101
|
Xu D, Gechtman Z, Hughes A, Collins A, Dodds R, Cui X, Jolliffe L, Higgins L, Murphy A, Farrell F. Potential involvement of BMP receptor type IB activation in a synergistic effect of chondrogenic promotion between rhTGFbeta3 and rhGDF5 or rhBMP7 in human mesenchymal stem cells. Growth Factors 2006; 24:268-78. [PMID: 17381068 DOI: 10.1080/08977190601075865] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chondrogenic promotion by rhGDF5 with or without rhTGFbeta3 was studied in pellet culture of human mesenchymal stem cells (HMSCs). A synergy between rhGDF5 and rhTGFbeta3 was observed in promoting chondrogenesis. rhBMP2, rhBMP6, rhBMP7 and rhTGFbeta1 were further tested and showed the same effect. To explore the mechanism, the expression of TGFbetatype I and II receptors, ALK5, ALK2, ALK3, ALK6, TGFbetaRII, BMPRII, ActRII was studied. ALK6 showed increase by the rhTGFbeta1 or rhTGFbeta3 treatment. ALK6 protein expression also showed increase by rhTGFbeta3. rhTGFbeta1/rhTGFbeta3 induced ALK6 up-regulation was inhibited by SD-208, a TGFbeta type I receptor inhibitor. Chondrogenesis by rhTGFbetal/rhTGFbeta3 or the combination between rhTGFbetal/rhTGFbeta3 and rhGDF5 also was diminished by SD-208. SMAD1/5/8 phosphorylation in nascent human mesenchymal stem cells (HMSCs) was stimulated weakly by rhGDF5 but strongly by rhBMP7. The rhGDF5 stimulated SMAD1/5/8 phosphorylation was enhanced by rhTGFbetal/rhTGFbeta3 but inhibited by SD-208. The rhBMP7 stimulated SMAD1/5/8 phosphorylation did not show influence by rhTGFbeta3 and SD-208. Our results indicated the potential involvement of ALK6 activation by rhTGFbetas in the synergy between rhTGFbetas and rhBMPs.
Collapse
Affiliation(s)
- Danlin Xu
- Growth Factor Team, Drug Discovery, Johnson & Johnson Pharmaceutical Research and Development LLC, 1000 Route 202 South, Raritan, NJ 08869, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Jayawardana BC, Shimizu T, Nishimoto H, Kaneko E, Tetsuka M, Miyamoto A. Hormonal regulation of expression of growth differentiation factor-9 receptor type I and II genes in the bovine ovarian follicle. Reproduction 2006; 131:545-53. [PMID: 16514197 DOI: 10.1530/rep.1.00885] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth differentiation factor-9 (GDF-9) and bone morphogenetic proteins (BMPs) are crucial factors in follicular growth and development. GDF-9 and BMPs initiate signaling by assembling type I (ALK-3, ALK-5 and ALK-6) and type II (BMPRII) receptors. However, the mechanism regulating the expression of these receptors in the process of bovine follicle development is still unknown. The aim of the present study was to clarify the involvement of receptor systems for GDF-9 and BMPs in follicular selection by examining the effects of FSH and estradiol-17beta (E2) on the regulation of BMPRII, ALK-3, ALK-5 and ALK-6 mRNA expression in bovine granulosa cells (GCs). To observe mRNA expression during follicular development, follicles were obtained from heifers and classified into two groups: pre-selection follicles (PRFs) (an average of 7.7 mm follicles with low E2) and post-selection follicles (POFs) (an average of 15 mm follicles with high E2). Theca layer cells (TCs) and GCs were harvested from aspirated follicles. For in vitro studies, GCs were obtained from bovine follicles of 4-7 mm diameter and cultured in Dulbecco's modified Eagle's/F12 (DMEM/F-12) medium with 10% fetal calf serum for 24 h. The medium was then replaced with serum-free DMEM/F-12 supplemented with different doses of E2 (1, 10, 100 ng/ml) or FSH (1, 5, 10 ng/ml) or combinations of 1 ng/ml of E2 with different FSH doses. Total RNA was extracted and the mRNA expression of BMPRII, ALK-3, ALK-5 and ALK-6 was estimated by the quantitative real-time PCR method using a LightCycler. BMPRII and ALK-5 expression was significantly higher in the GCs of POFs than in those of PRFs, whereas ALK-3 expression was significantly lower in the GCs of POFs than in those of PRFs. There was no difference in ALK-6 expression in GCs between PRFs and POFs. The expression of BMPRII, ALK-5, ALK-3 and ALK-6 genes in the TCs was not significantly different between PRFs and POFs. Treatment of GCs with E2 alone increased BMPRII mRNA expression at a concentration of 100 ng/ml and ALK-5 mRNA expression at 10 ng/ml. BMPRII and ALK-5 mRNA levels were up-regulated by the combination of E2 (1 ng/ml) and FSH (5 ng/ml). On the other hand, FSH alone down-regulated the expression of BMPRII and ALK-5 in GCs. The results of the present study provide the first evidence that FSH and E2 regulate the expression of BMPRII and ALK-5 genes in bovine GCs. Thus, our data suggest that the GDF-9/BMPRII/ALK-5 system may be critically involved in the process of selection of bovine follicles.
Collapse
Affiliation(s)
- Barana C Jayawardana
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine Inada-Machi, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
103
|
Arnold SJ, Maretto S, Islam A, Bikoff EK, Robertson EJ. Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo. Dev Biol 2006; 296:104-18. [PMID: 16765933 PMCID: PMC7116376 DOI: 10.1016/j.ydbio.2006.04.442] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/20/2022]
Abstract
Three closely related mammalian R-Smads, namely Smad1, Smad5 and Smad8, are activated by BMP receptors. Here we have taken a genetic approach to further dissect their possibly unique and/or shared roles during early mouse development. A Smad8.LacZ reporter allele was created to visualize Smad8 expression domains. Smad8 is initially expressed only in the visceral yolk sac (VYS) endoderm and shows a highly restricted pattern of expression in the embryo proper at later stages. In addition, Smad8 conditional and null alleles were engineered. All alleles clearly demonstrate that adult Smad8 homozygous mutants are viable and fertile. To elucidate gene dosage effects, we manipulated expression ratios of the three BMP R-Smads. Smad8 homozygotes also lacking one copy of Smad1 or Smad5 did not exhibit overt phenotypes, and the tissue disturbances seen in Smad1 or Smad5 null embryos were not exacerbated in the absence of Smad8. However, we discovered a profound genetic interaction between Smad1 and Smad5. Thus, as for Smad1 and Smad5 mutant embryos, Smad1+/-:Smad5+/- double heterozygotes die by E10.5 and display defects in allantois morphogenesis, cardiac looping and primordial germ cell (PGC) specification. These experiments demonstrate for the first time that Smad1 and Smad5 function cooperatively to govern BMP target gene expression in the early mammalian embryo.
Collapse
Affiliation(s)
- Sebastian J. Arnold
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Silvia Maretto
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Ayesha Islam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Elizabeth K. Bikoff
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Elizabeth J. Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
104
|
Hartung A, Sieber C, Knaus P. Yin and Yang in BMP signaling: Impact on the pathology of diseases and potential for tissue regeneration. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
105
|
Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem 2006; 98:538-54. [PMID: 16317727 DOI: 10.1002/jcb.20719] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) are multipotent, self-renewing, mesodermal-origin stem cells that are sequestered in the endosteal compartment. MSC are maintained in a relative state of quiescence in vivo but in response to a variety of physiological and pathological stimuli, proliferate and differentiate into osteoblasts, chondrocytes, adipocytes, or hematopoiesis-supporting stromal cells. Little is understood regarding the cellular or molecular events underlying MSC fate decisions. We report that human MSC (hMSC) cultured in defined, serum-free conditions respond to a narrow spectrum of growth factors with osteogenic commitment, differentiation, and hydroxyapatite deposition. Of the osteogenic factors we examined, only treatment with bone morphogenetic protein (BMP) results in osteoinduction under defined serum-free conditions. Among BMP-2, 4, 6, and 7, BMP-6 is the most consistent and potent regulator of osteoblast differentiation and, of these BMPs, only BMP-6 gene expression is detected prior to hMSC osteoblast differentiation. Addition of exogenous BMP-6 to hMSC induces the expression or upregulation of a repertoire of osteoblast-related genes including type I collagen, osteocalcin, bone sialoprotein, and their regulatory transcription factors Cbfa1/Runx2, and Osterix. This translates into increased production of osteogenic extracellular matrix (ECM) with subsequent hydroxyapatite deposition.
Collapse
Affiliation(s)
- Michael S Friedman
- Graduate Program in Cellular and Molecular Biology, University of Michigan, USA
| | | | | |
Collapse
|
106
|
Shimizu T, Jayawardana BC, Nishimoto H, Kaneko E, Tetsuka M, Miyamoto A. Involvement of the bone morphogenetic protein/receptor system during follicle development in the bovine ovary: Hormonal regulation of the expression of bone morphogenetic protein 7 (BMP-7) and its receptors (ActRII and ALK-2). Mol Cell Endocrinol 2006; 249:78-83. [PMID: 16513253 DOI: 10.1016/j.mce.2006.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 01/25/2006] [Indexed: 10/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) are crucial factors in follicular growth and development. Among the BMP ligands, BMP-7 which use ActRII as their type II receptor, strongly bind to ALK-2 as their type I receptor. However, whether their receptors are expressed and the regulatory mechanisms controlling their expression during the process of bovine follicle development are still unknown. The aim of the present study was to clarify the involvement of the receptor system for BMP-7 in follicular selection by examining the effects of follicle-stimulating hormone (FSH) and estradiol (E2) on the regulation of ActRII and ALK-2 mRNA expression in bovine granulosa cells (GCs). To observe mRNA expression, follicles were obtained from heifers and GCs were classified into two groups: pre-selection follicles (PRF; follicles with an average diameter of 7 mm and low E2) and post-selection follicles (POF; follicles with an average diameter of 15 mm and high E2). The theca cell (TC) layer and GCs were harvested from aspirated follicles. For in vitro studies, GCs were obtained from bovine follicles of 4-7 mm diameter and cultured in Dulbecco's modified Eagle's/F12 (DMEM/F-12) medium with 10% fetal calf serum for 24h. The medium was then replaced with serum-free DMEM/F-12 supplemented with different doses of E2 (1, 10,100 ng/ml), FSH (1, 5, 10 ng/ml) or combinations of 1 ng/ml of E2 with different FSH doses (1, 5, 10 ng/ml). Total RNA was extracted from GCs and the mRNA expression of ActRII and ALK-2 was estimated by the quantitative PCR method using LightCycler. The expression of BMP-7 mRNA in TCs did not differ between the PRF and POF. ActRII and ALK-2 expression was detected in GCs from bovine antral follicles and was higher in the GCs of POF than in those of PRF, while the expression of the ActRII and ALK-2 genes in the TCs was not different between PRF and POF. Treatment of GCs with E2 (10 ng/ml) alone increased the expression of both ActRII and ALK-2 mRNAs, whereas FSH alone had no effect. However, ActRII and ALK-2 mRNA levels were up-regulated by the combination of E2 (1 ng/ml) and FSH (5 ng/ml). The results of the present study provide the first evidence that FSH and E2 regulate the expression of the ActRII and ALK-2 genes in bovine GCs. Thus, our data suggest that the BMP7/ActRII/ALK-2 system may be critically involved in the process of selection of bovine follicles.
Collapse
Affiliation(s)
- Takashi Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Inada-machi, Obihiro, Hokkaido 0808555, Japan.
| | | | | | | | | | | |
Collapse
|
107
|
Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 2006; 16:251-63. [PMID: 15871923 DOI: 10.1016/j.cytogfr.2005.01.009] [Citation(s) in RCA: 665] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 01/20/2005] [Indexed: 12/25/2022]
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-beta) superfamily, bind to two different serine/threonine kinase receptors, and mediate their signals through Smad-dependent and Smad-independent pathways. Receptor regulated-Smad (R-Smad) proteins specific for the BMP pathways interact with various proteins, including transcription factor Runx, and transmit specific signals in target cells. The recent development of DNA microarray techniques has allowed us to identify many BMP target genes. BMP signaling is modulated by various molecules, including inhibitory Smads (I-Smads). Moreover, recent findings have revealed that BMP pathways interact with other signaling pathways, and such signaling cross-talk plays pivotal roles in growth and differentiation of target cells.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
108
|
Yoshimoto T, Yamamoto M, Kadomatsu H, Sakoda K, Yonamine Y, Izumi Y. Recombinant human growth/differentiation factor-5 (rhGDF-5) induced bone formation in murine calvariae. J Periodontal Res 2006; 41:140-7. [PMID: 16499717 DOI: 10.1111/j.1600-0765.2005.00847.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Growth/differentiation factor-5 (GDF-5), a member of the transforming growth factor-beta superfamily, shows a close structural relationship to bone morphogenetic proteins and plays crucial roles in skeletal morphogenesis. Recombinant human (rh) GDF-5 was reported as a suitable factor for enhancing healing in bone defect and inducing ectopic bone formation. The purpose of the present study was to investigate the mechanism of bone formation induced by rhGDF-5 in murine calvariae by radiological, histological and immunohistochemical methods. Cell proliferation was also examined in vitro. MATERIAL AND METHODS Cells including primary osteoblasts, periosteum cells and connective tissue fibroblasts were isolated enzymatically from neonatal murine calvariae or head skin. In the presence or absence of rhGDF-5, cell proliferation was estimated by tetrazolium reduction assay. To examine the mechanism of osteoinduction, rhGDF-5/atelocollagen (AC) composite or 0.01 N HCl/AC composite were injected into murine calvariae subcutaneously. Tissue was examined radiologically, histologically and immunohistochemically. RESULTS In the presence of rhGDF-5, proliferation of primary osteoblasts, periosteum cells, and connective tissue fibroblasts was increased significantly in culture. Immunohistochemical observations showed cells at the site injected with rhGDF-5/AC displayed immunoreactivity for proliferating cell nuclear antigen (PCNA). Newly formed bone- and cartilage-like tissue contained chondrocyte osteocyte and osteoclastic cells, and were immunoreactive for both type I and II collagen. CONCLUSION Exposure to GDF-5 promotes proliferation and differentiation of calvarial cells, which give rise to ectopic bone formation.
Collapse
Affiliation(s)
- Takehiko Yoshimoto
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | | | | | | | | | | |
Collapse
|
109
|
Niere M, Braun B, Gass R, Sturany S, Volkmer H. Combination of engineered neural cell adhesion molecules and GDF-5 for improved neurite extension in nerve guide concepts. Biomaterials 2006; 27:3432-40. [PMID: 16497371 DOI: 10.1016/j.biomaterials.2006.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 01/24/2006] [Indexed: 12/27/2022]
Abstract
Current therapeutical approaches for the treatment of severe lesions in the peripheral nervous system rely on the use of autologous tissue or the body's own Schwann cells. However, these approaches are limited and alternative strategies for peripheral nerve regeneration are required. Here we evaluate combinations of a variety of neuronal regeneration factors including engineered cell adhesion molecules and growth factors in embryonic model neurons to test the possible improvement of artificial nerve guides by cooperative mechanisms. Cell adhesion molecules L1 and neurofascin synergistically promote neurite elongation. The outgrowth promoting properties of both proteins can be combined and further increased within one chimeric protein. Addition of growth and differentiation factor 5 (GDF-5) further enhances neurite outgrowth in a substrate-independent manner. This effect is not due to a protective mode of action of GDF-5 against pro-apoptotic stimuli. Consequently, the study supports the idea that different modes of action of pro-regenerative factors may contribute synergistically to neurite outgrowth and emphasizes the applicability of combinations of proteins specifically involved in development of the nervous system for therapeutical approaches.
Collapse
Affiliation(s)
- Marc Niere
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| | | | | | | | | |
Collapse
|
110
|
Miyoshi T, Otsuka F, Suzuki J, Takeda M, Inagaki K, Kano Y, Otani H, Mimura Y, Ogura T, Makino H. Mutual regulation of follicle-stimulating hormone signaling and bone morphogenetic protein system in human granulosa cells. Biol Reprod 2006; 74:1073-82. [PMID: 16436528 DOI: 10.1095/biolreprod.105.047969] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play critical roles in folliculogenesis by modulating the actions of follicle-stimulating hormone (FSH) in the ovary. However, the effects of FSH on the BMP system remain unknown. Here, we have investigated the effects of FSH on BMP signaling using the human granulosa-like tumor cell line KGN. KGN cells express BMP type I and type II receptors and the BMP signaling molecules SMADs. FSH administration upregulated BMP type IA (BMPR1A) and IB (BMPR1B) receptors, activin type II receptor (ACVR2), and BMP type II receptor (BMPR2). FSH also augmented SMAD1 and SMAD5 expression, and conversely, FSH suppressed the expression of the inhibitory SMADs, SMAD6 and SMAD7. Bioassays revealed that FSH enhances BMP-induced SMAD1/5/8 phosphorylation and cellular DNA synthesis induced by BMP6 and BMP7. Since overexpression of BMPR1A and BMPR1B, but not SMADs, significantly enhanced the BMP responses, these type I receptors were revealed to be limiting factors for BMP signaling in KGN cells. BMPs significantly suppressed progesterone synthesis induced by forskolin and dibutyryl-cAMP (BtcAMP) but had no effect on estradiol induced by the same factors. KGN cAMP levels induced by forskolin were not altered by BMPs, suggesting that BMPs regulate steroidogenesis at a level downstream of cAMP synthesis in KGN cells. In this regard, BMPs specifically reduced the STAR transcription, whereas the levels of CYP11A, HSD3B2, and CYP19 stimulated by forskolin as well as BtcAMP were not altered. Collectively, the two major factors, FSH-cAMP pathway and BMP system, are reciprocally and functionally linked. Given that BMPs downregulate FSH receptors in KGN cells, this interaction may contribute to fine-tuning of the mutual sensitivity toward BMP ligands and FSH.
Collapse
MESH Headings
- Bone Morphogenetic Protein Receptors, Type I/analysis
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type I/physiology
- Bone Morphogenetic Protein Receptors, Type II/analysis
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/physiology
- Bone Morphogenetic Proteins/analysis
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/physiology
- Bucladesine/pharmacology
- Cell Differentiation/physiology
- Cell Line, Tumor
- Cell Proliferation
- Colforsin/pharmacology
- Cyclic AMP/analysis
- Cyclic AMP/genetics
- Cyclic AMP/physiology
- Female
- Follicle Stimulating Hormone/analysis
- Follicle Stimulating Hormone/pharmacology
- Follicle Stimulating Hormone/physiology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Granulosa Cells/chemistry
- Granulosa Cells/pathology
- Granulosa Cells/physiology
- Humans
- Phosphoproteins/analysis
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Progesterone/metabolism
- Receptors, FSH/analysis
- Receptors, FSH/genetics
- Receptors, FSH/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Smad Proteins/analysis
- Smad Proteins/genetics
- Smad Proteins/physiology
Collapse
Affiliation(s)
- Tomoko Miyoshi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Singhatanadgit W, Salih V, Olsen I. Bone morphogenetic protein receptors and bone morphogenetic protein signaling are controlled by tumor necrosis factor-α in human bone cells. Int J Biochem Cell Biol 2006; 38:1794-807. [PMID: 16797218 DOI: 10.1016/j.biocel.2006.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 11/24/2022]
Abstract
Bone morphogenetic proteins (BMP) stimulate osteoblast differentiation by signal transduction via three BMP receptors (BMPR-IA, -IB and -II), whereas the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) has been shown to suppress osteoblast differentiation. Although the mechanisms which regulate the BMPR are not yet known, it is possible that they may be negatively controlled by TNF-alpha, thereby inhibiting BMP-induced osteoblast differentiation. To test this hypothesis, we have examined the effects of TNF-alpha on BMPR-IA, -IB and -II expression and the functional consequences of this cytokine on BMPR-mediated functions in human bone cells. The results showed that although TNF-alpha down-regulated BMPR-IA and -II transcripts, it increased the level of BMPR-IB mRNA via a MAPK-dependent pathway. In marked contrast, however, TNF-alpha nevertheless caused marked down-regulation of the expression of the BMPR-IB surface antigen specifically. Moreover, the cytokine-induced decrease in BMPR-IB expression was found to be associated with the concurrent presence of a 'soluble' form of this antigen in supernatants of TNF-alpha-treated cultures. Furthermore, the TNF-alpha-induced loss of BMPR-IB was found to ablate BMP-2-stimulated bone cell functions, including phosphorylation of Smad1/5/8, alkaline phosphatase activity and osteocalcin expression. In conclusion, our study has provided evidence, for the first time, that BMPR can be differentially modulated by TNF-alpha at both the post-transcriptional and post-translational levels, with the TNF-alpha-induced shedding of the BMPR-IB antigen associated with a significantly diminished response to BMP-2 in vitro.
Collapse
Affiliation(s)
- W Singhatanadgit
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | | | | |
Collapse
|
112
|
Levi G, Mantero S, Barbieri O, Cantatore D, Paleari L, Beverdam A, Genova F, Robert B, Merlo GR. Msx1 and Dlx5 act independently in development of craniofacial skeleton, but converge on the regulation of Bmp signaling in palate formation. Mech Dev 2006; 123:3-16. [PMID: 16330189 DOI: 10.1016/j.mod.2005.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 10/27/2005] [Accepted: 10/29/2005] [Indexed: 11/21/2022]
Abstract
Msx and Dlx homeoproteins control the morphogenesis and organization of craniofacial skeletal structures, specifically those derived from the pharyngeal arches. In vitro Msx and Dlx proteins have opposing transcriptional properties and form heterodimeric complexes via their homeodomain with reciprocal functional repression. In this report we examine the skeletal phenotype of Msx1; Dlx5 double knock-out (DKO) mice in relationship with their expression territories during craniofacial development. Co-expression of Dlx5 and Msx1 is only observed in embryonic tissues in which these genes have independent functions, and thus direct protein interactions are unlikely to control morphogenesis of the cranium. The DKO craniofacial phenotypes indicate a complex interplay between these genes, acting independently (mandible and middle ear), synergistically (deposition of bone tissue) or converging on the same morphogenetic process (palate growth and closure). In the latter case, the absence of Dlx5 rescues in part the Msx1-dependent defects in palate growth and elevation. At the basis of this effect, our data implicate the Bmp (Bmp7, Bmp4)/Bmp antagonist (Follistatin) signal: in the Dlx5(-/-) palate changes in the expression level of Bmp7 and Follistatin counteract the reduced Bmp4 expression. These results highlight the importance of precise spatial and temporal regulation of the Bmp/Bmp antagonist system during palate closure.
Collapse
Affiliation(s)
- Giovanni Levi
- Evolution des Régulations Endocriniennes, CNRS UMR5166, Museum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Oxburgh L, Dudley AT, Godin RE, Koonce CH, Islam A, Anderson DC, Bikoff EK, Robertson EJ. BMP4 substitutes for loss of BMP7 during kidney development. Dev Biol 2005; 286:637-46. [PMID: 16154126 DOI: 10.1016/j.ydbio.2005.08.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/29/2005] [Accepted: 08/11/2005] [Indexed: 01/04/2023]
Abstract
Functional inactivation of divergent bone morphogenetic proteins (BMPs) causes discrete disturbances during mouse development. BMP4-deficient embryos display mesodermal patterning defects at early post-implantation stages, whereas loss of BMP7 selectively disrupts kidney and eye morphogenesis. Whether these distinct phenotypes simply reflect differences in expression domains, or alternatively intrinsic differences in the signaling properties of these ligands remains unknown. To address this issue, we created embryos exclusively expressing BMP4 under control of the BMP7 locus. Surprisingly, this novel knock-in allele efficiently rescues kidney development. These results demonstrate unequivocally that these structurally divergent BMP family members, sharing only minimal sequence similarity can function interchangeably to activate all the essential signaling pathways for growth and morphogenesis of the kidney. Thus, we conclude that partially overlapping expression patterns of BMPs serve to modulate strength of BMP signaling rather than create discrete fields of ligands with intrinsically different signaling properties.
Collapse
Affiliation(s)
- Leif Oxburgh
- Wellcome Trust Center for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Belville C, Jamin SP, Picard JY, Josso N, di Clemente N. Role of type I receptors for anti-Müllerian hormone in the SMAT-1 Sertoli cell line. Oncogene 2005; 24:4984-92. [PMID: 15897891 DOI: 10.1038/sj.onc.1208686] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Anti-Müllerian hormone (AMH) is a member of the transforming growth factor-beta family responsible for regression of Müllerian ducts during male sexual differentiation and for regulation of gonadal steroidogenesis. AMH is also a gonadal tumor suppressor which mediates its effects through a specific type II receptor and the bone morphogenetic protein (BMP)-specific Smad proteins, suggesting that AMH and BMPs could also share type I receptors, namely activin-like kinases (ALKs)2, 3 or 6. However, attempts to identify a unique AMH type I receptor among them were unsuccessful. Here, using kinase-deficient type I receptors and small interfering RNA technology, we demonstrate that, in an AMH Sertoli target cell line, ALK3 mediates AMH effects on both Smad1 activation and P450 side-chain cleavage enzyme. In addition, transfecting a combination of normal and kinase-deficient receptors, we show that ALK2 can compensate for the absence of ALK3 and probably acts in synergy with ALK3 at high concentrations of AMH to activate Smad1, whereas ALK6 has a competitive inhibitory effect. These results are a first step in understanding how AMH transduces its effects in immature Sertoli cells.
Collapse
Affiliation(s)
- Corinne Belville
- Institut National de la Santé et de la Recherche Médicale, Unité 493 sur l'Endocrinologie du Développement, Université Paris XI, 32 rue des Carnets, 92140 Clamart, France
| | | | | | | | | |
Collapse
|
115
|
Yew KH, Hembree M, Prasadan K, Preuett B, McFall C, Benjes C, Crowley A, Sharp S, Tulachan S, Mehta S, Tei E, Gittes G. Cross-talk between bone morphogenetic protein and transforming growth factor-beta signaling is essential for exendin-4-induced insulin-positive differentiation of AR42J cells. J Biol Chem 2005; 280:32209-17. [PMID: 16020542 DOI: 10.1074/jbc.m505465200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key goal of cellular engineering is to manipulate progenitor cells to become beta-cells, allowing cell replacement therapy to cure diabetes mellitus. As a paradigm for cell engineering, we have studied the molecular mechanisms by which AR42J cells become beta-cells. Bone morphogenetic proteins (BMPs), implicated in a myriad of developmental pathways, have not been well studied in insulin-positive differentiation. We found that the canonical intracellular mediators of BMP signaling, Smad-1 and Smad-8, were significantly elevated in AR42J cells undergoing insulin-positive differentiation in response to exendin-4 treatment, suggesting a role for BMP signaling in beta-cell formation. Similarly, endogenous BMP-2 ligand and ALK-1 receptor (activin receptor-like kinase-1; known to activate Smads 1 and 8) mRNAs were specifically up-regulated in exendin-4-treated AR42J cells. Surprisingly, Smad-1 and Smad-8 levels were suppressed by the addition of BMP-soluble receptor inhibition of BMP ligand binding to its receptor. Here, insulin-positive differentiation was also ablated. BMP-2 ligand antisense also strongly inhibited Smad-1 and Smad-8 expression, again with the abolition of insulin-positive differentiation. These results demonstrate a previously unrecognized key role for BMP signaling in mediating insulin-positive differentiation through the intracellular Smad signaling pathway. In short, BMP signaling may represent a novel downstream target of exendin-4 (glucagon-like peptide 1) signaling and potentially serve as an upstream regulator of transforming growth factor-beta isoform signaling to differentiate the acinar-like AR42J cells into insulin-secreting cells.
Collapse
Affiliation(s)
- Kok-Hooi Yew
- Department of Surgery Research, The Children's Mercy Hospital, Kansas City, Missouri 64108, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Brankin V, Quinn RL, Webb R, Hunter MG. Evidence for a functional bone morphogenetic protein (BMP) system in the porcine ovary. Domest Anim Endocrinol 2005; 28:367-79. [PMID: 15826772 DOI: 10.1016/j.domaniend.2005.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 01/12/2005] [Indexed: 11/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) play important roles in controlling fertility and ovulation rate. There is however, little information on the BMP system in the ovary of a large polyovular species. The aims of the present study were to investigate BMP-2 and -6 protein expression in the porcine ovary, their effects on granulosa cells in culture and their mechanism of action. Cells and oocytes were recovered from healthy antral follicles 2-6mm in diameter. When assessed by Western blotting, oocytes and follicular fluid contained BMP-2 and -6. In addition, BMP-2 and -6 were observed in granulosa cells and BMP-2 was also found in theca cells. Granulosa cells were cultured in a serum-free system for 144 h in the presence of increasing doses (0, 3, 30 and 100 ng/ml) of BMP-2 or BMP-6. Both BMPs suppressed progesterone production in a dose-dependent manner after 48 h (P<0.001) and 144 h (P<0.05). Only BMP-6 stimulated cell proliferation at 100 ng/ml (P<0.05). Investigation into the mechanism of action found that BMP-2 and -6 decreased cyclic adenosine monophosphate (cAMP) production (P<0.01), expression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) protein (P<0.001) and steroidogenic acute regulatory protein (StAR) (BMP-6 only; P<0.05). This supports the hypothesis that BMP-2 and -6 act as luteinization inhibitors. In conclusion, these findings provide evidence for the presence of a complex signalling mechanism in the porcine ovary and suggest that both BMP-2 and -6 may act in a paracrine manner to control granulosa cell function in this large polyovulatory species.
Collapse
Affiliation(s)
- Victoria Brankin
- Division of Animal Physiology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | | | | | |
Collapse
|
117
|
Abstract
Development of the vertebrate skeleton, a complex biological event that includes diverse processes such as formation of mesenchymal condensations at the sites of future skeletal elements, osteoblast and chondrocyte differentiation, and three dimensional patterning, is regulated by many growth factors. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, play a pivotal role in the signaling network and are involved in nearly all processes associated with skeletal morphogenesis. BMP signals are transduced from the plasma membrane receptors to the nucleus through both Smad pathway and non-Smad pathways, and regulated by many extracellular and intercellular proteins that interact with BMPs or components of the BMP signaling pathways. To gain a better understanding of the molecular mechanisms underlying the role of BMP in early skeletal development, it is necessary to elucidate the BMP signaling transduction pathways in chondrocytes and osteoblasts. The major objective of this review was to summarize BMP signaling pathways in the context of craniofacial, axial, and limb development. In particular, this discourse will focus on recent advances of the role of different ligands, receptors, Smads, and BMP regulators in osteoblast and chondrocyte differentiation during embryonic development.
Collapse
Affiliation(s)
- Mei Wan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
118
|
Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 2005; 102:5062-7. [PMID: 15781876 PMCID: PMC555995 DOI: 10.1073/pnas.0500031102] [Citation(s) in RCA: 328] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated the ability of bone morphogenetic proteins (BMPs) to promote chondrogenic differentiation in vitro. However, the in vivo role of BMP signaling during chondrogenesis has been unclear. We report here that BMP signaling is essential for multiple aspects of early chondrogenesis. Whereas mice deficient in type 1 receptors Bmpr1a or Bmpr1b in cartilage are able to form intact cartilaginous elements, double mutants develop a severe generalized chondrodysplasia. The majority of skeletal elements that form through endochondral ossification are absent, and the ones that form are rudimentary. The few cartilage condensations that form in double mutants are delayed in the prechondrocytic state and never form an organized growth plate. The reduced size of mutant condensations results from increased apoptosis and decreased proliferation. Moreover, the expression of cartilage-specific extracellular matrix proteins is severely reduced in mutant elements. We demonstrate that this defect in chondrocytic differentiation can be attributed to lack of Sox9, L-Sox5, and Sox6 expression in precartilaginous condensations in double mutants. In summary, our study demonstrates that BMPR1A and BMPR1B are functionally redundant during early chondrogenesis and that BMP signaling is required for chondrocyte proliferation, survival, and differentiation in vivo.
Collapse
Affiliation(s)
- Byeong S Yoon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
119
|
Lin X, Zamora PO, Albright S, Glass JD, Peña LA. Multidomain synthetic peptide B2A2 synergistically enhances BMP-2 in vitro. J Bone Miner Res 2005; 20:693-703. [PMID: 15765189 DOI: 10.1359/jbmr.041104] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 09/07/2004] [Accepted: 10/22/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED A multidomain, synthetic peptide designated B2A2 synergizes the activity of BMP-2. B2A2 interacts with BMP receptor isoforms, potentiating the action of BMP-2 in activating alkaline phosphatase and triggering Smad and MAPK signaling. B2A2's design permits its delivery as a local surface coating as well as a soluble co-factor, thus broadening potential bioengineering applications. INTRODUCTION BMP-2 induces osteogenic differentiation and accelerates bone repair. Although BMP-2 inhibitors have been discovered, no BMP-2 mimetics or enhancers that function in the physiological range have yet been found. Here we report that a synthetic peptide designated B2A2, consisting of (1) a BMP receptor-targeting sequence, (2) a hydrophobic spacer, and (3) a heparin-binding sequence, is a positive modulator of recombinant BMP-2. MATERIALS AND METHODS Cultures of mesenchymal cell lines C2C12 and C3H10T1/2 were given B2A2, recombinant BMP-2, or both. Alkaline phosphatase (ALP) activity was assayed by conversion of paranitrophenol phosphate (PNPP). Signaling through Smad and MAP kinase pathways was monitored by Western blot. Receptor binding was assessed by incubating immobilized B2A2 with soluble recombinant receptor-Fc chimeras and detecting bound receptor by anti-Fc antibody ELISA. Surface coating of medical device materials was done by first dip-coating with silyl-heparin, followed by B2A2. RESULTS AND CONCLUSIONS Treatment of cells with B2A2 alone marginally increased ALP activity. However, B2A2 plus BMP-2 resulted in 5- to 40-fold augmentation of ALP compared with BMP-2 alone in C3H10T1/2 or C2C12 cells, respectively. This synergistic enhancement was observed over a broad concentration range (4-1000 ng/ml BMP-2). B2A2 interacted directly with BMP receptor isoforms (preferentially to BMPR-Ib and ActivinR-II). In cells, B2A2 + BMP-2 led to a repression of MAP kinase and an increase of Smad activation, consistent with known activation pathways of BMP-2. B2A2 was ineffective when paired with other cytokine/growth factors (basic fibroblast growth factor [FGF-2], TGF-beta1, vascular endothelial growth factor [VEGF]). Simultaneous co-administration was not strictly required. Pulse-chase experiments revealed that temporal separations up to 1 h were still effective. B2A2 was also effective when delivered in a polystyrene- or stainless steel-coated surface through a heparin platform (silyl-heparin) while BMP-2 was added exogenously in solution. These results suggest that B2A2 might promote aggregation of receptor subunits, enabling BMP-2 to activate signaling pathways at effectively lower concentrations. Synthetic multidomain constructs like B2A2 may be useful to accelerate bone repair/deposition through augmentation of endogenous levels of BMP-2 or through local BMP-2 contained in artificial or engineered matrices.
Collapse
Affiliation(s)
- Xinhua Lin
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | |
Collapse
|
120
|
Abstract
The ability of bone morphogenetic proteins (BMPs) to promote chondrogenesis has been investigated extensively over the past two decades. Although BMPs promote almost every aspect of chondrogenesis, from commitment to terminal differentiation is well known, the mechanisms of BMP action in discrete aspects of endochondral bone formation have only recently begun to be investigated. In this review, we focus on in vivo studies that have identified interactions between BMP signaling pathways and key downstream targets of BMP action in chondrogenesis. We also discuss evidence regarding the potential roles of BMP receptors in mediating distinct aspects of chondrogenesis, and studies investigating the intersection of BMP pathways with other pathways known to coordinate the progression of chondrocytes through the growth plate. These studies indicate that both Smad-dependent and -independent BMP pathways are required for chondrogenesis, and that BMPs exert essential roles via regulation of the Indian hedgehog (IHH)/parathyroid hormone-related protein (PTHrP) and fibroblast growth factor (FGF) pathways in the growth plate.
Collapse
Affiliation(s)
- Byeong S Yoon
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
121
|
Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update 2005; 11:143-60. [PMID: 15705960 DOI: 10.1093/humupd/dmh061] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ovarian follicular development occurs in a hierarchical manner with each follicle having a unique biochemical composition at any moment in time. It has long been understood that a precise coordination between the growth and maturation of the oocyte and adjacent follicular cells (i.e. somatic cells) is essential in order to produce an oocyte that is fully competent to undergo fertilization and embryo development. In addition to the critical endocrine signalling pathways between the hypothalamus, pituitary and ovary, it is now evident that the oocyte itself is important in influencing the microenvironment of the developing follicle by regulating, via paracrine and autocrine mechanisms, its own maturation as well as somatic cell proliferation, differentiation and ovulation rate. Several of the key oocyte-derived regulating factors are members of the transforming growth factor-beta (TGF-beta) superfamily and to date the best understood are growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and BMP6. Significant species differences appear to exist in the relative importance of these growth factors and much remains to be elucidated about their roles in the human ovary. More information on the roles of these factors during ovarian follicular development is likely to advance new therapeutic applications for management of fertility as well as our understanding of how better to assess oocyte quality.
Collapse
Affiliation(s)
- J L Juengel
- AgResearch, Wallaceville Animal Research Centre, P.O.Box 40063, Ward Street, Upper Hutt 6007, New Zealand
| | | |
Collapse
|
122
|
Zhao M, Zhao Z, Koh JT, Jin T, Franceschi RT. Combinatorial gene therapy for bone regeneration: Cooperative interactions between adenovirus vectors expressing bone morphogenetic proteins 2, 4, and 7. J Cell Biochem 2005; 95:1-16. [PMID: 15759283 DOI: 10.1002/jcb.20411] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bone morphogenetic proteins (BMPs) have demonstrated effectiveness as bone regeneration agents whether delivered as recombinant proteins or via gene therapy. Current gene therapy approaches use vectors expressing single BMPs. In contrast, multiple BMPs are coordinately expressed during bone development and fracture healing. Furthermore, BMPs likely exist in vivo as heterodimeric molecules having enhanced biological activity. In the present study, we test the hypothesis that gene therapy-based bone regeneration can be enhanced by expressing combinations of BMPs. For in vitro studies, mesenchymal cell lines were transduced with individual adenoviruses containing BMP2, 4, or 7 cDNA under control of a CMV promoter (AdBMP2, 4, 7) or virus combinations. Significantly, combined transduction with AdBMP2 plus AdBMP7 or AdBMP4 plus AdBMP7 resulted in a synergistic stimulation of osteoblast differentiation. This synergy is best explained by formation of BMP2/7 and 4/7 heterodimers. To test in vivo biological activity, fibroblasts were transduced with specific virus combinations and implanted into C57BL6 mice. Consistent with in vitro results, strong synergy was observed using combined AdBMP2/BMP7 treatment, which induced twofold to threefold more bone than would be predicted based on the activity of individual AdBMPs. These studies show that dramatic enhancement of osteogenesis can be achieved using gene therapy to express specific combinations of interacting regenerative molecules.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Periodontics, Prevention, and Geriatrics, School of Dentistry and Center for Craniofacial Regeneration, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | |
Collapse
|
123
|
Zhu W, Rawlins BA, Boachie-Adjei O, Myers ER, Arimizu J, Choi E, Lieberman JR, Crystal RG, Hidaka C. Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model. J Bone Miner Res 2004; 19:2021-32. [PMID: 15537446 DOI: 10.1359/jbmr.040821] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 05/19/2004] [Accepted: 07/27/2004] [Indexed: 12/24/2022]
Abstract
UNLABELLED To enhance the osteogenic activity of BMP, combination BMP2 and BMP7 gene transfer was performed. This approach led to a significant increase in osteoblastic differentiation of mesenchymal precursors compared with single BMP gene transfer in vitro. When tested in 78 rats, combination gene transfer enhanced mechanically stable spine fusion and bone formation rate versus single BMP gene transfer. INTRODUCTION Although clinical bone morphogenetic protein (BMP) therapy is effective, required doses are very high. Previous studies have suggested that the co-expression of two different BMP genes can result in the production of heterodimeric BMPs that may be more potent than homodimers. In this study, combined BMP2 and BMP7 gene transfer was performed to test whether this approach improves osteoblastic differentiation and bone formation compared with single BMP gene transfer. MATERIALS AND METHODS A producer cell (A549) was co-transfected with adenovirus vectors encoding BMP2 (AdBMP2) and BMP7 (AdBMP7) or, as controls, each vector alone, AdNull (with no transgene) or no virus. Supernatants were compared for their ability to stimulate osteoblastic differentiation of C2C12 myoblasts and MC3T3-E1 pre-osteoblasts. In a rat posterolateral spine fusion model, co-administration of AdBMP2 and AdBMP7 was compared with treatment with each vector alone, AdNull or no virus in 78 rats. The spines were assessed 8 weeks after surgery for radiographic and mechanical fusion, bone formation, and mineralization. RESULTS BMP2 and BMP7 were co-precipitated from supernatants of cells co-transfected with AdBMP2 and AdBMP7, indicating the presence of BMP2/7 heterodimer. Supernatants of co-transfected cells containing relatively low doses (7-140 ng/ml) of BMPs induced osteocalcin expression and alkaline phosphatase activity in both C2C12 and MC3T3-E1 cells, that were up to 6- and 40-fold higher, respectively, than levels induced by maximal doses (200-1000 ng/ml) of either BMP2 or BMP7 alone. In the spine fusion model, co-administration of AdBMP2 and AdBMP7 resulted in a significantly greater number of mechanically stable fusions and also 2-fold higher mineralization rate and bone volume in the fusion mass versus single BMP gene transfer (p < 0.02, all comparisons). CONCLUSION Combined BMP2 and BMP7 gene transfer is significantly more effective in inducing osteoblastic differentiation and spine fusion than individual BMP gene transfer.
Collapse
Affiliation(s)
- Wei Zhu
- Musculoskeletal Integrity Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Takeda M, Otsuka F, Nakamura K, Inagaki K, Suzuki J, Miura D, Fujio H, Matsubara H, Date H, Ohe T, Makino H. Characterization of the bone morphogenetic protein (BMP) system in human pulmonary arterial smooth muscle cells isolated from a sporadic case of primary pulmonary hypertension: roles of BMP type IB receptor (activin receptor-like kinase-6) in the mitotic action. Endocrinology 2004; 145:4344-54. [PMID: 15192043 DOI: 10.1210/en.2004-0234] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The functional involvement of bone morphogenetic protein (BMP) system in primary pulmonary hypertension (PPH) remains unclear. Here we demonstrate a crucial role of the BMP type IB receptor, activin receptor-like kinase (ALK)-6 for pulmonary arterial smooth muscle cell (pphPASMC) mitosis isolated from a sporadic PPH patient bearing no mutations in BMPR2 gene. A striking increase in the levels of ALK-6 mRNA was revealed in pphPASMC compared with control PASMCs, in which ALK-6 transcripts were hardly detectable. BMP-2 and -7 stimulated the mitosis of pphPASMCs, which was opposite to their suppressive effects on the mitosis of the control PASMCs. BMP-4 and -6 and activin inhibited pphPASMC mitosis, whereas these did not affect control PASMCs. The presence of BMP signaling machinery in pphPASMCs was elucidated based on the analysis on Id-1 transcription and Smad-reporter genes. Overexpression of a dominant-negative ALK-6 construct revealed that ALK-6 plays a key role in the mitosis as well as intracellular BMP signaling of pphPASMCs. Gene silencing of ALK-6 using small interfering RNA also reduced DNA synthesis as well as Id-1 transcription in pphPASMCs regardless of BMP-2 stimulation. Although Id-1 response was not stimulated by BMP-2 in control PASMCs, the gene delivery of wild-type ALK-6 caused significant increase in the Id-1 transcripts in response to BMP-2. Additionally, inhibitors of ERK and p38 MAPK pathways suppressed pphPASMC mitosis induced by BMP-2, implying that the mitotic action is in part MAPK dependent. Thus, the BMP system is strongly involved in pphPASMC mitosis through ALK-6, which possibly leads to activation of Smad and MAPK, resulting in the progression of vascular remodeling of pulmonary arteries in PPH.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Bone Morphogenetic Protein Receptors, Type I
- Bone Morphogenetic Proteins/pharmacology
- Butadienes/pharmacology
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Hypertension, Pulmonary/physiopathology
- Imidazoles/pharmacology
- Ligands
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Mitosis/drug effects
- Mitosis/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Nitriles/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/physiology
- Pyridines/pharmacology
- RNA, Messenger/analysis
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
Collapse
Affiliation(s)
- Masaya Takeda
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials 2004; 25:4759-66. [PMID: 15120522 DOI: 10.1016/j.biomaterials.2003.12.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 12/04/2003] [Indexed: 11/28/2022]
Abstract
In a previous study, a method for evaluation of short-time (1-8 days) healing of titanium implants in rat tibiae was described (J. Biomed. Mater. Res. 66A(3) (2003) 662). The implants were disc-shaped and cells and tissue on the surface were investigated, not the adjacent tissue. In this study healing during the first 3 weeks in bone was examined and the healing response between hydrophilic and hydrophobic titanium was compared. Immunofluorescence techniques were used to detect signs of bone formation on the surfaces. Cell viability, alkaline phosphatase (ALP) activity, presence of osteocalcin and cells positive for bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) were investigated. Both viable and non-viable cells were found on both surfaces during the first week. Only initially was there a difference between them; 4% viable cells on hydrophilic discs compared to 56% on hydrophobic ones. More BMP-2 positive cells were found on hydrophilic discs than on hydrophobic ones after 1 week. VEGF was detected after 8 days on both surfaces. Osteocalcin positive cells were found from 2 weeks. ALP positive cells were found after 8 days, while at 2-3 weeks ALP positive tissue was abundant on both surfaces. In conclusion, signs of bone formation were detected during the period investigated. Surface energy appeared to be of more importance initially, with higher surface energy resulting in more rapid cell activation and differentiation than lower.
Collapse
Affiliation(s)
- Cecilia Eriksson
- Department of Anatomy and Cell Biology, University of Göteborg, Box 420, SE 405 30 Gothenburg, Sweden.
| | | | | |
Collapse
|
126
|
Brederlau A, Faigle R, Elmi M, Zarebski A, Sjöberg S, Fujii M, Miyazono K, Funa K. The bone morphogenetic protein type Ib receptor is a major mediator of glial differentiation and cell survival in adult hippocampal progenitor cell culture. Mol Biol Cell 2004; 15:3863-75. [PMID: 15194807 PMCID: PMC491842 DOI: 10.1091/mbc.e03-08-0584] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) act as growth regulators and inducers of differentiation. They transduce their signal via three different type I receptors, termed activin receptor-like kinase 2 (Alk2), Alk3, or bone morphogenetic protein receptor Ia (BMPRIa) and Alk6 or BMPRIb. Little is known about functional differences between the three type I receptors. Here, we have investigated consequences of constitutively active (ca) and dominant negative (dn) type I receptor overexpression in adult-derived hippocampal progenitor cells (AHPs). The dn receptors have a nonfunctional intracellular but functional extracellular domain. They thus trap BMPs that are endogenously produced by AHPs. We found that effects obtained by overexpression of dnAlk2 and dnAlk6 were similar, suggesting similar ligand binding patterns for these receptors. Thus, cell survival was decreased, glial fibrillary acidic protein (GFAP) expression was reduced, whereas the number of oligodendrocytes increased. No effect on neuronal differentiation was seen. Whereas the expression of Alk2 and Alk3 mRNA remained unchanged, the Alk6 mRNA was induced after impaired BMP signaling. After dnAlk3 overexpression, cell survival and astroglial differentiation increased in parallel to augmented Alk6 receptor signaling. We conclude that endogenous BMPs mediate cell survival, astroglial differentiation and the suppression of oligodendrocytic cell fate mainly via the Alk6 receptor in AHP culture.
Collapse
Affiliation(s)
- A Brederlau
- Institute of Anatomy and Cell Biology, Göteborg University, SE-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Umans L, Vermeire L, Francis A, Chang H, Huylebroeck D, Zwijsen A. Generation of a floxed allele of Smad5 for cre-mediated conditional knockout in the mouse. Genesis 2004; 37:5-11. [PMID: 14502571 DOI: 10.1002/gene.10219] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Smad5 is a member of the Smad family of intracellular mediators of BMP signals and in endothelial cells of TGF-beta signals. We and others previously showed that loss of Smad5 in the mouse results in embryonic lethality (between E9.5-E11.5) due to multiple embryonic and extraembryonic defects. To circumvent the early embryonic lethality and to allow tissue- and time-specific Smad5 inactivation, we created a conditional Smad5 allele in the mouse. Floxed Smad5 (Smad5(flE2,Neo/flE2,Neo)) mice were generated in which both exon2 and the Neo-cassette were flanked by loxP sites. Here we demonstrate that embryos with ubiquitous Cre-mediated deletion of Smad5 (Smad5(flDeltaE2/flDeltaE2)) phenocopy the conventional Smad5 knockout mice. Smad5(flE2/flE2) mice are now available and will be a valuable tool to analyze the role of Smad5 beyond its crucial early embryonic function throughout development and postnatal life.
Collapse
Affiliation(s)
- Lieve Umans
- Department of Developmental Biology (VIB 7), Flanders Interuniversity Institute for Biotechnology (VIB), and Laboratory of Molecular Biology (CELGEN), University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
128
|
Suzuki J, Otsuka F, Inagaki K, Takeda M, Ogura T, Makino H. Novel action of activin and bone morphogenetic protein in regulating aldosterone production by human adrenocortical cells. Endocrinology 2004; 145:639-49. [PMID: 14592955 DOI: 10.1210/en.2003-0968] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have uncovered a functional bone morphogenetic protein (BMP) and activin system complete with ligands (BMP-6 and activin betaA/betaB), receptors (activin receptor-like kinase receptors 2, 3, and 4; activin type-II receptor; and BMP type-II receptor), and the binding protein follistatin in the human adrenocortical cell line H295R. Administration of activin and BMP-6 to cultures of H295R cells caused concentration-responsive increases in aldosterone production. The mRNA levels of steroidogenic acute regulatory protein or P450 steroid side-chain cleavage enzyme, the rate-limiting steps of adrenocortical steroidogenesis, were enhanced by activin and BMP-6. Activin and BMP-6 also activated the transcription of steroidogenic acute regulatory protein as well as the late-step steriodogenic enzyme CYP11B2. Activin enhanced ACTH-, forskolin-, or dibutyryl-cAMP- but not angiotensin II (Ang II)-induced aldosterone production, whereas BMP-6 specifically augmented Ang II-induced aldosterone production. Activin and ACTH but not BMP-6 increased cAMP production. Follistatin, which inhibits activin actions by binding, suppressed basal and ACTH-induced aldosterone secretion but failed to affect the Ang II-induced aldosterone level. Furthermore, MAPK signaling appeared to be involved in aldosterone production induced by Ang II and BMP-6 because an inhibitor of MAPK activation, U0126, reduced the level of aldosterone synthesis stimulated by Ang II and BMP-6 but not activin. In addition, Ang II reduced the expression levels of BMP-6 but increased that of activin betaB, whereas ACTH had no effect on these levels. Collectively, the present data suggest that activin acts to regulate adrenal aldosterone synthesis predominantly by modulating the ACTH-cAMP-protein kinase A signaling cascade, whereas BMP-6 works primarily by modulating the Ang II-MAPK cascade in human adrenal cortex in an autocrine/paracrine fashion.
Collapse
Affiliation(s)
- Jiro Suzuki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
129
|
Abstract
Using molecular, cellular, and genetic approaches, recent studies examining the role of the bone morphogenetic protein (BMP) family of growth factors in the reproductive system have led to significant breakthroughs in our understanding of mammalian reproduction and fertility. Gene expression studies have revealed that key components of the BMP system (ligands, receptors, signaling molecules, and binding proteins) exhibit coordinated spatial and temporal expression patterns in fundamental cell types throughout the reproductive system. Availability of recombinant BMPs has enabled functional studies that have demonstrated important biological activities of BMPs in controlling cellular proliferation, differentiation, and apoptosis in reproductive tissues. The physiological importance of the BMP system for mammalian reproduction has been further highlighted by the elucidation of the aberrant reproductive phenotypes of animals with naturally occurring mutations or targeted deletions of certain BMP family genes. Collectively, these studies have established the concept that the BMP system plays a crucial role in fertility in female and male mammals. The purpose of this article is to review the evidence underpinning the importance of the BMP system in mammalian reproduction.
Collapse
Affiliation(s)
- Shunichi Shimasaki
- Department of Reproductive Medicine, University of California San Diego, School of Medicine, La Jolla, California 92093-0633, USA.
| | | | | | | |
Collapse
|
130
|
Hatakeyama Y, Tuan RS, Shum L. Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis. J Cell Biochem 2004; 91:1204-17. [PMID: 15048875 DOI: 10.1002/jcb.20019] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bone morphogenetic protein 4 (BMP4) and growth/differentiation factor 5 (GDF5) are closely related protein family members and regulate early cartilage patterning and differentiation. In this study, we compared the functional outcome of their actions systematically at various stages of chondrogenesis in mouse embryonic limb bud mesenchyme grown in micromass cultures. Overall, both growth factors enhanced cartilage growth and differentiation in these cultures. Uniquely, BMP4 not only accelerated the formation and maturation of cartilaginous nodules, but also induced internodular mesenchymal cells to express cartilage differentiation markers. On the other hand, GDF5 increased the number of prechondrogenic mesenchymal cell condensation and cartilaginous nodules, without altering the overall pattern of differentiation. In addition, GDF5 caused a more sustained elevated expression level of Sox9 relative to that associated with BMP4. BMP4 accelerated chondrocyte maturation throughout the cultures and sustained an elevated level of Col10 expression, whereas GDF5 caused a transient increase in Col10 expression. Taken together, we conclude that BMP4 is instructive to chondrogenesis and induces mesenchymal cells toward the chondrogenic lineage. Furthermore, BMP4 accelerates the progression of cartilage differentiation to maturation. GDF5 enhances cartilage formation by promoting chondroprogenitor cell aggregation, and amplifying the responses of cartilage differentiation markers. These differences may serve to fine-tune the normal cartilage differentiation program, and can be exploited for the molecular manipulation in biomimetics.
Collapse
Affiliation(s)
- Yuji Hatakeyama
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland 20892-6402, USA
| | | | | |
Collapse
|
131
|
Nakamura T, Yamamoto M, Tamura M, Izumi Y. Effects of growth/differentiation factor-5 on human periodontal ligament cells. J Periodontal Res 2003; 38:597-605. [PMID: 14632923 DOI: 10.1034/j.1600-0765.2003.00695.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Growth/differentiation factor-5 (GDF-5), a member of the transforming growth factor-beta superfamily, shows a close structural relationship to bone morphogenetic proteins and plays crucial roles in skeletal, tendon, and ligament morphogenesis. The mRNA encoding GDF-5 is also expressed during odontogenesis, especially in dental follicle tissue. While this suggests that GDF-5 participates in the formation of alveolar bone and the periodontal ligament, cementum, and dental root, the physiologic role of GDF-5 in these tissues in adulthood remains unclear. We therefore investigated GDF-5 effects upon cultures of human periodontal ligament (HPDL) cells. MATERIAL AND METHODS HPDL cells were obtained from healthy periodontal ligaments of individuals. Tetrazolium reduction assay was carried out for cell proliferation assay. Alkaline phosphatase (ALP) activity was estimated by measuring light absorbance at 405 nm. Reverse transcription-polymerase chain reaction (RT-PCR) and northern analysis were performed for gene expression in cultured HPDL cells. Sulfated glycosaminoglycan (sGAG) synthesis was evaluated by histochemical staining and a quantitative dye-binding method. RESULTS Expression of GDF-5 and its receptor was demonstrated in HPDL cells by RT-PCR. ALP activity in HPDL cells was significantly decreased by addition of rhGDF-5 at 10-1000 ng/ml (p < 0.05). Although northern analysis showed little change in gene expression for collagen alpha2(I) in rhGDF-5-stimulated HPDL cells, rhGDF-5 dose-dependently enhanced cell proliferation. This proliferative effect persisted for 16 d. Alcian blue staining and dye-binding assays indicated that sGAG synthesis was enhanced by rhGDF-5. CONCLUSION rhGDF-5 may provide an environment fostering periodontal healing or regeneration by affecting extracellular matrix metabolism.
Collapse
Affiliation(s)
- Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Dental School, Kagoshima, Japan
| | | | | | | |
Collapse
|
132
|
Haÿ E, Lemonnier J, Fromigué O, Guénou H, Marie PJ. Bone morphogenetic protein receptor IB signaling mediates apoptosis independently of differentiation in osteoblastic cells. J Biol Chem 2003; 279:1650-8. [PMID: 14576167 DOI: 10.1074/jbc.m300969200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) is an important regulator of osteoblast differentiation. However, the regulation of osteoblast apoptosis by BMP signaling remains poorly understood. Here we examined the role of type I BMP receptor (BMP-RI) in osteoblast apoptosis promoted by BMP-2. Despite undetectable BMP-RIB expression in OHS4 cells, BMP-2 or BMP-2 overexpression increased osteoblast differentiation similarly as in SaOS2 cells which express BMP-RIB, as shown by alkaline phosphatase and CBFA1/RUNX2 expression. In contrast to SaOS2 cells, however, BMP-2 or BMP-2 overexpression did not increase caspase-9 and caspases-3, -6, and -7 activity and DNA fragmentation in OHS4 cells. Consistently, BMP-2 increased protein kinase C (PKC) activity, and PKC inhibition suppressed BMP-2-induced caspase activity in SaOS2 but not in OHS4 cells that lack BMP-RIB. A dominant negative BMP-RIB inhibited BMP-2-induced caspase activity, whereas wild-type BMP-RIB promoted caspase activity induced by BMP-2 in SaOS2 and MC3T3-E1 cells. Wild-type BMP-RIB rescued the apoptotic response to BMP-2, and a constitutively active BMP-RIB restored the apoptotic signal in OHS4 cells, supporting an essential role for BMP-RIB in osteoblast apoptosis. We also assessed whether BMP-2-induced apoptosis occurred independently of osteoblast differentiation. General inhibition of caspases did not abolish BMP-2-induced alkaline phosphatase and CBFA1/RUNX2 expression in SaOS2 cells. Furthermore, broad caspases inhibition increased matrix mineralization but did not reverse the BMP-2 effect on mineralization in MC3T3-E1 cells. These results indicate that BMP-2-induced apoptosis was mediated by BMP-RIB in osteoblasts and occurred independently of BMP-2-induced osteoblast differentiation, which provides additional insights into the dual mechanism of BMP-2 action on osteoblast fate.
Collapse
Affiliation(s)
- Eric Haÿ
- Laboratory of Osteoblast Biology and Pathology, INSERM U 349, CNRS, Lariboisière Hospital, 75475 Cedex 10 Paris, France
| | | | | | | | | |
Collapse
|
133
|
Hatakeyama Y, Nguyen J, Wang X, Nuckolls GH, Shum L. Smad signaling in mesenchymal and chondroprogenitor cells. J Bone Joint Surg Am 2003; 85-A Suppl 3:13-8. [PMID: 12925604 DOI: 10.2106/00004623-200300003-00004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are pleiotropic differentiation factors that regulate cell fate determination by orchestrating the activities of downstream signal transducers. Although BMP ligands can elicit signal transduction from heterodimeric combinations of several type-I and type-II receptors, cytoplasmic transducers of the BMP signal include only three known BMP-specific regulatory Smad proteins: Smad1, 5, and 8. In order to determine the combination of signals that regulate chondrogenesis by BMPs, we analyzed the functions of BMP Smad subtypes. METHODS Multipotential mesenchymal C3H10T1/2 cells and monopotential chondroprogenitor MC615 cells were placed in micromass culture in the presence or absence of BMP4. Chondrogenic differentiation was assayed by measuring Sox9 and type-II collagen gene expression and by alcian blue staining. Transactivation of type-II collagen by regulatory Smads singly, or in combination with Smad4, which partners with regulatory Smads, was assayed by luciferase activity. RESULTS In the absence of BMP4, mesenchymal cells did not exhibit chondrogenic differentiation, whereas chondroprogenitor cells showed increased cartilage marker expression. In the presence of BMP4, the rate and extent of chondrogenesis increased in a dose-dependent manner for both cell types. We further determined that Smad1 or Smad5, but not Smad8, synergized with Smad4 in the transactivation of the type-II collagen promoter in chondroprogenitor cells. In contrast, Smad8 and Smad4 presented modest synergy in mesenchymal cells. CONCLUSIONS Taken together, our data suggest that uncommitted mesenchymal cells do not have the cellular competence to respond to the rate-limiting chondroinductive factor BMP. However, in chondroprogenitor cells, BMP stimulates differentiation through mechanisms mediated by Smad1 or Smad5 in combination with Smad4.
Collapse
|
134
|
Ying SX, Hussain ZJ, Zhang YE. Smurf1 facilitates myogenic differentiation and antagonizes the bone morphogenetic protein-2-induced osteoblast conversion by targeting Smad5 for degradation. J Biol Chem 2003; 278:39029-36. [PMID: 12871975 PMCID: PMC3230132 DOI: 10.1074/jbc.m301193200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Controlled proteolysis mediated by Smad ubiquitination regulatory factors (Smurfs) plays a crucial role in modulating cellular responses to signaling of the transforming growth factor-beta (TGF-beta) superfamily. However, it is not clear what influences the selectivity of Smurfs in the individual signaling pathway, nor is it clear the biological function of Smurfs in vivo. Using a mouse C2C12 myoblast cell differentiation system, which is subject to control by both TGF-beta and bone morphogenetic protein (BMP), here we examine the role of Smurf1 in myogenic differentiation. We show that increased expression of Smurf1 promotes myogenic differentiation of C2C12 cells and blocks the BMP-induced osteogenic conversion but has no effect on the TGF-beta-induced differentiation arrest. Consistent with an inhibitory role in the BMP signaling pathway, the elevated Smurf1 markedly reduces the level of endogenous Smad5, whereas it leaves unaltered that of Smad2, Smad3, and Smad7, which are components of the TGF-beta pathway. Adding back Smad5 from a different source to the Smurf1-overexpressing cells restores the BMP-mediated osteoblast conversion. Finally, by depletion of the endogenous Smurf1 through small interfering RNA-mediated RNA interference, we demonstrate that Smurf1 is required for the myogenic differentiation of C2C12 cells and plays an important regulatory role in the BMP-2-mediated osteoblast conversion.
Collapse
Affiliation(s)
| | | | - Ying E. Zhang
- To whom correspondence should be addressed: Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bldg. 37, Rm. 1C27, Bethesda, MD 20892-4255. Tel.: 301-496-6454; Fax: 301-496-8479;
| |
Collapse
|
135
|
Zhang D, Schwarz EM, Rosier RN, Zuscik MJ, Puzas JE, O'Keefe RJ. ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. J Bone Miner Res 2003; 18:1593-604. [PMID: 12968668 DOI: 10.1359/jbmr.2003.18.9.1593] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Growth plate chondrocytes integrate multiple signals during normal development. The type I BMP receptor ALK2 is expressed in cartilage and expression of constitutively active (CA) ALK2 and other activated type I BMP receptors results in maturation-independent expression of Ihh in chondrocytes in vitro and in vivo. The findings suggest that BMP signaling modulates the Ihh/PTHrP signaling pathway that regulates the rate of chondrocyte differentiation. INTRODUCTION Bone morphogenetic proteins (BMPs) have an important role in vertebrate limb development. The expression of the BMP type I receptors BMPR-IA (ALK3) and BMPR-IB (ALK6) have been more completely characterized in skeletal development than ALK2. METHODS ALK2 expression was examined in vitro in isolated chick chondrocytes and osteoblasts and in vivo in the developing chick limb bud. The effect of overexpression of CA ALK2 and the other type I BMP receptors on the expression of genes involved in chondrocyte maturation was determined. RESULTS ALK2 was expressed in isolated chick osteoblasts and chondrocytes and specifically mediated BMP signaling. In the developing chick limb bud, ALK2 was highly expressed in mesenchymal soft tissues. In skeletal elements, expression was higher in less mature chondrocytes than in chondrocytes undergoing terminal differentiation. CA ALK2 misexpression in vitro enhanced chondrocyte maturation and induced Ihh. Surprisingly, although parathyroid hormone-related peptide (PTHrP) strongly inhibited CA ALK2 mediated chondrocyte differentiation, Ihh expression was minimally decreased. CA ALK2 viral infection in stage 19-23 limbs resulted in cartilage expansion with joint fusion. Enhanced periarticular expression of PTHrP and delayed maturation of the cartilage elements were observed. In the cartilage element, CA ALK2 misexpression precisely colocalized with the expression with Ihh. These findings were most evident in partially infected limbs where normal morphology was maintained. In contrast, BMP-6 had a normal pattern of differentiation-related expression. CA BMPR-IA and CA BMPR-IB overexpression similarly induced Ihh and PTHrP. CONCLUSIONS The findings show that BMP signaling induces Ihh. Although the colocalization of the activated type I receptors and Ihh suggests a direct BMP-mediated signaling event, other indirect mechanisms may also be involved. Thus, while BMPs act directly on chondrocytes to induce maturation, this effect is counterbalanced in vivo by induction of the Ihh/PTHrP signaling loop. The findings suggest that BMPs are integrated into the Ihh/PTHrP signaling loop and that a fine balance of BMP signaling is essential for normal chondrocyte maturation and skeletal development.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Animals
- Animals, Genetically Modified
- Base Sequence
- Bone Development/genetics
- Bone Development/physiology
- Bone Morphogenetic Protein Receptors, Type I
- Cartilage/abnormalities
- Cartilage/embryology
- Cartilage/metabolism
- Cell Differentiation
- Cells, Cultured
- Chick Embryo
- Chondrocytes/cytology
- Chondrocytes/metabolism
- Chondrogenesis
- DNA, Complementary/genetics
- Gene Expression Regulation, Developmental
- Hedgehog Proteins
- In Situ Hybridization
- Parathyroid Hormone-Related Protein/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteins
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transfection
Collapse
Affiliation(s)
- Donghui Zhang
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
136
|
Li JZ, Li H, Sasaki T, Holman D, Beres B, Dumont RJ, Pittman DD, Hankins GR, Helm GA. Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat. Gene Ther 2003; 10:1735-43. [PMID: 12939640 DOI: 10.1038/sj.gt.3302075] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone morphogenetic protein (BMP) adenoviral vectors for the induction of osteogenesis are being developed for the treatment of bone pathology. However, it is still unknown which BMP adenoviral vector has the highest potential to stimulate bone formation in vivo. In this study, the osteogenic activities of recombinant human BMP-2, BMP-4, BMP-6, BMP-7, and BMP-9 adenoviruses were compared in vitro, in athymic nude rats, and in Sprague-Dawley rats. In vitro osteogenic activity was assessed by measuring the alkaline phosphatase activity in C2C12 cells transduced by the various BMP vectors. The alkaline phosphatase activity induced by 2 x 10(5) PFU/well of BMP viral vector was 4890 x 10(-12) U/well for ADCMVBMP-9, 302 x 10(-12) U/well for ADCMVBMP-4, 220 x 10(-12) U/well for ADCMVBMP-6, 45 x 10(-12) U/well for ADCMVBMP-2, and 0.43 x 10(-12) U/well for ADCMVBMP-7. The average volume of new bone induced by 10(7) PFU of BMP vector in athymic nude rats was 0.37+/-0.03 cm(3) for ADCMVBMP-2, 0.89+/-0.07 cm(3) for ADCMVBMP-4, 1.02+/-0.07 cm(3) for ADCMVBMP-6, 0.24+/-0.05 cm(3) for ADCMVBMP-7, and 0.63+/-0.07 cm(3) for ADCMVBMP-9. In immunocompetent Sprague-Dawley rats, no bone formation was demonstrated in the ADCMVBMP-2, ADCMVBMP-4, and ADCMVBMP-7 groups. ADCMVBMP-6 at a viral dose of 10(8) PFU induced 0.10+/-0.03 cm(3) of new bone, whereas ADCMVBMP-9 at a lower viral dose of 10(7) PFU induced more bone, with an average volume of 0.29+/-0.01 cm(3).
Collapse
Affiliation(s)
- J Z Li
- Molecular Neurosurgery Lab, Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Althini S, Usoskin D, Kylberg A, ten Dijke P, Ebendal T. Bone morphogenetic protein signalling in NGF-stimulated PC12 cells. Biochem Biophys Res Commun 2003; 307:632-9. [PMID: 12893270 DOI: 10.1016/s0006-291x(03)01236-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bone morphogenetic proteins (BMPs) are shown to potentiate NGF-induced neuronal differentiation in PC12 phaeochromocytoma cells grown on collagen under low-serum conditions. Whereas, cell bodies remained rounded in control medium or with only BMPs present, addition of BMP4 or BMP6 robustly increased the neuritogenic effect of NGF within 2 days. NGF-increased phosphorylation of p44(Erk1) and p42(Erk2) between 2 and 24h was unaffected by addition of BMP6. PC12 cells transfected with the SBE(4x)-luc reporter showed that BMP4 significantly increased receptor-activated Smad activity. Expression of constitutively active BMP receptor ALK2 activating Smad1 and Smad5 resulted in a strong increase in the SBE(4x)-luc reporter response. Adding the inhibitory Smad7 drastically reduced this signal. In contrast to wild-type (wt) Smad5, a Smad5 variant lacking five Erk phosphorylation sites in the linker region (designated Smad5/5SA) showed a strong background transcriptional activity. A fusion construct (Gal4-Smad5/5SA) was also highly transcriptionally active. Addition of the MEK inhibitor U0126 to PC12 cells expressing Gal4-Smad5/wt did not increase background transcriptional activity. However, upon activation by constitutively active ALK2 both Gal4-Smad5/wt and Gal4-Smad5/5SA strongly stimulated transcription. The data show that serine residues of the linker region of Smad5 reduce spontaneous transcriptional activity and that NGF-activated Erk does not antagonise BMP signalling at this site. Hence, NGF and BMP signals are likely to interact further downstream at the transcriptional level in neuronal differentiation of the PC12 cells.
Collapse
Affiliation(s)
- S Althini
- Department of Neuroscience, Uppsala University, Biomedical Centre, Box 587, SE-751 23, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
138
|
Zwijsen A, Verschueren K, Huylebroeck D. New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Lett 2003; 546:133-9. [PMID: 12829249 DOI: 10.1016/s0014-5793(03)00566-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone morphogenetic proteins (BMPs) regulate many processes in the embryo, including cell type specification, patterning, apoptosis, and epithelial-mesenchymal interaction. They also act in soft and hard tissues in adult life. Their signals are transduced from the plasma membrane to the nucleus through a limited number of Smad proteins. The list of Smad-interacting proteins is however growing and it is clear that these partners determine the outcome of the signal. We summarize the present status in BMP/Smad signaling, with emphasis on recently identified Smad partners and how these proteins may cooperate in the regulation of the expression of BMP target genes.
Collapse
Affiliation(s)
- An Zwijsen
- Department of Developmental Biology (VIB7), Flanders Interuniversity Institute for Biotechnology, University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | |
Collapse
|
139
|
Coleman CM, Tuan RS. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech Dev 2003; 120:823-36. [PMID: 12915232 DOI: 10.1016/s0925-4773(03)00067-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Growth/Differentiation Factor 5 (GDF5) plays an important role in limb mesenchymal cell condensation and chondrogenesis. Here we demonstrate, using high density cultures of chick embryonic limb mesenchyme, that GDF5 misexpression increased condensation of chondroprogenitor cells and enhanced chondrogenic differentiation. These effects were observed in the absence of altered cellular viability or biosynthetic activity, suggesting that GDF5 action might be directed at the level of cellular adhesion or cell-cell communication. GDF5- enhanced condensation occurred independent of cell density or N-cadherin mediated adhesion and signaling, but was inhibited upon interference of gap junction mediated communication. p38 MAP kinase signaling was required for the GDF5 effect on chondrocyte differentiation, but not for mesenchymal condensation. These findings suggest gap junction involvement in the action of GDF5 in developmental chondrogenesis.
Collapse
Affiliation(s)
- Cynthia M Coleman
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
140
|
Korchynskyi O, Dechering KJ, Sijbers AM, Olijve W, ten Dijke P. Gene array analysis of bone morphogenetic protein type I receptor-induced osteoblast differentiation. J Bone Miner Res 2003; 18:1177-85. [PMID: 12854827 DOI: 10.1359/jbmr.2003.18.7.1177] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED The genomic response to BMP was investigated by ectopic expression of activated BMP type I receptors in C2C12 myoblast using cDNA microarrays. Novel BMP receptor target genes with possible roles in inhibition of myoblast differentiation and stimulation of osteoblast differentiation were identified. INTRODUCTION Bone morphogenetic proteins (BMPs) have an important role in controlling mesenchymal cell fate and mediate these effects by regulating gene expression. BMPs signal through three distinct specific BMP type I receptors (also termed activin receptor-like kinases) and their downstream nuclear effectors, termed Smads. The critical target genes by which activated BMP receptors mediate change cell fate are poorly characterized. MATERIALS AND METHODS We performed transcriptional profiling of C2C12 myoblasts differentiation into osteoblast-like cells by ectopic expression of three distinct constitutively active (ca)BMP type I receptors using adenoviral gene transfer. Cells were harvested 48 h after infection, which allowed detection of both early and late response genes. Expression analysis was performed using the mouse GEM1 microarray, which is comprised of approximately 8700 unique sequences. Hybridizations were performed in duplicate with a reverse fluor labeling. Genes were considered to be significantly regulated if the p value for differential expression was less than 0.01 and inverted expression ratios per duplicate successful reciprocal hybridizations differed by less than 25%. RESULTS AND CONCLUSIONS Each of the three caBMP type I receptors stimulated equal levels of R-Smad phosphorylation and alkaline phosphatase activity, an early marker for osteoblast differentiation. Interestingly, all three type I receptors induced identical transcriptional profiles; 97 genes were significantly upregulated and 103 genes were downregulated. Many extracellular matrix genes were upregulated, muscle-related genes downregulated, and transcription factors/signaling components modulated. In addition to 41 expressed sequence tags without known function and a number of known BMP target genes, including PPAR-gamma and fibromodulin, a large number of novel BMP target genes with an annotated function were identified, including transcription factors HesR1, ITF-2, and ICSBP, apoptosis mediators DRP-1 death kinase and ZIP kinase, IkappaB alpha, Edg-2, ZO-1, and E3 ligase Dactylin. These target genes, some of them unexpected, offer new insights into how BMPs elicit biological effects, in particular into the mechanism of inhibition of myoblast differentiation and stimulation of osteoblast differentiation.
Collapse
Affiliation(s)
- Olexander Korchynskyi
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
141
|
Abstract
During spinal cord development, commissural neurons extend their axons ventrally, away from the roof plate. The roof plate is the source of a diffusible repellent that orients commissural axons in vitro and, thus, may regulate the trajectory of commissural axons in vivo. Of three Bmps expressed in the roof plate, BMP7, but not BMP6 or GDF7, mimics the roof plate activity in vitro. We show here that expression of both Bmp7 and Gdf7 by roof plate cells is required for the fidelity of commissural axon growth in vivo. We also demonstrate that BMP7 and GDF7 heterodimerize in vitro and that, under these conditions, GDF7 enhances the axon-orienting activity of BMP7. Our findings suggest that a GDF7:BMP7 heterodimer functions as a roof plate-derived repellent that establishes the initial ventral trajectory of commissural axons.
Collapse
Affiliation(s)
- Samantha J Butler
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
142
|
Abstract
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMP) are unique because they induce the differentiation of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. However, the activity of BMPs needs to be tempered by intracellular and extracellular antagonists. BMPs bind to specific receptors and signal by phosphorylating the cytoplasmic proteins mothers against decapentaplegic (Smad) 1 and 5, which form heterodimers with Smad 4, and after nuclear translocation regulate transcription. BMP antagonists can be categorized as pseudoreceptors that compete with signaling receptors, inhibitory Smads that block signaling, intracellular binding proteins that bind Smad 1 and 5, and factors that induce ubiquitination and proteolysis of signaling Smads. In addition, a large number of extracellular proteins that bind BMPs and prevent their binding to signaling receptors have emerged. They are the components of the Spemann organizer, noggin, chordin, and follistatin, members of the Dan/Cerberus family, and twisted gastrulation. The antagonists tend to be specific for BMPs and are regulated by BMPs, indicating the existence and need of local feedback mechanisms to temper BMP cellular activities.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
143
|
Lamb KJ, Lewthwaite JC, Bastow ER, Pitsillides AA. Defining boundaries during joint cavity formation: going out on a limb. Int J Exp Pathol 2003; 84:55-67. [PMID: 12801279 PMCID: PMC2517544 DOI: 10.1046/j.1365-2613.2003.00338.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whilst factors controlling the site at which joints form within the developing limb are recognised, the mechanisms by which articular element separation occurs during the formation of the joint cavity have not been determined. Herein, we review the relationships between early limb patterning, embryonic movement, extracellular matrix composition, local signalling events and the process of joint cavity formation. We speculate that a pivotal event in this process involves the demarcation of signalling boundaries, established by local mechano-dependent modifications in glycosaminoglycan synthesis. In our opinion, studies that examine early patterning and also focus on local developmental alterations in tissue architecture are required in order to help elucidate the fundamental principals regulating joint formation.
Collapse
Affiliation(s)
- K J Lamb
- Department of Veterinary Basic Sciences, Royal Veterinary Collage, University of London, Royal College Street, London, NW1 OTU, UK
| | | | | | | |
Collapse
|
144
|
Pohl F, Hassel S, Nohe A, Flentje M, Knaus P, Sebald W, Koelbl O. Radiation-induced suppression of the Bmp2 signal transduction pathway in the pluripotent mesenchymal cell line C2C12: an in vitro model for prevention of heterotopic ossification by radiotherapy. Radiat Res 2003; 159:345-50. [PMID: 12600237 DOI: 10.1667/0033-7587(2003)159[0345:risotb]2.0.co;2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heterotopic ossification is a common complication after total hip replacement. Clinical studies showed the effectiveness of radiation for prevention of heterotopic ossification. The mechanism of radiotherapy responsible for the reduction of heterotopic ossification is unclear. The purpose of this study was to study an analogue model showing a time- and dose-dependent effect of radiation. Using cells of the defined embryonic mouse cell line C2C12, the influence of ionizing radiation on the Bmp-induced signal cascade leading to osteogenic differentiation was analyzed. Binding of iodinated Bmp2 to the receptors, Smad1 activation, and alkaline phosphatase (ALP) activity were determined in cells with or without irradiation. The cytotoxic effect of radiotherapy was evaluated using viability tests. Radiotherapy reduced formation of the Bmp2/Bmp receptor complex. This effect was dependent on dose. The phosphorylation (activation) of Smad1 decreased after irradiation in a time-dependent manner, whereas the level of total Smads was not influenced by radiotherapy. The ALP activity decreased after radiotherapy. A dose of 7 Gy delivered 6 h before or after incubation with Bmp resulted in about a 30% decrease in ALP activity. No signs of cytotoxic effects were observed within the time window studied using doses of 0 to 20 Gy. The time- and dose-dependent effect of radiotherapy for prevention of heterotopic ossification known from the results of clinical studies has an analogue in the C2C12 cell model. The primary mechanism of radiotherapy seems to be an influence on cellular responsiveness to the Bmp2-induced osteoblastic differentiation. The results suggest a down-regulation of the Bmp2/receptor complex.
Collapse
Affiliation(s)
- F Pohl
- Department of Radiooncology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
145
|
Kaihara S, Bessho K, Okubo Y, Sonobe J, Komatsu Y, Miura M, Miyatake SI, Nakao K, Iizuka T. Over expression of bone morphogenetic protein-3b (BMP-3b) using an adenoviral vector promote the osteoblastic differentiation in C2C12 cells and augment the bone formation induced by bone morphogenetic protein-2 (BMP-2) in rats. Life Sci 2003; 72:1683-93. [PMID: 12559390 DOI: 10.1016/s0024-3205(02)02477-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BMP-3b is a novel BMP-3-related protein and its biological functions are unknown. In order to investigate the biological actions of BMP-3b, we constructed a BMP-3b-expressing recombinant adenoviral vector (AxCAKBMP-3b). We show that over expression of BMP-3b stimulated the induction of differentiation and the osteoinduction activity of a human BMP-2-expressing recombinant adenoviral vector (AxCAOBMP-2). C2C12 cells were infected in vitro with AxCAKBMP-3b, AxCAOBMP-2 and a control vector containing no foreign genes (AxCAwt). Cells infected with AxCAOBMP-2 and AxCAKBMP-3b produced more alkaline phosphatase and secreted more osteocalcin into the culture medium than cells infected with AxCAOBMP-2 and AxCAwt. When AxCAOBMP-2, AxCAKBMP-3b, and AxCAwt were injected into the calf muscles of nude rats (F 344/N Jcl-rnu), the osteoinduction seen with AxCAOBMP-2 and AxCAKBMP-3b was greater than that seen with AxCAOBMP-2 and AxCAwt.
Collapse
Affiliation(s)
- Shinji Kaihara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem 2003; 278:304-10. [PMID: 12419820 DOI: 10.1074/jbc.m207362200] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein-15 (BMP-15), an oocyte growth factor belonging to the transforming growth factor-beta superfamily, has recently been shown to be necessary for normal female fertility in mammals. We have previously demonstrated that BMP-15 regulates granulosa cell (GC) proliferation and differentiation; namely, BMP-15 promotes GC mitosis, suppresses follicle-stimulating hormone (FSH) receptor expression, and stimulates kit ligand expression. Although the role of BMP-15 in female reproduction has progressively deserved much attention, there is nothing known to date about the signaling pathway and receptors for BMP-15. Using rat primary GCs and a human GC cell line, COV434, we have now found that administration of BMP-15 causes a rapid and transient phosphorylation, thus activation, of the Smad1/5/8 pathway. BMP-15 also stimulated promoter activity of a selective BMP-responsive reporter construct, further demonstrating the stimulation of Smad1/5/8 signaling by BMP-15. In contrast, BMP-15 stimulation of Smad2 phosphorylation was very weak. To identify the receptors for BMP-15, we utilized recombinant extracellular domains of individual transforming growth factor-beta superfamily receptors and found that activin receptor-like kinase-6 extracellular domain most effectively co-immunoprecipitates with BMP-15, whereas BMP receptor type II extracellular domain was most effective in inhibiting BMP-15 bioactivity on FSH-induced progesterone production and GC thymidine incorporation. We also investigated whether activation of the MAPK pathway is necessary for BMP-15 biological activity and found that the addition of U0126, an inhibitor of ERK1/2 phosphorylation, suppresses BMP-15 activity on GC mitotsis but not on FSH-induced progesterone production, suggesting a selective signaling cascade in GC proliferation and differentiation.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activins/metabolism
- Animals
- Bone Morphogenetic Protein 15
- Bone Morphogenetic Protein Receptors, Type I
- Bone Morphogenetic Protein Receptors, Type II
- Butadienes/pharmacology
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Enzyme Inhibitors/pharmacology
- Female
- Follicle Stimulating Hormone/metabolism
- Genes, Reporter
- Granulosa Cells/drug effects
- Granulosa Cells/physiology
- Growth Differentiation Factor 9
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Membrane Proteins/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Nitriles/pharmacology
- Presenilin-1
- Progesterone/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- Rats
- Rats, Sprague-Dawley
- Receptors, Growth Factor
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
- Smad Proteins
- Smad1 Protein
- Thymidine/metabolism
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- R Kelly Moore
- Department of Reproductive Medicine, University of California San Diego, School of Medicine, La Jolla, California 92093-0633, USA
| | | | | |
Collapse
|
147
|
Raju GP, Dimova N, Klein PS, Huang HC. SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. J Biol Chem 2003; 278:428-37. [PMID: 12393873 DOI: 10.1074/jbc.m210505200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily that play important roles in bone formation, embryonic patterning, and epidermal-neural cell fate decisions. BMPs signal through pathway specific mediators such as Smads1 and 5, but the upstream regulation of BMP-specific Smads has not been fully characterized. Here we report the identification of SANE (Smad1 Antagonistic Effector), a novel protein with significant sequence similarity to nuclear envelop proteins such as MAN1. SANE binds to Smad1/5 and to BMP type I receptors and regulates BMP signaling. SANE specifically blocks BMP-dependent signaling in Xenopus embryos and in a mammalian model of bone formation but does not inhibit the TGF-beta/Smad2 pathway. Inhibition of BMP signaling by SANE requires interaction between SANE and Smad1, because a SANE mutant that does not bind Smad1 does not inhibit BMP signaling. Furthermore, inhibition appears to be mediated by inhibition of BMP-induced Smad1 phosphorylation, blocking ligand-dependent nuclear translocation of Smad1. These studies define a new mode of regulation for intracellular BMP/Smad1 signaling.
Collapse
Affiliation(s)
- G Praveen Raju
- Cell & Molecular Biology Graduate Group, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
148
|
Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 2002; 7:1191-204. [PMID: 12485160 DOI: 10.1046/j.1365-2443.2002.00599.x] [Citation(s) in RCA: 525] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily bind to two different serine/threonine kinase receptors, i.e. type I and type II receptors. Upon ligand binding, type I receptors specifically activate intracellular Smad proteins. R-Smads are direct substrates of type I receptors; Smads 2 and 3 are specifically activated by activin/nodal and TGF-beta type I receptors, whereas Smads 1, 5 and 8 are activated by BMP type I receptors. Nearly 30 proteins have been identified as members of the TGF-beta superfamily in mammals, and can be classified based on whether they activate activin/TGF-beta-specific R-Smads (AR-Smads) or BMP-specific R-Smads (BR-Smads). R-Smads form complexes with Co-Smads and translocate into the nucleus, where they regulate the transcription of target genes. AR-Smads bind to various proteins, including transcription factors and transcriptional co-activators or co-repressors, whereas BR-Smads interact with other proteins less efficiently than AR-Smads. Id proteins are induced by BR-Smads, and play important roles in exhibiting some biological effects of BMPs. Understanding the mechanisms of TGF-beta superfamily signalling is thus important for the development of new ways to treat various clinical diseases in which TGF-beta superfamily signalling is involved.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
149
|
Bau B, Haag J, Schmid E, Kaiser M, Gebhard PM, Aigner T. Bone morphogenetic protein-mediating receptor-associated Smads as well as common Smad are expressed in human articular chondrocytes but not up-regulated or down-regulated in osteoarthritic cartilage. J Bone Miner Res 2002; 17:2141-50. [PMID: 12469908 DOI: 10.1359/jbmr.2002.17.12.2141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone morphogenetic proteins (BMPs) are supposed to be important for cartilage matrix anabolism. In this study, we investigated whether the intracellular mediators of BMP activity, Smads 1, 4, 5, and 8, are expressed in normal human articular chondrocytes in vivo and in vitro and whether alterations in expression and distribution pattern are found in osteoarthritic cartilage or in vitro after stimulation with interleukin (IL)-1, because down-regulation of these mediators could be responsible for the decrease of anabolic activity in osteoarthritic cartilage. RNA was isolated from normal and osteoarthritic human knee cartilage and analyzed by (quantitative) polymerase chain reaction (PCR) technology. Articular chondrocytes were cultured in alginate beads and short-term high-density monolayer cultures with and without stimulation by IL-1. In addition, immunolocalization of the receptor-associated Smads (R-Smads) was performed on sections of normal and diseased articular cartilage. Reverse-transcription (RT)-PCR analysis showed a moderate expression of all Smads investigated in normal, early degenerative, and late stage osteoarthritic cartilage. Immunolocalization detected the R-Smads in most chondrocytes on the protein level in all specimen groups investigated. In vitro, the Smads were also expressed and partly up-regulated by Il-1beta in alginate bead culture. Of note, for Smad 1, two truncated splice variants were expressed by articular chondrocytes missing exon 4 as well as exons 3 and 4. Our study showed that BMP-receptor Smads 1, 5, and 8 as well as common Smad (C-Smad) 4 are expressed and present in human normal and osteoarthritic articular chondrocytes corroborating the importance of BMPs and BMP signaling for articular cartilage. This study is the first to describe splicing variants for Smad 1. Smads 1, 4, and 5 are up-regulated in vitro by Il-1beta, suggesting a linkage of the Il-1 and BMP-signaling pathways within the chondrocytes. None of the Smads were grossly up- or down-regulated in osteoarthritic chondrocytes, suggesting that differences in overall expression levels of the investigated Smad proteins are not relevant for metabolic activity of articular chondrocytes in vivo.
Collapse
Affiliation(s)
- Brigitte Bau
- Cartilage Research, Department of Pathology, University of Erlangen-Nürnberg. Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
150
|
Skillington J, Choy L, Derynck R. Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol 2002; 159:135-46. [PMID: 12379805 PMCID: PMC2173483 DOI: 10.1083/jcb.200204060] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal cells can differentiate into osteoblasts, adipocytes, myoblasts, or chondroblasts. Whether mesenchymal cells that have initiated differentiation along one lineage can transdifferentiate into another is largely unknown. Using 3T3-F442A preadipocytes, we explored whether extracellular signals could redirect their differentiation from adipocyte into osteoblast. 3T3-F442A cells expressed receptors and Smads required for bone morphogenetic protein (BMP) signaling. BMP-2 increased proliferation and induced the early osteoblast differentiation marker alkaline phosphatase, yet only mildly affected adipogenic differentiation. Retinoic acid inhibited adipose conversion and cooperated with BMP-2 to enhance proliferation, inhibit adipogenesis, and promote early osteoblastic differentiation. Expression of BMP-RII together with BMP-RIA or BMP-RIB suppressed adipogenesis of 3T3-F442A cells and promoted full osteoblastic differentiation in response to retinoic acid. Osteoblastic differentiation was characterized by induction of cbfa1, osteocalcin, and collagen I expression, and extracellular matrix calcification. These results indicate that 3T3-F442A preadipocytes can be converted into fully differentiated osteoblasts in response to extracellular signaling cues. Furthermore, BMP and retinoic acid signaling cooperate to stimulate cell proliferation, repress adipogenesis, and promote osteoblast differentiation. Finally, BMP-RIA and BMP-RIB induced osteoblast differentiation and repressed adipocytic differentiation to a similar extent.
Collapse
Affiliation(s)
- Jeremy Skillington
- Department of Growth and Development, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|