101
|
Diet-induced obesity mediates a proinflammatory response in pancreatic β cell via toll-like receptor 4. Cent Eur J Immunol 2014; 39:306-15. [PMID: 26155140 PMCID: PMC4439999 DOI: 10.5114/ceji.2014.45940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/09/2014] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor 4 has an important role in inflammation and immunity. Whether TLR4 signaling contributes to the link between insulin resistance and islet β cell dysfunction is an unanswered question. Here, we show that in the face of the same high-fat continuous stimulation for 24 weeks, in TLR4–/– HF mice, the weight, fraction of the liver, epididymal fat pad fraction, as well as blood glucose and insulin levels were lower than in the WT HF group. In TLR4–/– HF mice, the O2 consumption, CO2 production and activities were higher than in the WT HF group. Glucose tolerance test, insulin tolerance test and insulin release test suggest that the impaired insulin secretion was significantly improved in TLR4–/– HF mice, compared with the WT HF group. In TLR4–/– HF mice, islet β cell ultrastructure was not damaged in the face of the same high-fat continuous stimulation, compared to that in the WT HF group. By detecting glucose-stimulated insulin secretion in the primary islet, insulin secretion of TLR4–/– HF mice was better than that of the WT HF group, and in the TLR4–/– HF group, at the mRNA level, islet interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and monocyte chemotactic protein 1 (MCP-1) were significantly lower than in the WT HF group. There was the islet macrophage infiltration in the WT HF group, but no significant macrophage infiltration in the TLR4–/– HF group. These data suggest that the damaged islet functions of the high fat diet-induced obesity mice may be linked to the TLR4 expression level, and the recruitment of macrophages into the islets.
Collapse
|
102
|
Cheng AM, Rizzo-DeLeon N, Wilson CL, Lee WJ, Tateya S, Clowes AW, Schwartz MW, Kim F. Vasodilator-stimulated phosphoprotein protects against vascular inflammation and insulin resistance. Am J Physiol Endocrinol Metab 2014; 307:E571-9. [PMID: 25117404 PMCID: PMC4187027 DOI: 10.1152/ajpendo.00303.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the pleotropic effects of endothelial nitric oxide (NO) is protection against vascular inflammation during high-fat diet (HFD) feeding. The current work investigated the role of the enzyme vasodilatory-stimulated phosphoprotein (VASP) as a downstream mediator of the anti-inflammatory effect of NO signaling in vascular tissue. Relative to mice fed a low-fat diet (LFD), levels of VASP Ser(239) phosphorylation, a marker of VASP activation, were dramatically reduced in aortic tissue of mice with obesity induced by consuming a HFD. As reported previously, the effect of the HFD was associated with increased aortic inflammation, as measured by increased NF-κB-dependent gene expression, and reduced vascular insulin sensitivity (including insulin-stimulated phosphorylation of eNOS and Akt). These effects of the HFD were recapitulated by VASP knockout, implying a physiological role for VASP to constrain inflammatory signaling and thereby maintain vascular insulin sensitivity. Conversely, overexpression of VASP in endothelial cells blocked inflammation and insulin resistance induced by palmitate. The finding that transplantation of bone marrow from VASP-deficient donors into normal recipients does not recapitulate the vascular effects of whole body VASP deficiency suggests that the protective effects of this enzyme are not mediated in immune or other bone marrow-derived cells. These studies implicate VASP as a downstream mediator of the NO/cGMP pathway that is both necessary and sufficient to protect against vascular inflammation and insulin resistance. As such, this work identifies VASP as a potential therapeutic target in the treatment of obesity-related vascular dysfunction.
Collapse
Affiliation(s)
- Andrew M Cheng
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Norma Rizzo-DeLeon
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | | | - Woo Je Lee
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Sanshiro Tateya
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | | | - Michael W Schwartz
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Francis Kim
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| |
Collapse
|
103
|
Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014; 73:383-99. [PMID: 24878261 PMCID: PMC4112002 DOI: 10.1016/j.freeradbiomed.2014.05.016] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many "distal" causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity-those that directly regulate energy metabolism or caloric intake-seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
104
|
Storniolo CE, Roselló-Catafau J, Pintó X, Mitjavila MT, Moreno JJ. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1. Redox Biol 2014; 2:971-977. [PMID: 25460732 PMCID: PMC4215463 DOI: 10.1016/j.redox.2014.07.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/11/2023] Open
Abstract
Epidemiological and clinical studies have reported that olive oil reduces the incidence of cardiovascular disease. However, the mechanisms involved in this beneficial effect have not been delineated. The endothelium plays an important role in blood pressure regulation through the release of potent vasodilator and vasoconstrictor agents such as nitric oxide (NO) and endothelin-1 (ET-1), respectively, events that are disrupted in type 2 diabetes. Extra virgin olive oil contains polyphenols, compounds that exert a biological action on endothelial function. This study analyzes the effects of olive oil polyphenols on endothelial dysfunction using an in vitro model that simulates the conditions of type 2 diabetes. Our findings show that high glucose and linoleic and oleic acids decrease endothelial NO synthase phosphorylation, and consequently intracellular NO levels, and increase ET-1 synthesis by ECV304 cells. These effects may be related to the stimulation of reactive oxygen species production in these experimental conditions. Hydroxytyrosol and the polyphenol extract from extra virgin olive oil partially reversed the above events. Moreover, we observed that high glucose and free fatty acids reduced NO and increased ET-1 levels induced by acetylcholine through the modulation of intracellular calcium concentrations and endothelial NO synthase phosphorylation, events also reverted by hydroxytyrosol and polyphenol extract. Thus, our results suggest a protective effect of olive oil polyphenols on endothelial dysfunction induced by hyperglycemia and free fatty acids.
Collapse
Affiliation(s)
- Carolina Emilia Storniolo
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII s/n, Barcelona E-08028, Spain
| | - Joan Roselló-Catafau
- Department of Experimental Pathology, IIBB-CSIC, IDIBAPS, Barcelona E-08036, Spain
| | - Xavier Pintó
- Lipids and Vascular Risk Unit, Internal Medicine, University Hospital of Bellvitge, Hospitalet de Llobregat, Barcelona E-08907, Spain
| | - María Teresa Mitjavila
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 485, Barcelona E-08028, Spain
| | - Juan José Moreno
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII s/n, Barcelona E-08028, Spain.
| |
Collapse
|
105
|
Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int J Mol Sci 2014; 15:10334-49. [PMID: 24918290 PMCID: PMC4100154 DOI: 10.3390/ijms150610334] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 02/08/2023] Open
Abstract
Recent studies have shown that free fatty acids are associated with chronic inflammation, which may be involved in vascular injury. The intake of eicosapentaenoic acid (EPA) can decrease cardiovascular disease risks, but the protective mechanisms of EPA on endothelial cells remain unclear. In this study, primary human umbilical vein endothelial cells (HUVECs) treated with palmitic acid (PA) were used to explore the protective effects of EPA. The results revealed that EPA attenuated PA-induced cell death and activation of apoptosis-related proteins, such as caspase-3, p53 and Bax. Additionally, EPA reduced the PA-induced increase in the generation of reactive oxygen species, the activation of NADPH oxidase, and the upregulation of inducible nitric oxide synthase (iNOS). EPA also restored the PA-mediated reduction of endothelial nitric oxide synthase (eNOS) and AMP-activated protein kinase (AMPK) phosphorylation. Using AMPK siRNA and the specific inhibitor compound C, we found that EPA restored the PA-mediated inhibitions of eNOS and AKT activities via activation of AMPK. Furthermore, the NF-κB signals that are mediated by p38 mitogen-activated protein kinase (MAPK) were involved in protective effects of EPA. In summary, these results provide new insight into the possible molecular mechanisms by which EPA protects against atherogenesis via the AMPK/eNOS-related pathway.
Collapse
|
106
|
Abstract
Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.
Collapse
|
107
|
The production of nitric oxide, IL-6, and TNF-alpha in palmitate-stimulated PBMNCs is enhanced through hyperglycemia in diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:479587. [PMID: 24803982 PMCID: PMC3997868 DOI: 10.1155/2014/479587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/01/2014] [Indexed: 01/22/2023]
Abstract
We examined nitric oxide (NO), IL-6, and TNF-α secretion from cultured palmitate-stimulated PBMNCs or in the plasma from type 2 diabetes mellitus (T2MD) patients or nondiabetic (ND) controls. Free fatty acids (FFA) have been suggested to induce chronic low-grade inflammation, activate the innate immune system, and cause deleterious effects on vascular cells and other tissues through inflammatory processes. The levels of NO, IL-6, TNF-α, and MDA were higher in supernatant of palmitate stimulated blood cells (PBMNC) or from plasma from patients. The results obtained in the present study demonstrated that hyperglycemia in diabetes exacerbates in vitro inflammatory responses in PBMNCs stimulated with high levels of SFA (palmitate). These results suggest that hyperglycemia primes PBMNCs for NO, IL-6, and TNF-alpha secretion under in vitro FFA stimulation are associated with the secretion of inflammatory biomarkers in diabetes. A combined therapy targeting signaling pathways activated by hyperglycemia in conjunction with simultaneous control of hyperglycemia and hypertriglyceridemia would be suggested for controlling the progress of diabetic complications.
Collapse
|
108
|
Eguchi K, Manabe I. Toll-like receptor, lipotoxicity and chronic inflammation: the pathological link between obesity and cardiometabolic disease. J Atheroscler Thromb 2014; 21:629-39. [PMID: 24695021 DOI: 10.5551/jat.22533] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The epidemic growth in the prevalence of obesity has made the impact of metabolic syndrome on cardiovascular events increasingly significant. Elevated visceral adiposity, the indispensable component of metabolic syndrome, is thought to play a primary role in the increasing incidence of cardiometabolic disorders. Importantly, obesity is not merely the simple expansion of adipose tissue mass; it also involves the activation of inflammatory processes within visceral adipose tissue. Adipose tissue inflammation on the one hand enhances the production of proinflammatory adipokines and on the other hand increases the release of free fatty acids via the activation of lipolysis. The adipokines and free fatty acids secreted from visceral fat then contribute to a cardiometabolic pathology. We herein summarize recent advances in our understanding of the mechanisms by which visceral obesity leads to the activation of inflammation in cardiovascular and metabolic tissues and promotes cardiometabolic disease. Our focus is on Toll-like receptor 4 signaling and free fatty acids as mediators of chronic inflammation in patients with metabolic syndrome and atherosclerosis.
Collapse
Affiliation(s)
- Kosei Eguchi
- Department of Cardiovascular Medicine, The University of Tokyo
| | | |
Collapse
|
109
|
Silver HJ, Kang H, Keil CD, Muldowney JA, Kocalis H, Fazio S, Vaughan DE, Niswender KD. Consuming a balanced high fat diet for 16 weeks improves body composition, inflammation and vascular function parameters in obese premenopausal women. Metabolism 2014; 63:562-73. [PMID: 24559846 PMCID: PMC4306330 DOI: 10.1016/j.metabol.2014.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Inflammation, insulin resistance and vascular dysfunction characterize obesity and predict development of cardiovascular disease (CVD). Although women experience CVD events at an older age, vascular dysfunction is evident 10years prior to coronary artery disease. Questions remain whether replacing SFA entirely with MUFA or PUFA is the optimal approach for cardiometabolic benefits. This study tested the hypotheses that: a) body composition, inflammation and vascular function would improve with a high fat diet (HFD) when type of fat is balanced as 1/3 SFA, 1/3 MUFA and 1/3 PUFA; and b) body composition, inflammation and vascular function would improve more when balanced HFD is supplemented with 18C fatty acids, in proportion to the degree of 18C unsaturation. METHODS Obese premenopausal women were stabilized on balanced HFD and randomized to consume 9g/d of encapsulated stearate (18:0), oleate (18:1), linoleate (18:2) or placebo. RESULTS Significant improvements occurred in fat oxidation rate (↑6%), body composition (%fat: ↓2.5±2.1%; %lean: ↑2.5±2.1%), inflammation (↓ IL-1α, IL-1β, 1L-12, Il-17, IFNγ, TNFα, TNFβ) and vascular function (↓BP, ↓PAI-1, ↑tPA activity). When compared to HFD+placebo, HFD+stearate had the greatest effect on reducing IFNγ (↓74%) and HFD+linoleate had the greatest effect on reducing PAI-1 (↓31%). CONCLUSIONS Balancing the type of dietary fat consumed (SFA/MUFA/PUFA) is a feasible strategy to positively affect markers of CVD risk. Moreover, reductions in inflammatory molecules involved in vascular function might be enhanced when intake of certain 18C fatty acids is supplemented. Long term effects need to be determined for this approach.
Collapse
Affiliation(s)
- Heidi J Silver
- Vanderbilt University, Department of Medicine, Nashville, TN, USA.
| | - Hakmook Kang
- Vanderbilt University, Department of Biostatistics, Nashville, TN, USA
| | - Charles D Keil
- Vanderbilt University, Department of Medicine, Nashville, TN, USA
| | | | - Heidi Kocalis
- Vanderbilt University, Department of Medicine, Nashville, TN, USA
| | - Sergio Fazio
- Vanderbilt University, Department of Cardiology, Nashville, TN, USA
| | | | - Kevin D Niswender
- Vanderbilt University, Department of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
110
|
Ceramide-activated phosphatase mediates fatty acid-induced endothelial VEGF resistance and impaired angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1562-76. [PMID: 24606881 DOI: 10.1016/j.ajpath.2014.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 11/23/2022]
Abstract
Endothelial dysfunction, including endothelial hyporesponsiveness to prototypical angiogenic growth factors and eNOS agonists, underlies vascular pathology in many dysmetabolic states. We investigated effects of a saturated free fatty acid, palmitic acid (PA), on endothelial cell responses to VEGF. PA-pretreated endothelial cells had markedly diminished Akt, eNOS, and ERK activation responses to VEGF, despite normal VEGFR2 phosphorylation. PA inhibited VEGF-induced angiogenic cord formation in Matrigel, and PA-treated endothelial cells accumulated early species (C16) ceramide. The serine palmitoyltransferase inhibitor myriocin reversed these defects. Protein phosphatase 2A (PP2A) became more eNOS-associated in PA-treated cells; the PP2A inhibitor okadaic acid reversed PA-induced signaling defects. Mice fed a diet high in saturated fat for 2 to 3 weeks had impaired i) aortic Akt and eNOS phosphorylation to infused VEGF, ii) ear angiogenic responses to intradermal adenoviral-VEGF injection, and iii) vascular flow recovery to hindlimb ischemia as indicated by laser Doppler and αVβ3 SPECT imaging. High-fat feeding did not impair VEGF-induced signaling or angiogenic responses in mice with reduced serine palmitoyltransferase expression. Thus, de novo ceramide synthesis is required for these detrimental PA effects. The findings demonstrate an endothelial VEGF resistance mechanism conferred by PA, which comprises ceramide-induced, PP2A-mediated dephosphorylation of critical activation sites on enzymes central to vascular homeostasis and angiogenesis. This study defines potential molecular targets for preservation of endothelial function in metabolic syndrome.
Collapse
|
111
|
Nezami BG, Mwangi SM, Lee JE, Jeppsson S, Anitha M, Yarandi SS, Farris AB, Srinivasan S. MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology 2014; 146:473-83.e3. [PMID: 24507550 PMCID: PMC3920196 DOI: 10.1053/j.gastro.2013.10.053] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS A high-fat diet (HFD) can cause serious health problems, including alteration of gastrointestinal transit, the exact mechanism of which is not clear. Several microRNAs (miRNAs) are involved in energy homeostasis, lipid metabolism, and HFD-induced weight gain. We investigated the role of miRNAs in HFD-induced damage to the enteric nervous system. METHODS Male mice were fed a HFD (60% calories from fat) or regular diets (18% calories from fat) for 11 weeks. Mice on regular diets and HFDs were given intraperitoneal injections of Mir375 inhibitor or a negative control. Body weights, food intake, stool indices, and gastrointestinal transit (following Evans blue gavage) were measured. An enteric neuronal cell line (immorto-fetal enteric neuronal) and primary enteric neurons were used for in vitro studies. RESULTS HFD delayed intestinal transit, which was associated with increased apoptosis and loss of colonic myenteric neurons. Mice fed a low-palmitate HFD did not develop a similar phenotype. Palmitate caused apoptosis of enteric neuronal cells associated with mitochondrial dysfunction and endoplasmic reticulum stress. Palmitate significantly increased the expression of Mir375 in vitro; transfection of cells with a Mir375 inhibitor prevented the palmitate-induced enteric neuronal cell apoptosis. Mir375 expression was increased in myenteric ganglia of mice fed HFD and associated with decreased levels of Mir375 target messenger RNAs, including Pdk1. Systemic injection of a Mir375 inhibitor for 5 weeks prevented HFD-induced delay in intestinal transit and morphologic changes. CONCLUSIONS HFDs delay colonic transit, partly by inducing apoptosis in enteric neuronal cells. This effect is mediated by Mir375 and is associated with reduced levels of Pdk1. Mir375 might be targeted to increase survival of enteric neurons and gastrointestinal motility.
Collapse
Affiliation(s)
- Behtash Ghazi Nezami
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta & Atlanta VA Medical Center, Decatur, GA, USA
| | - Simon M. Mwangi
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta & Atlanta VA Medical Center, Decatur, GA, USA
| | - Jai Eun Lee
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta & Atlanta VA Medical Center, Decatur, GA, USA
| | - Sabrina Jeppsson
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta & Atlanta VA Medical Center, Decatur, GA, USA
| | - Mallappa Anitha
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta & Atlanta VA Medical Center, Decatur, GA, USA
| | - Shadi S. Yarandi
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta & Atlanta VA Medical Center, Decatur, GA, USA
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Shanthi Srinivasan
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia.
| |
Collapse
|
112
|
Nohria A, Kinlay S, Buck JS, Redline W, Copeland-Halperin R, Kim S, Beckman JA. The effect of salsalate therapy on endothelial function in a broad range of subjects. J Am Heart Assoc 2014; 3:e000609. [PMID: 24390146 PMCID: PMC3959688 DOI: 10.1161/jaha.113.000609] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Inflammation is fundamental to the development of atherosclerosis. We examined the effect of anti‐inflammatory doses of salicylate on endothelium‐dependent vasodilation, a biomarker of cardiovascular risk, in a broad range of subjects. Methods and Results We performed a randomized, double‐blind, placebo‐controlled crossover trial evaluating the effects of 4 weeks of high‐dose salsalate (disalicylate) therapy on endothelium‐dependent flow‐mediated and endothelium‐independent vasodilation. Fifty‐eight subjects, including 17 with metabolic syndrome, 13 with atherosclerosis, and 28 healthy controls, were studied. Among all subjects, endothelium‐dependent flow‐mediated vasodilation decreased after salsalate compared with placebo therapy (P=0.01), whereas nitroglycerin‐mediated, endothelium‐independent vasodilation was unchanged (P=0.97). Endothelium‐dependent flow‐mediated vasodilation after salsalate therapy was impaired compared with placebo therapy in subjects with therapeutic salicylate levels (n=31, P<0.02) but not in subjects with subtherapeutic levels (P>0.2). Conclusions Salsalate therapy, particularly when therapeutic salicylate levels are achieved, impairs endothelium‐dependent vasodilation in a broad range of subjects. These data raise concern about the possible deleterious effects of anti‐inflammatory doses of salsalate on cardiovascular risk. Clinical Trial Registration URL: www.clinicaltrials.gov. Unique Identifiers: NCT00760019 and NCT00762827.
Collapse
Affiliation(s)
- Anju Nohria
- Cardiovascular Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
The prevalence of obesity has increased remarkably in the past four decades. Because obesity can promote the development of type 2 diabetes and cardiovascular disease, understanding the mechanisms that engender weight gain and discovering safe antiobesity therapies are of critical importance. In particular, the gaseous signaling molecule, nitric oxide (NO), appears to be a central factor regulating adiposity and systemic metabolism. Obese and diabetic states are characterized by a deficit in bioavailable NO, with such decreases commonly attributed to downregulation of endothelial NO synthase (eNOS), loss of eNOS activity, or quenching of NO by its reaction with oxygen radicals. Gain-of-function studies, in which vascular-derived NO has been increased pharmacologically or genetically, reveal remarkable actions of NO on body composition and systemic metabolism. This review addresses the metabolic actions of eNOS and the potential therapeutic utility of harnessing its antiobesogenic effects.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Louisville, Kentucky, USA; Department of Physiology and Biophysics, Louisville, Kentucky, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Louisville, Kentucky, USA; Department of Physiology and Biophysics, Louisville, Kentucky, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| |
Collapse
|
114
|
Sena CM, Pereira AM, Seiça R. Endothelial dysfunction - a major mediator of diabetic vascular disease. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:2216-2231. [PMID: 23994612 DOI: 10.1016/j.bbadis.2013.08.006] [Citation(s) in RCA: 552] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Abstract
The vascular endothelium is a multifunctional organ and is critically involved in modulating vascular tone and structure. Endothelial cells produce a wide range of factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. Thus, endothelial function is important for the homeostasis of the body and its dysfunction is associated with several pathophysiological conditions, including atherosclerosis, hypertension and diabetes. Patients with diabetes invariably show an impairment of endothelium-dependent vasodilation. Therefore, understanding and treating endothelial dysfunction is a major focus in the prevention of vascular complications associated with all forms of diabetes mellitus. The mechanisms of endothelial dysfunction in diabetes may point to new management strategies for the prevention of cardiovascular disease in diabetes. This review will focus on the mechanisms and therapeutics that specifically target endothelial dysfunction in the context of a diabetic setting. Mechanisms including altered glucose metabolism, impaired insulin signaling, low-grade inflammatory state, and increased reactive oxygen species generation will be discussed. The importance of developing new pharmacological approaches that upregulate endothelium-derived nitric oxide synthesis and target key vascular ROS-producing enzymes will be highlighted and new strategies that might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated vascular complications.
Collapse
Affiliation(s)
- Cristina M Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal; IBILI, Faculty of Medicine, University of Coimbra, Portugal.
| | | | | |
Collapse
|
115
|
Jang HJ, Ridgeway SD, Kim JA. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction. Am J Physiol Endocrinol Metab 2013; 305:E1444-51. [PMID: 24148349 PMCID: PMC3882381 DOI: 10.1152/ajpendo.00434.2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin resistance, a hallmark of metabolic disorders, is a risk factor for diabetes and cardiovascular disease. Impairment of insulin responsiveness in vascular endothelium contributes to insulin resistance. The reciprocal relationship between insulin resistance and endothelial dysfunction augments the pathophysiology of metabolism and cardiovascular functions. The most abundant green tea polyphenol, epigallocatechin-3-gallate (EGCG), has been shown to have vasodilator action in vessels by activation of endothelial nitric oxide synthase (eNOS). However, it is not known whether EGCG has a beneficial effect in high-fat diet (HFD)-induced endothelial dysfunction. Male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD with or without EGCG supplement (50 mg·kg(-1)·day(-1)) for 10 wk. Mice fed a HFD with EGCG supplement gained less body weight and showed improved insulin sensitivity. In vehicle-treated HFD mice, endothelial function was impaired in response to insulin but not to acetylcholine, whereas the EGCG-treated HFD group showed improved insulin-stimulated vasodilation. Interestingly, EGCG intake reduced macrophage infiltration into aortic tissues in HFD mice. Treatment with EGCG restored the insulin-stimulated phosphorylation of eNOS, insulin receptor substrate-1 (IRS-1), and protein kinase B (Akt), which was inhibited by palmitate (200 μM, 5 h) in primary bovine aortic endothelial cells. From these results, we conclude that supplementation of EGCG improves glucose tolerance, insulin sensitivity, and endothelial function. The results suggest that EGCG may have beneficial health effects in glucose metabolism and endothelial function through modulating HFD-induced inflammatory response.
Collapse
Affiliation(s)
- Hyun-Ju Jang
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | |
Collapse
|
116
|
Fujita B, Strodthoff D, Fritzenwanger M, Pfeil A, Ferrari M, Goebel B, Figulla HR, Gerdes N, Jung C. Altered red blood cell distribution width in overweight adolescents and its association with markers of inflammation. Pediatr Obes 2013; 8:385-91. [PMID: 23239558 DOI: 10.1111/j.2047-6310.2012.00111.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 08/14/2012] [Accepted: 09/18/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND Obesity and the metabolic syndrome are dramatically increasing problems. Red blood cell distribution width (RDW), the variability in size of circulating red blood cells, has been demonstrated to be altered in different clinical settings. This analysis aimed to investigate the relationship between RDW and obesity in adolescents and in an animal model of diet-induced obesity (DIO). METHODS Seventy-nine male adolescents (aged 13-17 years) were studied. Thirty-seven of them were overweight (body mass index ≥ 90th percentile). RDW, markers of inflammation and stem cell factor (SCF) were determined. In an animal study, mice were fed with different diets for 15 weeks. RDW was determined using an animal blood count machine. RESULTS RDW differed significantly between normal-weight adolescents (13.07 ± 0.09) and overweight adolescents (13.39 ± 0.10, P = 0.015), whereas erythrocyte counts and haematocrit did not differ. RDW correlated to markers of inflammation and inversely to SCF. In the mice animal model, nutritional changes increased RDW, whereas overweight per se did not change RDW. CONCLUSIONS RDW is elevated in overweight and reflects the inflammatory state. RDW potentially represents an additional and cost-effective tool to indicate inflammation. Future studies are needed to understand the differential influences of nutrition and overweight on RDW.
Collapse
Affiliation(s)
- B Fujita
- Clinic of Internal Medicine I, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Therapeutic roles of heme oxygenase-1 in metabolic diseases: curcumin and resveratrol analogues as possible inducers of heme oxygenase-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:639541. [PMID: 24101950 PMCID: PMC3786516 DOI: 10.1155/2013/639541] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 01/10/2023]
Abstract
Metabolic diseases, such as insulin resistance, type II diabetes, and obesity, are associated with a low-grade chronic inflammation (inflammatory stress), oxidative stress, and endoplasmic reticulum (ER) stress. Because the integration of these stresses is critical to the pathogenesis of metabolic diseases, agents and cellular molecules that can modulate these stress responses are emerging as potential targets for intervention and treatment of metabolic diseases. It has been recognized that heme oxygenase-1 (HO-1) plays an important role in cellular protection. Because HO-1 can reduce inflammatory stress, oxidative stress, and ER stress, in part by exerting antioxidant, anti-inflammatory, and antiapoptotic effects, HO-1 has been suggested to play important roles in pathogenesis of metabolic diseases. In the present review, we will explore our current understanding of the protective mechanisms of HO-1 in metabolic diseases and present some emerging therapeutic options for HO-1 expression in treating metabolic diseases, together with the therapeutic potential of curcumin and resveratrol analogues that have their ability to induce HO-1 expression.
Collapse
|
118
|
Jung CH, Lee WJ, Hwang JY, Lee MJ, Seol SM, Kim YM, Lee YL, Park JY. The preventive effect of uncarboxylated osteocalcin against free fatty acid-induced endothelial apoptosis through the activation of phosphatidylinositol 3-kinase/Akt signaling pathway. Metabolism 2013; 62:1250-7. [PMID: 23639572 DOI: 10.1016/j.metabol.2013.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Increasing evidence suggests that osteocalcin (OC), one of the osteoblast-specific proteins, has been associated with atherosclerosis, but results are conflicting. The aim of this study was to elucidate the independent effect of uncarboxylated osteocalcin (ucOC), an active form of osteocalcin which has been suggested to have an insulin sensitizing effect, on vascular endothelial cells. MATERIALS AND METHODS We used human aortic endothelial cells and treated them with ucOC. Linoleic acid (LA) was used as a representative free fatty acid. Apoptosis was evaluated using various methods including a terminal deoxyribonucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling analysis kit and Western blotting for cleaved caspase 3, cleaved poly (ADP-ribose) polymerase and Bcl-xL. The phosphorylations of Akt and endothelial nitric oxide synthase (eNOS) as well as the level of NO were measured to confirm the effect of ucOC on insulin signaling pathway. RESULTS Pretreatment of ucOC (30 ng/ml) prevented LA-induced apoptosis in insulin-stimulated endothelial cells; effects were abolished by pretreatment with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin. Treatment of ucOC (ranged from 0.3 to 30 ng/ml) significantly increased the phosphorylation of Akt and eNOS and nitric oxide secretion from endothelial cells in a PI3-kinase dependent manner. CONCLUSIONS Our study is the first to demonstrate the independent effect of ucOC on vascular endothelial cells. Our results further suggest that ucOC could have beneficial effects on atherosclerosis.
Collapse
Affiliation(s)
- Chang Hee Jung
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Shen H, Eguchi K, Kono N, Fujiu K, Matsumoto S, Shibata M, Oishi-Tanaka Y, Komuro I, Arai H, Nagai R, Manabe I. Saturated fatty acid palmitate aggravates neointima formation by promoting smooth muscle phenotypic modulation. Arterioscler Thromb Vasc Biol 2013; 33:2596-607. [PMID: 23968977 DOI: 10.1161/atvbaha.113.302099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Obesity is a major risk factor of atherosclerotic cardiovascular disease. Circulating free fatty acid levels are known to be elevated in obese individuals and, along with dietary saturated fatty acids, are known to associate with cardiovascular events. However, little is known about the molecular mechanisms by which free fatty acids are linked to cardiovascular disease. APPROACH AND RESULTS We found that administration of palmitate, a major saturated free fatty acid, to mice markedly aggravated neointima formation induced by carotid artery ligation and that the neointima primarily consisted of phenotypically modulated smooth muscle cells (SMCs). In cultured SMCs, palmitate-induced phenotypic modulation was characterized by downregulation of SMC differentiation markers, such as SM α-actin and SM-myosin heavy chain, and upregulation of mediators involved in inflammation and remodeling of the vessel wall, such as platelet-derived growth factor B and matrix metalloproteinases. We also found that palmitate induced the expression of proinflammatory genes via a novel toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-κB/NADPH oxidase 1/reactive oxygen species signaling pathway: nuclear factor-κB was activated by palmitate via toll-like receptor 4 and its adapter, MyD88, and once active, it transactivated Nox1, encoding NADPH oxidase 1, a major reactive oxygen species generator in SMCs. Pharmacological inhibition and small interfering RNA-mediated knockdown of the components of this signaling pathway mitigated the palmitate-induced upregulation of proinflammatory genes. More importantly, Myd88 knockout mice were resistant to palmitate-induced exacerbation of neointima formation. CONCLUSIONS Palmitate seems to promote neointima formation by inducing inflammatory phenotypes in SMCs.
Collapse
Affiliation(s)
- Hua Shen
- From the Department of Cardiovascular Medicine (H.S., K.E., K.F., S.M., M.S., I.K., I.M.), Translational Systems Biology and Medicine Initiative (K.F.), Graduate School of Medicine, and Graduate School of Pharmaceutical Sciences (N.K., H.A.), The University of Tokyo, Tokyo, Japan; Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (Y.O.-T.); and Jichi Medical University, Tochigi, Japan (R.N.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Wei J, Takeuchi K, Watanabe H. Linoleic acid attenuates endothelium-derived relaxing factor production by suppressing cAMP-hydrolyzing phosphodiesterase activity. Circ J 2013; 77:2823-30. [PMID: 23883876 DOI: 10.1253/circj.cj-13-0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Linoleic acid (LA) promotes monocyte chemotaxis and cell adhesion molecules such as MCP-1 and VCAM-1, which contribute to atherosclerogenesis. These molecules are restrained by endothelium-derived relaxing factors (EDRFs), such as nitric oxide (NO) and prostaglandin I2 (PGI2). Hence, the expressions of MCP-1 and VCAM-1 upregulated by LA may be partly attributable to decreased EDRF production. However, effect of LA on EDRF production remains controversial. METHODS AND RESULTS The present study aimed to examine the effects of LA and other free fatty acids on EDRF production and the endothelial Ca(2+) responses that mediate EDRF production, using primary cultured porcine aortic endothelial cells (PAECs). LA at 0.1-5 μmol/L attenuated bradykinin (BK)-induced NO and PGI2 production while suppressing the BK-induced Ca(2+) response dose-dependently. The inhibitory effect of LA on the Ca(2+) response was eliminated by adenylate cyclase inhibitor SQ22536, boosted by cAMP-hydrolyzing phosphodiesterase (PDE) inhibitor, rolipram, and mimicked by plasma membrane permeable 8-bromo-cAMP. Moreover, LA was confirmed to dose-dependently increase intracellular cAMP levels and selectively inhibit cAMP-hydrolyzing PDE activity in vitro. In contrast, none of palmitic, stearic, or oleic acid affected BK-induced EDRF production or Ca(2+) responses, or induced intracellular cAMP accumulation. CONCLUSIONS LA induced intracellular cAMP accumulation by inhibiting cAMP-hydrolyzing PDE activity, thus resulting in attenuation of Ca(2+) responses and EDRF production in PAECs.
Collapse
Affiliation(s)
- Jiazhang Wei
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine
| | | | | |
Collapse
|
121
|
Tateya S, Rizzo-De Leon N, Handa P, Cheng AM, Morgan-Stevenson V, Ogimoto K, Kanter JE, Bornfeldt KE, Daum G, Clowes AW, Chait A, Kim F. VASP increases hepatic fatty acid oxidation by activating AMPK in mice. Diabetes 2013; 62:1913-22. [PMID: 23349495 PMCID: PMC3661609 DOI: 10.2337/db12-0325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of AMP-activated protein kinase (AMPK) signaling reduces hepatic steatosis and hepatic insulin resistance; however, its regulatory mechanisms are not fully understood. In this study, we sought to determine whether vasodilator-stimulated phosphoprotein (VASP) signaling improves lipid metabolism in the liver and, if so, whether VASP's effects are mediated by AMPK. We show that disruption of VASP results in significant hepatic steatosis as a result of significant impairment of fatty acid oxidation, VLDL-triglyceride (TG) secretion, and AMPK signaling. Overexpression of VASP in hepatocytes increased AMPK phosphorylation and fatty acid oxidation and reduced hepatocyte TG accumulation; however, these responses were suppressed in the presence of an AMPK inhibitor. Restoration of AMPK phosphorylation by administration of 5-aminoimidazole-4-carboxamide riboside in Vasp(-/-) mice reduced hepatic steatosis and normalized fatty acid oxidation and VLDL-TG secretion. Activation of VASP by the phosphodiesterase-5 inhibitor, sildenafil, in db/db mice reduced hepatic steatosis and increased phosphorylated (p-)AMPK and p-acetyl CoA carboxylase. In Vasp(-/-) mice, however, sildendafil treatment did not increase p-AMPK or reduce hepatic TG content. These studies identify a role of VASP to enhance hepatic fatty acid oxidation by activating AMPK and to promote VLDL-TG secretion from the liver.
Collapse
Affiliation(s)
- Sanshiro Tateya
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Wende AR, Symons JD, Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertens Rep 2013; 14:517-31. [PMID: 23054891 DOI: 10.1007/s11906-012-0307-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases account for approximately one third of all deaths globally. Obese and diabetic patients have a high likelihood of dying from complications associated with cardiovascular dysfunction. Obesity and diabetes increase circulating lipids that upon tissue uptake, may be stored as triglyceride, or may be metabolized in other pathways, leading to the generation of toxic intermediates. Excess lipid utilization or activation of signaling pathways by lipid metabolites may disrupt cellular homeostasis and contribute to cell death, defining the concept of lipotoxicity. Lipotoxicity occurs in multiple organs, including cardiac and vascular tissues, and a number of specific mechanisms have been proposed to explain lipotoxic tissue injury. In addition, recent data suggests that increased tissue lipids may also be protective in certain contexts. This review will highlight recent progress toward elucidating the relationship between nutrient oversupply, lipotoxicity, and cardiovascular dysfunction. The review will focus in two sections on the vasculature and cardiomyocytes respectively.
Collapse
Affiliation(s)
- Adam R Wende
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | | | | |
Collapse
|
123
|
Du F, Virtue A, Wang H, Yang XF. Metabolomic analyses for atherosclerosis, diabetes, and obesity. Biomark Res 2013; 1:17. [PMID: 24252331 PMCID: PMC4177614 DOI: 10.1186/2050-7771-1-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/07/2013] [Indexed: 02/02/2023] Open
Abstract
Insulin resistance associated with type 2 diabetes mellitus (T2DM), obesity, and atherosclerosis is a global health problem. A portfolio of abnormalities of metabolic and vascular homeostasis accompanies T2DM and obesity, which are believed to conspire to lead to accelerated atherosclerosis and premature death. The complexity of metabolic changes in the diseases presents challenges for a full understanding of the molecular pathways contributing to the development of these diseases. The recent advent of new technologies in this area termed “Metabolomics” may aid in comprehensive metabolic analysis of these diseases. Therefore, metabolomics has been extensively applied to the metabolites of T2DM, obesity, and atherosclerosis not only for the assessment of disease development and prognosis, but also for the biomarker discovery of disease diagnosis. Herein, we summarize the recent applications of metabolomics technology and the generated datasets in the metabolic profiling of these diseases, in particular, the applications of these technologies to these diseases at the cellular, animal models, and human disease levels. In addition, we also extensively discuss the mechanisms linking the metabolic profiling in insulin resistance, T2DM, obesity, and atherosclerosis, with a particular emphasis on potential roles of increased production of reactive oxygen species (ROS) and mitochondria dysfunctions.
Collapse
Affiliation(s)
- Fuyong Du
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
124
|
Erdogdu O, Eriksson L, Xu H, Sjöholm A, Zhang Q, Nyström T. Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways. J Mol Endocrinol 2013; 50:229-41. [PMID: 23343509 DOI: 10.1530/jme-12-0166] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experimental studies have indicated that endothelial cells play an important role in maintaining vascular homeostasis. We previously reported that human coronary artery endothelial cells (HCAECs) express the glucagon-like peptide 1 (GLP1) receptor and that the stable GLP1 mimetic exendin-4 is able to activate the receptor, leading to increased cell proliferation. Here, we have studied the effect of exendin-4 and native GLP1 (7-36) on lipoapoptosis and its underlying mechanisms in HCAECs. Apoptosis was assessed by DNA fragmentation and caspase-3 activation, after incubating cells with palmitate. Nitric oxide (NO) and reactive oxidative species (ROS) were analyzed. GLP1 receptor activation, PKA-, PI3K/Akt-, eNOS-, p38 MAPK-, and JNK-dependent pathways, and genetic silencing of transfection of eNOS were also studied. Palmitate-induced apoptosis stimulated cells to release NO and ROS, concomitant with upregulation of eNOS, which required activation of p38 MAPK and JNK. Exendin-4 restored the imbalance between NO and ROS production in which ROS production decreased and NO production was further augmented. Incubation with exendin-4 and GLP1 (7-36) protected HCAECs against lipoapoptosis, an effect that was blocked by PKA, PI3K/Akt, eNOS, p38 MAPK, and JNK inhibitors. Genetic silencing of eNOS also abolished the anti-apoptotic effect afforded by exendin-4. Our results support the notion that GLP1 receptor agonists restore eNOS-induced ROS production due to lipotoxicity and that such agonists protect against lipoapoptosis through PKA-PI3K/Akt-eNOS-p38 MAPK-JNK-dependent pathways via a GLP1 receptor-dependent mechanism.
Collapse
Affiliation(s)
- Ozlem Erdogdu
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.
Collapse
Affiliation(s)
- Kieren J Mather
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
126
|
Symons JD, Abel ED. Lipotoxicity contributes to endothelial dysfunction: a focus on the contribution from ceramide. Rev Endocr Metab Disord 2013; 14:59-68. [PMID: 23292334 PMCID: PMC4180664 DOI: 10.1007/s11154-012-9235-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiovascular complications are the leading causes of morbidity and mortality in individuals with obesity, type 2 diabetes mellitus (T2DM), and insulin resistance. Complications include pathologies specific to large (atherosclerosis, cardiomyopathy) and small (retinopathy, nephropathy, neuropathy) vessels. Common among all of these pathologies is an altered endothelial cell phenotype i.e., endothelial dysfunction. A crucial aspect of endothelial dysfunction is reduced nitric oxide (NO) bioavailability. Hyperglycemia, oxidative stress, activation of the renin-angiotensin system, and increased pro-inflammatory cytokines are systemic disturbances in individuals with obesity, T2DM, and insulin resistance and each of these contribute independently and synergistically to decreasing NO bioavailability. This review will examine the contribution from elevated circulating fatty acids in these subjects that lead to lipotoxicity. Particular focus will be placed on the fatty acid metabolite ceramide.
Collapse
Affiliation(s)
- J David Symons
- College of Health, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| | | |
Collapse
|
127
|
Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJHM, Stehouwer CDA, Smulders YM, van Hinsbergh VWM. Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev Endocr Metab Disord 2013; 14:39-48. [PMID: 23417760 DOI: 10.1007/s11154-013-9239-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endothelial dysfunction associated with diabetes and cardiovascular disease is characterized by changes in vasoregulation, enhanced generation of reactive oxygen intermediates, inflammatory activation, and altered barrier function. These endothelial alterations contribute to excess cardiovascular disease in diabetes, but may also play a role in the pathogenesis of diabetes, especially type 2. The mechanisms underlying endothelial dysfunction in diabetes differ between type 1 (T1D) and type 2 diabetes (T2D): hyperglycemia contributes to endothelial dysfunction in all individuals with diabetes, whereas the causative mechanisms in T2D also include impaired insulin signaling in endothelial cells, dyslipidemia and altered secretion of bioactive substances (adipokines) by adipose tissue. The close association of so-called perivascular adipose tissue with arteries and arterioles facilitates the exposure of vascular endothelium to adipokines, particularly if inflammation activates the adipose tissue. Glucose and adipokines activate specific intracellular signaling pathways in endothelium, which in concert result in endothelial dysfunction in diabetes. Here, we review the characteristics of endothelial dysfunction in diabetes, the causative mechanisms involved and the role of endothelial dysfunction(s) in the pathogenesis of T2D. Finally, we will discuss the therapeutic potential of endothelial dysfunction in T2D.
Collapse
Affiliation(s)
- Etto C Eringa
- Departments of Physiology, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Insulin resistance is a complex metabolic defect that has several causes dependent on an individual's genetic substrate and the underlying pathophysiologic state. Atherogenic dyslipidemia, hyperinsulinemia, dysglycemia, inflammation associated with obesity, and ectopic steatosis in liver and skeletal muscle all collude to facilitate endothelial dysfunction and predispose to the initiation and propagation of atherosclerosis. As aggressive management of the various risk factors does not seem to abrogate the so-called residual risk, more research is needed to define ways by which intervention can fundamentally alter the metabolic and vascular milieu and slow the pace of atherosclerosis, thus favorably affecting outcomes.
Collapse
Affiliation(s)
- Vasudevan A Raghavan
- Division of Endocrinology, Department of Internal Medicine, Texas A&M Health Sciences Center and College of Medicine, Temple, TX 76508, USA.
| |
Collapse
|
129
|
|
130
|
Liang CF, Liu JT, Wang Y, Xu A, Vanhoutte PM. Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arterioscler Thromb Vasc Biol 2013; 33:777-84. [PMID: 23413427 DOI: 10.1161/atvbaha.112.301087] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To analyze the role of toll-like receptor 4 in modulating metabolism and endothelial function. APPROACH AND RESULTS Type 2 diabetic mice with mutated toll-like receptor 4 (DWM) were protected from hyperglycemia and hypertension, despite an increased body weight. Isometric tension was measured in arterial rings with endothelium. Relaxations to acetylcholine were blunted in aortae and mesenteric arteries of Lepr(db/db) mice, but not in DWM mice; the endothelial NO synthase dimer/monomer ratio and endothelial NO synthase phosphorylation levels were higher in DWM preparations. These differences were abolished by apocynin. Contractions to acetylcholine (in the presence of L-NAME) were larger in carotid arteries from Lepr(db/db) mice than from DWM mice and were inhibited by indomethacin and SC560, demonstrating involvement of cyclooxygenase-1. The release of 6-ketoprostaglandin F1α was lower in DWM mice arteries, implying lower cyclooxygenase-1 activity. Apocynin, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin, catalase, and diethyldithiocarbamate inhibited endothelium-dependent contractions. The mRNA and protein levels of NADPH oxidase isoforms NOX1 and NOX4 were downregulated in DWM mice arteries. The in vivo and in vitro administration of lipopolysaccharide caused endothelial dysfunction in the arteries of wild-type, but not toll-like receptor 4-mutated mice. CONCLUSIONS Toll-like receptor 4 plays a key role in obesity and diabetes-associated endothelial dysfunction by increasing oxidative stress.
Collapse
Affiliation(s)
- Chao-Fan Liang
- Department of Pharmacology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
131
|
Contreras GA, Raphael W, Mattmiller SA, Gandy J, Sordillo LM. Nonesterified fatty acids modify inflammatory response and eicosanoid biosynthesis in bovine endothelial cells. J Dairy Sci 2013; 95:5011-5023. [PMID: 22916905 DOI: 10.3168/jds.2012-5382] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/01/2012] [Indexed: 01/13/2023]
Abstract
Intense lipid mobilization during the transition period in dairy cows is associated with increased disease susceptibility. The potential impact of altered plasma nonesterified fatty acids (NEFA) concentrations and composition on host inflammatory responses that may contribute to disease incidence and severity are not known. The objective of this study was to evaluate if increased NEFA concentrations could modify vascular inflammatory responses in vitro by changing the expression of important inflammatory mediators that are important in the pathogenesis of infectious diseases of transition cows such as mastitis and metritis. Bovine aortic endothelial cells (BAEC) were cultured with different concentrations of a NEFA mixture that reflected the plasma NEFA composition during different stages of lactation. The expression of cytokines, adhesion molecules, and eicosanoids were measured to assess changes in BAEC inflammatory phenotype. Addition of NEFA mixtures altered the fatty acid profile of BAEC by increasing the concentration of stearic acid (C18:0) and decreasing the content of arachidonic acid (C20:4n6c) and other long-chain polyunsaturated fatty acids in the phospholipid fraction. A significant increase also occurred in mRNA expression of cytokine and adhesion molecules that are associated with increased inflammatory responses during the transition period. Expression of cyclooxygenase 2, an important enzyme associated with eicosanoid biosynthesis, was increased in a NEFA concentration-dependent manner. The production of linoleic acid-derived eicosanoids 9- and 13-hydroxyoctadecadienoic acids also was increased significantly after treatment with NEFA mixtures. This research described for the first time specific changes in vascular inflammatory response during in vitro exposure to NEFA mixtures that mimic the composition and concentration found in cows during the transition period. These findings could explain, in part, alterations in inflammatory responses observed during intense lipid mobilization stages such as in the transition period of dairy cows. Future studies should analyze specific mechanisms by which high NEFA concentrations induce a vascular proinflammatory phenotype including the effect of 9 and 13-hydroxyoctadecadienoic acids and other lipid mediators.
Collapse
Affiliation(s)
- G A Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - W Raphael
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - S A Mattmiller
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - J Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
132
|
Premilovac D, Bradley EA, Ng HL, Richards SM, Rattigan S, Keske MA. Muscle insulin resistance resulting from impaired microvascular insulin sensitivity in Sprague Dawley rats. Cardiovasc Res 2013; 98:28-36. [DOI: 10.1093/cvr/cvt015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
133
|
Eggleston EM, Jahn LA, Barrett EJ. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care 2013; 36:104-10. [PMID: 22961574 PMCID: PMC3526221 DOI: 10.2337/dc11-2399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To test whether early, insulin-mediated microvascular recruitment in skeletal muscle predicts steady-state glucose metabolism in the setting of physiological elevation of free fatty acid concentrations. RESEARCH DESIGN AND METHODS We measured insulin's microvascular and metabolic effects in 14 healthy young adults during a 2-h euglycemic insulin clamp. Plasma free fatty acid concentrations were raised (Intralipid and heparin infusion) for 3 h before the clamp and maintained at postprandial concentrations during the clamp. Microvascular blood volume (MBV) was measured by contrast-enhanced ultrasound (CEU) continuously from baseline through the first 30 min of the insulin clamp. Muscle glucose and insulin uptake were measured by the forearm balance method. RESULTS The glucose infusion rate (GIR) necessary to maintain euglycemia during the clamp varied by fivefold across subjects (2.5-12.5 mg/min/kg). The early MBV responses to insulin, as indicated by CEU video intensity, ranged widely, from a 39% decline to a 69% increase. During the clamp, steady state forearm muscle glucose uptake and GIR each correlated significantly with the change in forearm MBV (P < 0.01). To explore the basis for the wide range of vascular and metabolic insulin sensitivity observed, we also measured V(O(2max)) in a subset of eight subjects. Fitness (V(O(2max))) correlated significantly with the GIR, the forearm glucose uptake, and the percentage change in MBV during the insulin clamp (P < 0.05 for each). CONCLUSIONS Early microvascular responses to insulin strongly associate with steady state skeletal muscle insulin-mediated glucose uptake. Physical fitness predicts both metabolic and vascular insulin responsiveness.
Collapse
Affiliation(s)
- Emma M Eggleston
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | | | | |
Collapse
|
134
|
Rodríguez-Hernández H, Simental-Mendía LE, Rodríguez-Ramírez G, Reyes-Romero MA. Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol 2013; 2013:678159. [PMID: 23690772 PMCID: PMC3652163 DOI: 10.1155/2013/678159] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/27/2013] [Indexed: 12/23/2022] Open
Abstract
Obesity is a public health problem that has reached epidemic proportions with an increasing worldwide prevalence. The global emergence of obesity increases the risk of developing chronic metabolic disorders. Thus, it is an economic issue that increased the costs of the comorbidities associated. Moreover, in recent years, it has been demonstrated that obesity is associated with chronic systemic inflammation, this status is conditioned by the innate immune system activation in adipose tissue that promotes an increase in the production and release of pro-inflammatory cytokines that contribute to the triggering of the systemic acute-phase response which is characterized by elevation of acute-phase protein levels. On this regard, low-grade chronic inflammation is a characteristic of various chronic diseases such as metabolic syndrome, cardiovascular disease, diabetes, hypertension, non-alcoholic fatty liver disease, and some cancers, among others, which are also characterized by obesity condition. Thus, a growing body of evidence supports the important role that is played by the inflammatory response in obesity condition and the pathogenesis of chronic diseases related.
Collapse
Affiliation(s)
- Heriberto Rodríguez-Hernández
- Biomedical Research Unit of the Mexican Social Security Institute at Durango, Predio Canoas 100, Los Angeles, 34067 Durango, DGO, Mexico
- Faculty of Medicine and Nutrition, Juárez University of Durango State, Av. Universidad and Fanny Anitúa s/n, Zona Centro, 34000 Durango, DGO, Mexico
| | - Luis E. Simental-Mendía
- Biomedical Research Unit of the Mexican Social Security Institute at Durango, Predio Canoas 100, Los Angeles, 34067 Durango, DGO, Mexico
- *Luis E. Simental-Mendía:
| | - Gabriela Rodríguez-Ramírez
- Biomedical Research Unit of the Mexican Social Security Institute at Durango, Predio Canoas 100, Los Angeles, 34067 Durango, DGO, Mexico
| | - Miguel A. Reyes-Romero
- Faculty of Medicine and Nutrition, Juárez University of Durango State, Av. Universidad and Fanny Anitúa s/n, Zona Centro, 34000 Durango, DGO, Mexico
| |
Collapse
|
135
|
Wu F, Wang H, Li J, Liang J, Ma S. Homoplantaginin modulates insulin sensitivity in endothelial cells by inhibiting inflammation. Biol Pharm Bull 2012; 35:1171-7. [PMID: 22791168 DOI: 10.1248/bpb.b110586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent data have indicated that inflammation plays an important role in the development of insulin resistance. The present study aims at examining the activity of homoplantaginin, a flavonoid from a traditional Chinese medicine Salvia plebeia R. BR., on palmitic acid (PA)-induced insulin sensitivity and the underlying mechanisms of its anti-infammatory properties in the endothelial cells. Pre-treatment of homoplantaginin on human umbilical vein endothelial cells (HUVECs) significantly inhibited PA induced tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA expression, and inhibitory κB kinase beta (IKKβ) and nuclear factor-κB (NF-κB) p65 phosphorylation. To the PA-impaired insulin-dependent tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and decrease in nitric oxide (NO) production, pretreatment of homoplantaginin could effectively reverse the effects of PA. Additionally, homoplantaginin significantly modulated the Ser/Thr phosphorylation of IRS-1, improved phosphorylation of Akt and endothelial nitric oxide synthase (eNOS), and increased NO production in the presence of insulin. Taken together, our results demonstrated that homoplantaginin ameliorates endothelial insulin resistance by inhibiting inflammation and modulating cell signalling via the IKKβ/IRS-1/pAkt/peNOS pathway, suggesting it may be used for the prevention and treatment of endothelial dysfunction associated with insulin resistance.
Collapse
Affiliation(s)
- Feihua Wu
- Department of Pharmacology for Chinese Materia Medica, China Pharmaceutical University, Jiangning District, Nanjing 211198, China.
| | | | | | | | | |
Collapse
|
136
|
Lee WJ, Chait A, Kim F. P-selectin glycoprotein ligand-1: a cellular link between perivascular adipose inflammation and endothelial dysfunction. Diabetes 2012; 61:3070-1. [PMID: 23172956 PMCID: PMC3501877 DOI: 10.2337/db12-1036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
137
|
Contreras G, Mattmiller S, Raphael W, Gandy J, Sordillo L. Enhanced n-3 phospholipid content reduces inflammatory responses in bovine endothelial cells. J Dairy Sci 2012; 95:7137-50. [DOI: 10.3168/jds.2012-5729] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/20/2012] [Indexed: 11/19/2022]
|
138
|
Liu SP, Li XY, Li Z, He LN, Xiao Y, Yan K, Zhou ZG. Octanoylated Ghrelin Inhibits the Activation of the Palmitic Acid-Induced TLR4/NF-κB Signaling Pathway in THP-1 Macrophages. ISRN ENDOCRINOLOGY 2012; 2012:237613. [PMID: 23251812 PMCID: PMC3513732 DOI: 10.5402/2012/237613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 10/24/2012] [Indexed: 12/20/2022]
Abstract
To investigate the effect of acylated ghrelin on the activation of TLR4/NF-κB signaling pathway induced by palmitic acid in human monocyte-derived (THP-1) macrophages, THP-1 macrophages were cultured for 12 h by palmitic acid with various concentrations. The THP-1 macrophages was pretreated by acylated ghrelin at different doses for 4 h before cultivated by palmitic acid (200 μmol/L) for 12 h. We observed the level of TLR4, NF-κB p65 phosphorylation in THP-1 macrophages and TNF-α, IL-1β in culture supernatant. TLR4 mRNA was measured by real-time PCR. TLR4 protein and NF-κB p65 phosphorylation was measured by western blotting. The expression of TNF-α and IL-1β was detected by ELISA. Compared to the THP-1 macrophages without palmitic acid, the level of TLR4 mRNA protein and NF-κB p65 phosphorylation and the expression of TNF-α and IL-1β increased after treatment by palmitic acid in a dose-dependent fashion (P < 0.05). Compared to the THP-1 macrophages with palmitic acid (200 μmol/L), the level of the pervious substances decreased after preadministration by acylated ghrelin in a dose-dependent fashion. So, we make a conclusion that acylated ghrelin can regulate the activation of TLR4/NF-κB signaling pathway and inhibit the release of inflammatory cytokines in THP-1 macrophages which are stimulated by palmitic acid in a dose-dependent fashion.
Collapse
Affiliation(s)
- S P Liu
- Diabetes Center, 2nd Xiangya Hospital, Institute of Metabolism and Endocrinology, Key Laboratory of Diabetes Immunology of Ministry of Education, Central South University, 139 Renmin-Zhong Road, Hunan, Changsha 410011, China
| | | | | | | | | | | | | |
Collapse
|
139
|
Tian D, Qiu Y, Zhan Y, Li X, Zhi X, Wang X, Yin L, Ning Y. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability. Cardiovasc Diabetol 2012; 11:144. [PMID: 23170972 PMCID: PMC3537593 DOI: 10.1186/1475-2840-11-144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/16/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR), one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA) has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model. METHODS StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. RESULTS We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, , TNFα and IL-6 in culture supernatant were significantly decreased, which duing to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as StAR overexpression. On the other hand, the role of StAR was inhibited when siRNA was introduced to reduce StAR expression. CONCLUSIONS Our results showed that StAR attenuated lipid synthesis and uptake as well as PA-induced inflammation and reduction in NO bioavailability in aortic endothelial cells. StAR can ameliorate endothelial dysfunction induced by PA via reducing the intracellular lipid levels.
Collapse
Affiliation(s)
- Dai Tian
- Department of Physiology & Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Gosmanov AR, Smiley DD, Peng L, Siquiera J, Robalino G, Newton C, Umpierrez GE. Vascular effects of intravenous intralipid and dextrose infusions in obese subjects. Metabolism 2012; 61:1370-6. [PMID: 22483976 PMCID: PMC3738183 DOI: 10.1016/j.metabol.2012.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 01/22/2023]
Abstract
Hyperglycemia and elevated free fatty acids (FFA) are implicated in the development of endothelial dysfunction. Infusion of soy-bean oil-based lipid emulsion (Intralipid®) increases FFA levels and results in elevation of blood pressure (BP) and endothelial dysfunction in obese healthy subjects. The effects of combined hyperglycemia and high FFA on BP, endothelial function and carbohydrate metabolism are not known. Twelve obese healthy subjects received four random, 8-h IV infusions of saline, Intralipid 40 mL/h, Dextrose 10% 40 mL/h, or combined Intralipid and dextrose. Plasma levels of FFA increased by 1.03±0.34 mmol/L (p=0.009) after Intralipid, but FFAs remained unchanged during saline, dextrose, and combined Intralipid and dextrose infusion. Plasma glucose and insulin concentrations significantly increased after dextrose and combined Intralipid and dextrose (all, p<0.05) and were not different from baseline during saline and lipid infusion. Intralipid increased systolic BP by 12±9 mmHg (p<0.001) and diastolic BP by 5±6 mmHg (p=0.022),and decreased flow-mediated dilatation (FMD) from baseline by 3.2%±1.4% (p<0.001). Saline and dextrose infusion had neutral effects on BP and FMD. The co-administration of lipid and dextrose decreased FMD by 2.4%±2.1% (p=0.002) from baseline, but did not significantly increase systolic or diastolic BP. Short-term Intralipid infusion significantly increased FFA and BP; in contrast, FFA and BP were unchanged during combined infusion of Intralipid and dextrose. Combined Intralipid and dextrose infusion resulted in endothelial dysfunction similar to Intralipid alone.
Collapse
Affiliation(s)
- Aidar R. Gosmanov
- Department of Medicine, Division of Endocrinology University of Tennessee Health Science Center, Memphis, TN
| | - Dawn D. Smiley
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, GA
| | - Limin Peng
- Rollins School of Public Health, Emory University, Atlanta, GA
| | - Joselita Siquiera
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, GA
| | - Gonzalo Robalino
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, GA
| | - Christopher Newton
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, GA
| | - Guillermo E. Umpierrez
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, GA
- Corresponding author. Emory University School of Medicine, 49 Jesse Hill Jr. Drive, Atlanta, Georgia 30303. Tel.: +1 404 778 1665; fax: +1 404 778 1661. (G.E. Umpierrez)
| |
Collapse
|
141
|
Diosgenin ameliorates palmitate-induced endothelial dysfunction and insulin resistance via blocking IKKβ and IRS-1 pathways. Atherosclerosis 2012; 223:350-8. [DOI: 10.1016/j.atherosclerosis.2012.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/24/2012] [Accepted: 06/07/2012] [Indexed: 12/21/2022]
|
142
|
Soares E Silva AK, de Oliveira Cipriano Torres D, Santos Rocha SW, dos Santos Gomes FO, dos Santos Silva B, Donato MAM, Raposo C, Santos ACO, de Lima MDCA, Galdino SL, da Rocha Pitta I, de Souza JRB, Peixoto CA. Effect of new thiazolidine derivatives LPSF/GQ-02 and LPSF/GQ-16 on atherosclerotic lesions in LDL receptor-deficient mice (LDLR(-/-)). Cardiovasc Pathol 2012; 22:81-90. [PMID: 22795892 DOI: 10.1016/j.carpath.2012.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease is a chronic inflammatory condition. Thiazolidinediones (TZDs) are used to enhance sensitivity to insulin and have demonstrated a protective effect over a variety of cardiovascular markers and risk factors. Controversially, the TZDs are associated with the development of heart failure. Thus, lines of research have invested in the search for new molecules in order to obtain more selective and less harmful treatment alternatives for the pathogenesis of atherosclerosis and its risk factors. METHODS Animals were fed a diet rich in fat for 10 weeks. In the last 2 weeks, animals received either pioglitazone, LPSF/GQ-02, or LPSF/GQ-16 daily through gavage. At the end of the treatment, blood was collected for biochemical analysis and the aortas were dissected for subsequent analyses. RESULTS No changes in the blood lipid profile were found following the use of the drugs in comparison to the control. However, the new thiazolidine derivatives were more efficient in improving insulin resistance in comparison to pioglitazone and the control group. Morphometric analyses revealed that neither pioglitazone nor LPSF/GQ16 led to satisfactory effects over atherosclerosis. However, LPSF/GQ-02 led to a reduction in area of the atherosclerotic lesions. Ultrastructural analyses revealed extensive degeneration of the endothelium and an increase in apoptotic cells in the subendothelial space following the use of pioglitazone and LPSF/GQ-16. However, LPSF/GQ-02 caused minimal cell alterations in the aortic endothelium. Regarding markers, endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase 9 (MMP-9), LPSF/GQ-16, and pioglitazone exerted similar effects, increasing the expression of MMP-9, and had no effect on the expression of eNOS compared with the control group. On the other hand, LPSF/GQ-02 was effective in reducing the expression of MMP-9 and increased eNOS significantly. CONCLUSIONS The results suggest that the new thiazolidine derivative LPSF/GQ-02 is a promising candidate for the treatment of atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/ultrastructure
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Apoptosis/drug effects
- Atherosclerosis/blood
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Blotting, Western
- Cardiovascular Agents/pharmacology
- Cardiovascular Agents/toxicity
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Immunohistochemistry
- Insulin/blood
- Insulin Resistance
- Lipids/blood
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Nitric Oxide Synthase Type III/metabolism
- Pioglitazone
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Thiazolidinediones/pharmacology
- Thiazolidinediones/toxicity
- Thiazolidines/pharmacology
- Thiazolidines/toxicity
- Time Factors
Collapse
|
143
|
Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, Pettey D, Losee J, Duncan B, Gale D, Kowalski CA, Deeter N, Nichols A, Deesing M, Arrant C, Ruan T, Boehme C, McCamey DR, Rou J, Ambal K, Narra KK, Summers SA, Abel ED, Symons JD. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes 2012; 61:1848-59. [PMID: 22586587 PMCID: PMC3379648 DOI: 10.2337/db11-1399] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vascular dysfunction that accompanies obesity and insulin resistance may be mediated by lipid metabolites. We sought to determine if vascular ceramide leads to arterial dysfunction and to elucidate the underlying mechanisms. Pharmacological inhibition of de novo ceramide synthesis, using the Ser palmitoyl transferase inhibitor myriocin, and heterozygous deletion of dihydroceramide desaturase prevented vascular dysfunction and hypertension in mice after high-fat feeding. These findings were recapitulated in isolated arteries in vitro, confirming that ceramide impairs endothelium-dependent vasorelaxation in a tissue-autonomous manner. Studies in endothelial cells reveal that de novo ceramide biosynthesis induced protein phosphatase 2A (PP2A) association directly with the endothelial nitric oxide synthase (eNOS)/Akt/Hsp90 complex that was concurrent with decreased basal and agonist-stimulated eNOS phosphorylation. PP2A attenuates eNOS phosphorylation by preventing phosphorylation of the pool of Akt that colocalizes with eNOS and by dephosphorylating eNOS. Ceramide decreased the association between PP2A and the predominantly cytosolic inhibitor 2 of PP2A. We conclude that ceramide mediates obesity-related vascular dysfunction by a mechanism that involves PP2A-mediated disruption of the eNOS/Akt/Hsp90 signaling complex. These results provide important insight into a pathway that represents a novel target for reversing obesity-related vascular dysfunction.
Collapse
Affiliation(s)
- Quan-Jiang Zhang
- College of Health, University of Utah, Salt Lake City, Utah
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
- Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - William L. Holland
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lloyd Wilson
- College of Health, University of Utah, Salt Lake City, Utah
| | | | - Devin Kearns
- College of Health, University of Utah, Salt Lake City, Utah
| | - Judd M. Cahoon
- College of Health, University of Utah, Salt Lake City, Utah
| | - Dix Pettey
- College of Health, University of Utah, Salt Lake City, Utah
| | - Jason Losee
- College of Health, University of Utah, Salt Lake City, Utah
| | - Bradlee Duncan
- College of Health, University of Utah, Salt Lake City, Utah
| | - Derrick Gale
- College of Health, University of Utah, Salt Lake City, Utah
| | | | | | | | | | - Colton Arrant
- College of Health, University of Utah, Salt Lake City, Utah
| | - Ting Ruan
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Christoph Boehme
- Department of Physics and Astronomy, College of Science, University of Utah, Salt Lake City, Utah
| | - Dane R. McCamey
- Department of Physics and Astronomy, College of Science, University of Utah, Salt Lake City, Utah
| | - Janvida Rou
- Department of Physics and Astronomy, College of Science, University of Utah, Salt Lake City, Utah
| | - Kapil Ambal
- Department of Physics and Astronomy, College of Science, University of Utah, Salt Lake City, Utah
| | - Krishna K. Narra
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Scott A. Summers
- Program in Cardiovascular and Metabolic Diseases, Duke-NUS Graduate Medical School, Singapore, and the Stedman Center for Nutrition and Metabolism Research, Duke University Medical Center, Durham, North Carolina
| | - E. Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
- Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
- Corresponding authors: E. Dale Abel, , and J. David Symons,
| | - J. David Symons
- College of Health, University of Utah, Salt Lake City, Utah
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
- Corresponding authors: E. Dale Abel, , and J. David Symons,
| |
Collapse
|
144
|
Wang B, Yu Y, Han L. Adiponectin improves endothelial dysfunction caused by elevated FFAs levels, partially through cAMP-dependent pathway. Diabetes Res Clin Pract 2012; 97:119-24. [PMID: 22502813 DOI: 10.1016/j.diabres.2012.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/11/2012] [Accepted: 02/14/2012] [Indexed: 02/05/2023]
Abstract
AIMS To determine whether adiponectin can attenuate endothelial dysfunction caused by elevated free fatty acids (FFAs) concentration, and if so, to explore the underlying mechanism. METHODS Male Sprague-Dawley rat thoracic aortas were isolated then cut into four vascular rings, incubated in organ bath containing Krebs-Henseleit buffer with different agents separately: 800 μmol/L Palmic acid (FFA, n = 14), 800 μmol/L Palmic acid + 2 μg/mL adiponectin (FFA + gAd, n = 14), 800 μmol/L Palmic acid + 2 μg/mL adiponectin + 200 μmol/L adenylate cyclase inhibitor dideoxyadenosine (FFA + gAd + ddAdo, n = 7), blank control (NC, n=10). The endothelial dependent vasodilatation (EDV) and endothelial independent vasodilatation (EIV) were assessed by acetylcholine (Ach) induced contraction of the aortas. Nuclear transcription factor kappa B (NF-κB) expression in rat aortic section was evaluated immunohistochemically. RESULTS Ach caused a concentration dependent vascular relaxation in all pre-constricted aortic rings. PA treatment impaired the Ach induced EDV which was significantly attenuated by pretreatment with adiponectin. Dideoxyadenosine partly abolished the vascular protective effect of adiponectin. Sodium nitroprusside (SNP) had no significant effect on the vasodilatation among four groups. Increased NF-κB expression was noted in FFA group. Pretreatment with adiponectin partly decreased NF-κB expression when compared with FFA group. CONCLUSION Adiponectin may independently mitigate endothelial dysfunction caused by elevated FFAs concentration through the cross talk between cAMP and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ben Wang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | | | | |
Collapse
|
145
|
Huang F, Liu K, Du H, Kou J, Liu B. Puerarin attenuates endothelial insulin resistance through inhibition of inflammatory response in an IKKβ/IRS-1-dependent manner. Biochimie 2012; 94:1143-50. [DOI: 10.1016/j.biochi.2012.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 01/24/2012] [Indexed: 01/12/2023]
|
146
|
Abstract
Insulin increases microvascular perfusion and substrate exchange surface area in muscle, which is pivotal for hormone action and substrate exchange, by activating insulin signaling cascade in the endothelial cells to produce nitric oxide. This action of insulin is closely coupled with its metabolic action and type 2 diabetes is associated with both metabolic and microvascular insulin resistance. Muscle microvascular perfusion/volume can be assessed by 1-methylxanthine metabolism, contrast-enhanced ultrasound and positron emission tomography. In addition to insulin, several factors have been shown to recruit muscle microvasculature, including exercise or muscle contraction, mixed meals, glucagon-like peptide 1 and angiotensin II type 1 receptor (AT(1)R) blocker. On the other hand, factors that cause metabolic insulin resistance, such as inflammatory cytokines, free fatty acids, and selective activation of the AT(1)R, are capable of causing microvascular insulin resistance. Therapies targeting microvascular insulin resistance may help prevent or control diabetes and decrease the associated cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Zhenqi Liu
- Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Seung-Hyun Ko
- Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Suwon, Korea
| | - Weidong Chai
- Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Wenhong Cao
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
147
|
Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 2012; 142:711-725.e6. [PMID: 22326434 DOI: 10.1053/j.gastro.2012.02.003] [Citation(s) in RCA: 649] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/04/2012] [Accepted: 02/02/2012] [Indexed: 02/07/2023]
Abstract
As obesity reaches epidemic proportions, nonalcoholic fatty liver disease (NAFLD) is becoming a frequent cause of patient referral to gastroenterologists. There is a close link between dysfunctional adipose tissue in NAFLD and common conditions such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. This review focuses on the pathophysiology of interactions between adipose tissue and target organs in obesity and the resulting clinical implications for the management of nonalcoholic steatohepatitis. The release of fatty acids from dysfunctional and insulin-resistant adipocytes results in lipotoxicity, caused by the accumulation of triglyceride-derived toxic metabolites in ectopic tissues (liver, muscle, pancreatic beta cells) and subsequent activation of inflammatory pathways, cellular dysfunction, and lipoapoptosis. The cross talk between dysfunctional adipocytes and the liver involves multiple cell populations, including macrophages and other immune cells, that in concert promote the development of lipotoxic liver disease, a term that more accurately describes the pathophysiology of nonalcoholic steatohepatitis. At the clinical level, adipose tissue insulin resistance contributes to type 2 diabetes mellitus and cardiovascular disease. Treatments that rescue the liver from lipotoxicity by restoring adipose tissue insulin sensitivity (eg, significant weight loss, exercise, thiazolidinediones) or preventing activation of inflammatory pathways and oxidative stress (ie, vitamin E, thiazolidinediones) hold promise in the treatment of NAFLD, although their long-term safety and efficacy remain to be established. Better understanding of pathways that link dysregulated adipose tissue, metabolic dysfunction, and liver lipotoxicity will result in improvements in the clinical management of these challenging patients.
Collapse
Affiliation(s)
- Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610-0226, USA.
| |
Collapse
|
148
|
Cheng AM, Handa P, Tateya S, Schwartz J, Tang C, Mitra P, Oram JF, Chait A, Kim F. Apolipoprotein A-I attenuates palmitate-mediated NF-κB activation by reducing Toll-like receptor-4 recruitment into lipid rafts. PLoS One 2012; 7:e33917. [PMID: 22479476 PMCID: PMC3316516 DOI: 10.1371/journal.pone.0033917] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/20/2012] [Indexed: 11/24/2022] Open
Abstract
While high-density lipoprotein (HDL) is known to protect against a wide range of inflammatory stimuli, its anti-inflammatory mechanisms are not well understood. Furthermore, HDL's protective effects against saturated dietary fats have not been previously described. In this study, we used endothelial cells to demonstrate that while palmitic acid activates NF-κB signaling, apolipoprotein A–I, (apoA-I), the major protein component of HDL, attenuates palmitate-induced NF-κB activation. Further, vascular NF-κB signaling (IL-6, MCP-1, TNF-α) and macrophage markers (CD68, CD11c) induced by 24 weeks of a diabetogenic diet containing cholesterol (DDC) is reduced in human apoA-I overexpressing transgenic C57BL/6 mice compared to age-matched WT controls. Moreover, WT mice on DDC compared to a chow diet display increased gene expression of lipid raft markers such as Caveolin-1 and Flotillin-1, and inflammatory Toll-like receptors (TLRs) (TLR2, TLR4) in the vasculature. However apoA-I transgenic mice on DDC show markedly reduced expression of these genes. Finally, we show that in endothelial cells TLR4 is recruited into lipid rafts in response to palmitate, and that apoA-I prevents palmitate-induced TLR4 trafficking into lipid rafts, thereby blocking NF-κB activation. Thus, apoA-I overexpression might be a useful therapeutic tool against vascular inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Francis Kim
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
149
|
Tsuchiya K, Tanaka J, Shuiqing Y, Welch CL, DePinho RA, Tabas I, Tall AR, Goldberg IJ, Accili D. FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis. Cell Metab 2012; 15:372-81. [PMID: 22405072 PMCID: PMC3315846 DOI: 10.1016/j.cmet.2012.01.018] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/29/2011] [Accepted: 01/23/2012] [Indexed: 12/21/2022]
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death in insulin-resistant (type 2) diabetes. Vascular endothelial dysfunction paves the way for atherosclerosis through impaired nitric oxide availability, inflammation, and generation of superoxide. Surprisingly, we show that ablation of the three genes encoding isoforms of transcription factor FoxO in endothelial cells prevents atherosclerosis in low-density lipoprotein receptor knockout mice by reversing these subphenotypes. Paradoxically, the atheroprotective effect of FoxO deletion is associated with a marked decrease of insulin-dependent Akt phosphorylation in endothelial cells, owing to reduced FoxO-dependent expression of the insulin receptor adaptor proteins Irs1 and Irs2. These findings support a model in which FoxO is the shared effector of multiple atherogenic pathways in endothelial cells. FoxO ablation lowers the threshold of Akt activity required for protection from atherosclerosis. The data demonstrate that FoxO inhibition in endothelial cells has the potential to mediate wide-ranging therapeutic benefits for diabetes-associated cardiovascular disease.
Collapse
Affiliation(s)
- Kyoichiro Tsuchiya
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Habegger KM, Penque BA, Sealls W, Tackett L, Bell LN, Blue EK, Gallagher PJ, Sturek M, Alloosh MA, Steinberg HO, Considine RV, Elmendorf JS. Fat-induced membrane cholesterol accrual provokes cortical filamentous actin destabilisation and glucose transport dysfunction in skeletal muscle. Diabetologia 2012; 55:457-67. [PMID: 22002007 PMCID: PMC3245823 DOI: 10.1007/s00125-011-2334-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/19/2011] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Diminished cortical filamentous actin (F-actin) has been implicated in skeletal muscle insulin resistance, yet the mechanism(s) is unknown. Here we tested the hypothesis that changes in membrane cholesterol could be a causative factor, as organised F-actin structure emanates from cholesterol-enriched raft microdomains at the plasma membrane. METHODS Skeletal muscle samples from high-fat-fed animals and insulin-sensitive and insulin-resistant human participants were evaluated. The study also used L6 myotubes to directly determine the impact of fatty acids (FAs) on membrane/cytoskeletal variables and insulin action. RESULTS High-fat-fed insulin-resistant animals displayed elevated levels of membrane cholesterol and reduced F-actin structure compared with normal chow-fed animals. Moreover, human muscle biopsies revealed an inverse correlation between membrane cholesterol and whole-body glucose disposal. Palmitate-induced insulin-resistant myotubes displayed membrane cholesterol accrual and F-actin loss. Cholesterol lowering protected against the palmitate-induced defects, whereas characteristically measured defects in insulin signalling were not corrected. Conversely, cholesterol loading of L6 myotube membranes provoked a palmitate-like cytoskeletal/GLUT4 derangement. Mechanistically, we observed a palmitate-induced increase in O-linked glycosylation, an end-product of the hexosamine biosynthesis pathway (HBP). Consistent with HBP activity affecting the transcription of various genes, we observed an increase in Hmgcr, a gene that encodes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. In line with increased HBP activity transcriptionally provoking a membrane cholesterol-based insulin-resistant state, HBP inhibition attenuated Hmgcr expression and prevented membrane cholesterol accrual, F-actin loss and GLUT4/glucose transport dysfunction. CONCLUSIONS/INTERPRETATION Our results suggest a novel cholesterolgenic-based mechanism of FA-induced membrane/cytoskeletal disorder and insulin resistance.
Collapse
Affiliation(s)
- K. M. Habegger
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
- Indiana University School of Medicine Center for Membrane Biosciences, Indianapolis, IN USA
| | - B. A. Penque
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
- Indiana University School of Medicine Center for Membrane Biosciences, Indianapolis, IN USA
| | - W. Sealls
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
- Indiana University School of Medicine Center for Membrane Biosciences, Indianapolis, IN USA
- Indiana University School of Medicine Center for Vascular Biology and Medicine, Indianapolis, IN USA
| | - L. Tackett
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
| | - L. N. Bell
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
- Department of Medicine, Division of Endocrinology and Metabolism, Indiana University School of Medicine, Indianapolis, IN USA
| | - E. K. Blue
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
| | - P. J. Gallagher
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
| | - M. Sturek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
- Indiana University School of Medicine Center for Vascular Biology and Medicine, Indianapolis, IN USA
| | - M. A. Alloosh
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
- Indiana University School of Medicine Center for Vascular Biology and Medicine, Indianapolis, IN USA
| | | | - R. V. Considine
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
- Department of Medicine, Division of Endocrinology and Metabolism, Indiana University School of Medicine, Indianapolis, IN USA
| | - J. S. Elmendorf
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120 USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
- Indiana University School of Medicine Center for Diabetes Research, Indianapolis, IN USA
- Indiana University School of Medicine Center for Membrane Biosciences, Indianapolis, IN USA
- Indiana University School of Medicine Center for Vascular Biology and Medicine, Indianapolis, IN USA
| |
Collapse
|