The Francis Crick Institute, London, UK
- Focus Program Translational Neuroscience, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
104
|
Soto JS, Neupane C, Kaur M, Pandey V, Wohlschlegel JA, Khakh BS. Astrocyte Gi-GPCR signaling corrects compulsive-like grooming and anxiety-related behaviors in Sapap3 knockout mice. Neuron 2024; 112:3412-3423.e6. [PMID: 39163865 PMCID: PMC11512628 DOI: 10.1016/j.neuron.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Astrocytes are morphologically complex cells that serve essential roles. They are widely implicated in central nervous system (CNS) disorders, with changes in astrocyte morphology and gene expression accompanying disease. In the Sapap3 knockout (KO) mouse model of compulsive and anxiety-related behaviors related to obsessive-compulsive disorder (OCD), striatal astrocytes display reduced morphology and altered actin cytoskeleton and Gi-G-protein-coupled receptor (Gi-GPCR) signaling proteins. Here, we show that normalizing striatal astrocyte morphology, actin cytoskeleton, and essential homeostatic support functions by targeting the astrocyte Gi-GPCR pathway using chemogenetics corrected phenotypes in Sapap3 KO mice, including anxiety-related and compulsive behaviors. Our data portend an astrocytic pharmacological strategy for rescuing phenotypes in brain disorders that include compromised astrocyte morphology and tissue support.
Collapse
Affiliation(s)
- Joselyn S Soto
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| | - Chiranjivi Neupane
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Muskan Kaur
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
105
|
Pinkston BTC, Browning JL, Olsen ML. Astrocyte TrkB.T1 deficiency disrupts glutamatergic synaptogenesis and astrocyte-synapse interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619696. [PMID: 39484608 PMCID: PMC11526899 DOI: 10.1101/2024.10.22.619696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Perisynaptic astrocyte processes (PAPs) contact pre- and post-synaptic elements to provide structural and functional support to synapses. Accumulating research demonstrates that the cradling of synapses by PAPs is critical for synapse formation, stabilization, and plasticity. The specific signaling pathways that govern these astrocyte-synapse interactions, however, remain to be elucidated. Herein, we demonstrate a role for the astrocyte TrkB.T1 receptor, a truncated isoform of the canonical receptor for brain derived neurotrophic factor (BDNF), in modulating astrocyte-synapse interactions and excitatory synapse development. Neuron-astrocyte co-culture studies revealed that loss of astrocyte TrkB.T1 disrupts the formation of PAPs. To elucidate the role of TrkB.T1 in synapse development, we conditionally deleted TrkB.T1 in astrocytes in mice. Synaptosome preparations were employed to probe for TrkB.T1 localization at the PAP, and confocal three-dimensional microscopy revealed a significant reduction in synapse density and astrocyte-synapse interactions across development in the absence of astrocytic TrkB.T1. These findings suggest that BDNF/TrkB.T1 signaling in astrocytes is critical for normal excitatory synapse formation in the cortex and that astrocyte TrkB.T1 serves a requisite role in astrocyte synapse interactions. Overall, this work provides new insights into the molecular mechanisms of astrocyte-mediated synaptogenesis and may have implications for understanding neurodevelopmental disorders and developing potential therapeutic targets.
Collapse
|
106
|
Bindu DS, Savage JT, Brose N, Bradley L, Dimond K, Tan CX, Eroglu C. GEARBOCS: An Adeno Associated Virus Tool for In Vivo Gene Editing in Astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.17.524433. [PMID: 36711516 PMCID: PMC9884502 DOI: 10.1101/2023.01.17.524433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CRISPR/Cas9-based genome engineering enables rapid and precise gene manipulations in the CNS. Here, we developed a non-invasive astrocyte-specific method utilizing a single AAV vector, which we named GEARBOCS (Gene Editing in AstRocytes Based On CRISPR/Cas9 System). We verified GEARBOCS' specificity to mouse cortical astrocytes and demonstrated its utility for three types of gene manipulations: knockout (KO); tagging (TagIn); and reporter knock-in (GeneTrap) strategies. Next, we deployed GEARBOCS in two test cases. First, we determined that astrocytes are a necessary source of the synaptogenic factor Sparcl1 for thalamocortical synapse maintenance in the mouse primary visual cortex. Second, we determined that cortical astrocytes express the synaptic vesicle associated Vamp2 protein and found that it is required for maintaining excitatory and inhibitory synapse numbers in the visual cortex. These results show that the GEARBOCS strategy provides a fast and efficient means to study astrocyte biology in vivo.
Collapse
Affiliation(s)
- Dhanesh Sivadasan Bindu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neonatology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Justin T. Savage
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas Brose
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Luke Bradley
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA
| | - Kylie Dimond
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA
| | - Christabel Xin Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
107
|
Yuan M, Li L, Zhu H, Zheng B, Lui S, Zhang W. Cortical morphological changes and associated transcriptional signatures in post-traumatic stress disorder and psychological resilience. BMC Med 2024; 22:431. [PMID: 39379972 PMCID: PMC11462656 DOI: 10.1186/s12916-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Individuals who have experienced severe traumatic events are estimated to have a post-traumatic stress disorder (PTSD) prevalence rate ranging from 10 to 50%, while those not affected by trauma exposure are often considered to possess psychological resilience. However, the neural mechanisms underlying the development of PTSD, especially resilience after trauma, remain unclear. This study aims to investigate changes of cortical morphometric similarity network (MSN) in PTSD and trauma-exposed healthy individuals (TEHI), as well as the associated molecular alterations in gene expression, providing potential targets for the prevention and intervention of PTSD. METHODS We recruited PTSD patients and TEHI who had experienced severe earthquakes, and healthy controls who had not experienced earthquakes. We identified alterations in the whole-brain MSN changes in PTSD and TEHI, and established associations between these changes and brain-wide gene expression patterns from the Allen Human Brain Atlas microarray dataset using partial least squares regression. RESULTS At the neuroimaging level, we found not only trauma-susceptible changes in TEHI same as those in PTSD, but also unique neurobiological alterations to counteract the deleterious impact of severe trauma. We identified 1444 and 2214 genes transcriptionally related to MSN changes in PTSD and TEHI, respectively. Functional enrichment analysis of weighted gene expression for PTSD and TEHI revealed distinct enrichments in Gene Ontology biological processes and Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, gene expression profiles of astrocytes, excitatory neurons, and microglial cells are highly related to MSN abnormalities in PTSD. CONCLUSIONS The formation of resilience may be by an active compensatory process of the brain. The combination of macroscopic neuroimaging changes and microscopic human brain transcriptomics could offer a more direct and in-depth understanding of the pathogenesis of PTSD and psychological resilience, shedding light on new targets for the prevention and treatment of PTSD.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
| | - Lun Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Sichuan Institute of Computer Sciences, 610041, Chengdu, People's Republic of China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
- Med-X Center for Informatics, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Bo Zheng
- Department of Interventional Medicine, Sichuan Science City Hospital, 621000, Mianyang, People's Republic of China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, People's Republic of China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Medical Big Data Center, Sichuan University, 610041, Chengdu, People's Republic of China.
| |
Collapse
|
108
|
Rexach JE, Cheng Y, Chen L, Polioudakis D, Lin LC, Mitri V, Elkins A, Han X, Yamakawa M, Yin A, Calini D, Kawaguchi R, Ou J, Huang J, Williams C, Robinson J, Gaus SE, Spina S, Lee EB, Grinberg LT, Vinters H, Trojanowski JQ, Seeley WW, Malhotra D, Geschwind DH. Cross-disorder and disease-specific pathways in dementia revealed by single-cell genomics. Cell 2024; 187:5753-5774.e28. [PMID: 39265576 PMCID: PMC12017262 DOI: 10.1016/j.cell.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/29/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNA-seq and ATAC-seq in Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), analyzing 41 participants and ∼1 million cells (RNA + ATAC) from three brain regions varying in vulnerability and pathological burden. We identify 32 shared, disease-associated cell types and 14 that are disease specific. Disease-specific cell states represent glial-immune mechanisms and selective neuronal vulnerability impacting layer 5 intratelencephalic neurons in AD, layer 2/3 intratelencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We identify disease-associated gene regulatory networks and cells impacted by causal genetic risk, which differ by disorder. These data illustrate the heterogeneous spectrum of glial and neuronal compositional and gene expression alterations in different dementias and identify therapeutic targets by revealing shared and disease-specific cell states.
Collapse
Affiliation(s)
- Jessica E Rexach
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lawrence Chen
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Damon Polioudakis
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Li-Chun Lin
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vivianne Mitri
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew Elkins
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Han
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mai Yamakawa
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Yin
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniela Calini
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development, F. Hoffman-LaRoche Ltd., Basel, Switzerland
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jing Ou
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jerry Huang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Williams
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Robinson
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie E Gaus
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Edward B Lee
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Harry Vinters
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Q Trojanowski
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Dheeraj Malhotra
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development, F. Hoffman-LaRoche Ltd., Basel, Switzerland
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
109
|
Hu S, Tang Y, Li X, Li W, Zeng Y, Jiang M, Chen R, Zheng P, Yang L, Song Z, Xie D, Chen Y, Yuan Y. Hsp90aa1/JUN/Ccl2 regulatory axis mediates migration and differentiation of NSPCs, promoting the onset and progression of early post-ischemic stroke epilepsy. Neurobiol Dis 2024; 200:106635. [PMID: 39128813 DOI: 10.1016/j.nbd.2024.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
Early-onset epilepsy following ischemic stroke is a severe neurological condition, the pathogenesis of which remains incompletely understood. Recent studies suggest that Neural stem/progenitor cells (NSPCs) play a crucial role in the disease process, yet the precise molecular mechanisms regulating NSPCs have not been thoroughly investigated. This study utilized single-cell transcriptome sequencing and bioinformatics analysis to identify disease-related genes, which were subsequently validated in both in vitro and in vivo experiments. The findings revealed that Hsp90aa1 (heat shock protein 90 kDa alpha, class A member 1), Jun proto-oncogene (JUN), and CC Motif Ligation 2 (Ccl2) constitute an important regulatory axis influencing the migration and differentiation of NSPCs, potentially impacting the onset and progression of early-onset epilepsy post-ischemic stroke. Additionally, the expression of Hsp90aa1 was found to influence the likelihood of seizure occurrence and the severity of brain ischemia.
Collapse
Affiliation(s)
- Shuntong Hu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhong Tang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenjun Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yini Zeng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mi Jiang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Ru Chen
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Liang Yang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dujie Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yiwei Chen
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yi Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
110
|
Zhang AY, Elias E, Manners MT. Sex-dependent astrocyte reactivity: Unveiling chronic stress-induced morphological changes across multiple brain regions. Neurobiol Dis 2024; 200:106610. [PMID: 39032799 PMCID: PMC11500746 DOI: 10.1016/j.nbd.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
Chronic stress is a major precursor to various neuropsychiatric disorders and is linked with increased inflammation in the brain. However, the bidirectional association between inflammation and chronic stress has yet to be fully understood. Astrocytes are one of the key inflammatory regulators in the brain, and the morphological change in reactive astrocytes serves as an important indicator of inflammation. In this study, we evaluated the sex-specific astrocyte response to chronic stress or systemic inflammation in key brain regions associated with mood disorders. We conducted the unpredictable chronic mild stress (UCMS) paradigm to model chronic stress, or lipopolysaccharide (LPS) injection to model systemic inflammation. To evaluate stress-induced morphological changes in astrocyte complexity, we measured GFAP fluorescent intensity for astrocyte expression, branch bifurcation by quantifying branch points and terminal points, branch arborization by conducting Sholl analysis, and calculated the ramification index. Our analysis indicated that chronic stress-induced morphological changes in astrocytes in all brain regions investigated. The effects of chronic stress were region and sex specific. Notably, females had greater stress or inflammation-induced astrocyte activation in the hypothalamus (HYPO), CA1, CA3, and amygdala (AMY) than males. These findings indicate that chronic stress induces astrocyte activation that may drive sex and region-specific effects in females, potentially contributing to sex-dependent mechanisms of disease.
Collapse
Affiliation(s)
- Ariel Y Zhang
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Elias Elias
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Melissa T Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
111
|
Ahrens MB, Khakh BS, Poskanzer KE. Astrocyte Calcium Signaling. Cold Spring Harb Perspect Biol 2024; 16:a041353. [PMID: 38768971 PMCID: PMC11444304 DOI: 10.1101/cshperspect.a041353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system and participate in well-established functional and morphological interactions with neurons, blood vessels, and other glia. These ubiquitous cells display rich intracellular Ca2+ signaling, which has now been studied for over 30 years. In this review, we provide a summary and perspective of recent progress concerning the study of astrocyte intracellular Ca2+ signaling as well as discussion of its potential functions. Progress has occurred in the areas of imaging, silencing, activating, and analyzing astrocyte Ca2+ signals. These insights have collectively permitted exploration of the relationships of astrocyte Ca2+ signals to neural circuit function and behavior in a variety of species. We summarize these aspects along with a framework for mechanistically interpreting behavioral studies to identify directly causal effects. We finish by providing a perspective on new avenues of research concerning astrocyte Ca2+ signaling.
Collapse
Affiliation(s)
- Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Baljit S Khakh
- Department of Physiology and Department of Neurobiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
112
|
Xing X, Zhang S. Neuroprotective Role of AQP4 Knockdown in Astrocytes After Oxygen-Glucose Deprivation. Brain Behav 2024; 14:e70107. [PMID: 39444081 PMCID: PMC11499208 DOI: 10.1002/brb3.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/05/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Aquaporin-4 (AQP4), predominantly expressed in astrocytes, has been implicated in the development of brain edema following ischemic events. However, its role in post-stroke neuroinflammation is not fully understood. METHODS Using a middle cerebral artery occlusion (MCAO) mouse model, we assessed AQP4's role in post-stroke inflammation. Brain tissue slices from male C57BL/6 mice were subjected to immunohistochemistry and western blot post-MCAO. Additionally, primary astrocytes were isolated for quantitative real-time PCR and immunofluorescence assays to evaluate the expression of inflammatory markers glial fibrillary acidic protein (GFAP) and AQP4. AQP4 modulation was achieved using viral knockdown and overexpression methods. Neuronal damage was assessed using flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) tests in co-culture studies. RESULTS MCAO mice exhibited a significant upregulation in GFAP. This reactive astrogliosis corresponded with an elevation in inflammatory markers. AQP4 expression responded to this inflammatory trend, peaking at 6 h after OGD and returning to baseline levels at 24 and 48 h. Co-culture experiments revealed that AQP4(+) astrocytes exacerbated injury in OGD-treated neurons, as evidenced by increased TUNEL positivity and apoptotic events. Conversely, AQP4(-) astrocytes appeared to have a protective effect. Knockdown of AQP4 resulted in reduced post-OGD inflammatory response, whereas AQP4 overexpression intensified the injury to neurons post-OGD. In vivo experiments also confirmed that AQP4 inhibitor TGN-020 reduced and overexpression of AQP4 increased behavioral abnormalities and brain infarcts. CONCLUSION Our findings underscore AQP4's pivotal role in modulating post-stroke neuroinflammation. Targeting AQP4 may present a novel therapeutic avenue for mitigating ischemia-induced neuronal damage.
Collapse
Affiliation(s)
- Xin Xing
- Department of NeurologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Shuyan Zhang
- Department of NeurologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
113
|
Sharif A, Prevot V. Astrogenesis in the hypothalamus: A life-long process contributing to the development and plasticity of neuroendocrine networks. Front Neuroendocrinol 2024; 75:101154. [PMID: 39226950 DOI: 10.1016/j.yfrne.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Astrocytes are now recognized as integral components of neural circuits, regulating their maturation, activity and plasticity. Neuroendocrinology has provided fertile ground for revealing the diverse strategies used by astrocytes to regulate the physiological and behavioural outcomes of neural circuit activity in response to internal and environmental inputs. However, the development of astrocytes in the hypothalamus has received much less attention than in other brain regions such as the cerebral cortex and spinal cord. In this review, we synthesize our current knowledge of astrogenesis in the hypothalamus across various life stages. A distinctive feature of hypothalamic astrogenesis is that it persists all throughout lifespan, and involves multiple cellular sources corresponding to radial glial cells during early development, followed by tanycytes, parenchymal progenitors and locally dividing astrocytes. Astrogenesis in the hypothalamus is closely coordinated with the maturation of hypothalamic neurons. This coordination is exemplified by recent findings in neurons producing gonadotropin-releasing hormone, which actively shape their astroglial environment during infancy to integrate functionally into their neural network and facilitate sexual maturation, a process vulnerable to endocrine disruption. While hypothalamic astrogenesis shares common principles with other brain regions, it also exhibits specific features in its dynamics and regulation, both at the inter- and intra-regional levels. These unique properties emphasize the importance of further exploration. Additionally, we discuss the experimental strategies used to assess astrogenesis in the hypothalamus and their potential bias and limitations. Understanding the mechanisms of hypothalamic astrogenesis throughout life will be crucial for comprehending the development and function of the hypothalamus under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France.
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France.
| |
Collapse
|
114
|
Chandra S, Vassar R. The role of the gut microbiome in the regulation of astrocytes in Alzheimer's disease. Neurotherapeutics 2024; 21:e00425. [PMID: 39054180 PMCID: PMC11585888 DOI: 10.1016/j.neurot.2024.e00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and is the most common cause of dementia. AD is characterized pathologically by proteinaceous aggregates composed of amyloid beta (Aβ) and tau as well as progressive neurodegeneration. Concurrently with the buildup of protein aggregates, a strong neuroinflammatory response, in the form of reactive astrocytosis and microgliosis, occurs in the AD brain. It has recently been shown that the gut microbiome (GMB), composed of trillions of bacteria in the human intestine, can regulate both reactive astrocytosis and microgliosis in the context of both amyloidosis and tauopathy. Many studies have implicated microglia in these processes. However, growing evidence suggests that interactions between the GMB and astrocytes have a much larger role than previously thought. In this review, we summarize evidence regarding the gut microbiome in the control of reactive astrocytosis in AD.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA; Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
115
|
Thomas CI, Ryan MA, McNabb MC, Kamasawa N, Scholl B. Astrocyte coverage of excitatory synapses correlates to measures of synapse structure and function in ferret primary visual cortex. Glia 2024; 72:1785-1800. [PMID: 38856149 PMCID: PMC11324397 DOI: 10.1002/glia.24582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Most excitatory synapses in the mammalian brain are contacted or ensheathed by astrocyte processes, forming tripartite synapses. Astrocytes are thought to be critical regulators of the structural and functional dynamics of synapses. While the degree of synaptic coverage by astrocytes is known to vary across brain regions and animal species, the reason for and implications of this variability remains unknown. Further, how astrocyte coverage of synapses relates to in vivo functional properties of individual synapses has not been investigated. Here, we characterized astrocyte coverage of synapses of pyramidal neurons in the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and sensory-evoked Ca2+ activity. Nearly, all synapses were contacted by astrocytes, and most were contacted along the axon-spine interface. Structurally, we found that the degree of synaptic astrocyte coverage directly scaled with synapse size and postsynaptic density complexity. Functionally, we found that the amount of astrocyte coverage scaled with how selectively a synapse responds to a particular visual stimulus and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural metrics of synaptic strength of excitatory synapses in the visual cortex and demonstrates a previously unknown relationship between astrocyte coverage and reliable sensory activation.
Collapse
Affiliation(s)
- Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Micaiah C McNabb
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Benjamin Scholl
- Department of Physiology and Biophysics, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
116
|
Cheng X, Zhao M, Chen L, Huang C, Xu Q, Shao J, Wang HT, Zhang Y, Li X, Xu X, Yao XP, Lin KJ, Xue H, Wang H, Chen Q, Zhu YC, Zhou JW, Ge WP, Zhu SJ, Liu JY, Chen WJ, Xiong ZQ. Astrocytes modulate brain phosphate homeostasis via polarized distribution of phosphate uptake transporter PiT2 and exporter XPR1. Neuron 2024; 112:3126-3142.e8. [PMID: 39019040 DOI: 10.1016/j.neuron.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.
Collapse
Affiliation(s)
- Xuewen Cheng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China.
| | - Miao Zhao
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Lei Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China
| | - Chenwei Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiwu Xu
- Lin Gang Laboratory, Shanghai 201602, China
| | - Jia Shao
- Lin Gang Laboratory, Shanghai 201602, China
| | - Hong-Tao Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxian Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuequan Li
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Xu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang-Ping Yao
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Kai-Jun Lin
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui Xue
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Chuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jia-Wei Zhou
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Shu-Jia Zhu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Yu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Jin Chen
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
117
|
Park JO, Hong N, Lee MY, Ahn JC. Photobiomodulation regulates astrocyte activity and ameliorates scopolamine-induced cognitive behavioral decline. Front Cell Neurosci 2024; 18:1448005. [PMID: 39371580 PMCID: PMC11449862 DOI: 10.3389/fncel.2024.1448005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction The pathophysiological mechanism of Alzheimer's disease (AD) has not been clearly identified, and effective treatment methods have not yet been established. Scopolamine causes cholinergic dysfunction in the brain, including the accumulation of amyloid-beta plaques, thereby increasing oxidative stress and neuroinflammation, mimicking AD. Glial cells such as astrocytes have recently been identified as possible biomarkers for AD. Photobiomodulation (PBM) elicits a beneficial biological response in cells and tissues. PBM effects on the central nervous system (CNS) have been widely researched, including effects on astrocyte activity. Methods In the present study, PBM was performed using light at the near-infrared wavelength of 825 nm. The Morris water maze and Y-maze tests were employed to evaluate cognitive function decline in a scopolamine-induced memory dysfunction model and its improvement with PBM. In addition, alteration of the mitogen-activated protein kinase (MAPK) pathway and immunofluorescence expression levels of active astrocytes were observed in the hippocampus, which is one of the areas affected by AD, to evaluate the mechanism of action of PBM. Results A reduction in the neuronal cell death in the hippocampus caused by scopolamine was observed with PBM. Moreover, alteration of a MAPK pathway-related marker and changes in glial fibrillary acidic protein (an active astrocyte marker) expression were observed in the PBM-treated group. Finally, significant correlations between functional and histological results were found, validating the results. Discussion These findings indicate the possibility of behavioral and histological improvement due to PBM in scopolamine-induced CNS alteration, which mimics AD. This improvement could be related to neuroinflammatory modulation and altered astrocyte activity.
Collapse
Affiliation(s)
- Ji On Park
- Department of Medical Laser, Graduate School of Medicine, Dankook University, Cheonan-si, Republic of Korea
| | - Namgue Hong
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan-si, Republic of Korea
| | - Min Young Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan-si, Republic of Korea
| | - Jin-Chul Ahn
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan-si, Republic of Korea
- Department of Biomedical Science, College of Medicine, Dankook University, Cheonan-si, Republic of Korea
| |
Collapse
|
118
|
Song Y, Huang Q, Pu Q, Ni S, Zhu W, Zhao W, Xu H, Hu K. Gastrodin Liposomes Block Crosstalk between Astrocytes and Glioma Cells via Downregulating Cx43 to Improve Antiglioblastoma Efficacy of Temozolomide. Bioconjug Chem 2024; 35:1380-1390. [PMID: 39180545 DOI: 10.1021/acs.bioconjchem.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The crosstalk between glioma cells and astrocytes plays a crucial role in developing temozolomide (TMZ) resistance of glioblastomas, together with the existence of the BBB contributing to the unsatisfactory clinical treatment of glioblastomas. Herein, we developed a borneol-modified and gastrodin-loaded liposome (Bo-Gas-LP), with the intent of enhancing the efficacy of TMZ therapy after intranasal administration. The results showed that Bo-Gas-LP improved GL261 cells' sensitivity to TMZ and prolonged survival of GL261-bearing mice by blocking the crosstalk between astrocytes and glioblastoma cells with the decrease of Cx43. Our study showed that intranasal Bo-Gas-LP targeting the crosstalk in glioblastoma microenvironments proposed a promising targeted therapy idea to overcome the current therapeutic limitations of TMZ-resistant glioblastomas.
Collapse
Affiliation(s)
- Yangjie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Pu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhao Zhu
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Zhao
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
119
|
Zhou Q, Xu L. The regulation of BAI1 in astrocytes through the STAT3/EZH2 axis relieves neuronal apoptosis in rats with Alzheimer's disease. Brain Res 2024; 1839:149007. [PMID: 38763505 DOI: 10.1016/j.brainres.2024.149007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. Previous studies have identified the critical role of astrocytes in the progression of AD. The focus of this study revolves around clarifying the regulatory mechanism of the STAT3/EZH2/BAI1 axis in astrocytes in AD. We successfully developed a rat model of AD, and measured the learning and cognitive ability of the rats by Morris water maze experiment. HE and Nissl's staining were used for histomorphological identification of the rat hippocampus. Meanwhile, immunofluorescence and immunohistochemistry were used to detect astrocyte activation and brain-specific angiogenesis inhibitor-1 (BAI1) expression in rat hippocampal tissue, respectively. The role of STAT3/EZH2/BAI1 regulating axis in astrocyte activation and neuronal cell apoptosis was verified by establishing the co-culture system of astrocytes and neuronal cells in vitro. Western Blot (WB) was used to detect the expression of associated proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect astrocyte neurotrophic factor secretion. Hochest/PI staining and flow cytometry were used to observe neuronal apoptosis. Compared with the sham group, AD rats showed significantly decreased cognitive and learning abilities, noticeable hippocampal tissue damage, and significantly low levels of BAI1 expression. In in vitro models, BAI1 was found to inhibit astrocyte activation and enhance the secretion of neurotrophins, resulting in decrease of neurone apoptosis. The regulation of BAI1 by the STAT3/EZH2 axis was shown to affect astrocyte activation and neuronal cell apoptosis. In conclusion, this study represents the pioneering discovery that regulated by the STAT3/EZH2 axis, BAI1 suppresses astrocyte activation, thus reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Neurology, The First Affiliated Hospital of Ningbo University, LiuTing Road, Ningbo, Zhejiang 315020, China
| | - Linsheng Xu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, Zhejiang 310005, China.
| |
Collapse
|
120
|
Yu XJ, Zhao YT, Abudouaini H, Zou P, Li TQ, Bai XF, Wang SX, Guan JB, Li MW, Wang XD, Wang YG, Hao DJ. A novel spherical GelMA-HAMA hydrogel encapsulating APET×2 polypeptide and CFIm25-targeting sgRNA for immune microenvironment modulation and nucleus pulposus regeneration in intervertebral discs. J Nanobiotechnology 2024; 22:556. [PMID: 39267105 PMCID: PMC11391743 DOI: 10.1186/s12951-024-02783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
METHODS Single-cell transcriptomics and high-throughput transcriptomics were used to screen factors significantly correlated with intervertebral disc degeneration (IDD). Expression changes of CFIm25 were determined via RT-qPCR and Western blot. NP cells were isolated from mouse intervertebral discs and induced to degrade with TNF-α and IL-1β. CFIm25 was knocked out using CRISPR-Cas9, and CFIm25 knockout and overexpressing nucleus pulposus (NP) cell lines were generated through lentiviral transfection. Proteoglycan expression, protein expression, inflammatory factor expression, cell viability, proliferation, migration, gene expression, and protein expression were analyzed using various assays (alcian blue staining, immunofluorescence, ELISA, CCK-8, EDU labeling, transwell migration, scratch assay, RT-qPCR, Western blot). The GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA was designed, and its effects on NP regeneration were assessed through in vitro and mouse model experiments. The progression of IDD in mice was evaluated using X-ray, H&E staining, and Safranin O-Fast Green staining. Immunohistochemistry was performed to determine protein expression in NP tissue. Proteomic analysis combined with in vitro and in vivo experiments was conducted to elucidate the mechanisms of hydrogel action. RESULTS CFIm25 was upregulated in IDD NP tissue and significantly correlated with disease progression. Inhibition of CFIm25 improved NP cell degeneration, enhanced cell proliferation, and migration. The hydrogel effectively knocked down CFIm25 expression, improved NP cell degeneration, promoted cell proliferation and migration, and mitigated IDD progression in a mouse model. The hydrogel inhibited inflammatory factor expression (IL-6, iNOS, IL-1β, TNF-α) by targeting the p38/NF-κB signaling pathway, increased collagen COLII and proteoglycan Aggrecan expression, and suppressed NP degeneration-related factors (COX-2, MMP-3). CONCLUSION The study highlighted the crucial role of CFIm25 in IDD and introduced a promising therapeutic strategy using a porous spherical GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA. This innovative approach offers new possibilities for treating degenerated intervertebral discs.
Collapse
Grants
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Haimiti Abudouaini
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Tian-Qi Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Xiao-Fan Bai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Shan-Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Jian-Bin Guan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Meng-Wei Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Ying-Guang Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| |
Collapse
|
121
|
Wang X, Zhi H, Zhang Z, Li J, Guo D. REV-ERBα Mitigates Astrocyte Activation and Protects Dopaminergic Neurons from Damage. J Mol Neurosci 2024; 74:84. [PMID: 39254874 DOI: 10.1007/s12031-024-02264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Parkinson's disease (PD) is characterized by astrocyte activation and disruptions in circadian rhythm. Within the astrocyte population, two distinct reactive states exist: A1 and A2. A1 astrocytes are associated with neurotoxicity and inflammation, while A2 astrocytes exhibit neuroprotective functions. Our investigation focused on the role of REV-ERBα, a member of the nuclear receptor superfamily and a key regulator of the circadian clock, in astrocyte activation. We observed that REV-ERBα expression in A1 astrocytes was reduced to one-third of its normal level. Notably, activation of REV-ERBα prompted a transformation of astrocytes from A1 to A2. Mechanistically, REV-ERBα inhibition was linked to the classical NF-κB pathway, while it concurrently suppressed the STAT3 pathway. Furthermore, astrocytes with low REV-ERBα expression were associated with dopaminergic neurons apoptosis. Intriguingly, the opposite effect was observed when using a REV-ERBα agonist, which mitigated astrocyte activation and reduced dopaminergic neuron damage by 50%. In summary, our study elucidates the pivotal role of REV-ERBα in modulating astrocyte function and its potential implications in PD pathogenesis.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Hui Zhi
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Zongqin Zhang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Jingwei Li
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
| | - Dongkai Guo
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
| |
Collapse
|
122
|
Chen C, Shu Y, Yan C, Li H, Huang Z, Shen S, Liu C, Jiang Y, Huang S, Wang Z, Mei F, Qin F, Liu X, Qiu W. Astrocyte-derived clusterin disrupts glial physiology to obstruct remyelination in mouse models of demyelinating diseases. Nat Commun 2024; 15:7791. [PMID: 39242637 PMCID: PMC11379856 DOI: 10.1038/s41467-024-52142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple sclerosis (MS) is a debilitating demyelinating disease characterized by remyelination failure attributed to inadequate oligodendrocyte precursor cells (OPCs) differentiation and aberrant astrogliosis. A comprehensive cell atlas reanalysis of clinical specimens brings to light heightened clusterin (CLU) expression in a specific astrocyte subtype links to active lesions in MS patients. Our investigation reveals elevated astrocytic CLU levels in both active lesions of patient tissues and female murine MS models. CLU administration stimulates primary astrocyte proliferation while concurrently impeding astrocyte-mediated clearance of myelin debris. Intriguingly, CLU overload directly impedes OPC differentiation and induces OPCs and OLs apoptosis. Mechanistically, CLU suppresses PI3K-AKT signaling in primary OPCs via very low-density lipoprotein receptor. Pharmacological activation of AKT rescues the damage inflicted by excess CLU on OPCs and ameliorates demyelination in the corpus callosum. Furthermore, conditional knockout of CLU emerges as a promising intervention, showcasing improved remyelination processes and reduced severity in murine MS models.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chengkai Yan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huilu Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenchao Huang
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - ShiShi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunxin Liu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shixiong Huang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Zhanhang Wang
- Department of Neurology, 999 Brain Hospital, Guangzhou, China
| | - Feng Mei
- Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Feng Qin
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
123
|
Kim D, Hwang J, Yoo J, Choi J, Ramalingam M, Kim S, Cho HH, Kim BC, Jeong HS, Jang S. The time-dependent changes in a mouse model of traumatic brain injury with motor dysfunction. PLoS One 2024; 19:e0307768. [PMID: 39240883 PMCID: PMC11379277 DOI: 10.1371/journal.pone.0307768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 09/08/2024] Open
Abstract
Traumatic brain injury (TBI) results from sudden accidents, leading to brain damage, subsequent organ dysfunction, and potentially death. Despite extensive studies on rodent TBI models, there is still high variability in terms of target points, and this results in significantly different symptoms between models. In this study, we established a more concise and effective TBI mouse model, which included locomotor dysfunctions with increased apoptosis, based on the controlled cortical impact method. Behavioral tests, such as elevated body swing, rotarod, and cylinder tests were performed to assess the validity of our model. To investigate the underlying mechanisms of injury, we analyzed the expression of proteins associated with immune response and the apoptosis signaling pathway via western blotting analysis and immunohistochemistry. Upon TBI induction, the mouse subjects showed motor dysfunctions and asymmetric behavioral assessment. The expression of Bax gradually increased over time and reached its maximum 3 days post-surgery, and then declined. The expression of Mcl-1 showed a similar trend to Bax. Furthermore, the expression of caspase-3, ROCK1, and p53 were highly elevated by 3 days post-surgery and then declined by 7 days post-surgery. Importantly, immunohistochemistry revealed an immediate increase in the level of Bcl-2 at the lesion site upon TBI induction. Also, we found that the expression of neuronal markers, such as NeuN and MAP2, decreased after the surgery. Interestingly, the increase in NFH level was in line with the symptoms of TBI in humans. Collectively, our study demonstrated that the established TBI model induces motor dysfunction, hemorrhaging, infarctions, and apoptosis, closely resembling TBI in humans. Therefore, we predict that our model may be useful for developing effective treatment option for TBI.
Collapse
Affiliation(s)
- Dohee Kim
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Jin Yoo
- Department of Physical Education, Chonnam National University, Gwangju, Republic of Korea
| | - Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Seongryul Kim
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| |
Collapse
|
124
|
Shen FS, Liu C, Sun HZ, Chen XY, Xue Y, Chen L. Emerging evidence of context-dependent synapse elimination by phagocytes in the CNS. J Leukoc Biol 2024; 116:511-522. [PMID: 38700080 DOI: 10.1093/jleuko/qiae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Precise synapse elimination is essential for the establishment of a fully developed neural circuit during brain development and higher function in adult brain. Beyond immune and nutrition support, recent groundbreaking studies have revealed that phagocytic microglia and astrocytes can actively and selectively eliminate synapses in normal and diseased brains, thereby mediating synapse loss and maintaining circuit homeostasis. Multiple lines of evidence indicate that the mechanisms of synapse elimination by phagocytic glia are not universal but rather depend on specific contexts and detailed neuron-glia interactions. The mechanism of synapse elimination by phagocytic glia is dependent on neuron-intrinsic factors and many innate immune and local apoptosis-related molecules. During development, microglial synapse engulfment in the visual thalamus is primarily influenced by the classic complement pathway, whereas in the barrel cortex, the fractalkine pathway is dominant. In Alzheimer's disease, microglia employ complement-dependent mechanisms for synapse engulfment in tauopathy and early β-amyloid pathology, but microglia are not involved in synapse loss at late β-amyloid stages. Phagocytic microglia also engulf synapses in a complement-dependent way in schizophrenia, anxiety, and stress. In addition, phagocytic astrocytes engulf synapses in a MEGF10-dependent way during visual development, memory, and stroke. Furthermore, the mechanism of a phenomenon that phagocytes selectively eliminate excitatory and inhibitory synapses is also emphasized in this review. We hypothesize that elucidating context-dependent synapse elimination by phagocytic microglia and astrocytes may reveal the molecular basis of synapse loss in neural disorders and provide a rationale for developing novel candidate therapies that target synapse loss and circuit homeostasis.
Collapse
Affiliation(s)
- Fang-Shuai Shen
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Cui Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Hui-Zhe Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Xin-Yi Chen
- Department of International Medicine, No. 16 Jiangsu Road, Shinan District, Affiliated Hospital of Qingdao University 266000, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| |
Collapse
|
125
|
Lendemeijer B, Unkel M, Smeenk H, Mossink B, Hijazi S, Gordillo-Sampedro S, Shpak G, Slump DE, van den Hout MCGN, van IJcken WFJ, Bindels EMJ, Hoogendijk WJG, Nadif Kasri N, de Vrij FMS, Kushner SA. Human Pluripotent Stem Cell-Derived Astrocyte Functionality Compares Favorably with Primary Rat Astrocytes. eNeuro 2024; 11:ENEURO.0148-24.2024. [PMID: 39227152 PMCID: PMC11404293 DOI: 10.1523/eneuro.0148-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Astrocytes are essential for the formation and maintenance of neural networks. However, a major technical challenge for investigating astrocyte function and disease-related pathophysiology has been the limited ability to obtain functional human astrocytes. Despite recent advances in human pluripotent stem cell (hPSC) techniques, primary rodent astrocytes remain the gold standard in coculture with human neurons. We demonstrate that a combination of leukemia inhibitory factor (LIF) and bone morphogenetic protein-4 (BMP4) directs hPSC-derived neural precursor cells to a highly pure population of astroglia in 28 d. Using single-cell RNA sequencing, we confirm the astroglial identity of these cells and highlight profound transcriptional adaptations in cocultured hPSC-derived astrocytes and neurons, consistent with their further maturation. In coculture with human neurons, multielectrode array recordings revealed robust network activity of human neurons in a coculture with hPSC-derived or rat astrocytes [3.63 ± 0.44 min-1 (hPSC-derived), 2.86 ± 0.64 min-1 (rat); p = 0.19]. In comparison, we found increased spike frequency within network bursts of human neurons cocultured with hPSC-derived astrocytes [56.31 ± 8.56 Hz (hPSC-derived), 24.77 ± 4.04 Hz (rat); p < 0.01], and whole-cell patch-clamp recordings revealed an increase of postsynaptic currents [2.76 ± 0.39 Hz (hPSC-derived), 1.07 ± 0.14 Hz (rat); p < 0.001], consistent with a corresponding increase in synapse density [14.90 ± 1.27/100 μm2 (hPSC-derived), 8.39 ± 0.63/100 μm2 (rat); p < 0.001]. Taken together, we show that hPSC-derived astrocytes compare favorably with rat astrocytes in supporting human neural network activity and maturation, providing a fully human platform for investigating astrocyte function and neuronal-glial interactions.
Collapse
Affiliation(s)
- Bas Lendemeijer
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| | - Maurits Unkel
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Hilde Smeenk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Britt Mossink
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Sara Hijazi
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Sara Gordillo-Sampedro
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Guy Shpak
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Denise E Slump
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Witte J G Hoogendijk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| |
Collapse
|
126
|
Zhang J, Hu D, Li L, Qu D, Shi W, Xie L, Jiang Q, Li H, Yu T, Qi C, Fu H. M2 Microglia-derived Exosomes Promote Spinal Cord Injury Recovery in Mice by Alleviating A1 Astrocyte Activation. Mol Neurobiol 2024; 61:7009-7025. [PMID: 38367135 DOI: 10.1007/s12035-024-04026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
M2 microglia transplantation has previously demonstrated beneficial effects on spinal cord injury (SCI) by regulating neuroinflammation and enhancing neuronal survival. Exosomes (EXOs), secreted by almost all cell types, embody partial functions and properties of their parent cells. However, the effect of M2 microglia-derived EXOs (M2-EXOs) on SCI recovery and the underlying molecular mechanisms remain unclear. In this study, we isolated M2-EXOs and intravenously introduced them into mice with SCI. Considering the reciprocal communication between microglia and astroglia in both healthy and injured central nervous systems (CNSs), we subsequently focused on the influence of M2-EXOs on astrocyte phenotype regulation. Our findings indicated that M2-EXOs promoted neuron survival and axon preservation, reduced the lesion area, inhibited A1 astrocyte activation, and improved motor function recovery in SCI mice. Moreover, they inhibited the nuclear translocation of p65 and the activation of the NF-κB signalling pathway in A1 astrocytes. Therefore, our research suggests that M2-EXOs mitigate the activation of neurotoxic A1 astrocytes by inhibiting the NF-κB signalling pathway, thereby improving spinal tissue preservation and motor function recovery following SCI. This positions M2-EXOs as a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Die Hu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Liping Li
- Department of Bone Surgery, Qingdao Central Hospital, Qingdao, 266000, China
| | - Di Qu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Weipeng Shi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Lei Xie
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Qi Jiang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Haifeng Li
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266000, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
127
|
Cullen PF, Gammerdinger WJ, Sui SJH, Mazumder AG, Sun D. Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization. Glia 2024; 72:1604-1628. [PMID: 38785355 PMCID: PMC11262981 DOI: 10.1002/glia.24571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the "classical" gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - William J Gammerdinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
128
|
Byron N, Sakata S. Fiber photometry-based investigation of brain function and dysfunction. NEUROPHOTONICS 2024; 11:S11502. [PMID: 38077295 PMCID: PMC10704183 DOI: 10.1117/1.nph.11.s1.s11502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 02/20/2025]
Abstract
Fiber photometry is an optical method to monitor fluorescent signals using a fiber optic cannula. Over the past two decades, together with the development of various genetically encoded biosensors, it has been applied to investigate various types of activity in the central nervous system. This includes not only type-specific neuronal population activity, but also non-neuronal activity and neurotransmitter/neuropeptide signals in awake, freely behaving animals. In this perspective, we summarize the recent development of this technique. After describing common technical pitfalls, we discuss future directions of this powerful approach for investigating brain function and dysfunction.
Collapse
Affiliation(s)
- Nicole Byron
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | - Shuzo Sakata
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| |
Collapse
|
129
|
Lozano Casasbuenas D, Kortebi I, Gora C, Scott EY, Gomes C, Oliveira MS, Sharma T, Daniele E, Olfat A, Gibbs R, Yuzwa SA, Gilbert EA, Küry P, Wheeler AR, Lévesque M, Faiz M. The laminar position, morphology, and gene expression profiles of cortical astrocytes are influenced by time of birth from ventricular/subventricular progenitors. Glia 2024; 72:1693-1706. [PMID: 38852127 DOI: 10.1002/glia.24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Astrocytes that reside in superficial (SL) and deep cortical layers have distinct molecular profiles and morphologies, which may underlie specific functions. Here, we demonstrate that the production of SL and deep layer (DL) astrocyte populations from neural progenitor cells in the mouse is temporally regulated. Lineage tracking following in utero and postnatal electroporation with PiggyBac (PB) EGFP and birth dating with EdU and FlashTag, showed that apical progenitors produce astrocytes during late embryogenesis (E16.5) that are biased to the SL, while postnatally labeled (P0) astrocytes are biased to the DL. In contrast, astrocytes born during the predominantly neurogenic window (E14.5) showed a random distribution in the SL and DL. Of interest, E13.5 astrocytes birth dated at E13.5 with EdU showed a lower layer bias, while FT labeling of apical progenitors showed no bias. Finally, examination of the morphologies of "biased" E16.5- and P0-labeled astrocytes demonstrated that E16.5-labeled astrocytes exhibit different morphologies in different layers, while P0-labeled astrocytes do not. Differences based on time of birth are also observed in the molecular profiles of E16.5 versus P0-labeled astrocytes. Altogether, these results suggest that the morphological, molecular, and positional diversity of cortical astrocytes is related to their time of birth from ventricular/subventricular zone progenitors.
Collapse
Affiliation(s)
- Daniela Lozano Casasbuenas
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ines Kortebi
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Charles Gora
- Department of Psychiatry and Neurosciences, Université Laval, Québec, Canada; CERVO Brain Research Center, Québec, Canada
| | - Erica Y Scott
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Celeste Gomes
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Markley Silva Oliveira
- Neuroregeneration Laboratory, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Tanvi Sharma
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Emerson Daniele
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Arman Olfat
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Gibbs
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Emily A Gilbert
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Küry
- Neuroregeneration Laboratory, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Université Laval, Québec, Canada; CERVO Brain Research Center, Québec, Canada
| | - Maryam Faiz
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
130
|
Megagiannis P, Mei Y, Yan RE, Yuan L, Wilde JJ, Eckersberg H, Suresh R, Tan X, Chen H, Farmer WT, Cha K, Le PU, Catoire H, Rochefort D, Kwan T, Yee BA, Dion P, Krishnaswamy A, Cloutier JF, Stifani S, Petrecca K, Yeo GW, Murai KK, Feng G, Rouleau GA, Ideker T, Sanjana NE, Zhou Y. Autism-associated CHD8 controls reactive gliosis and neuroinflammation via remodeling chromatin in astrocytes. Cell Rep 2024; 43:114637. [PMID: 39154337 DOI: 10.1016/j.celrep.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help us to understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of autism spectrum disorder (ASD)-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an adeno-associated virus (AAV)-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting chromatin remodelers in reactive gliosis and neuroinflammation in injury and neurological diseases.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuan Mei
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rachel E Yan
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Lin Yuan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jonathan J Wilde
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailey Eckersberg
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Hong Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Kuwook Cha
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Phuong Uyen Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Helene Catoire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Daniel Rochefort
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tony Kwan
- McGill Genome Center and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Patrick Dion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jean-Francois Cloutier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
131
|
Bai G, Ling J, Lu J, Fang M, Yu S. Adiponectin receptor agonist AdipoRon alleviates memory impairment in the hippocampus of septic mice. Behav Brain Res 2024; 472:115174. [PMID: 39098398 DOI: 10.1016/j.bbr.2024.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common and severe clinical feature of sepsis; however, therapeutic approaches are limited because of the unclear pathogenesis. Adiponectin receptor agonist (AdipoRon) is a small-molecule agonist of the adiponectin receptor that exhibits anti-inflammatory and memory-improving effects in various diseases. In the present study, we established lipopolysaccharide (LPS)-induced mice models of SAE and found that Adiponectin receptor 1 (AdipoR1) was significantly decreased in the hippocampus. Administration of AdipoRon improves memory impairment, mitigates synaptic damage, and alleviates neuronal death. Furthermore, AdipoRon reduces the number of microglia. More importantly, AdipoRon promotes the phosphorylation of adenosine 5 '-monophosphate activated protein kinase (pAMPK). In conclusion, AdipoRon is protective against SAE-induced memory decline and brain injury in the SAE models via activating the hippocampal adenosine 5 '-monophosphate activated protein kinase (AMPK).
Collapse
Affiliation(s)
- Guangyang Bai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jun Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Minghao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Shanshan Yu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
132
|
Brenner M, Parpura V. The Role of Astrocytes in CNS Disorders: Historic and Contemporary Views. Cells 2024; 13:1388. [PMID: 39195276 PMCID: PMC11352414 DOI: 10.3390/cells13161388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
This Special Issue of Cells presents a collection of 22 published, peer-reviewed articles on the theme of "Astrocytes in CNS Disorders," including 9 reviews of the evidence implicating astrocytes in the etiology of specific disorders, and 13 original research papers providing such evidence [...].
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
133
|
Sun R, Liao W, Lang T, Qin K, Jiao K, Shao L, Deng C, She Y. Astrocyte-derived exosomal miR-378a-5p mitigates cerebral ischemic neuroinflammation by modulating NLRP3-mediated pyroptosis. Front Immunol 2024; 15:1454116. [PMID: 39176087 PMCID: PMC11338813 DOI: 10.3389/fimmu.2024.1454116] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Objective This study aimed to investigate the regulatory role of astrocyte-derived exosomes and their microRNAs (miRNAs) in modulating neuronal pyroptosis during cerebral ischemia. Methods Astrocyte-derived exosomes were studied for treating cerebral ischemia in both in vitro and in vivo models. The effects of astrocyte-derived exosomes on neuroinflammation were investigated by analyzing exosome uptake, nerve damage, and pyroptosis protein expression. High throughput sequencing was used to identify astrocyte-derived exosomal miRNAs linked to pyroptosis, followed by validation via qRT‒PCR. The relationship between these miRNAs and NLRP3 was studied using a dual luciferase reporter assay. This study used miR-378a-5p overexpression and knockdown to manipulate OGD injury in nerve cells. The impact of astrocyte-derived exosomal miR-378a-5p on the regulation of cerebral ischemic neuroinflammation was assessed through analysis of nerve injury and pyroptosis protein expression. Results Our findings demonstrated that astrocyte-derived exosomes were internalized by neurons both in vitro and in vivo. Additionally, Astrocyte-derived exosomes displayed a neuroprotective effect against OGD-induced neuronal injury and brain injury in the ischemic cortical region of middle cerebral artery occlusion (MCAO) rats while also reducing pyroptosis. Further investigations revealed the involvement of astrocyte-derived exosomal miR-378a-5p in regulating pyroptosis by inhibiting NLRP3. The overexpression of miR-378a-5p mitigated neuronal damage, whereas the knockdown of miR-378a-5p increased NLRP3 expression and exacerbated pyroptosis, thus reversing this neuroprotective effect. Conclusion Astrocyte-derived exosomal miR-378a-5p has a neuroprotective effect on cerebral ischemia by suppressing neuroinflammation associated with NLRP3-mediated pyroptosis.Further research is required to comprehensively elucidate the signaling pathways by which astrocyte-derived exosomal miR-378a-5p modulates neuronal pyroptosis.
Collapse
Affiliation(s)
- Ruiting Sun
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenxin Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Lang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Keyi Qin
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Keyan Jiao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Changqing Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yan She
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
134
|
Theparambil SM, Kopach O, Braga A, Nizari S, Hosford PS, Sagi-Kiss V, Hadjihambi A, Konstantinou C, Esteras N, Gutierrez Del Arroyo A, Ackland GL, Teschemacher AG, Dale N, Eckle T, Andrikopoulos P, Rusakov DA, Kasparov S, Gourine AV. Adenosine signalling to astrocytes coordinates brain metabolism and function. Nature 2024; 632:139-146. [PMID: 38961289 PMCID: PMC11291286 DOI: 10.1038/s41586-024-07611-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Abstract
Brain computation performed by billions of nerve cells relies on a sufficient and uninterrupted nutrient and oxygen supply1,2. Astrocytes, the ubiquitous glial neighbours of neurons, govern brain glucose uptake and metabolism3,4, but the exact mechanisms of metabolic coupling between neurons and astrocytes that ensure on-demand support of neuronal energy needs are not fully understood5,6. Here we show, using experimental in vitro and in vivo animal models, that neuronal activity-dependent metabolic activation of astrocytes is mediated by neuromodulator adenosine acting on astrocytic A2B receptors. Stimulation of A2B receptors recruits the canonical cyclic adenosine 3',5'-monophosphate-protein kinase A signalling pathway, leading to rapid activation of astrocyte glucose metabolism and the release of lactate, which supplements the extracellular pool of readily available energy substrates. Experimental mouse models involving conditional deletion of the gene encoding A2B receptors in astrocytes showed that adenosine-mediated metabolic signalling is essential for maintaining synaptic function, especially under conditions of high energy demand or reduced energy supply. Knockdown of A2B receptor expression in astrocytes led to a major reprogramming of brain energy metabolism, prevented synaptic plasticity in the hippocampus, severely impaired recognition memory and disrupted sleep. These data identify the adenosine A2B receptor as an astrocytic sensor of neuronal activity and show that cAMP signalling in astrocytes tunes brain energy metabolism to support its fundamental functions such as sleep and memory.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, UK.
| | - Olga Kopach
- Institute of Neurology, University College London, London, UK
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Virag Sagi-Kiss
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research & Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christos Konstantinou
- The Roger Williams Institute of Hepatology, Foundation for Liver Research & Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Noemi Esteras
- Institute of Neurology, University College London, London, UK
| | - Ana Gutierrez Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anja G Teschemacher
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tobias Eckle
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Petros Andrikopoulos
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Sergey Kasparov
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
135
|
Heffernan KS, Martinez I, Jaeger D, Khakh BS, Smith Y, Galvan A. Scaled Complexity of Mammalian Astrocytes: Insights From Mouse and Macaque. J Comp Neurol 2024; 532:e25665. [PMID: 39235147 PMCID: PMC11378921 DOI: 10.1002/cne.25665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/10/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Astrocytes intricately weave within the neuropil, giving rise to characteristic bushy morphologies. Pioneering studies suggested that primate astrocytes are more complex due to increased branch numbers and territory size compared to rodent counterparts. However, there has been no comprehensive comparison of astrocyte morphology across species. We employed several techniques to investigate astrocyte morphology and directly compared them between mice and rhesus macaques in cortical and subcortical regions. We assessed astrocyte density, territory size, branching structure, fine morphological complexity, and interactions with neuronal synapses using a combination of techniques, including immunohistochemistry, adeno-associated virus-mediated transduction of astrocytes, diOlistics, confocal imaging, and electron microscopy. We found significant morphological similarities between primate and rodent astrocytes, suggesting that astrocyte structure has scaled with evolution. Our findings show that primate astrocytes are larger and more numerous than those in rodents but contest the view that primate astrocytes are morphologically far more complex.
Collapse
Affiliation(s)
- Kate S Heffernan
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia, USA
| | | | - Dieter Jaeger
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia, USA
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Adriana Galvan
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
136
|
Afridi R, Kim JH, Bhusal A, Lee WH, Suk K. Lipocalin-2 as a mediator of neuroimmune communication. J Leukoc Biol 2024; 116:357-368. [PMID: 38149462 DOI: 10.1093/jleuko/qiad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Lipocalin-2, a neutrophil gelatinase-associated lipocalin, is a 25-kDa secreted protein implicated in a broad range of inflammatory diseases affecting the brain and periphery. It is a pleotropic protein expressed by various immune and nonimmune cells throughout the body. Importantly, the surge in lipocalin-2 levels in disease states has been associated with a myriad of undesirable effects, further exacerbating the ongoing pathological processes. In the brain, glial cells are the principal source of lipocalin-2, which plays a definitive role in determining their functional phenotypes. In different central nervous system pathologies, an increased expression of glial lipocalin-2 has been linked to neurotoxicity. Lipocalin-2 mediates a crosstalk between central and peripheral immune cells under neuroinflammatory conditions. One intriguing aspect is that elevated lipocalin-2 levels in peripheral disorders, such as cancer, metabolic conditions, and liver diseases, potentially incite an inflammatory activation of glial cells while disrupting neuronal functions. This review comprehensively summarizes the influence of lipocalin-2 on the exacerbation of neuroinflammation by regulating various cellular processes. Additionally, this review explores lipocalin-2 as a mediator of neuroimmune crosstalk in various central nervous system pathologies and highlights the role of lipocalin-2 in carrying inflammatory signals along the neuroimmune axis.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
137
|
Habean ML, Kaiser KE, Williams JL. Orchestrating Stress Responses in Multiple Sclerosis: A Role for Astrocytic IFNγ Signaling. Int J Mol Sci 2024; 25:7524. [PMID: 39062765 PMCID: PMC11276796 DOI: 10.3390/ijms25147524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that is characterized by the infiltration of peripheral immune cells into the central nervous system (CNS), secretion of inflammatory factors, demyelination, and axonal degeneration. Inflammatory mediators such as cytokines alter cellular function and activate resident CNS cells, including astrocytes. Notably, interferon (IFN)γ is a prominent pleiotropic cytokine involved in MS that contributes to disease pathogenesis. Astrocytes are dynamic cells that respond to changes in the cellular microenvironment and are highly responsive to many cytokines, including IFNγ. Throughout the course of MS, intrinsic cell stress is initiated in response to inflammation, which can impact the pathology. It is known that cell stress is pronounced during MS; however, the specific mechanisms relating IFNγ signaling to cell stress responses in astrocytes are still under investigation. This review will highlight the current literature regarding the impact of IFNγ signaling alone and in combination with other immune mediators on astrocyte synthesis of free oxygen radicals and cell death, and cover what is understood regarding astrocytic mitochondrial dysfunction and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Maria L. Habean
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Kaitlin E. Kaiser
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| |
Collapse
|
138
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
139
|
Li G, Zhao Y, Ma W, Gao Y, Zhao C. Systems-level computational modeling in ischemic stroke: from cells to patients. Front Physiol 2024; 15:1394740. [PMID: 39015225 PMCID: PMC11250596 DOI: 10.3389/fphys.2024.1394740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ischemic stroke, a significant threat to human life and health, refers to a class of conditions where brain tissue damage is induced following decreased cerebral blood flow. The incidence of ischemic stroke has been steadily increasing globally, and its disease mechanisms are highly complex and involve a multitude of biological mechanisms at various scales from genes all the way to the human body system that can affect the stroke onset, progression, treatment, and prognosis. To complement conventional experimental research methods, computational systems biology modeling can integrate and describe the pathogenic mechanisms of ischemic stroke across multiple biological scales and help identify emergent modulatory principles that drive disease progression and recovery. In addition, by running virtual experiments and trials in computers, these models can efficiently predict and evaluate outcomes of different treatment methods and thereby assist clinical decision-making. In this review, we summarize the current research and application of systems-level computational modeling in the field of ischemic stroke from the multiscale mechanism-based, physics-based and omics-based perspectives and discuss how modeling-driven research frameworks can deliver insights for future stroke research and drug development.
Collapse
Affiliation(s)
- Geli Li
- Gusu School, Nanjing Medical University, Suzhou, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yanyong Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wen Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- QSPMed Technologies, Nanjing, China
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
140
|
Ferreira AFF, Ulrich H, Feng ZP, Sun HS, Britto LR. Neurodegeneration and glial morphological changes are both prevented by TRPM2 inhibition during the progression of a Parkinson's disease mouse model. Exp Neurol 2024; 377:114780. [PMID: 38649091 DOI: 10.1016/j.expneurol.2024.114780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by dopaminergic neuron death and neuroinflammation. Emerging evidence points to the involvement of the transient receptor potential melastatin 2 (TRPM2) channel in neuron death and glial activation in several neurodegenerative diseases. However, the involvement of TRPM2 in PD and specifically its relation to the neuroinflammation aspect of the disease remains poorly understood. Here, we hypothesized that AG490, a TRPM2 inhibitor, can be used as a treatment in a mouse model of PD. Mice underwent stereotaxic surgery for 6-hydroxydopamine (6-OHDA) administration in the right striatum. Motor behavioral tests (apomorphine, cylinder, and rotarod) were performed on day 3 post-injection to confirm the PD model induction. AG490 was then daily injected i.p. between days 3 to 6 after surgery. On day 6, motor behavior was assessed again. Substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry, immunoblotting, and RT-qPCR analysis on day 7. Our results revealed that AG490 post-treatment reduced motor behavior impairment and nigrostriatal neurodegeneration. In addition, the compound prevented TRPM2 upregulation and changes of the Akt/GSK-3β/caspase-3 signaling pathway. The TRPM2 inhibition also avoids the glial morphology changes observed in the PD group. Remarkably, the morphometrical analysis revealed that the ameboid-shaped microglia, found in 6-OHDA-injected animals, were no longer present in the AG490-treated group. These results indicate that AG490 treatment can reduce dopaminergic neuronal death and suppress neuroinflammation in a PD mouse model. Inhibition of TRPM2 by AG490 could then represent a potential therapeutical strategy to be evaluated for PD treatment.
Collapse
Affiliation(s)
- Ana Flavia F Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
141
|
Baldwin KT, Murai KK, Khakh BS. Astrocyte morphology. Trends Cell Biol 2024; 34:547-565. [PMID: 38180380 PMCID: PMC11590062 DOI: 10.1016/j.tcb.2023.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system (CNS). A cardinal feature of astrocytes is their complex and visually enchanting morphology, referred to as bushy, spongy, and star-like. A central precept of this review is that such complex morphological shapes evolved to allow astrocytes to contact and signal with diverse cells at a range of distances in order to sample, regulate, and contribute to the extracellular milieu, and thus participate widely in cell-cell signaling during physiology and disease. The recent use of improved imaging methods and cell-specific molecular evaluations has revealed new information on the structural organization and molecular underpinnings of astrocyte morphology, the mechanisms of astrocyte morphogenesis, and the contributions to disease states of reduced morphology. These insights have reignited interest in astrocyte morphological complexity as a cornerstone of fundamental glial biology and as a critical substrate for multicellular spatial and physiological interactions in the CNS.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA.
| |
Collapse
|
142
|
Kim S, Jang G, Kim H, Lim D, Han KA, Um JW, Ko J. MDGAs perform activity-dependent synapse type-specific suppression via distinct extracellular mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2322978121. [PMID: 38900791 PMCID: PMC11214077 DOI: 10.1073/pnas.2322978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Gyubin Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Hyeonho Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Dongseok Lim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| |
Collapse
|
143
|
Meadows SM, Palaguachi F, Jang MW, Licht-Murava A, Barnett D, Zimmer TS, Zhou C, McDonough SR, Orr AL, Orr AG. Hippocampal astrocytes induce sex-dimorphic effects on memory. Cell Rep 2024; 43:114278. [PMID: 38795347 PMCID: PMC11234507 DOI: 10.1016/j.celrep.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024] Open
Abstract
Astrocytic receptors influence cognitive function and can promote behavioral deficits in disease. These effects may vary based on variables such as biological sex, but it is not known if the effects of astrocytic receptors are dependent on sex. We leveraged in vivo gene editing and chemogenetics to examine the roles of astrocytic receptors in spatial memory and other processes. We show that reductions in metabotropic glutamate receptor 3 (mGluR3), the main astrocytic glutamate receptor in adults, impair memory in females but enhance memory in males. Similarly, increases in astrocytic mGluR3 levels have sex-dependent effects and enhance memory in females. mGluR3 manipulations also alter spatial search strategies during recall in a sex-specific manner. In addition, acute chemogenetic stimulation of Gi/o-coupled or Gs-coupled receptors in hippocampal astrocytes induces bidirectional and sex-dimorphic effects on memory. Thus, astrocytes are sex-dependent modulators of cognitive function and may promote sex differences in aging and disease.
Collapse
Affiliation(s)
- Samantha M Meadows
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Minwoo Wendy Jang
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Avital Licht-Murava
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel Barnett
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Till S Zimmer
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Constance Zhou
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Samantha R McDonough
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Adam L Orr
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anna G Orr
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA.
| |
Collapse
|
144
|
Bielefeld P, Martirosyan A, Martín-Suárez S, Apresyan A, Meerhoff GF, Pestana F, Poovathingal S, Reijner N, Koning W, Clement RA, Van der Veen I, Toledo EM, Polzer O, Durá I, Hovhannisyan S, Nilges BS, Bogdoll A, Kashikar ND, Lucassen PJ, Belgard TG, Encinas JM, Holt MG, Fitzsimons CP. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun 2024; 15:5222. [PMID: 38890340 PMCID: PMC11189490 DOI: 10.1038/s41467-024-49299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.
Collapse
Affiliation(s)
- P Bielefeld
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A Martirosyan
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Martín-Suárez
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - A Apresyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - G F Meerhoff
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - F Pestana
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Poovathingal
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - N Reijner
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - W Koning
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - R A Clement
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Van der Veen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E M Toledo
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - O Polzer
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Durá
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - S Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - B S Nilges
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - A Bogdoll
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
| | - N D Kashikar
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - P J Lucassen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J M Encinas
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, Bilbao, Spain
| | - M G Holt
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- KU Leuven-Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - C P Fitzsimons
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
145
|
Hu Y, Zou Y, Zhang M, Yan J, Zheng Y, Chen Y. The relationship between major depressive disorder and dementia: A bidirectional two-sample Mendelian randomization study. J Affect Disord 2024; 355:167-174. [PMID: 38548196 DOI: 10.1016/j.jad.2024.03.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and dementia psychiatric and neurological diseases that are clinically widespread, but whether there is a causal link between them is still unclear. In this study, bidirectional two-sample Mendelian randomization (MR) was used to investigate the potential causal relationship between MDD and dementia via a genome-wide association study (GWAS) database, containing samples from the European population. METHOD We collected data on MDD and common clinical dementia subtypes from GWAS, including Alzheimer's disease (AD), frontotemporal dementia (FTD), dementia with Lewy bodies (DLB), Parkinson's disease with dementia (PDD), and vascular dementia (VaD). A series of bidirectional two-sample MR studies and correlation sensitivity analysis were carried out. RESULTS In the study of the effect of MDD on dementia subtypes, no causal relationship was found between MDD and dementia subtypes other than VaD, inverse variance weighted (IVW) method: odds ratio (OR), 2.131; 95 % confidence interval (CI), 1.249-3.639, P = 0.006; MDD-AD: OR, 1.000; 95 % CI, 0.999-1.001, P = 0.537; MDD-FTD: OR, 1.476; 95 % CI, 0.471-4.627, P = 0.505; MDD-PDD: OR, 0.592; 95 % CI, 0.204-1.718, P = 0.335; MR-Egger method: MDD-DLB: OR, 0.582; 95 % CI, 0.021-15.962, P = 0.751. In reverse MR analyses, no dementia subtype was found to be a risk factor for MDD. LIMITATIONS The results of this study may not be generalizable to non-European populations. CONCLUSION MDD was identified as a potential risk factor for VaD, but no dementia subtype was found to be a risk factor for MDD. These results suggest a new avenue for the prevention of VaD.
Collapse
Affiliation(s)
- Yijun Hu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Yuntao Zou
- Weifang Hospital of Traditional Chinese Medicine, Wei Fang, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, PR China.
| |
Collapse
|
146
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
147
|
Hale BD, Severin Y, Graebnitz F, Stark D, Guignard D, Mena J, Festl Y, Lee S, Hanimann J, Zangger NS, Meier M, Goslings D, Lamprecht O, Frey BM, Oxenius A, Snijder B. Cellular architecture shapes the naïve T cell response. Science 2024; 384:eadh8697. [PMID: 38843327 DOI: 10.1126/science.adh8967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.
Collapse
MESH Headings
- Animals
- Mice
- Calcium/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/ultrastructure
- Cell Differentiation
- Immunologic Memory
- Lymphocyte Activation
- Mice, Inbred C57BL
- Nuclear Envelope/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Microscopy, Fluorescence
- Fluorescent Antibody Technique
- Humans
Collapse
Affiliation(s)
- Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fabienne Graebnitz
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Guignard
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jacob Hanimann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nathan S Zangger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Michelle Meier
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - David Goslings
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Olga Lamprecht
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Beat M Frey
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zürich, Switzerland
| |
Collapse
|
148
|
Barsanti S, Viana JF, Veiga A, Machado JL, Abreu DS, Dias JD, Monteiro S, Silva NA, Pinto L, Oliveira JF. Assessing Different Histological Preparations for Reconstruction of Astrocyte Tridimensional Structure. Cells 2024; 13:969. [PMID: 38891101 PMCID: PMC11171983 DOI: 10.3390/cells13110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Astrocytes are ubiquitous in the brain and spinal cord and display a complex morphology important for the local interactions with neighboring cells, resulting in the modulation of circuit function. Thus, studies focusing on astrocyte physiology in the healthy and diseased brain generally present analyses of astrocytic structure. The labeling method used to visualize the astrocytic structure defines the morphological level to observe and may vary depending on the anatomical sub-regions. The method choice may significantly affect our understanding of their structural diversity. The main goal of this work was to identify a straightforward and efficient protocol for labeling and reconstructing a detailed astrocytic structure to apply and validate in different brain tissue preparations across laboratories. For that, we explored different tissue processing protocols before GFAP labeling to determine the most effective method for reconstructing astrocytic backbones in the mouse hippocampus. Our results show that the reconstruction of astrocytic structure in vibratome sections labeled by free-floating immunofluorescence protocol provides a more practical method to achieve a higher level of detail and arbor complexity in astrocyte backbone reconstruction. Free-floating immunofluorescence labeling is the most reliable method for obtaining better antibody penetration and more detailed astrocyte structure. Finally, we also show that introducing an antigen retrieval step appears useful for visualizing more complete structural details.
Collapse
Affiliation(s)
- Sara Barsanti
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Alexandra Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João Luís Machado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Daniela Sofia Abreu
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - José Duarte Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Applied Artificial Intelligence Laboratory, Polytechnic Institute of Cávado and Ave, Campus of IPCA, 4750-810 Barcelos, Portugal
| |
Collapse
|
149
|
Liu Y, Chen L, Lin L, Xu C, Xiong Y, Qiu H, Li X, Li S, Cao H. Unveiling the hidden pathways: Exploring astrocytes as a key target for depression therapy. J Psychiatr Res 2024; 174:101-113. [PMID: 38626560 DOI: 10.1016/j.jpsychires.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Depressive disorders are widely debilitating psychiatric disease. Despite the considerable progress in the field of depression therapy, extensive research spanning many decades has failed to uncover pathogenic pathways that might aid in the creation of long-acting and rapid-acting antidepressants. Consequently, it is imperative to reconsider existing approaches and explore other targets to improve this area of study. In contemporary times, several scholarly investigations have unveiled that persons who have received a diagnosis of depression, as well as animal models employed to study depression, demonstrate a decrease in both the quantity as well as density of astrocytes, accompanied by alterations in gene expression and morphological attributes. Astrocytes rely on a diverse array of channels and receptors to facilitate their neurotransmitter transmission inside tripartite synapses. This study aimed to investigate the potential processes behind the development of depression, specifically focusing on astrocyte-associated neuroinflammation and the involvement of several molecular components such as connexin 43, potassium channel Kir4.1, aquaporin 4, glutamatergic aspartic acid transporter protein, SLC1A2 or GLT-1, glucocorticoid receptors, 5-hydroxytryptamine receptor 2B, and autophagy, that localized on the surface of astrocytes. The study also explores novel approaches in the treatment of depression, with a focus on astrocytes, offering innovative perspectives on potential antidepressant medications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Gastroenterology, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lin Lin
- Scientific Research Management Department, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Yifan Xiong
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| |
Collapse
|
150
|
Lan XY, Kalkowski L, Chu CY, Jablonska A, Li S, Kai M, Gao Y, Janowski M, Walczak P. Unlocking the Potential of Ultra-High Dose Fractionated Radiation for Effective Treatment of Glioblastoma in Mice. J Cancer 2024; 15:4060-4071. [PMID: 38947383 PMCID: PMC11212101 DOI: 10.7150/jca.95148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Current radiotherapy regimens for glioblastoma (GBM) have limited efficacy and fails to eradicate tumors. Regenerative medicine brings hope for repairing damaged tissue, opening opportunities for elevating the maximum acceptable radiation dose. In this study, we explored the effect of ultra-high dose fractionated radiation on tumor responses and brain injury in immunocompetent mice which can better mimic the tumor-host interactions observed in patients. We also evaluated the role of the hypoxia-inducible factor-1 alpha under radiation as potential target for combating radiation-induced brain injury. Methods: Naïve and Hif-1α+/- heterozygous mice received a fractionated daily dose of 20 Gy for three or five consecutive days. Magnetic resonance imaging (MRI) and histology were performed to assess brain injury post-radiation. The 2×105 human GBM1 luciferase-expressing cells were transplanted with tolerance induction protocol. Fractionated radiotherapy was performed during the exponential phase of tumor growth. Bioluminescence imaging, MRI, and immunohistochemistry staining were performed to evaluate tumor growth dynamics and radiotherapy responses. Additionally, animal lifespan was recorded. Results: Fractionated radiation of 5×20 Gy induced severe brain damage, starting 3 weeks after radiation. All animals from this group died within 12 weeks. In contrast, later onset and less severe brain injury were observed starting 12 weeks after radiation of 3×20 Gy. It resulted in complete GBM eradication and survival of all treated animals. Furthermore, Hif-1α+/- mice exhibited more severe vascular damage after fractionated radiation of 3×20 Gy. Conclusion: Ultra-high dose fractionated 3×20 Gy radiation has the potential to fully eradicate GBM cells at the cost of only mild brain injury. The Hif-1α gene is a promising target for ameliorating vascular impairment post-radiation, encouraging the implementation of neurorestorative strategies.
Collapse
Affiliation(s)
- Xiao-Yan Lan
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Lukasz Kalkowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Cheng-Yan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yue Gao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|