101
|
Cetin B, Wabl CA, Gumusay O. CDK4/6 inhibitors: mechanisms of resistance and potential biomarkers of responsiveness in breast cancer. Future Oncol 2022; 18:1143-1157. [PMID: 35137602 DOI: 10.2217/fon-2021-0842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hormone receptor (HR)-positive, HER2-negative tumors represent the most common form of metastatic breast cancer (MBC), and endocrine therapy has been the mainstay treatment for several decades. Recently, a novel drug class called CDK4/6 inhibitors in combination with endocrine therapy have remarkably improved the outcome of patients with HR-positive, HER2-negative MBC by targeting the cell cycle machinery and overcoming aspects of endocrine resistance. Several potential cell-cycle-specific and nonspecific mechanisms of resistance to CDK4/6 inhibitors have been reported in recent studies. This review discusses potential resistance mechanisms to CDK4/6 inhibitors, the use of biomarkers to guide treatment for HR-positive, HER2-negative MBC and possible approaches to overcome resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Bulent Cetin
- Department of Internal Medicine, Division of Medical Oncology, Suleyman Demirel University Faculty of Medicine, Isparta, 32260, Turkey
| | - Chiara A Wabl
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Ozge Gumusay
- University of California Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| |
Collapse
|
102
|
Zhou X, Liu G, Xu M, Ying X, Li B, Cao F, Cheng S, Xiao B, Cheng M, Liang L, Jia M, Li W, Liu J, Li Z. Comprehensive analysis of PTEN-related ceRNA network revealing the key pathways WDFY3-AS2 - miR-21-5p/miR-221-3p/miR-222-3p - TIMP3 as potential biomarker in tumorigenesis and prognosis of kidney renal clear cell carcinoma. Mol Carcinog 2022; 61:508-523. [PMID: 35129856 DOI: 10.1002/mc.23396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most common malignancies, and there is still a lack of effective biomarkers for early detection and prognostic prediction. In here, we compared the characteristics of RNA sequencing data sets of KIRC samples based on the tumor suppressor gene phosphatase and tensin homolog (PTEN). The 1016 long noncoding RNAs, 48 microRNAs (miRNAs), and 2104 messenger RNAs associated with PTEN were identified and these genes were differentially expressed between tumor and paracancerous tissues. The most relevant pathway was found to be WDFY3-AS2 - miR-21-5p/miR-221-3p/miR-222-3p - TIMP3 according to the rules of competing endogenous RNA (ceRNA) regulation. WDFY3-AS2 and TIMP3 expression were positively correlated and reduced in KIRC samples, while miR-21-5p, miR-221-3p, and miR-222-3p were relatively highly expressed. The relatively low expression of WDFY3-AS2 and TIMP3 in KIRC were associated with poor prognosis in KIRC patients, while higher expression of miR-21-5p, miR-221-3p, and miR-222-3p predicted reduced survival (p < 0.05). Univariate and multivariate Cox regression analysis showed that lower expression of WDFY3-AS2 and TIMP3 was significantly related to tumor grade, tumor size, lymph node metastasis, distant metastasis, and TNM stage. The expression of TIMP3 in KIRC tissues was also verified by immunohistochemistry, and the results were consistent with our analytical data. In summary, this study constructed a new model with clinical predictive value and identified the WDFY3-AS2/TIMP3 pathway that was closely associated with the prognosis of KIRC, which could serve as a promising biomarker for the diagnosis and treatment of KIRC.
Collapse
Affiliation(s)
- Xishan Zhou
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Guofeng Liu
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Mo Xu
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Xintao Ying
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Bianfeng Li
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Fengxi Cao
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Shuqiang Cheng
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Beibei Xiao
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Miao Cheng
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Liang Liang
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Mingxi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Jiheng Liu
- Department of Hematology and Oncology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, Hunan, China
| |
Collapse
|
103
|
Pasha N, Turner NC. Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment. NATURE CANCER 2022; 2:680-692. [PMID: 35121946 DOI: 10.1038/s43018-021-00229-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/02/2021] [Indexed: 12/28/2022]
Abstract
Rational development of targeted therapies has revolutionized metastatic breast cancer outcomes, although resistance to treatment remains a major challenge. Advances in molecular profiling and imaging technologies have provided evidence for the impact of clonal diversity in cancer treatment resistance, through the outgrowth of resistant clones. In this Review, we focus on the genomic processes that drive tumoral heterogeneity and the mechanisms of resistance underlying metastatic breast cancer treatment and discuss implications for future treatment strategies.
Collapse
Affiliation(s)
- Nida Pasha
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Nicholas C Turner
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK. .,Ralph Lauren Centre for Breast Cancer Research and Breast Unit, Royal Marsden Hospital, London, UK.
| |
Collapse
|
104
|
Li Q, Jiang B, Guo J, Shao H, Del Priore IS, Chang Q, Kudo R, Li Z, Razavi P, Liu B, Boghossian AS, Rees MG, Ronan MM, Roth JA, Donovan KA, Palafox M, Reis-Filho JS, de Stanchina E, Fischer ES, Rosen N, Serra V, Koff A, Chodera JD, Gray NS, Chandarlapaty S. INK4 Tumor Suppressor Proteins Mediate Resistance to CDK4/6 Kinase Inhibitors. Cancer Discov 2022; 12:356-371. [PMID: 34544752 PMCID: PMC8831444 DOI: 10.1158/2159-8290.cd-20-1726] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/13/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) represent a major therapeutic vulnerability for breast cancer. The kinases are clinically targeted via ATP competitive inhibitors (CDK4/6i); however, drug resistance commonly emerges over time. To understand CDK4/6i resistance, we surveyed over 1,300 breast cancers and identified several genetic alterations (e.g., FAT1, PTEN, or ARID1A loss) converging on upregulation of CDK6. Mechanistically, we demonstrate CDK6 causes resistance by inducing and binding CDK inhibitor INK4 proteins (e.g., p18INK4C). In vitro binding and kinase assays together with physical modeling reveal that the p18INK4C-cyclin D-CDK6 complex occludes CDK4/6i binding while only weakly suppressing ATP binding. Suppression of INK4 expression or its binding to CDK6 restores CDK4/6i sensitivity. To overcome this constraint, we developed bifunctional degraders conjugating palbociclib with E3 ligands. Two resulting lead compounds potently degraded CDK4/6, leading to substantial antitumor effects in vivo, demonstrating the promising therapeutic potential for retargeting CDK4/6 despite CDK4/6i resistance. SIGNIFICANCE: CDK4/6 kinase activation represents a common mechanism by which oncogenic signaling induces proliferation and is potentially targetable by ATP competitive inhibitors. We identify a CDK6-INK4 complex that is resilient to current-generation inhibitors and develop a new strategy for more effective inhibition of CDK4/6 kinases.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Jiaye Guo
- Computational & Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hong Shao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Isabella S Del Priore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Qing Chang
- Anti-Tumor Assessment, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rei Kudo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhiqiang Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pedram Razavi
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Marta Palafox
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Anti-Tumor Assessment, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Neal Rosen
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Andrew Koff
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John D Chodera
- Computational & Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
105
|
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) and their activating partners, D-type cyclins, link the extracellular environment with the core cell cycle machinery. Constitutive activation of cyclin D–CDK4/6 represents the driving force of tumorigenesis in several cancer types. Small-molecule inhibitors of CDK4/6 have been used with great success in the treatment of hormone receptor–positive breast cancers and are in clinical trials for many other tumor types. Unexpectedly, recent work indicates that inhibition of CDK4/6 affects a wide range of cellular functions such as tumor cell metabolism and antitumor immunity. We discuss how recent advances in understanding CDK4/6 biology are opening new avenues for the future use of cyclin D–CDK4/6 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
106
|
Liu J, Peng Y, Wei W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol 2022; 32:30-44. [PMID: 34304958 PMCID: PMC8688170 DOI: 10.1016/j.tcb.2021.07.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Aberrancy in cell cycle progression is one of the fundamental mechanisms underlying tumorigenesis, making regulators of the cell cycle machinery rational anticancer therapeutic targets. A growing body of evidence indicates that the cell cycle regulatory pathway integrates into other hallmarks of cancer, including metabolism remodeling and immune escape. Thus, therapies against cell cycle machinery components can not only repress the division of cancer cells, but also reverse cancer metabolism and restore cancer immune surveillance. Besides the ongoing effects on the development of small molecule inhibitors (SMIs) of the cell cycle machinery, proteolysis targeting chimeras (PROTACs) have recently been used to target these oncogenic proteins related to cell cycle progression. Here, we discuss the rationale of cell cycle targeting therapies, particularly PROTACs, to more efficiently retard tumorigenesis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
107
|
Pandey K, Katuwal NB, Park N, Hur J, Cho YB, Kim SK, Lee SA, Kim I, Lee SR, Moon YW. Combination of Abemaciclib following Eribulin Overcomes Palbociclib-Resistant Breast Cancer by Inhibiting the G2/M Cell Cycle Phase. Cancers (Basel) 2022; 14:210. [PMID: 35008374 PMCID: PMC8750394 DOI: 10.3390/cancers14010210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains a leading cancer burden among women worldwide. Acquired resistance of cyclin-dependent kinase (CDK) 4/6 inhibitors occurs in almost all hormone receptor (HR)-positive subtype cases, comprising 70% of breast cancers, although CDK4/6 inhibitors combined with endocrine therapy are highly effective. CDK4/6 inhibitors are not expected to cooperate with cytotoxic chemotherapy based on the basic cytotoxic chemotherapy mode of action that inhibits rapidly proliferating cells. The palbociclib-resistant preclinical model developed in the current study investigated whether the combination of abemaciclib, CDK4/6 inhibitor with eribulin, an antimitotic chemotherapy could be a strategy to overcome palbociclib-resistant HR-positive breast cancer. The current study demonstrated that sequential abemaciclib treatment following eribulin synergistically suppressed CDK4/6 inhibitor-resistant cells by inhibiting the G2/M cell cycle phase more effectively. The current study showed the significant association of the pole-like kinase 1 (PLK1) level and palbociclib resistance. Moreover, the cumulative PLK1 inhibition in the G2/M phase by each eribulin or abemaciclib proved to be a mechanism of the synergistic effect. The synergistic antitumor effect was also supported by in vivo study. The sequential combination of abemaciclib following eribulin merits further clinical trials to overcome resistance to CDK4/6 inhibitors in HR-positive breast cancer.
Collapse
Affiliation(s)
- Kamal Pandey
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam 13620, Korea
| | - Nar Bahadur Katuwal
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam 13620, Korea
| | - Nahee Park
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
| | - Jin Hur
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam 13620, Korea
| | - Young Bin Cho
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
| | - Seung Ki Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13620, Korea; (S.K.K.); (S.A.L.); (I.K.)
| | - Seung Ah Lee
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13620, Korea; (S.K.K.); (S.A.L.); (I.K.)
| | - Isaac Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13620, Korea; (S.K.K.); (S.A.L.); (I.K.)
| | - Seung-Ryeol Lee
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 13620, Korea
| | - Yong Wha Moon
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
| |
Collapse
|
108
|
Asghar US, Kanani R, Roylance R, Mittnacht S. Systematic Review of Molecular Biomarkers Predictive of Resistance to CDK4/6 Inhibition in Metastatic Breast Cancer. JCO Precis Oncol 2022; 6:e2100002. [PMID: 35005994 PMCID: PMC8769124 DOI: 10.1200/po.21.00002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/30/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have revolutionized the treatment of hormone-positive metastatic breast cancers (mBCs). They are currently established as standard therapies in combination with endocrine therapy as first- and second-line systemic treatment options for both endocrine-sensitive and endocrine-resistant mBC populations. In the first-line metastatic setting, the median progression-free survival for the three currently approved CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, with aromatase inhibitors is greater than 2 years (palbociclib 27.6 months; ribociclib 25.3 months; and abemaciclib 28.18 months). Although CDK4/6 inhibitors have significant clinical benefits and enable physicians to delay starting chemotherapy, they are expensive and can be associated with drug toxicities. Here, we have performed a systemic review of the reported molecular markers predictive of drug response including intrinsic and acquired resistance for CDK4/6 inhibition in mBC. The rapidly emerging molecular landscape is captured through next-generation sequencing of breast cancers (DNA with or without RNA), liquid biopsies (circulating tumor DNA), and protein analyses. Individual molecular candidates with robust and reliable evidence are discussed in more depth.
Collapse
Affiliation(s)
- Uzma S. Asghar
- Breast Unit, Royal Marsden Hospital, Sutton, United Kingdom
- Croydon University Hospital, Thornton Heath, United Kingdom
- Concr LTD, Babraham Research Campus Limited, Babraham Research Campus, Cambridge, United Kingdom
- Cohort Innovation Space, Southport, QLD, Australia
| | - Ruhi Kanani
- University College London Hospital, London, United Kingdom
| | - Rebecca Roylance
- NIHR Biomedical Research Centre UCLH/UCL, and Breast Unit, University College London Hospital, London, United Kingdom
| | - Sibylle Mittnacht
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
109
|
Zhao J, Xu J, Yang T, Yu X, Cheng C, Zhang T, Ren Z, Li N, Yang F, Li G. Expression, purification and characterisation of a human anti-CDK4 single-chain variable fragment antibody. BMC Biotechnol 2021; 21:71. [PMID: 34930213 PMCID: PMC8690526 DOI: 10.1186/s12896-021-00729-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4 (CDK4) when hyperactivated drives development and maintenance of most tumour types, thus prompting its use as an essential cancer treatment target and a diagnostic tool. Target-binding molecules, such as single-chain variable fragment (scFv) antibodies, hold tremendous potential for use in a wide range of cancer diagnostic and therapeutic applications. RESULTS A human anti-CDK4 scFv antibody (AK2) derived from a human phage display library was expressed in soluble form in Escherichia coli and shown to be secreted into the culture supernatant. Next, soluble AK2 within culture supernatant was successfully purified using affinity chromatography then was shown, using enzyme-linked immunosorbent assays, to bind to recombinant human CDK4 with high affinity and specificity. Further analyses of AK2 interactions with intracellular components demonstrated that AK2 recognised and interacted specifically with endogenous CDK4 and thus could be useful for detection of CDK4 within tumour cells. CONCLUSIONS A novel anti-CDK4 scFv antibody that can recognise and interact specifically with recombinant human CDK4 and endogenous CDK4 in tumour cells was expressed and purified successfully. These results suggest that the anti-CDK4 scFv antibody may serve as a new and promising tool for achieving CDK4-targeted diagnosis, prognosis and treatment of numerous types of cancers.
Collapse
Affiliation(s)
- Jialiang Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jingjing Xu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tianbin Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinze Yu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Cheng Cheng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tong Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Na Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
110
|
Liu C, Huang Y, Qin T, You L, Lu F, Hu D, Xiao R, Qin X, Guo E, Yang B, Li X, Fan J, Li X, Fu Y, Liu S, Wang Z, Dou Y, Wang W, Li W, Yang X, Liu J, Peng W, Zhang L, Cui Y, Sun C, Chen G. AZD5153 reverses palbociclib resistance in ovarian cancer by inhibiting cell cycle-related proteins and the MAPK/PI3K-AKT pathway. Cancer Lett 2021; 528:31-44. [PMID: 34942306 DOI: 10.1016/j.canlet.2021.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022]
Abstract
The CDK4/6 inhibitor, palbociclib has recently entered clinic-trial stage for breast cancer treatment. However, translating its efficacy to other solid tumors has been challenging, especially for aggressive solid tumors. We found that the effect of palbociclib as a single agent was limited due to primary and acquired resistance in multiple ovarian cancer (OC) models. Among these, patient-derived organoid and xenograft models are two most representative models of drug responsiveness in patients with OC. In preclinical models, this study demonstrated that activated MAPK/PI3K-AKT pathway and cell cycle-related proteins induced the resistance to palbociclib, which was overcome by the addition of the bromodomain protein 4 (BRD4) inhibitor AZD5153. Moreover, this study revealed that AZD5153 and palbociclib had a synergistic lethal effect on inducing the cell cycle arrest and increasing apoptosis, even in RB-deficient cell lines. Based on these results, it is anticipated that this class of drugs, including AZD5153, which inhibit the cell cycle-related protein and MAPK/PI3K-AKT pathway, will exhibit synergistic effects with palbociclib in OC.
Collapse
Affiliation(s)
- Chen Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhan Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lixin You
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Funian Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junpeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiong Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuozi Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingyu Dou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenting Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingbo Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenju Peng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaoyuan Cui
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
111
|
Mery B, Poulard C, Le Romancer M, Trédan O. Targeting AKT in ER-Positive HER2-Negative Metastatic Breast Cancer: From Molecular Promises to Real Life Pitfalls? Int J Mol Sci 2021; 22:13512. [PMID: 34948307 PMCID: PMC8706716 DOI: 10.3390/ijms222413512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The AKT protein kinase plays a central role in several interconnected molecular pathways involved in growth, apoptosis, angiogenesis, and cell metabolism. It thereby represents a therapeutic target, especially in hormone receptor-positive (HR) breast cancers, where the PI3K/AKT signaling pathway is largely hyperactivated. Moreover, resistance to therapeutic classes, including endocrine therapy, is associated with the constitutive activation of the PI3K/AKT pathway. Improved knowledge on the molecular mechanisms underlying resistance to endocrine therapy has led to the diversification of the therapeutic arsenal, notably with the development of PI3K and mTOR inhibitors, which are currently approved for the treatment of advanced HR-positive breast cancer patients. AKT itself constitutes a novel pharmacological target for which AKT inhibitors have been developed and tested in clinical trials. However, despite its pivotal role in cell survival and anti-apoptotic mechanisms, as well as in endocrine therapy resistance, few drugs have been developed and are available for clinical practice. The scope of the present review is to focus on the pivotal role of AKT in metastatic breast cancer through the analysis of its molecular features and to discuss clinical implications and remaining challenges in the treatment of HR-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Benoîte Mery
- Medical Oncology Department, Centre Léon Bérard, F-69000 Lyon, France;
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Université de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Université de Lyon, F-69000 Lyon, France
| | - Olivier Trédan
- Medical Oncology Department, Centre Léon Bérard, F-69000 Lyon, France;
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Université de Lyon, F-69000 Lyon, France
| |
Collapse
|
112
|
RB depletion is required for the continuous growth of tumors initiated by loss of RB. PLoS Genet 2021; 17:e1009941. [PMID: 34879057 PMCID: PMC8654178 DOI: 10.1371/journal.pgen.1009941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor is functionally inactivated in a wide range of human tumors where this inactivation promotes tumorigenesis in part by allowing uncontrolled proliferation. RB has been extensively studied, but its mechanisms of action in normal and cancer cells remain only partly understood. Here, we describe a new mouse model to investigate the consequences of RB depletion and its re-activation in vivo. In these mice, induction of shRNA molecules targeting RB for knock-down results in the development of phenotypes similar to Rb knock-out mice, including the development of pituitary and thyroid tumors. Re-expression of RB leads to cell cycle arrest in cancer cells and repression of transcriptional programs driven by E2F activity. Thus, continuous RB loss is required for the maintenance of tumor phenotypes initiated by loss of RB, and this new mouse model will provide a new platform to investigate RB function in vivo.
Collapse
|
113
|
Yanshen Z, Lifen Y, Xilian W, Zhong D, Huihong M. miR-92a promotes proliferation and inhibits apoptosis of prostate cancer cells through the PTEN/Akt signaling pathway. Libyan J Med 2021; 16:1971837. [PMID: 34431444 PMCID: PMC8405065 DOI: 10.1080/19932820.2021.1971837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/19/2021] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in the development of prostate cancer (PCa). Recent studies have shown that miR-92a expression is significantly increased in various cancers including PCa. However, its specific mechanism in PCa remains unknown. The goal of this study was to investigate the effect of miR-92a expression on the function and mechanism of PCa. PCa cell lines PC-3 and LNCap were transfected with miR-92a inhibitor to reduce the expression of miR-92a, respectively. The cell proliferation, cell viability, apoptosis, cell invasion and migration ability of PCa cells were examined by CCK8 assay, cell cloning, flow cytometry, Transwell assay and scratch assay, respectively. The effects of miR-92a on PTEN/Akt signaling pathway-related factors (PI3k, Akt, p-PI3k, p-Akt, PTEN) were also observed by RT-qPCR and Western blot. Compared with the control group and NC inhibitor group, the viability, cell migration and invasion ability of PC-3 and LNCap cells were decreased and apoptosis was significantly increased after interference with miR-92a expression. In addition, the mRNA and protein levels of PTEN in PC-3 and LNCap cells in the miR-92a inhibitor group were significantly increased, while the phosphorylation levels of PI3K and AKT were significantly decreased. MiR-92a might play a key role in regulating the proliferation, migration and invasion of PCa cells through the PTEN/Akt signaling pathway. Inhibition of miR-92a expression has practical value against PCa and provides ideas for further clinical treatment of patients with PCa.
Collapse
Affiliation(s)
- Zheng Yanshen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| | - Yang Lifen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| | - Wu Xilian
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| | - Dong Zhong
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| | - Mai Huihong
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou City, China
| |
Collapse
|
114
|
Elfgen C, Bjelic-Radisic V. Targeted Therapy in HR+ HER2- Metastatic Breast Cancer: Current Clinical Trials and Their Implications for CDK4/6 Inhibitor Therapy and beyond Treatment Options. Cancers (Basel) 2021; 13:5994. [PMID: 34885105 PMCID: PMC8656925 DOI: 10.3390/cancers13235994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/30/2022] Open
Abstract
A metastatic state of breast cancer (MBC) affects hundreds of thousands of women worldwide. In hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) MBC, cyclin-dependent kinase (CDK)4/6 inhibitors can improve the progression-free survival (PFS), as well as the overall survival (OS), in selected patients and have been established as first- and second-line therapies. However, as MBC remains uncurable, resistance to CDK4/6 inhibitors occurs and requires alternative treatment approaches. Data on targeted therapy continue to mature, and the number of publications has been constantly rising. This review provides a summary and update on the clinical relevance, patient selection, ongoing trials of CDK4/6 inhibitors, and further targeted therapy options. It focuses on clinical aspects and practicability, as well as adverse events and patient-reported outcomes.
Collapse
Affiliation(s)
- Constanze Elfgen
- Breast Surgery, Breast-Center Zurich, 8008 Zurich, Switzerland
- Faculty of Medicine, University of Witten-Herdecke, 58455 Witten, Germany;
| | - Vesna Bjelic-Radisic
- Faculty of Medicine, University of Witten-Herdecke, 58455 Witten, Germany;
- Institute of Gynecology and Obstetrics, University Hospital Wuppertal, 42109 Wuppertal, Germany
| |
Collapse
|
115
|
Coleman N, Moyers JT, Harbery A, Vivanco I, Yap TA. Clinical Development of AKT Inhibitors and Associated Predictive Biomarkers to Guide Patient Treatment in Cancer Medicine. Pharmgenomics Pers Med 2021; 14:1517-1535. [PMID: 34858045 PMCID: PMC8630372 DOI: 10.2147/pgpm.s305068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The serine/threonine kinase AKT is a critical effector of the phosphoinositide 3-kinase (PI3K) signaling cascade and has a pivotal role in cell growth, proliferation, survival, and metabolism. AKT is one of the most commonly activated pathways in human cancer and dysregulation of AKT-dependent pathways is associated with the development and maintenance of a range of solid tumors. There are multiple small-molecule inhibitors targeting different components of the PI3K/AKT pathway currently at various stages of clinical development, in addition to new combination strategies aiming to boost the therapeutic efficacy of these drugs. Correlative and translational studies have been undertaken in the context of clinical trials investigating AKT inhibitors, however the identification of predictive biomarkers of response and resistance to AKT inhibition remains an unmet need. In this review, we discuss the biological function and activation of AKT, discuss its contribution to tumor development and progression, and review the efficacy and toxicity data from clinical trials, including both AKT inhibitor monotherapy and combination strategies with other agents. We also discuss the promise and challenges associated with the development of AKT inhibitors and associated predictive biomarkers of response and resistance.
Collapse
Affiliation(s)
- Niamh Coleman
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin T Moyers
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | - Alice Harbery
- Division of Cancer Therapeutics, Institute of Cancer Research, London, SM2 5NG, UK
| | - Igor Vivanco
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
116
|
Miranda F, Prazeres H, Mendes F, Martins D, Schmitt F. Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: the most promising predictive biomarkers. Mol Biol Rep 2021; 49:717-733. [PMID: 34739691 DOI: 10.1007/s11033-021-06863-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most common cancer in women. It is a heterogeneous disease, encompassing different biological subtypes that differ in histological features, outcomes, clinical behaviour and different molecular subtypes. Therapy has progressed substantially over the past years with a reduction both for locoregional and systemic therapy. Endocrine therapies have considerably reduced cancer recurrence and mortality. Despite the major diagnostic and therapeutic innovations, resistance to therapy has become a main challenge, especially in metastatic breast cancer, and became a major factor limiting the use of endocrine therapeutic agents in ER positive breast cancers. Approximately 50% of patients with ER positive metastatic disease achieve a complete or partial response with endocrine therapy. However, in the remaining patients, the benefit is limited due to resistance, intrinsic or acquired, resulting in disease progression and poor outcome.Tumour heterogeneity as well as acquired genetic changes and therapeutics pressure have been involved in the endocrine therapy resistance. Nowadays, targeted sequencing of genes involved in cancer has provided insights about genomic tumour evolution throughout treatment and resistance driver mutations. Several studies have described multiple alterations in receptor tyrosine kinases, signalling pathways such as Phosphoinositide-3-kinase-protein kinase B/Akt/mTOR (PI3K/Akt/mTOR) and Mitogen-activated protein kinase (MAPK), cell cycle machinery and their implications in endocrine treatment failure.One of the current concern in cancer is personalized therapy. The focus has been the discovery of new potentially predictive biomarkers capable to identify reliably the most appropriate therapy regimen and which patients will experience disease relapse. The major concern is also to avoid overtreatment/undertreatment and development of resistance.This review focuses on the most promising predictive biomarkers of resistance in estrogen receptor-positive breast cancer and the emerging role of circulating free-DNA as a powerful tool for longitudinal monitoring of tumour molecular profile throughout treatment.
Collapse
Affiliation(s)
- Flávia Miranda
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,U-Monitor Lda, Porto, Portugal.,Department of Molecular Pathology, Portuguese Institute of Oncology, Coimbra, Portugal
| | - Fernando Mendes
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,European Association for Professions in Biomedical Sciences, Brussels, Belgique
| | - Diana Martins
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal. .,i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal. .,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal. .,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal. .,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Fernando Schmitt
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
117
|
Lloyd MR, Spring LM, Bardia A, Wander SA. Mechanisms of Resistance to CDK4/6 Blockade in Advanced Hormone Receptor-positive, HER2-negative Breast Cancer and Emerging Therapeutic Opportunities. Clin Cancer Res 2021; 28:821-830. [PMID: 34725098 DOI: 10.1158/1078-0432.ccr-21-2947] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
The cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) have become the standard of care, in combination with antiestrogen therapy, for patients with hormone receptor-positive (HR+)/HER2- advanced breast cancer. Various preclinical and translational research efforts have begun to shed light on the genomic and molecular landscape of resistance to these agents. Drivers of resistance to CDK4/6i therapy can be broadly subdivided into alterations impacting cell-cycle mediators and activation of oncogenic signal transduction pathways. The resistance drivers with the best translational evidence supporting their putative role have been identified via next-generation sequencing of resistant tumor biopsies in the clinic and validated in laboratory models of HR+ breast cancer. Despite the diverse landscape of resistance, several common, therapeutically actionable resistance nodes have been identified, including the mitotic spindle regulator Aurora Kinase A, as well as the AKT and MAPK signaling pathways. Based upon these insights, precision-guided therapeutic strategies are under active clinical development. This review will highlight the emerging evidence, in the clinic and in the laboratory, implicating this diverse spectrum of molecular resistance drivers.
Collapse
Affiliation(s)
- Maxwell R Lloyd
- Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Laura M Spring
- Harvard Medical School, Boston, Massachusetts.,Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Aditya Bardia
- Harvard Medical School, Boston, Massachusetts.,Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Seth A Wander
- Harvard Medical School, Boston, Massachusetts. .,Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
118
|
Aftimos P, Oliveira M, Irrthum A, Fumagalli D, Sotiriou C, Gal-Yam EN, Robson ME, Ndozeng J, Di Leo A, Ciruelos EM, de Azambuja E, Viale G, Scheepers ED, Curigliano G, Bliss JM, Reis-Filho JS, Colleoni M, Balic M, Cardoso F, Albanell J, Duhem C, Marreaud S, Romagnoli D, Rojas B, Gombos A, Wildiers H, Guerrero-Zotano A, Hall P, Bonetti A, Larsson KF, Degiorgis M, Khodaverdi S, Greil R, Sverrisdóttir Á, Paoli M, Seyll E, Loibl S, Linderholm B, Zoppoli G, Davidson NE, Johannsson OT, Bedard PL, Loi S, Knox S, Cameron DA, Harbeck N, Montoya ML, Brandão M, Vingiani A, Caballero C, Hilbers FS, Yates LR, Benelli M, Venet D, Piccart MJ. Genomic and Transcriptomic Analyses of Breast Cancer Primaries and Matched Metastases in AURORA, the Breast International Group (BIG) Molecular Screening Initiative. Cancer Discov 2021; 11:2796-2811. [PMID: 34183353 PMCID: PMC9414283 DOI: 10.1158/2159-8290.cd-20-1647] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 06/11/2021] [Indexed: 02/01/2023]
Abstract
AURORA aims to study the processes of relapse in metastatic breast cancer (MBC) by performing multi-omics profiling on paired primary tumors and early-course metastases. Among 381 patients (primary tumor and metastasis pairs: 252 targeted gene sequencing, 152 RNA sequencing, 67 single nucleotide polymorphism arrays), we found a driver role for GATA1 and MEN1 somatic mutations. Metastases were enriched in ESR1, PTEN, CDH1, PIK3CA, and RB1 mutations; MDM4 and MYC amplifications; and ARID1A deletions. An increase in clonality was observed in driver genes such as ERBB2 and RB1. Intrinsic subtype switching occurred in 36% of cases. Luminal A/B to HER2-enriched switching was associated with TP53 and/or PIK3CA mutations. Metastases had lower immune score and increased immune-permissive cells. High tumor mutational burden correlated to shorter time to relapse in HR+/HER2- cancers. ESCAT tier I/II alterations were detected in 51% of patients and matched therapy was used in 7%. Integration of multi-omics analyses in clinical practice could affect treatment strategies in MBC. SIGNIFICANCE: The AURORA program, through the genomic and transcriptomic analyses of matched primary and metastatic samples from 381 patients with breast cancer, coupled with prospectively collected clinical data, identified genomic alterations enriched in metastases and prognostic biomarkers. ESCAT tier I/II alterations were detected in more than half of the patients.This article is highlighted in the In This Issue feature, p. 2659.
Collapse
Affiliation(s)
- Philippe Aftimos
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium
| | - Mafalda Oliveira
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Christos Sotiriou
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium
| | | | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Ndozeng
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Giuseppe Viale
- IEO, Istituto Europeo di Oncologia, IRCCS, and University of Milan, Milan, Italy
| | | | - Giuseppe Curigliano
- IEO, Istituto Europeo di Oncologia, IRCCS, and University of Milan, Milan, Italy
| | - Judith M Bliss
- The Institute of Cancer Research, London, United Kingdom
| | | | - Marco Colleoni
- IEO, Istituto Europeo di Oncologia, IRCCS, and University of Milan, Milan, Italy
| | | | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center/Champalimaud Foundation, Lisbon, Portugal
| | - Joan Albanell
- Hospital del Mar - CIBERONC; IMIM, Barcelona; Pompeu Fabra University, Barcelona, Spain
| | - Caroline Duhem
- Centre Hospitalier Luxembourg, Luxembourg City, Luxembourg
| | | | | | - Beatriz Rojas
- CIOCC (Centro Integral Oncologico "Clara Campal"), Madrid, Spain
| | - Andrea Gombos
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Peter Hall
- University of Edinburgh Cancer Research Centre, Edinburgh, United Kingdom
| | - Andrea Bonetti
- Department of Oncology AZIENDA ULSS 9 Verona, Verona, Italy
| | | | | | - Silvia Khodaverdi
- Sana Klinikum Offenbach, Klinik für Gynaekologie und Geburtshilfe, Offenbach, Germany
| | - Richard Greil
- Paracelsus Medical University Salzburg, Salzburg Cancer Research Institute-CCCIT and Cancer Cluster Salzburg, Salzburg, Austria
| | | | | | - Ethel Seyll
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Gabriele Zoppoli
- Università degli Studi di Genova and IRCCS Ospedale Policlinico San Martino, San Martino, Italy
| | - Nancy E Davidson
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, Washington
| | | | | | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Susan Knox
- Europa Donna- The European Breast Cancer Coalition, Milan, Italy
| | - David A Cameron
- University of Edinburgh Cancer Research Centre, Edinburgh, United Kingdom
| | - Nadia Harbeck
- Breast Center, LMU University Hospital, Munich, Germany, and West German Study Group, Moenchengladbach, Germany
| | | | - Mariana Brandão
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium
| | - Andrea Vingiani
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Lucy R Yates
- Wellcome Trust Sanger Institute, London, United Kingdom
| | | | - David Venet
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium
| | - Martine J Piccart
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium.
- Breast International Group, Brussels, Belgium
| |
Collapse
|
119
|
Sajjadi E, Venetis K, Piciotti R, Gambini D, Blundo C, Runza L, Ferrero S, Guerini-Rocco E, Fusco N. Combined analysis of PTEN, HER2, and hormone receptors status: remodeling breast cancer risk profiling. BMC Cancer 2021; 21:1152. [PMID: 34706703 PMCID: PMC8555186 DOI: 10.1186/s12885-021-08889-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homolog (PTEN) loss is associated with tumorigenesis, tumor progression, and therapy resistance in breast cancer. However, the clinical value of PTEN as a biomarker in these patients is controversial. We sought to determine whether the benefit of traditional biomarkers testing is improved by the analysis of PTEN status for the identification of high-risk breast cancer. METHODS A cohort of 608 patients with breast cancer was included in this study. Based on the expression on the neoplastic cells compared to the normal internal controls by immunohistochemistry (IHC), cases were classified as PTEN-low (PTEN-L) or PTEN-retained (PTEN-WT). The former constituted the study group, while the latter the control group. Analysis of gene expression was performed on publicly available genomic data and included 4265 patients from the METABRIC and MSK cohorts retrieved from cBioPortal. The Shapiro-Wilk test was used to analyze the normal distributions of continuous variables. Relationships between PTEN status and the clinicopathologic and molecular features of the patient population were assessed using Fisher's exact test or Chi-squared/Wilcoxon rank-sum test. Survival curves were built according to the Kaplan-Meier method. RESULTS Alteration in PTEN status was significantly different at protein and gene levels, where the reduced protein expression was observed in 280/608 cases (46.1%) from our group, while genetic aberrations in only 315/4265 (7.4%) cases of the METABRIC and MSK cohorts. PTEN-L tumors were significantly enriched for hormone receptors (HR) and HER2 negativity (n = 48, 17.1%) compared to PTEN-WT tumors (n = 22, 6.7%; p = 0.0008). Lack of HR with or without HER2 overexpression/amplification was significantly associated with worse overall survival (OS) in PTEN-L but not in PTEN-WT breast cancers (p < .0001). Moreover, PTEN-L protein expression but not gene alterations was related to the outcome, in terms of both OS and disease-free survival (p = 0.002). CONCLUSIONS The combined analysis of PTEN, HER2, and HR status offers relevant information for a more precise risk assessment of patients with breast cancer.
Collapse
Affiliation(s)
- Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Roberto Piciotti
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Donatella Gambini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Concetta Blundo
- Breast Surgery Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Letterio Runza
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via della Commenda 10, 20122, Milan, Italy
| | - Elena Guerini-Rocco
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
| |
Collapse
|
120
|
Al-Qasem AJ, Alves CL, Ditzel HJ. Resistance Mechanisms to Combined CDK4/6 Inhibitors and Endocrine Therapy in ER+/HER2- Advanced Breast Cancer: Biomarkers and Potential Novel Treatment Strategies. Cancers (Basel) 2021; 13:5397. [PMID: 34771560 PMCID: PMC8582464 DOI: 10.3390/cancers13215397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
The introduction of CDK4/6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has revolutionized the treatment landscape for patients with estrogen receptor-positive (ER+) advanced breast cancer (ABC) and has become the new standard treatment. However, resistance to this combined therapy inevitably develops and represents a major clinical challenge in the management of ER+ ABC. Currently, elucidation of the resistance mechanisms, identification of predictive biomarkers, and development of novel effective combined targeted treatments to overcome the resistance are active areas of research. Given the heterogeneity of the resistance mechanisms towards combined CDK4/6i and ET, identification of a single universal predictive biomarker of resistance is unlikely. Novel approaches are being explored, including examination of multiple genetic alterations in circulating cell-free tumor DNA in liquid biopsies from ABC patients with disease progression on combined CDK4/6i and ET treatment. Here, we review the molecular basis of the main known resistance mechanisms towards combined CDK4/6i and ET and associated potential biomarkers. As inhibiting key molecules in the pathways driving resistance may play an important role in the selection of therapeutic strategies for patients who experience disease progression on combined CDK4/6i and ET, we also review preclinical and early phase clinical data on novel combination therapies for these patients.
Collapse
Affiliation(s)
- Abeer J. Al-Qasem
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (A.J.A.-Q.); (C.L.A.)
| | - Carla L. Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (A.J.A.-Q.); (C.L.A.)
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (A.J.A.-Q.); (C.L.A.)
- Department of Oncology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, DK-5000 Odense, Denmark
| |
Collapse
|
121
|
Freeman-Cook K, Hoffman RL, Miller N, Almaden J, Chionis J, Zhang Q, Eisele K, Liu C, Zhang C, Huser N, Nguyen L, Costa-Jones C, Niessen S, Carelli J, Lapek J, Weinrich SL, Wei P, McMillan E, Wilson E, Wang TS, McTigue M, Ferre RA, He YA, Ninkovic S, Behenna D, Tran KT, Sutton S, Nagata A, Ornelas MA, Kephart SE, Zehnder LR, Murray B, Xu M, Solowiej JE, Visswanathan R, Boras B, Looper D, Lee N, Bienkowska JR, Zhu Z, Kan Z, Ding Y, Mu XJ, Oderup C, Salek-Ardakani S, White MA, VanArsdale T, Dann SG. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 2021; 39:1404-1421.e11. [PMID: 34520734 DOI: 10.1016/j.ccell.2021.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.
Collapse
Affiliation(s)
- Kevin Freeman-Cook
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Robert L Hoffman
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nichol Miller
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jonathan Almaden
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - John Chionis
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Qin Zhang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Koleen Eisele
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Chaoting Liu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cathy Zhang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nanni Huser
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Lisa Nguyen
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cinthia Costa-Jones
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Sherry Niessen
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jordan Carelli
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - John Lapek
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Scott L Weinrich
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ping Wei
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Elizabeth McMillan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Elizabeth Wilson
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Tim S Wang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Michele McTigue
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Rose Ann Ferre
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - You-Ai He
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Sacha Ninkovic
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Douglas Behenna
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Khanh T Tran
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Scott Sutton
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Asako Nagata
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Martha A Ornelas
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Susan E Kephart
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Luke R Zehnder
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Brion Murray
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Meirong Xu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - James E Solowiej
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ravi Visswanathan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Britton Boras
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - David Looper
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nathan Lee
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jadwiga R Bienkowska
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Zhou Zhu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Zhengyan Kan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ying Ding
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Xinmeng Jasmine Mu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cecilia Oderup
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Shahram Salek-Ardakani
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Michael A White
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Todd VanArsdale
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA.
| | - Stephen G Dann
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
122
|
Dang F, Nie L, Zhou J, Shimizu K, Chu C, Wu Z, Fassl A, Ke S, Wang Y, Zhang J, Zhang T, Tu Z, Inuzuka H, Sicinski P, Bass AJ, Wei W. Inhibition of CK1ε potentiates the therapeutic efficacy of CDK4/6 inhibitor in breast cancer. Nat Commun 2021; 12:5386. [PMID: 34508104 PMCID: PMC8433397 DOI: 10.1038/s41467-021-25700-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Although inhibitors targeting CDK4/6 kinases (CDK4/6i) have shown promising clinical prospect in treating ER+/HER2- breast cancers, acquired drug resistance is frequently observed and mechanistic knowledge is needed to harness their full clinical potential. Here, we report that inhibition of CDK4/6 promotes βTrCP1-mediated ubiquitination and proteasomal degradation of RB1, and facilitates SP1-mediated CDK6 transcriptional activation. Intriguingly, suppression of CK1ε not only efficiently prevents RB1 from degradation, but also prevents CDK4/6i-induced CDK6 upregulation by modulating SP1 protein stability, thereby enhancing CDK4/6i efficacy and overcoming resistance to CDK4/6i in vitro. Using xenograft and PDX models, we further demonstrate that combined inhibition of CK1ε and CDK4/6 results in marked suppression of tumor growth in vivo. Altogether, these results uncover the molecular mechanisms by which CDK4/6i treatment alters RB1 and CDK6 protein abundance, thereby driving the acquisition of CDK4/6i resistance. Importantly, we identify CK1ε as an effective target for potentiating the therapeutic efficacy of CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Li Nie
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jin Zhou
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhong Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shizhong Ke
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yuangao Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhenbo Tu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
123
|
Adon T, Shanmugarajan D, Kumar HY. CDK4/6 inhibitors: a brief overview and prospective research directions. RSC Adv 2021; 11:29227-29246. [PMID: 35479560 PMCID: PMC9040853 DOI: 10.1039/d1ra03820f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
The discovery of cyclin-dependent kinases (CDK) and their mechanism in regulating the cell cycle process was considered a game-changer in cancer therapy. Cell cycle arrest and apoptosis were both triggered by their inhibition. The CDK4/6 complex acts as a checkpoint during the cell cycle transition from cell growth (G1) to DNA synthesis (S) phase and its deregulation or overexpression induces abnormal cell proliferation and cancer development. Consequently, targeting CDK4/6 has been proposed as a paradigm shift in the anticancer approach. The design and development of effective CDK4/6 inhibitors are increasingly becoming a promising cancer therapy evident with approved drugs such as palbociclib, ribociclib, and abemaciclib, etc. In this article, we explore the biological importance of CDK4/6 in cancer therapy, the development of resistance to monotherapy, and a short overview of PROTAC (Proteolysis Targeting Chimera), a unique and pioneering technique for degrading CDK4/6 enzymes. Overall, our prime focus is to discuss novel CDK4/6 inhibitors with diverse chemical classes and their correlation with computational studies. The discovery of cyclin-dependent kinases (CDK) and their mechanism in regulating the cell cycle process was considered a game-changer in cancer therapy.![]()
Collapse
Affiliation(s)
- Tenzin Adon
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagar Mysuru-570015 Karnataka India +919726447802
| | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagar Mysuru-570015 Karnataka India +919726447802
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagar Mysuru-570015 Karnataka India +919726447802
| |
Collapse
|
124
|
Yuan Y, Lee J, Yost SE, Frankel PH, Ruel C, Egelston CA, Guo W, Padam S, Tang A, Martinez N, Schmolze D, Presant C, Ebrahimi B, Yeon C, Sedrak M, Patel N, Portnow J, Lee P, Mortimer J. Phase I/II trial of palbociclib, pembrolizumab and letrozole in patients with hormone receptor-positive metastatic breast cancer. Eur J Cancer 2021; 154:11-20. [PMID: 34217908 PMCID: PMC8691850 DOI: 10.1016/j.ejca.2021.05.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND CDK4/6 inhibitors modulate immune response in breast cancer. This phase I/II trial was designed to test the safety and efficacy of palbociclib, pembrolizumab and letrozole in women with hormone receptor positive (HR+) human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer (MBC). PATIENTS AND METHODS Women with stage IV HR+ HER2- MBC were enrolled and treated with palbociclib, pembrolizumab and letrozole. Primary end-points were safety, tolerability and efficacy. RESULTS Between November 2016 and July 2020, 23 patients were enrolled with 20 evaluable for response, including 4 patients in cohort 1 and 16 patients in cohort 2. Cohort 1 median age was 48 years (33-70) and cohort 2 median age was 55 (37-75). Cohort 1 closed early due to limited accrual. Grade III-IV adverse events were neutropenia (83%), leucopaenia (65%), thrombocytopenia (17%) and elevated liver enzymes (17%). In cohort 1, 50% achieved a partial response (PR) and 50% had stable disease (SD). In cohort 2, 31% achieved complete response (CR), 25% had PR and 31% had SD by Response Evaluation Criteria in Solid Tumours version 1.1. Median progression-free survival was 25.2 months (95% confidence interval [CI] 5.3, not reached) and median overall survival was 36.9 months (95% CI 36.9, not reached) in cohort 2 with a median follow-up of 24.8 months (95% CI 17.1, not reached). A correlative immune biomarker analysis was published separately. CONCLUSION The combination of palbociclib, pembrolizumab and letrozole is well tolerated, and a complete response rate of 31% was identified in HR+ MBC patients who received this combination as front-line therapy. Confirmatory trials are required to better understand the immune-priming effects of CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Y. Yuan
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA,Corresponding author: Dr. Yuan Yuan, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Road, Duarte, CA 91010 USA, Phone: 626-256-4673, Fax: 626-301-8233,
| | - J. Lee
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - S. E. Yost
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - P. H. Frankel
- Department of Biostatistics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - C. Ruel
- Department of Biostatistics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - C. A. Egelston
- Department of Immune-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - W. Guo
- Department of Immune-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - S. Padam
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - A. Tang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - N. Martinez
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - D. Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - C. Presant
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - B. Ebrahimi
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - C. Yeon
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - M. Sedrak
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - N. Patel
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - J. Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - P. Lee
- Department of Immune-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - J. Mortimer
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
125
|
Alves CL, Ehmsen S, Terp MG, Portman N, Tuttolomondo M, Gammelgaard OL, Hundebøl MF, Kaminska K, Johansen LE, Bak M, Honeth G, Bosch A, Lim E, Ditzel HJ. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 2021; 12:5112. [PMID: 34433817 PMCID: PMC8387387 DOI: 10.1038/s41467-021-25422-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) combined with endocrine therapy have shown impressive efficacy in estrogen receptor-positive advanced breast cancer. However, most patients will eventually experience disease progression on this combination, underscoring the need for effective subsequent treatments or better initial therapies. Here, we show that triple inhibition with fulvestrant, CDK4/6i and AKT inhibitor (AKTi) durably impairs growth of breast cancer cells, prevents progression and reduces metastasis of tumor xenografts resistant to CDK4/6i-fulvestrant combination or fulvestrant alone. Importantly, switching from combined fulvestrant and CDK4/6i upon resistance to dual combination with AKTi and fulvestrant does not prevent tumor progression. Furthermore, triple combination with AKTi significantly inhibits growth of patient-derived xenografts resistant to combined CDK4/6i and fulvestrant. Finally, high phospho-AKT levels in metastasis of breast cancer patients treated with a combination of CDK4/6i and endocrine therapy correlates with shorter progression-free survival. Our findings support the clinical development of ER, CDK4/6 and AKT co-targeting strategies following progression on CDK4/6i and endocrine therapy combination, and in tumors exhibiting high phospho-AKT levels, which are associated with worse clinical outcome.
Collapse
Affiliation(s)
- Carla L Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Monique F Hundebøl
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kamila Kaminska
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lene E Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Sydvestjysk Sygehus, Esbjerg, Denmark
| | - Gabriella Honeth
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ana Bosch
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
126
|
Crucitta S, Cucchiara F, Sciandra F, Cerbioni A, Diodati L, Rafaniello C, Capuano A, Fontana A, Fogli S, Danesi R, Re MD. Pharmacological Basis of Breast Cancer Resistance to Therapies - An Overview. Anticancer Agents Med Chem 2021; 22:760-774. [PMID: 34348634 DOI: 10.2174/1871520621666210804100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is a molecular heterogeneous disease and often patients with similar clinico-pathological characteristics may display different response to treatment. Cellular processes, including uncontrolled cell-cycle, constitutive activation of signalling pathways parallel to or downstream of HER2 and alterations in DNA-repair mechanisms are the main features altered in the tumor. These cellular processes play significant roles in the emergence of therapy resistance. The introduction of target therapies as well as immunotherapies has improved the management of breast cancer. Furthermore, several therapeutic options are available to overcome resistance and physicians could overcome the challenge of resistant BC using combinatorial drug strategies and incorporating novel biomarkers. Molecular profiling promises to help in refine personalized treatment decisions and catalyse the development of further strategies when resistances inevitably occur. The search for biological explanations for treatment failure helps to clarify the phenomenon and allows to incorporate new biomarkers into clinical practice that can lead to adequate solutions to overcome it. This review provides a summary of genetic and molecular aspects of resistance mechanisms to available treatments for BC patients, and its clinical implications.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Francesca Sciandra
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Annalisa Cerbioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Lucrezia Diodati
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa. Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples. Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples. Italy
| | - Andrea Fontana
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa. Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| |
Collapse
|
127
|
Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov 2021; 20:551-569. [PMID: 34002056 PMCID: PMC8127496 DOI: 10.1038/s41573-021-00195-4] [Citation(s) in RCA: 599] [Impact Index Per Article: 149.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/04/2023]
Abstract
Protein kinases regulate nearly all aspects of cell life, and alterations in their expression, or mutations in their genes, cause cancer and other diseases. Here, we review the remarkable progress made over the past 20 years in improving the potency and specificity of small-molecule inhibitors of protein and lipid kinases, resulting in the approval of more than 70 new drugs since imatinib was approved in 2001. These compounds have had a significant impact on the way in which we now treat cancers and non-cancerous conditions. We discuss how the challenge of drug resistance to kinase inhibitors is being met and the future of kinase drug discovery.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| | | | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
128
|
Hu Y, Gao J, Wang M, Li M. Potential Prospect of CDK4/6 Inhibitors in Triple-Negative Breast Cancer. Cancer Manag Res 2021; 13:5223-5237. [PMID: 34234565 PMCID: PMC8257068 DOI: 10.2147/cmar.s310649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive, difficult-to-treat subtype of cancer with a poor prognosis; there is an urgent need for effective, targeted molecular therapies. The cyclin D/cyclin-dependent kinase (CDK)4/6–retinoblastoma protein (Rb) pathway plays a critical role in regulating cell cycle checkpoints, a process which is often disrupted in cancer cells. Selective CDK4/6 inhibitors can prevent retinoblastoma protein phosphorylation by invoking cell cycle arrest in the first growth phase (G1), and may therefore represent an effective treatment option. In this article, we review the molecular mechanisms and therapeutic efficacy of CDK4/6 inhibitors in combination with other targeted therapies for the treatment of triple-negative breast cancer. Three selective CDK4/6 inhibitors have so far received the approval of the Food and Drug Administration (FDA) for patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2) breast cancer. Trilaciclib, a small molecule short-acting inhibitor of CDK4/6, has also been approved recently for people with small cell lung cancer, and is also expected to be clinically effective against breast cancer. Although the efficacy of CDK4/6 inhibitors in patients with triple-negative breast cancer remains uncertain, their use in conjunction with other targeted therapies may improve outcomes and is therefore currently being explored. Identifying biomarkers for response or resistance to CDK4/6 inhibitor treatment may optimize the personalization of treatment strategies for this disease. Ongoing and future clinical trials and biomarker studies will shed further light on these topics, and help to realize the full potential of CDK4/6 inhibitor treatment in triple-negative breast cancer.
Collapse
Affiliation(s)
- Ye Hu
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jiyue Gao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Meiling Wang
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Man Li
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
129
|
Jhaveri K, Burris Rd HA, Yap TA, Hamilton E, Rugo HS, Goldman JW, Dann S, Liu F, Wong GY, Krupka H, Shapiro GI. The evolution of cyclin dependent kinase inhibitors in the treatment of cancer. Expert Rev Anticancer Ther 2021; 21:1105-1124. [PMID: 34176404 DOI: 10.1080/14737140.2021.1944109] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The cell cycle cyclin dependent kinases (CDKs) play a critical role in controlling the transition between cell cycle phases, as well as cellular transcription. Aberrant CDK activation is common in cancer, and deregulation of the cell cycle a key hallmark of cancer. Although CDK4/6 inhibitors are now a standard-of-care option for first- and second-line HR+HER2- metastatic breast cancer, resistance inevitably limits their clinical benefit. AREAS COVERED Early pan-CDK inhibitors targeted the cell cycle and RNA polymerase II phosphorylation, but were complicated by toxicity, providing a rationale and need for the development of selective CDK inhibitors. In this review, we highlight selected recent literature to provide a narrative review summarizing the current CDK inhibitor therapeutic landscape. We detail the challenges associated with targeting CDKs for the treatment of breast and other cancers and review emerging biomarkers that may aid response prediction. We also discuss the risk-benefit ratio for CDK therapy and explore promising combination approaches. EXPERT OPINION Although CDK inhibitors may stem the proliferation of cancer cells, resistance remains an issue, and currently there are limited biomarkers to predict response to therapy. Ongoing research investigating CDK inhibitors in cancer is of paramount importance to define appropriate and effective treatment regimens.
Collapse
Affiliation(s)
- Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Howard A Burris Rd
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA
| | - Timothy A Yap
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA
| | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | | | | | | | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
130
|
Coussy F, Deluche E, Pistilli B, Ladoire S, Ferrero JM, Cottu P. [Targeting the cyclin-dependent kinases 4/6 in advanced breast cancers]. Bull Cancer 2021; 108:843-854. [PMID: 34154797 DOI: 10.1016/j.bulcan.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
The historical median survival of advanced luminal breast cancer does not exceed four years. The deciphering of the mechanisms of resistance to hormone therapy has led to the development of inhibitors of cyclin D dependent kinases (CDK4 and 6). Three drugs, palbociclib, ribociclib and abemaciclib, very similar pharmacologically, have been evaluated in the context of pivotal, randomized phase III trials. Strikingly and regardless of the endocrine therapy backbone, and in both hormone-sensitive and hormone-resistant patients, the addition of a CDK4 / 6 inhibitor doubles progression-free survival with a hazard ratio always around 0.55. The benefit in overall survival begins to be demonstrated. This review presents all published results, as well as the main safety data.
Collapse
Affiliation(s)
- Florence Coussy
- Institut Curie, Paris & Saint-Cloud, département d'oncologie médicale, 26, rue d'Ulm, 75005 Paris, France.
| | - Elise Deluche
- CHU de Limoges, département d'oncologie médicale, 2, avenue Martin-Luther-King, 87100 Limoges, France
| | - Barbara Pistilli
- Gustave Roussy Cancer Campus, département d'oncologie médicale, 39, B rue Camille-Desmoulins, 94805 Villejuif, France
| | - Sylvain Ladoire
- Centre Georges-François-Leclerc, département d'Oncologie médicale, 1, rue Professeur-Marion, 21000 Dijon, France
| | - Jean-Marc Ferrero
- Centre Antoine-Lacassagne, département d'oncologie médicale, 33, avenue de Valombrose, 06100 Nice, France
| | - Paul Cottu
- Institut Curie, Paris & Saint-Cloud, département d'oncologie médicale, 26, rue d'Ulm, 75005 Paris, France
| |
Collapse
|
131
|
Migliaccio I, Leo A, Galardi F, Guarducci C, Fusco GM, Benelli M, Di Leo A, Biganzoli L, Malorni L. Circulating Biomarkers of CDK4/6 Inhibitors Response in Hormone Receptor Positive and HER2 Negative Breast Cancer. Cancers (Basel) 2021; 13:2640. [PMID: 34072070 PMCID: PMC8199335 DOI: 10.3390/cancers13112640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) and endocrine therapy are the standard treatment for patients with hormone receptor-positive and HER2 negative (HR+/HER2-) metastatic breast cancer. Patients might show intrinsic and acquired resistance, which leads to treatment failure and progression. Circulating biomarkers have the potential advantages of recognizing patients who might not respond to treatment, monitoring treatment effects and identifying markers of acquired resistance during tumor progression with a simple withdrawal of peripheral blood. Genomic alterations on circulating tumor DNA and serum thymidine kinase activity, but also circulating tumor cells, epigenetic or exosome markers are currently being tested as markers of CDK4/6i treatment response, even though none of these have been integrated into clinical practice. In this review, we discuss the recent advancements in the development of circulating biomarkers of CDK4/6i response in patients with HR+/HER2-breast cancer.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Angela Leo
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Francesca Galardi
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Giulio Maria Fusco
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy;
| | - Angelo Di Leo
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| | - Laura Biganzoli
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| | - Luca Malorni
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| |
Collapse
|
132
|
Wang B, Li R, Wu S, Liu X, Ren J, Li J, Bi K, Wang Y, Jia H. Breast Cancer Resistance to Cyclin-Dependent Kinases 4/6 Inhibitors: Intricacy of the Molecular Mechanisms. Front Oncol 2021; 11:651541. [PMID: 34123801 PMCID: PMC8187902 DOI: 10.3389/fonc.2021.651541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is a common malignant tumor in women, with a highest incidence and mortality among all of the female malignant tumors. Notably, targeted therapy has achieved impressive success in the treatment of breast cancer. As one class of the anti-tumor targeted therapeutics, Cyclin-Dependent Kinases 4/6CDK4/6inhibitors have shown good clinical activity in treating breast cancer. Nevertheless, despite the promising clinical outcomes, intrinsic or acquired resistance to CDK4/6 inhibitors has limited the benefits of this novel target therapy. In the present review, we provide an overview of the currently known molecular mechanisms of resistance to CDK4/6 inhibitors, and discuss the potential strategies to overcoming drug resistance improving the outcomes for breast cancer patients treated with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Wu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Liu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianlin Ren
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaixin Bi
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
133
|
Du MG, Peng ZQ, Gai WB, Liu F, Liu W, Chen YJ, Li HC, Zhang X, Liu CH, Zhang LQ, Jiang H, Xie P. The Absence of PTEN in Breast Cancer Is a Driver of MLN4924 Resistance. Front Cell Dev Biol 2021; 9:667435. [PMID: 33996822 PMCID: PMC8120322 DOI: 10.3389/fcell.2021.667435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Numerous studies have indicated that the neddylation pathway is closely associated with tumor development. MLN4924 (Pevonedistat), an inhibitor of the NEDD8-activating E1 enzyme, is considered a promising chemotherapeutic agent. Recently, we demonstrated that neddylation of the tumor suppressor PTEN occurs under high glucose conditions and promotes breast cancer development. It has been shown, however, that PTEN protein levels are reduced by 30–40% in breast cancer. Whether this PTEN deficiency affects the anti-tumor function of MLN4924 is unknown. Methods: In the present study, cell counting kit-8 and colony formation assays were used to detect cell proliferation, and a transwell system was used to quantify cell migration. A tumor growth assay was performed in BALB/c nude mice. The subcellular location of PTEN was detected by fluorescence microscopy. The CpG island of the UBA3 gene was predicted by the Database of CpG Islands and UCSC database. Western blotting and qRT-PCR were used to measure the expression of indicated proteins. The Human Protein Atlas database, the Cancer Genome Atlas and Gene Expression Omnibus datasets were used to validate the expression levels of UBA3 in breast cancer. Results: Our data show that the anti-tumor efficacy of MLN4924 in breast cancer cells was markedly reduced with the deletion of PTEN. PI3K/Akt signaling pathway activity correlated positively with UBA3 expression. Pathway activity correlated negatively with NEDP1 expression in PTEN-positive breast cancer patients, but not in PTEN-negative patients. We also demonstrate that high glucose conditions upregulate UBA3 mRNA by inhibiting UBA3 promoter methylation, and this upregulation results in the overactivation of PTEN neddylation in breast cancer cells. Conclusion: These data suggest a mechanism by which high glucose activates neddylation. PTEN is critical, if not indispensable, for MLN4924 suppression of tumor growth; PTEN status thus may help to identify MLN4924-responsive breast cancer patients.
Collapse
Affiliation(s)
- Meng-Ge Du
- The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, Capital Medical University, Beijing, China
| | - Zhi-Qiang Peng
- State Key Laboratory of Proteomics Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Wen-Bin Gai
- State Key Laboratory of Proteomics Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Fan Liu
- The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, Capital Medical University, Beijing, China
| | - Wei Liu
- The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, Capital Medical University, Beijing, China
| | - Yu-Jiao Chen
- The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, Capital Medical University, Beijing, China
| | - Hong-Chang Li
- State Key Laboratory of Proteomics Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Proteomics Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiang Zhang
- State Key Laboratory of Proteomics Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Hong Jiang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Ping Xie
- The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, Capital Medical University, Beijing, China
| |
Collapse
|
134
|
Che J, Xu C, Wu Y, Jia P, Han Q, Ma Y, Wang X, Du Y, Zheng Y. Early-senescent bone marrow mesenchymal stem cells promote C2C12 cell myogenic differentiation by preventing the nuclear translocation of FOXO3. Life Sci 2021; 277:119520. [PMID: 33887345 DOI: 10.1016/j.lfs.2021.119520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
AIMS Mouse bone marrow mesenchymal stem cells (BMSCs) are pluripotent cells with self-renewal and differentiation abilities. Since the effects of senescent BMSCs on C2C12 cells are not fully clear, the present study aimed to elucidate these effects. MAIN METHODS Senescence-associated β-galactosidase staining and western blotting were performed to confirm the senescence of BMSCs. Immunofluorescence and western blotting were used to assess myoblast differentiation in each group. The role of the AKT/P70 signaling pathway and forkhead box O3 (FOXO3) nuclear translocation was explored by western blotting. BMSC-derived exosomes were injected into the tibialis anterior of mice, and RT-qPCR was used to assess the role of exosomes in promoting muscle differentiation. KEY FINDINGS Conditioned medium (CM) from early-senescent BMSCs promoted myogenic differentiation in vitro, which was detected as enhanced expression of myosin heavy chain (MHC), myogenin (MYOG), and myogenic differentiation 1 (MyoD). The AKT signaling pathway was found to be regulated by CM, which inhibited FOXO3 nuclear translocation. RT-qPCR analysis results showed that MHC, MyoD, and MYOG mRNA expression increased in the tibialis anterior of mice after exosome injection. SIGNIFICANCE The present study demonstrated that early-senescent BMSCs accelerated C2C12 cell myogenic differentiation, and the transcription factor, FOXO3, was the target of senescent cells. Collectively, our results suggest that the AKT/P70 signaling pathway mediates the effect of BMSCs on neighboring cells.
Collapse
Affiliation(s)
- Ji Che
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Cuidi Xu
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Yuanyuan Wu
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Peiyu Jia
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Qi Han
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Yantao Ma
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Xiaolei Wang
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Yijie Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China; Qingpu Traditional Chinese Medicine Hospital, Shanghai, China.
| | - Yongjun Zheng
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
135
|
Selective AKT kinase inhibitor capivasertib in combination with fulvestrant in PTEN-mutant ER-positive metastatic breast cancer. NPJ Breast Cancer 2021; 7:44. [PMID: 33863913 PMCID: PMC8052445 DOI: 10.1038/s41523-021-00251-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/24/2021] [Indexed: 01/09/2023] Open
Abstract
Five to ten percent of ER+ metastatic breast cancer (MBC) tumors harbor somatic PTEN mutations. Loss of function of this tumor-suppressor gene defines a highly aggressive, treatment-refractory disease for which new therapies are urgently needed. This Phase I multipart expansion study assessed oral capivasertib with fulvestrant in patients with PTEN-mutant ER+ MBC. Safety and tolerability were assessed by standard methods. Plasma and tumor were collected for NGS and immunohistochemistry analyses of PTEN protein expression. In 31 eligible patients (12 fulvestrant naive; 19 fulvestrant pretreated), the 24-week clinical benefit rate was 17% in fulvestrant-naive and 42% in fulvestrant-pretreated patients, with objective response rate of 8% and 21%, respectively. Non-functional PTEN was centrally confirmed in all cases by NGS or immunohistochemistry. Comutations occurred in PIK3CA (32%), with less ESR1 (10% vs 72%) and more TP53 (40% vs 28%) alterations in fulvestrant-naive versus fulvestrant-pretreated patients, respectively. PTEN was clonally dominant in most patients. Treatment-related grade ≥3 adverse events occurred in 32% of patients, most frequently diarrhea and maculopapular rash (both n = 2). In this clinical study, which selectively targeted the aggressive PTEN-mutant ER+ MBC, capivasertib plus fulvestrant was tolerable and clinically active. Phenotypic and genomic differences were apparent between fulvestrant-naive and -pretreated patients. Trial registration number for the study is NCT01226316.
Collapse
|
136
|
Wu X, Yang X, Xiong Y, Li R, Ito T, Ahmed TA, Karoulia Z, Adamopoulos C, Wang H, Wang L, Xie L, Liu J, Ueberheide B, Aaronson SA, Chen X, Buchanan SG, Sellers WR, Jin J, Poulikakos PI. Distinct CDK6 complexes determine tumor cell response to CDK4/6 inhibitors and degraders. NATURE CANCER 2021; 2:429-443. [PMID: 34568836 PMCID: PMC8462800 DOI: 10.1038/s43018-021-00174-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022]
Abstract
CDK4/6 inhibitors (CDK4/6i) are effective in metastatic breast cancer, but they have been only modestly effective in most other tumor types. Here we show that tumors expressing low CDK6 rely on CDK4 function, and are exquisitely sensitive to CDK4/6i. In contrast, tumor cells expressing both CDK4 and CDK6 have increased reliance on CDK6 to ensure cell cycle progression. We discovered that CDK4/6i and CDK4/6 degraders potently bind and inhibit CDK6 selectively in tumors in which CDK6 is highly thermo-unstable and strongly associated with the HSP90/CDC37 complex. In contrast, CDK4/6i and CDK4/6 degraders are ineffective in antagonizing tumor cells expressing thermostable CDK6, due to their weaker binding to CDK6 in these cells. Thus, we uncover a general mechanism of intrinsic resistance to CDK4/6i and CDK4/6i-derived degraders and the need for novel inhibitors targeting the CDK4/6i-resistant, thermostable form of CDK6 for application as cancer therapeutics.
Collapse
Affiliation(s)
- Xuewei Wu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaobao Yang
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yan Xiong
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruitong Li
- The Broad Institute of Harvard and MIT, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Takahiro Ito
- The Broad Institute of Harvard and MIT, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tamer A Ahmed
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoi Karoulia
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos Adamopoulos
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong Wang
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Jing Liu
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | - William R Sellers
- The Broad Institute of Harvard and MIT, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jian Jin
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
137
|
Galardi F, De Luca F, Biagioni C, Migliaccio I, Curigliano G, Minisini AM, Bonechi M, Moretti E, Risi E, McCartney A, Benelli M, Romagnoli D, Cappadona S, Gabellini S, Guarducci C, Conti V, Biganzoli L, Di Leo A, Malorni L. Circulating tumor cells and palbociclib treatment in patients with ER-positive, HER2-negative advanced breast cancer: results from a translational sub-study of the TREnd trial. Breast Cancer Res 2021; 23:38. [PMID: 33761970 PMCID: PMC7992319 DOI: 10.1186/s13058-021-01415-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Circulating tumor cells (CTCs) are prognostic in patients with advanced breast cancer (ABC). However, no data exist about their use in patients treated with palbociclib. We analyzed the prognostic role of CTC counts in patients enrolled in the cTREnd study, a pre-planned translational sub-study of TREnd (NCT02549430), that randomized patients with ABC to palbociclib alone or palbociclib plus the endocrine therapy received in the prior line of treatment. Moreover, we evaluated RB1 gene expression on CTCs and explored its prognostic role within the cTREnd subpopulation. Methods Forty-six patients with ER-positive, HER2-negative ABC were analyzed. Blood samples were collected before starting palbociclib treatment (timepoint T0), after the first cycle of treatment (timepoint T1), and at disease progression (timepoint T2). CTCs were isolated and counted by CellSearch® System using the CellSearch™Epithelial Cell kit. Progression-free survival (PFS), clinical benefit (CB) during study treatment, and time to treatment failure (TTF) after study treatment were correlated with CTC counts. Samples with ≥ 5 CTCs were sorted by DEPArray system® (DA). RB1 and GAPDH gene expression levels were measured by ddPCR. Results All 46 patients were suitable for CTCs analysis. CTC count at T0 did not show significant prognostic value in terms of PFS and CB. Patients with at least one detectable CTC at T1 (n = 26) had a worse PFS than those with 0 CTCs (n = 16) (p = 0.02). At T1, patients with an increase of at least three CTCs showed reduced PFS compared to those with no increase (mPFS = 3 versus 9 months, (p = 0.004). Finally, patients with ≥ 5 CTCs at T2 (n = 6/23) who received chemotherapy as post-study treatment had a shorter TTF (p = 0.02). Gene expression data for RB1 were obtained from 19 patients. CTCs showed heterogeneous RB1 expression. Patients with detectable expression of RB1 at any timepoint showed better, but not statistically significant, outcomes than those with undetectable levels. Conclusions CTC count seems to be a promising modality in monitoring palbociclib response. Moreover, CTC count at the time of progression could predict clinical outcome post-palbociclib. RB1 expression analysis on CTCs is feasible and may provide additional prognostic information. Results should be interpreted with caution given the small studied sample size. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01415-w.
Collapse
Affiliation(s)
- Francesca Galardi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Francesca De Luca
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | | | - Ilenia Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milan, Italy.,Department of Haematology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Alessandro M Minisini
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Martina Bonechi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Erica Moretti
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Emanuela Risi
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Amelia McCartney
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy.,School of Clinical Sciences, Monash University, Melbourne, Australia
| | | | | | - Silvia Cappadona
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Stefano Gabellini
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Cristina Guarducci
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Laura Biganzoli
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Angelo Di Leo
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy. .,"Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy.
| |
Collapse
|
138
|
Wander SA, Han HS, Zangardi ML, Niemierko A, Mariotti V, Kim LSL, Xi J, Pandey A, Dunne S, Nasrazadani A, Kambadakone A, Stein C, Lloyd MR, Yuen M, Spring LM, Juric D, Kuter I, Sanidas I, Moy B, Mulvey T, Vidula N, Dyson NJ, Ellisen LW, Isakoff S, Wagle N, Brufsky A, Kalinsky K, Ma CX, O'Shaughnessy J, Bardia A. Clinical Outcomes With Abemaciclib After Prior CDK4/6 Inhibitor Progression in Breast Cancer: A Multicenter Experience. J Natl Compr Canc Netw 2021:1-8. [PMID: 33761455 DOI: 10.6004/jnccn.2020.7662] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) are widely used as first-line therapy for hormone receptor-positive metastatic breast cancer (HR+ MBC). Although abemaciclib monotherapy is also FDA-approved for treatment of disease progression on endocrine therapy, there is limited insight into the clinical activity of abemaciclib after progression on prior CDK4/6i. PATIENTS AND METHODS We identified patients with HR+ MBC from 6 cancer centers in the United States who received abemaciclib after disease progression on prior CDK4/6i, and abstracted clinical features, outcomes, toxicity, and predictive biomarkers. RESULTS In the multicenter cohort, abemaciclib was well tolerated after a prior course of CDK4/6i (palbociclib)-based therapy; a minority of patients discontinued abemaciclib because of toxicity without progression (9.2%). After progression on palbociclib, most patients (71.3%) received nonsequential therapy with abemaciclib (with ≥1 intervening non-CDK4/6i regimens), with most receiving abemaciclib with an antiestrogen agent (fulvestrant, 47.1%; aromatase inhibitor, 27.6%), and the remainder receiving abemaciclib monotherapy (19.5%). Median progression-free survival for abemaciclib in this population was 5.3 months and median overall survival was 17.2 months, notably similar to results obtained in the MONARCH-1 study of abemaciclib monotherapy in heavily pretreated HR+/HER2-negative CDK4/6i-naïve patients. A total of 36.8% of patients received abemaciclib for ≥6 months. There was no relationship between the duration of clinical benefit while on palbociclib and the subsequent duration of treatment with abemaciclib. RB1, ERBB2, and CCNE1 alterations were noted among patients with rapid progression on abemaciclib. CONCLUSIONS A subset of patients with HR+ MBC continue to derive clinical benefit from abemaciclib after progression on prior palbociclib. These results highlight the need for future studies to confirm molecular predictors of cross-resistance to CDK4/6i therapy and to better characterize the utility of abemaciclib after disease progression on prior CDK4/6i.
Collapse
Affiliation(s)
- Seth A Wander
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Hyo S Han
- 3Moffitt Cancer Center, Tampa, Florida
| | | | - Andrzej Niemierko
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | | | - Leslie S L Kim
- 4Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas
| | - Jing Xi
- 5Washington University, St. Louis, Missouri
| | | | - Siobhan Dunne
- 4Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas
| | | | - Avinash Kambadakone
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Casey Stein
- 1Massachusetts General Hospital Cancer Center, and
| | | | - Megan Yuen
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Laura M Spring
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Dejan Juric
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Irene Kuter
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Ioannis Sanidas
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Beverly Moy
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Therese Mulvey
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Neelima Vidula
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Nicholas J Dyson
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Leif W Ellisen
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Steven Isakoff
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| | - Nikhil Wagle
- 2Harvard Medical School, Boston, Massachusetts
- 7Dana-Farber Cancer Institute, and
- 8Broad Institute of MIT and Harvard, Boston, Massachusetts; and
| | - Adam Brufsky
- 6University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kevin Kalinsky
- 9Columbia University Irving Medical Center, New York, New York
| | | | - Joyce O'Shaughnessy
- 4Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas
| | - Aditya Bardia
- 1Massachusetts General Hospital Cancer Center, and
- 2Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
139
|
Yip HYK, Papa A. Signaling Pathways in Cancer: Therapeutic Targets, Combinatorial Treatments, and New Developments. Cells 2021; 10:659. [PMID: 33809714 PMCID: PMC8002322 DOI: 10.3390/cells10030659] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Molecular alterations in cancer genes and associated signaling pathways are used to inform new treatments for precision medicine in cancer. Small molecule inhibitors and monoclonal antibodies directed at relevant cancer-related proteins have been instrumental in delivering successful treatments of some blood malignancies (e.g., imatinib with chronic myelogenous leukemia (CML)) and solid tumors (e.g., tamoxifen with ER positive breast cancer and trastuzumab for HER2-positive breast cancer). However, inherent limitations such as drug toxicity, as well as acquisition of de novo or acquired mechanisms of resistance, still cause treatment failure. Here we provide an up-to-date review of the successes and limitations of current targeted therapies for cancer treatment and highlight how recent technological advances have provided a new level of understanding of the molecular complexity underpinning resistance to cancer therapies. We also raise three basic questions concerning cancer drug discovery based on molecular markers and alterations of selected signaling pathways, and further discuss how combination therapies may become the preferable approach over monotherapy for cancer treatments. Finally, we consider novel therapeutic developments that may complement drug delivery and significantly improve clinical response and outcomes of cancer patients.
Collapse
Affiliation(s)
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
| |
Collapse
|
140
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
141
|
Sobhani N, Fassl A, Mondani G, Generali D, Otto T. Targeting Aberrant FGFR Signaling to Overcome CDK4/6 Inhibitor Resistance in Breast Cancer. Cells 2021; 10:293. [PMID: 33535617 PMCID: PMC7912842 DOI: 10.3390/cells10020293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) is the most common cause of cancer-related death in women worldwide. Therapies targeting molecular pathways altered in BC had significantly enhanced treatment options for BC over the last decades, which ultimately improved the lives of millions of women worldwide. Among various molecular pathways accruing substantial interest for the development of targeted therapies are cyclin-dependent kinases (CDKs)-in particular, the two closely related members CDK4 and CDK6. CDK4/6 inhibitors indirectly trigger the dephosphorylation of retinoblastoma tumor suppressor protein by blocking CDK4/6, thereby blocking the cell cycle transition from the G1 to S phase. Although the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib gained FDA approval for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative BC as they significantly improved progression-free survival (PFS) in randomized clinical trials, regrettably, some patients showed resistance to these therapies. Though multiple molecular pathways could be mechanistically responsible for CDK4/6 inhibitor therapy resistance, one of the most predominant ones seems to be the fibroblast growth factor receptor (FGFR) pathway. FGFRs are involved in many aspects of cancer formation, such as cell proliferation, differentiation, and growth. Importantly, FGFRs are frequently mutated in BC, and their overexpression and/or hyperactivation correlates with CDK4/6 inhibitor resistance and shortened PFS in BC. Intriguingly, the inhibition of aberrant FGFR activity is capable of reversing the resistance to CDK4/6 inhibitors. This review summarizes the molecular background of FGFR signaling and discusses the role of aberrant FGFR signaling during cancer development in general and during the development of CDK4/6 inhibitor resistance in BC in particular, together with other possible mechanisms for resistance to CDK4/6 inhibitors. Subsequently, future directions on novel therapeutic strategies targeting FGFR signaling to overcome such resistance during BC treatment will be further debated.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Giuseppina Mondani
- Department Breast Oncoplastic Surgery Royal Cornwall Hospital, Treliske, Truro TR13LJ, UK;
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, 34149 Trieste, Italy;
| | - Tobias Otto
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
142
|
Deregulated Immune Pathway Associated with Palbociclib Resistance in Preclinical Breast Cancer Models: Integrative Genomics and Transcriptomics. Genes (Basel) 2021; 12:genes12020159. [PMID: 33504001 PMCID: PMC7912104 DOI: 10.3390/genes12020159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, cyclin-dependent kinase (CDK) 4/6 inhibitors have been widely used to treat advanced hormone receptor-positive breast cancer. Despite promising clinical outcomes, almost all patients eventually acquire resistance to CDK4/6 inhibitors. Here, we screened genes associated with palbociclib resistance through genomics and transcriptomics in preclinical breast cancer models. Palbociclib-resistant cells were generated by exposing hormone receptor-positive breast cancer cell lines to palbociclib. Whole-exome sequencing (WES) and a mRNA microarray were performed to compare the genomic and transcriptomic landscape between both palbociclib-sensitive and resistant cells. Microarray analysis revealed 651 differentially expressed genes (DEGs), while WES revealed 107 clinically significant mutated genes. Furthermore, pathway analysis of both DEGs and mutated genes revealed immune pathway deregulation in palbociclib-resistant cells. Notably, DEG annotation revealed activation of type I interferon pathway, activation of immune checkpoint inhibitory pathway, and suppression of immune checkpoint stimulatory pathway in palbociclib-resistant cells. Moreover, mutations in NCOR1, MUC4, and MUC16 genes found in palbociclib-resistant cells were annotated to be related to the immune pathway. In conclusion, our genomics and transcriptomics analysis using preclinical model, revealed that deregulated immune pathway is an additional mechanism of CDK4/6 inhibitor resistance besides the activation of cyclin E-CDK2 pathway and loss of RB, etc. Further studies are warranted to evaluate whether immune pathways may be a therapeutic target to overcome CDK4/6 inhibitor resistance.
Collapse
|
143
|
Gomatou G, Trontzas I, Ioannou S, Drizou M, Syrigos N, Kotteas E. Mechanisms of resistance to cyclin-dependent kinase 4/6 inhibitors. Mol Biol Rep 2021; 48:915-925. [PMID: 33409716 DOI: 10.1007/s11033-020-06100-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
Cyclin-dependent kinase (CDK) 4/6 inhibitors have emerged in the treatment of metastatic hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. However, most patients will eventually present disease progression, highlighting the inevitable resistance of cancer cells to CDK4/6 inhibition. Several studies have suggested that resistance mechanisms involve aberrations of the molecules that regulate the cell cycle, and the re-wiring of the cell to escape CDK4/6 dependence and turn to alternative pathways. Loss of retinoblastoma function, overexpression of CDK 6, upregulation of cyclin E, overexpression of CDK 7, and dysregulation of several signaling pathways, notably the PI3/AKT/mTOR pathway, have been implicated in the development of resistance to CDK4/6 inhibitors. Overlap with endocrine resistance mechanisms might be possible. Combinational therapeutic strategies should be explored in order to prevent resistance and optimize the management of patients after progression under CDK 4/6 inhibition.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis Trontzas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephanie Ioannou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Drizou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Syrigos
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
144
|
A review of the use of next generation sequencing methodologies to identify biomarkers of resistance to CDK4/6 inhibitors in ER+/HER2- breast cancer. Crit Rev Oncol Hematol 2020; 157:103191. [PMID: 33309572 DOI: 10.1016/j.critrevonc.2020.103191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
The development of cyclin-dependent kinases (CDK) 4 and 6 inhibitors represented a substantial breakthrough in the treatment of estrogen receptor positive (ER+), human epidermal growth factor receptor 2 (HER2) negative metastatic breast cancer. These drugs showed a significant clinical benefit in pivotal clinical trials. However, resistance eventually occurs, leading to disease progression. Next Generation Sequencing methodologies have been employed to investigate predictive biomarkers of response or resistance to CDK4/6 inhibitors. Whole exome and targeted sequencing of solid and liquid biopsies have revealed several possible genomic alterations associated with resistance. Notably, genomic alterations identified by DNA-sequencing did not fully recapitulate the entire landscape of resistance to CDK4/6 inhibitors. Gene expression analysis, such as RNA-Seq methodologies, have provided insights into transcriptional profiles and may need further application. Herein, we report the main findings derived from the use of NGS analysis in the context of resistance to CDK4/6 inhibitors in ER + breast cancer.
Collapse
|
145
|
Migliaccio I, Bonechi M, McCartney A, Guarducci C, Benelli M, Biganzoli L, Di Leo A, Malorni L. CDK4/6 inhibitors: A focus on biomarkers of response and post-treatment therapeutic strategies in hormone receptor-positive HER2-negative breast cancer. Cancer Treat Rev 2020; 93:102136. [PMID: 33360919 DOI: 10.1016/j.ctrv.2020.102136] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
CDK4/6 inhibitors (CDK4/6i) in combination with endocrine therapy are the mainstay of treatment for patients with hormone receptor-positive, HER2 negative (HR+/HER2neg) metastatic breast cancer. However, resistance - either de novo or acquired - invariably occurs, leading to treatment failure and cancer progression. Genomic alterations, gene expression data and circulating biomarkers have been correlated to response to treatment, but to date no biomarker has been approved to stratify patients. Treatment strategies after progression on CDK4/6i are yet to be standardized. Current approaches include endocrine therapy alone or in combination with target therapy, or chemotherapy. New agents are in clinical development based on potential mechanisms of acquired resistance. Here we will review recent advancements in biomarkers of response to CDK4/6i, and in post- treatment therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy.
| | - Martina Bonechi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Amelia McCartney
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy; School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Laura Biganzoli
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Angelo Di Leo
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy; "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| |
Collapse
|
146
|
Sajjadi E, Venetis K, Scatena C, Fusco N. Biomarkers for precision immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience 2020; 14:1150. [PMID: 33574895 PMCID: PMC7864694 DOI: 10.3332/ecancer.2020.1150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Precision immunotherapy is a crucial approach to improve the efficacy of anti-cancer treatments, particularly in the metastatic setting. In this respect, accurate patient selection takes advantage of the multidimensional integration of patients' clinical information and tumour-specific biomarkers status. Among these biomarkers, programmed death-ligand 1, tumour-infiltrating lymphocytes, microsatellite instability, mismatch repair and tumour mutational burden have been widely investigated. However, novel tumour-specific biomarkers and testing methods will further improve patients' outcomes. Here, we discuss the currently available strategies for the implementation of a precision immunotherapy approach in the clinical management of metastatic solid tumours and highlight future perspectives.
Collapse
Affiliation(s)
- Elham Sajjadi
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Konstantinos Venetis
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, 56126 Pisa, Italy
| | - Nicola Fusco
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
147
|
Csolle MP, Ooms LM, Papa A, Mitchell CA. PTEN and Other PtdIns(3,4,5)P 3 Lipid Phosphatases in Breast Cancer. Int J Mol Sci 2020; 21:ijms21239189. [PMID: 33276499 PMCID: PMC7730566 DOI: 10.3390/ijms21239189] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signalling pathway is hyperactivated in ~70% of breast cancers. Class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane in response to growth factor stimulation, leading to AKT activation to drive cell proliferation, survival and migration. PTEN negatively regulates PI3K/AKT signalling by dephosphorylating PtdIns(3,4,5)P3 to form PtdIns(4,5)P2. PtdIns(3,4,5)P3 can also be hydrolysed by the inositol polyphosphate 5-phosphatases (5-phosphatases) to produce PtdIns(3,4)P2. Interestingly, while PTEN is a bona fide tumour suppressor and is frequently mutated/lost in breast cancer, 5-phosphatases such as PIPP, SHIP2 and SYNJ2, have demonstrated more diverse roles in regulating mammary tumourigenesis. Reduced PIPP expression is associated with triple negative breast cancers and reduced relapse-free and overall survival. Although PIPP depletion enhances AKT phosphorylation and supports tumour growth, this also inhibits cell migration and metastasis in vivo, in a breast cancer oncogene-driven murine model. Paradoxically, SHIP2 and SYNJ2 are increased in primary breast tumours, which correlates with invasive disease and reduced survival. SHIP2 or SYNJ2 overexpression promotes breast tumourigenesis via AKT-dependent and independent mechanisms. This review will discuss how PTEN, PIPP, SHIP2 and SYNJ2 distinctly regulate multiple functional targets, and the mechanisms by which dysregulation of these distinct phosphoinositide phosphatases differentially affect breast cancer progression.
Collapse
|
148
|
Li Z, Zou W, Zhang J, Zhang Y, Xu Q, Li S, Chen C. Mechanisms of CDK4/6 Inhibitor Resistance in Luminal Breast Cancer. Front Pharmacol 2020; 11:580251. [PMID: 33364954 PMCID: PMC7751736 DOI: 10.3389/fphar.2020.580251] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
As a new-generation CDK inhibitor, a CDK4/6 inhibitor combined with endocrine therapy has been successful in the treatment of advanced estrogen receptor-positive (ER+) breast cancer. Although there has been overall progress in the treatment of cancer, drug resistance is an emerging cause for breast cancer-related death. Overcoming CDK4/6 resistance is an urgent problem. Overactivation of the cyclin-CDK-Rb axis related to uncontrolled cell proliferation is the main cause of CDK4/6 inhibitor resistance; however, the underlying mechanisms need to be clarified further. We review various resistance mechanisms of CDK4/6 inhibitors in luminal breast cancer. The cell signaling pathways involved in therapy resistance are divided into two groups: upstream response mechanisms and downstream bypass mechanisms. Finally, we discuss possible strategies to overcome CDK4/6 inhibitor resistance and identify novel resistance targets for future clinical application.
Collapse
Affiliation(s)
- Zhen Li
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Zou
- Queen Mary Institute, Nanchang University, Nanchang, China
| | - Ji Zhang
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunjiao Zhang
- Kunming Medical University Haiyuan College, Kunming, China
| | - Qi Xu
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX, United States
| | - Siyuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute of Translation Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
149
|
Kuenzi BM, Park J, Fong SH, Sanchez KS, Lee J, Kreisberg JF, Ma J, Ideker T. Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells. Cancer Cell 2020; 38:672-684.e6. [PMID: 33096023 PMCID: PMC7737474 DOI: 10.1016/j.ccell.2020.09.014] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Most drugs entering clinical trials fail, often related to an incomplete understanding of the mechanisms governing drug response. Machine learning techniques hold immense promise for better drug response predictions, but most have not reached clinical practice due to their lack of interpretability and their focus on monotherapies. We address these challenges by developing DrugCell, an interpretable deep learning model of human cancer cells trained on the responses of 1,235 tumor cell lines to 684 drugs. Tumor genotypes induce states in cellular subsystems that are integrated with drug structure to predict response to therapy and, simultaneously, learn biological mechanisms underlying the drug response. DrugCell predictions are accurate in cell lines and also stratify clinical outcomes. Analysis of DrugCell mechanisms leads directly to the design of synergistic drug combinations, which we validate systematically by combinatorial CRISPR, drug-drug screening in vitro, and patient-derived xenografts. DrugCell provides a blueprint for constructing interpretable models for predictive medicine.
Collapse
Affiliation(s)
- Brent M Kuenzi
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jisoo Park
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Samson H Fong
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kyle S Sanchez
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - John Lee
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jason F Kreisberg
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jianzhu Ma
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
150
|
Yip HYK, Chee A, Ang CS, Shin SY, Ooms LM, Mohammadi Z, Phillips WA, Daly RJ, Cole TJ, Bronson RT, Nguyen LK, Tiganis T, Hobbs RM, McLean CA, Mitchell CA, Papa A. Control of Glucocorticoid Receptor Levels by PTEN Establishes a Failsafe Mechanism for Tumor Suppression. Mol Cell 2020; 80:279-295.e8. [PMID: 33065020 DOI: 10.1016/j.molcel.2020.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
The PTEN tumor suppressor controls cell death and survival by regulating functions of various molecular targets. While the role of PTEN lipid-phosphatase activity on PtdIns(3,4,5)P3 and inhibition of PI3K pathway is well characterized, the biological relevance of PTEN protein-phosphatase activity remains undefined. Here, using knockin (KI) mice harboring cancer-associated and functionally relevant missense mutations, we show that although loss of PTEN lipid-phosphatase function cooperates with oncogenic PI3K to promote rapid mammary tumorigenesis, the additional loss of PTEN protein-phosphatase activity triggered an extensive cell death response evident in early and advanced mammary tumors. Omics and drug-targeting studies revealed that PI3Ks act to reduce glucocorticoid receptor (GR) levels, which are rescued by loss of PTEN protein-phosphatase activity to restrain cell survival. Thus, we find that the dual regulation of GR by PI3K and PTEN functions as a rheostat that can be exploited for the treatment of PTEN loss-driven cancers.
Collapse
Affiliation(s)
- Hon Yan K Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Annabel Chee
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sung-Young Shin
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Zainab Mohammadi
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Wayne A Phillips
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Timothy J Cole
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Roderick T Bronson
- Department of Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lan K Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Tony Tiganis
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Robin M Hobbs
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3181, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|