101
|
Sales CH, Rogero MM, Sarti FM, Fisberg RM. Prevalence and Factors Associated with Iron Deficiency and Anemia among Residents of Urban Areas of São Paulo, Brazil. Nutrients 2021; 13:1888. [PMID: 34072813 PMCID: PMC8226555 DOI: 10.3390/nu13061888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Anemia is a worldwide concern. This cross-sectional population-based study examined the prevalence of iron-deficiency anemia (IDA) among residents of São Paulo (n = 898; 12-93 years), considering sociodemographic factors, dietary iron inadequacy, and food contributors to iron intake. Blood cell count and iron biomarkers were quantified. Dietary iron intake was measured using two 24-h dietary recalls. Iron intake inadequacy was estimated using a probabilistic approach. The prevalence of anemia was 6.7%, depleted iron stores 5.1%, and IDA 1.1%. Women of all age groups, older adults, and those who were underweight or obese had the highest prevalence of anemia, and female adolescents had the highest prevalence of depleted iron stores. Female adolescents and adults were more vulnerable to depleted iron stores. Male adults and older adults had a considerable prevalence of iron overload. Except for female adolescents and adults, all groups had mild probabilities of inadequate iron intake. The main food iron contributor was wheat flour. Hemoglobin concentrations were directly associated with being an adult, having a higher income, and inversely associated with being female. Serum ferritin concentrations were directly associated with age and inversely correlated with female sex. Residents of São Paulo had a low prevalence of anemia, iron deficiency, and IDA, and sociodemographic factors interfered with these parameters.
Collapse
Affiliation(s)
- Cristiane Hermes Sales
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| | - Flávia Mori Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil;
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| |
Collapse
|
102
|
Montag D, Delgado CA, Quispe C, Wareham D, Gallo V, Sanchez-Choy J, Sánchez V, Anaya R, Flores E, Roca L, Mamani V, Rivera Medina J, Velasquez P, Del Aguila C, Prendergast A, Palomino J. Launching of the Anaemia Research Peruvian Cohort (ARPEC): a multicentre birth cohort project to explore the iron adaptive homeostasis, infant growth and development in three Peruvian regions. BMJ Open 2021; 11:e045609. [PMID: 33986056 PMCID: PMC8126292 DOI: 10.1136/bmjopen-2020-045609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Preventing infantile anaemia and ensuring optimal growth and development during early childhood, particularly in resource-constrained settings, represent an ongoing public health challenge. Current responses are aligned to treatment-based solutions, instead of determining the roles of its inter-related causes. This project aims to assess and understand the complex interplay of eco-bio-social-political factors that determine infantile anaemia to inform policy, research design and prevention practices. METHODS This is a longitudinal birth cohort study including four components: (1) biological, will assess known blood markers of iron homeostasis and anaemia and stool microbiota to identify and genetically analyse the participants' flora; (2) ecological, will assess and map pollutants in air, water and soil and evaluate features of nutrition and perceived food security; (3) social, which will use different qualitative research methodologies to explore key stakeholders and informants' perceptions related to nutritional, environmental and anaemia topics, participant observations and a participatory approach and (4) a political analysis, to identify and assess the impact of policies, guidelines and programmes at all levels for infantile anaemia in the three regions. Finally, we will also explore the role of social determinants and demographic variables longitudinally for all study participants. This project aims to contribute to the evidence of the inter-related causal factors of infantile anaemia, addressing the complexity of influencing factors from diverse methodological angles. We will assess infantile anaemia in three regions of Peru, including newborns and their mothers as participants, from childbirth until their first year of age. ETHICS AND DISSEMINATION Ethical approval was obtained from the Institutional Research Ethics Committee of the Instituto Nacional de Salud del Niño (Lima, Peru), CIEI-043-2019. An additional opinion has been granted by the Ethical Committee of Queen Mary University of London (London, UK). Dissemination across stakeholders is taking part as a continues part of the research process.
Collapse
Affiliation(s)
- Doreen Montag
- Centre for Global Public Health, Queen Mary University of London, London, UK
| | - Carlos A Delgado
- Department of Medicine, Neonatal Intensive Care Unit, Instituto Nacional de Salud del Niño, Lima, Peru
- Department of Paediatrics, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Consuelo Quispe
- School of Nursing, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru
| | - David Wareham
- Blizard Institute, Queen Mary University of London, London, UK
| | - Valentina Gallo
- Centre for Global Public Health, Queen Mary University of London, London, UK
- Campus Fryslan, University of Groningen, Leeuwarden, The Netherlands
| | - Jose Sanchez-Choy
- Department of Aquaculture and Agroforestry, Universidad Nacional Intercultural de la Amazonia, Pucallpa, Peru
| | - Víctor Sánchez
- Department of Medicine, Neonatal Intensive Care Unit, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Ruth Anaya
- School of Nursing, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru
| | - Elaine Flores
- Centre for Global Public Health, Queen Mary University of London, London, UK
| | - Lorena Roca
- School of Nursing, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru
| | - Víctor Mamani
- Executive Office for Research Support and Specialized Teaching, Instituto Nacional de Salud del Niño, Lima, Peru
- School of Nutrition and Dietetics, Universidad Científica del Sur, Lima, Peru
| | - Juan Rivera Medina
- Department of Paediatrics, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Department of Medicine, Gastroenterology, Hepatology and Nutrition Unit, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Pablo Velasquez
- Department of Medicine, Neonatal Intensive Care Unit, Instituto Nacional de Salud del Niño, Lima, Peru
- Department of Neonatal Medicine, Instituto Nacional Materno Perinatal, Lima, Peru
| | - Carlos Del Aguila
- Department of Medicine, Endocrinology and Metabolism Unit, Instituto Nacional de Salud del Niño, Lima, Peru
- Faculty of Medicine, Universidad Nacional Federico Villarreal, Lima, Peru
| | | | - Julio Palomino
- Faculty of Environmental Sciences, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz, Peru
| |
Collapse
|
103
|
Pei LX, Kroeun H, Vercauteren SM, Barr SI, Green TJ, Albert AY, Karakochuk CD. Baseline Hemoglobin, Hepcidin, Ferritin, and Total Body Iron Stores are Equally Strong Diagnostic Predictors of a Hemoglobin Response to 12 Weeks of Daily Iron Supplementation in Cambodian Women. J Nutr 2021; 151:2255-2263. [PMID: 33978187 PMCID: PMC8349118 DOI: 10.1093/jn/nxab108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The WHO recommends daily iron supplementation for all women in areas where the population-level anemia prevalence is ≥40%, despite the fact that hemoglobin (Hb) concentration is generally considered to be a poor prognostic indicator of iron status. OBJECTIVES In this secondary analysis, we investigated the predictive power of ten baseline hematological biomarkers towards a 12-week Hb response to iron supplementation. METHODS Data were obtained from a randomized controlled trial of daily iron supplementation in 407 nonpregnant Cambodian women (18-45 years) who received 60 mg elemental iron as ferrous sulfate for 12 weeks. Ten baseline biomarkers were included: Hb, measured with both a hematology analyzer and a HemoCue; inflammation-adjusted ferritin; soluble transferrin receptor; reticulocyte Hb; hepcidin; mean corpuscular volume; inflammation-adjusted total body iron stores (TBIS); total iron binding capacity; and transferrin saturation. Receiver operating characteristic (ROC) curves from fitted logistic regression models were used to make discrimination comparisons and variable selection methods were used to construct a multibiomarker prognostic model. RESULTS Only 25% (n = 95/383) of women who completed the trial experienced a 12-week Hb response ≥10 g/L. The strongest univariate predictors of a Hb response were Hb as measured with a hematology analyzer, inflammation-adjusted ferritin, hepcidin, and inflammation-adjusted TBIS (AUCROC = 0.81, 0.83, 0.82, and 0.82, respectively), and the optimal cutoffs to identify women who were likely to experience a Hb response were 117 g/L, 17.3 μg/L, 1.98 nmol/L, and 1.95 mg/kg, respectively. Hb as measured with a hematology analyzer, inflammation-adjusted ferritin, and hepcidin had the best combined predictive ability (AUCROC=0.86). Hb measured with the HemoCue had poor discrimination ability (AUCROC = 0.65). CONCLUSIONS Baseline Hb as measured with a hematology analyzer was as strong a predictor of Hb response to iron supplementation as inflammation-adjusted ferritin, hepcidin, and inflammation-adjusted TBIS. This is positive given that the WHO currently uses the population-level anemia prevalence to guide recommendations for untargeted iron supplementation.
Collapse
Affiliation(s)
- Lulu X Pei
- Department of Biostatistics, The University of British Columbia, Vancouver, Canada
| | - Hou Kroeun
- Helen Keller International, Phnom Penh, Cambodia
| | - Suzanne M Vercauteren
- Division of Hematopathology, The University of British Columbia, Vancouver, Canada,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Susan I Barr
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, Canada
| | - Tim J Green
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Arianne Y Albert
- Department of Biostatistics, Women's Health Research Institute, Vancouver, Canada
| | | |
Collapse
|
104
|
Ribeiro M, Fonseca L, Anjos JS, Capo-Chichi JCC, Borges NA, Burrowes J, Mafra D. Oral iron supplementation in patients with chronic kidney disease: Can it be harmful to the gut microbiota? Nutr Clin Pract 2021; 37:81-93. [PMID: 33979013 DOI: 10.1002/ncp.10662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have several pathophysiological alterations, including anemia, one of the first changes in CKD patients. More recently, researchers have observed that the intestinal microbiota alterations are also another complication in these patients. The most common treatment for anemia is oral (mainly ferrous sulfate) or intravenous iron supplementation. Despite being a necessary treatment, recent studies have reported that supplementation with oral iron may increase its availability in the intestine, leading to disturbance in the gut microbiota and also to oxidative stress in the enterocytes, which may change the permeability and the microbiota profile. Although it is a therapy routinely used in patients with CKD, supplementation with oral iron on the gut microbiota has been rarely studied in these patients. Thus, this review will discuss the relationship between iron and the gut microbiota and the possible effects of oral iron supplementation on gut microbiota in patients with CKD.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil
| | - Larissa Fonseca
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Juliana S Anjos
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Jean C C Capo-Chichi
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Natália A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
105
|
Owolabi AJ, Senbanjo IO, Oshikoya KA, Boekhorst J, Eijlander RT, Kortman GAM, Hageman JHJ, Samuel F, Melse-Boonstra A, Schaafsma A. Multi-Nutrient Fortified Dairy-Based Drink Reduces Anaemia without Observed Adverse Effects on Gut Microbiota in Anaemic Malnourished Nigerian Toddlers: A Randomised Dose-Response Study. Nutrients 2021; 13:1566. [PMID: 34066577 PMCID: PMC8148581 DOI: 10.3390/nu13051566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 01/15/2023] Open
Abstract
Prevalence of anaemia among Nigerian toddlers is reported to be high, and may cause significant morbidity, affects brain development and function, and results in weakness and fatigue. Although, iron fortification can reduce anaemia, yet the effect on gut microbiota is unclear. This open-label randomised study in anaemic malnourished Nigerian toddlers aimed to decrease anaemia without affecting pathogenic gut bacteria using a multi-nutrient fortified dairy-based drink. The test product was provided daily in different amounts (200, 400 or 600 mL, supplying 2.24, 4.48 and 6.72 mg of elemental iron, respectively) for 6 months. Haemoglobin, ferritin, and C-reactive protein concentrations were measured to determine anaemia, iron deficiency (ID) and iron deficiency anaemia (IDA) prevalence. Faecal samples were collected to analyse gut microbiota composition. All three dosages reduced anaemia prevalence, to 47%, 27% and 18%, respectively. ID and IDA prevalence was low and did not significantly decrease over time. Regarding gut microbiota, Enterobacteriaceae decreased over time without differences between groups, whereas Bifidobacteriaceae and pathogenic E. coli were not affected. In conclusion, the multi-nutrient fortified dairy-based drink reduced anaemia in a dose-dependent way, without stimulating intestinal potential pathogenic bacteria, and thus appears to be safe and effective in treating anaemia in Nigerian toddlers.
Collapse
Affiliation(s)
- Adedotun J. Owolabi
- FrieslandCampina WAMCO Nigeria Plc, Industrial Estate, Plot 7b Acme Rd, Ogba, Ikeja, Lagos 100001, Nigeria;
- Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands;
| | - Idowu O. Senbanjo
- Department of Paediatrics and Child Health, Paediatric Gastroenterology, Hepatology and Nutrition Unit, Lagos State University College of Medicine, Ikeja, Lagos 100001, Nigeria;
| | - Kazeem A. Oshikoya
- Department of Pharmacology, Therapeutic and Toxicology, Lagos State University College of Medicine, Ikeja, Lagos 100001, Nigeria;
| | - Jos Boekhorst
- NIZO Food Research B.V., 6718 ZB Ede, The Netherlands; (J.B.); (R.T.E.); (G.A.M.K.)
| | - Robyn T. Eijlander
- NIZO Food Research B.V., 6718 ZB Ede, The Netherlands; (J.B.); (R.T.E.); (G.A.M.K.)
| | - Guus A. M. Kortman
- NIZO Food Research B.V., 6718 ZB Ede, The Netherlands; (J.B.); (R.T.E.); (G.A.M.K.)
| | | | - Folake Samuel
- Department of Human Nutrition, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Alida Melse-Boonstra
- Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands;
| | - Anne Schaafsma
- FrieslandCampina, P.O. Box 1551, 3800 BN Amersfoort, The Netherlands;
| |
Collapse
|
106
|
Botta A, Barra NG, Lam NH, Chow S, Pantopoulos K, Schertzer JD, Sweeney G. Iron Reshapes the Gut Microbiome and Host Metabolism. J Lipid Atheroscler 2021; 10:160-183. [PMID: 34095010 PMCID: PMC8159756 DOI: 10.12997/jla.2021.10.2.160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Compelling studies have established that the gut microbiome is a modifier of metabolic health. Changes in the composition of the gut microbiome are influenced by genetics and the environment, including diet. Iron is a potential node of crosstalk between the host-microbe relationship and metabolic disease. Although iron is well characterized as a frequent traveling companion of metabolic disease, the role of iron is underappreciated because the mechanisms of iron's influence on host metabolism are poorly characterized. Both iron deficiency and excessive amounts leading to iron overload can have detrimental effects on cardiometabolic health. Optimal iron homeostasis is critical for regulation of host immunity and metabolism in addition to regulation of commensal and pathogenic enteric bacteria. In this article we review evidence to support the notion that altering composition of the gut microbiome may be an important route via which iron impacts cardiometabolic health. We discuss reshaping of the microbiome by iron, the physiological significance and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Amy Botta
- Department of Biology, York University, Toronto, ON, Canada
| | - Nicole G. Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Nhat Hung Lam
- Department of Biology, York University, Toronto, ON, Canada
| | - Samantha Chow
- Department of Biology, York University, Toronto, ON, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
107
|
Raiten DJ, Combs GF, Steiber AL, Bremer AA. Perspective: Nutritional Status as a Biological Variable (NABV): Integrating Nutrition Science into Basic and Clinical Research and Care. Adv Nutr 2021; 12:1599-1609. [PMID: 34009250 PMCID: PMC8483963 DOI: 10.1093/advances/nmab046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/26/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023] Open
Abstract
The field of nutrition has evolved from one focused primarily on discovery of the identities, metabolic functions, and requirements for essential nutrients to one focused on the application of that knowledge to the development and implementation of dietary recommendations to promote health and prevent disease. This evolution has produced a deeper appreciation of not only the roles of nutrients, but also factors affecting their functions in increasingly complex global health contexts. The intersection of nutrition with an increasingly more complex global health context necessitates a view of nutritional status as a biological variable (NABV), the study of which includes an appreciation that nutritional status is: 1) not limited to dietary exposure; 2) intimately and inextricably involved in all aspects of human health promotion, disease prevention, and treatment; and 3) both an input and an outcome of health and disease. This expanded view of nutrition will inform future research by facilitating considerations of the contexts and variability associated with the many interacting factors affecting and affected by nutritional status. It will also demand new tools to study multifactorial relations to the end of increasing precision and the development of evidence-based, safe, and effective standards of health care, dietary interventions, and public health programs.
Collapse
Affiliation(s)
| | - Gerald F Combs
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA,
USA
| | | | - Andrew A Bremer
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
108
|
Effect of hepcidin antagonists on anemia during inflammatory disorders. Pharmacol Ther 2021; 226:107877. [PMID: 33895185 DOI: 10.1016/j.pharmthera.2021.107877] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Iron is an essential element for the mammalian body however, its homeostasis must be regulated accurately for appropriate physiological functioning. Alterations in physiological iron levels can lead to moderate to severe iron disorders like chronic and acute iron deficiency (anemia) or iron overload. Hepcidin plays an important role in regulating homeostasis between circulating iron and stored iron in the cells as well as the absorption of dietary iron in the intestine. Inflammatory disorders restrict iron absorption from food due to increased circulating levels of hepcidin. Increased production of hepcidin causes ubiquitination of ferroportin (FPN) leading to its degradation, thereby retaining iron in the spleen, duodenal enterocytes, macrophages, and hepatocytes. Hepcidin inhibitors and antagonists play a consequential role to ameliorate inflammation-associated anemia. Many natural and synthesized compounds, able to reduce hepcidin expression during inflammation have been identified in recent years. Few of which are currently at various phases of clinical trial. This article comprises a comprehensive review of therapeutic approaches for the efficient treatment of anemia associated with inflammation. Many strategies have been developed targeting the hepcidin-FPN axis to rectify iron disorders. Hepcidin modulation with siRNAs, antibodies, chemical compounds, and plant extracts provides new insights for developing advanced therapeutics for iron-related disorders. Hepcidin antagonist's treatment has a high potential to improve iron status in patients with iron disorders, but their clinical success needs further recognition along with the identification and application of new therapeutic approaches.
Collapse
|
109
|
El-Mallah CA, Beyh YS, Obeid OA. Iron Fortification and Supplementation: Fighting Anemia of Chronic Diseases or Fueling Obesity? Curr Dev Nutr 2021; 5:nzab032. [PMID: 33959691 PMCID: PMC8085477 DOI: 10.1093/cdn/nzab032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/07/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The significant worldwide increase in obesity has become a major health problem. Excess adiposity has been extensively linked to inflammation. Recently, studies have shown that dietary intake and microbiota dysbiosis can affect the health of the gut and lead to low-grade systemic inflammation, worsening the state of obesity and further exacerbating inflammation. The latter is shown to decrease iron status and potentially increase the risk of anemia by inhibiting iron absorption. Hence, anemia of obesity is independent of iron intake and does not properly respond to increased iron ingestion. Therefore, countries with a high rate of obesity should assess the health impact of fortification and supplementation with iron due to their potential drawbacks. This review tries to elucidate the relation between inflammation and iron status to better understand the etiology of anemia of obesity and chronic diseases and wisely design any dietary or medical interventions for the management of anemia and/or obesity.
Collapse
Affiliation(s)
- Carla A El-Mallah
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Yara S Beyh
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Omar A Obeid
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
110
|
Muriuki JM, Mentzer AJ, Mitchell R, Webb EL, Etyang AO, Kyobutungi C, Morovat A, Kimita W, Ndungu FM, Macharia AW, Ngetsa CJ, Makale J, Lule SA, Musani SK, Raffield LM, Cutland CL, Sirima SB, Diarra A, Tiono AB, Fried M, Gwamaka M, Adu-Afarwuah S, Wirth JP, Wegmüller R, Madhi SA, Snow RW, Hill AVS, Rockett KA, Sandhu MS, Kwiatkowski DP, Prentice AM, Byrd KA, Ndjebayi A, Stewart CP, Engle-Stone R, Green TJ, Karakochuk CD, Suchdev PS, Bejon P, Duffy PE, Davey Smith G, Elliott AM, Williams TN, Atkinson SH. Malaria is a cause of iron deficiency in African children. Nat Med 2021; 27:653-658. [PMID: 33619371 PMCID: PMC7610676 DOI: 10.1038/s41591-021-01238-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Malaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID1. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334 ), a genetic variant that confers specific protection against malaria2, as an instrumental variable in Mendelian randomization analyses. HbAS was associated with a 30% reduction in ID among children living in malaria-endemic countries in Africa (n = 7,453), but not among individuals living in malaria-free areas (n = 3,818). Genetically predicted malaria risk was associated with an odds ratio of 2.65 for ID per unit increase in the log incidence rate of malaria. This suggests that an intervention that halves the risk of malaria episodes would reduce the prevalence of ID in African children by 49%.
Collapse
Affiliation(s)
- John Muthii Muriuki
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Open University, KEMRI-Wellcome Trust Research Programme, Accredited Research Centre, Kilifi, Kenya.
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Ruth Mitchell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emily L Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Anthony O Etyang
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Alireza Morovat
- Department of Clinical Biochemistry, Oxford University Hospitals, Oxford, UK
| | - Wandia Kimita
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Francis M Ndungu
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alex W Macharia
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Caroline J Ngetsa
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Johnstone Makale
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Swaib A Lule
- MRC/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Clare L Cutland
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sodiomon B Sirima
- Groupe de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou, Burkina Faso
| | - Alfred B Tiono
- Groupe de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou, Burkina Faso
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Moses Gwamaka
- Mother Offspring Malaria Studies (MOMS) Project, Seattle Biomedical Research Institute, Seattle, WA, USA
- Muheza Designated District Hospital, Muheza, Tanzania
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Seth Adu-Afarwuah
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | | | | | - Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert W Snow
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Clinical Vaccinology and Tropical Medicine and the Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Kirk A Rockett
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Dominic P Kwiatkowski
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | | | | | - Reina Engle-Stone
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Tim J Green
- SAHMRi Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Crystal D Karakochuk
- Food, Nutrition, and Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Parminder S Suchdev
- Department of Pediatrics, Emory University and Emory Global Health Institute, Atlanta, GA, USA
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alison M Elliott
- MRC/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas N Williams
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Institute of Global Health Innovation, Imperial College, London, UK
| | - Sarah H Atkinson
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
111
|
Fattizzo B, Cavallaro F, Folino F, Barcellini W. Recent insights into the role of the microbiome in malignant and benign hematologic diseases. Crit Rev Oncol Hematol 2021; 160:103289. [PMID: 33667659 DOI: 10.1016/j.critrevonc.2021.103289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/17/2020] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Growing evidence suggests the impact of microbiome alteration, named dysbiosis, on the development of neoplasms, infections, inflammatory diseases, and immuno-mediated disorders. Regarding hematologic diseases, most data regard hematopoietic stem cell transplant (HSCT). In this review, we systematically evaluate the studies concerning microbiome in malignant and benign hematologic disorders beyond HSCT. A permissive microbiota is associated to the development of hematologic malignancies (including acute leukemia, lymphoma, and multiple myeloma), as well as of iron deficiency anemia, autoimmune cytopenias, and aplastic anemia. This happens through various mechanisms; chronic inflammatory triggering, epithelial barrier alteration, antigen dissequestration, and molecular mimicry. Hematologic therapies (chemo and immunosuppression) may induce/worsen dysbiosis and favour disease progression and infectious complications. Antibiotics may also induce dysbiosis with possible long-term consequences. Finally, novel target therapies are likely to alter microbiome, inducing gut inflammation (i.e. small molecules such as tyrosine-kinase-inhibitors) or enhancing host's immune system (as observed with CAR-T cells and checkpoint inhibitors).
Collapse
Affiliation(s)
- Bruno Fattizzo
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Francesca Cavallaro
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Folino
- Department of Oncology and Oncohematology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
112
|
Larson LM, Cyriac S, Djimeu EW, Mbuya MNN, Neufeld LM. Can Double Fortification of Salt with Iron and Iodine Reduce Anemia, Iron Deficiency Anemia, Iron Deficiency, Iodine Deficiency, and Functional Outcomes? Evidence of Efficacy, Effectiveness, and Safety. J Nutr 2021; 151:15S-28S. [PMID: 33582785 PMCID: PMC7882357 DOI: 10.1093/jn/nxaa192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/24/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Anemia, iron deficiency, and iodine deficiency are problems of important public health concern in many parts of the world, with consequences for the health, development, and work capacity of populations. Several countries are beginning to implement double fortified salt (DFS) programs to simultaneously address iodine and iron deficiencies. OBJECTIVE Our objective was to summarize the evidence for efficacy and effectiveness of DFS on the full range of status and functional outcomes and across different implementation and evaluation designs essential to successful interventions. METHODS We conducted a systematic review and meta-analysis of published and gray literature examining the effects of DFS on nutritional status, cognition, work productivity, development, and morbidity of all population groups. We searched for articles in Medline, Embase, CINAHL, Cochrane Central Register, and ProQuest for randomized trials, quasi-randomized trials, and program effectiveness evaluations. RESULTS A total of 22 studies (N individuals = 52,758) were included. Efficacy studies indicated a significant overall positive effect on hemoglobin concentration [standardized mean difference (95% CI): 0.33 (0.18, 0.48)], ferritin [0.42 (0.08, 0.76)], anemia [risk ratio (95% CI): 0.80 (0.70, 0.92)], and iron deficiency anemia [0.36 (0.24, 0.55)]. Effects on urinary iodine concentration were not significantly different between DFS and iodized salt. The impact on functional outcomes was mixed. Only 2 effectiveness studies were identified. They reported programmatic challenges including low coverage, suboptimal DFS quality, and storage constraints. CONCLUSIONS Given the biological benefits of DFS across several populations in efficacy research, additional evaluations of robust DFS programs delivered at scale, which consider effective implementation and measure appropriate biomarkers, are needed.
Collapse
Affiliation(s)
- Leila M Larson
- University of South Carolina, Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, Columbia, SC, USA
| | - Shruthi Cyriac
- Emory University, Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Atlanta, GA, USA
| | - Eric W Djimeu
- Global Alliance for Improved Nutrition, Geneva, Switzerland
| | | | | |
Collapse
|
113
|
Barffour MA, Hinnouho GM, Wessells KR, Kounnavong S, Ratsavong K, Sitthideth D, Bounheuang B, Sengnam K, Chanhthavong B, Arnold CD, Brown KH, Larson CP, Hess SY. Effects of therapeutic zinc supplementation for diarrhea and two preventive zinc supplementation regimens on the incidence and duration of diarrhea and acute respiratory tract infections in rural Laotian children: A randomized controlled trial. J Glob Health 2021; 10:010424. [PMID: 32612816 PMCID: PMC7321011 DOI: 10.7189/jogh.10.010424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Diarrhea and respiratory tract infections are leading causes of childhood morbidity and mortality. This individually randomized, double-blind placebo-controlled trial was designed to evaluate the effects of different zinc supplementation regimens on the incidence and duration of diarrhea and acute lower (ALRI) and upper (AURI) respiratory tract infections among rural Laotian children. The study included 3407 children, 6-23 months at enrollment. Methods Children were randomized to one of four study groups: therapeutic zinc supplements for diarrhea treatment (20 mg/d for 10 days with each episode; TZ), daily preventive zinc tablets (7 mg/d; PZ), daily multiple micronutrient powder (10 mg/d zinc, 6 mg/d iron and 13 other micronutrients; MNP), or daily placebo powder for 9 months. Incidence and duration of diarrhea (≥3 liquid stools/24 hours), ALRI (persistent cough with wheezing, stridor or chest in-drawing) and AURI (purulent nasal discharge with cough) were assessed by parental report during weekly home visits and analyzed using negative binomial models. Results Baseline mean age was 14.2 ± 5.1 months, and 71% had low plasma zinc (<65 μg/dL). Overall diarrhea incidence (0.61 ± 0.01 episodes/100 days at risk) and duration (2.12 ± 0.03 days/episode) did not differ by study group. Age modified the impact of the interventions on diarrhea incidence (P = 0.06) and duration (P = 0.01). In children >18 months, TZ reduced diarrhea incidence by 24% vs MNP (P = 0.035), and 36% vs Control (P = 0.004), but there was no difference with PZ. This patterned remained when analyses were restricted to diarrhea episode occurring after the first treatment with TZ. Also, in children >18 months, TZ reduced diarrhea duration by 15% vs PZ (P = 0.03), and 16% vs Control (P = 0.03), but there was no difference with MNP. There were no overall effects of study group on incidence of ALRI (overall mean 0.005 ± 0.001 episodes/100 days, P = 0.14) or AURI (overall mean 0.09 ± 0.01 episodes/100 days, P = 0.72). Conclusions There was no overall impact of TZ, PZ or MNP on diarrhea, ALRI and AURI. However, in children >18 months, TZ significantly reduced both the duration of diarrhea episodes and the incidence of future diarrhea episodes compared with placebo. Trial registration ClinicalTrials.gov: NCT02428647.
Collapse
Affiliation(s)
- Maxwell A Barffour
- Institute for Global Nutrition, University of California, Davis, California, USA.,College of Health and Human Services, Public Health Program, Missouri State University, Springfield, Missouri, USA
| | - Guy-Marino Hinnouho
- Institute for Global Nutrition, University of California, Davis, California, USA
| | - K Ryan Wessells
- Institute for Global Nutrition, University of California, Davis, California, USA
| | - Sengchanh Kounnavong
- Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Kethmany Ratsavong
- Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Dalaphone Sitthideth
- Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Bangone Bounheuang
- Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Khanpaseuth Sengnam
- Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Bigphone Chanhthavong
- Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Charles D Arnold
- Institute for Global Nutrition, University of California, Davis, California, USA
| | - Kenneth H Brown
- Institute for Global Nutrition, University of California, Davis, California, USA
| | - Charles P Larson
- School of Population and Global Health, McGill University, Montreal, Canada
| | - Sonja Y Hess
- Institute for Global Nutrition, University of California, Davis, California, USA
| |
Collapse
|
114
|
Mohd Rosli RR, Norhayati MN, Ismail SB. Effectiveness of iron polymaltose complex in treatment and prevention of iron deficiency anemia in children: a systematic review and meta-analysis. PeerJ 2021; 9:e10527. [PMID: 33520436 PMCID: PMC7811280 DOI: 10.7717/peerj.10527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023] Open
Abstract
Background Iron deficiency anemia (IDA) is commonly treated with iron formulations. Despite the expanding acceptance of iron polymaltose complex (IPC) among clinicians, there is sparse and contradictory evidence regarding its efficacy in the management of IDA in children. This systematic review and meta-analysis aimed to assess the effectiveness of IPC in the treatment and prevention of IDA in children. Methods We searched the Cochrane Central Register of Controlled Trials, MEDLINE and Epistemonikos for all randomized control trials (RCTs) comparing oral IPC with standard oral iron supplementation for the treatment or prevention of IDA in children. We independently screened the titles and abstracts of identified trials before the full text of relevant trials was evaluated for eligibility. We then independently extracted data on the methods, interventions, outcomes, and risk of bias from the included trials. A random-effects model was used to estimate the risk ratios and mean differences with 95% confidence intervals. Results Eight trials comprising 493 randomized patients were included and analyzed using three comparison groups. The comparison group of which was used to evaluate IPC and ferrous sulphate (FS) for treatment of IDA showed that IPC is less effective in increasing Hb (MD −0.81, 95% CI −1.08 to −0.53; I2 = 48%, P < 0.001; six studies, 368 participants; high certainty of evidence), ferritin (MD −21.24, 95% CI −39.26 to −3.23, random-effects; I2 = 65%, P = 0.020; 3 studies, 183 participants; moderate certainty of evidence) and MCV levels (MD −3.20, 95% CI −5.35 to −1.05; P = 0.003; one study, 103 participants; low certainty of evidence). There was no difference in the occurrence of side effects between IPC and FS group (MD 0.78, 95% CI 0.47 to 1.31; I2 = 4%, P = 0.35; three studies, 274 participants; high certainty of evidence). Conclusions There was moderate to high certainty evidence that FS is superior to IPC with a clinically meaningful difference in improving the Hb and ferritin levels in the treatment of IDA in children. There was no difference in the occurrence of gastrointestinal side effects with high certainty evidence between the IPC and FS groups. The body of evidence did not allow a clear conclusion regarding the effectiveness of IPC with iron gluconate and iron bisglycinate in the prevention and treatment of IDA. The certainty of evidence was low. Adequately powered and high-quality trials with large sample sizes that assess both hematological and clinical outcomes are required. PROSPERO registration number: CRD42019145020
Collapse
Affiliation(s)
- Ritzzaleena Rosli Mohd Rosli
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Noor Norhayati
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Shaiful Bahari Ismail
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
115
|
Features of the Composition of the Colon Microbiota in Children of the First Year of Life with Functional Gastrointestinal Disorders. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
116
|
Li CY, Li XY, Shen L, Ji HF. Regulatory effects of transition metals supplementation/deficiency on the gut microbiota. Appl Microbiol Biotechnol 2021; 105:1007-1015. [PMID: 33449129 DOI: 10.1007/s00253-021-11096-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/13/2022]
Abstract
Transition metal ions are essential micronutrients for all living organisms and exert a wide range of effects on human health. The uptake of transition metal ions occurs primarily in the gastrointestinal tract, which is colonized by trillions of bacterial cells. In recent years, increasing studies have indicated that transition metals have regulatory effects on the gut microbiota. In view of the significant effect of the gut microbiota on human health and involvement in the pathogenesis of a wide range of diseases, in this paper, we provide a comprehensive discussion on the regulatory effects of four kinds of transition metal ions on the gut microbiota. A total of 20 animal model and human studies concerning the regulatory effects of four types of transition metal ions (i.e., iron, copper, zinc, and manganese) on gut microbiota were summarized. Both the deficiency and supplementation of these transition metal ions on the gut microbiota were considered. Furthermore, the potential mechanisms governing the regulatory effects of transition metal ions on the gut microbiota were also discussed. KEY POINTS : • Regulatory effects of iron, copper, zinc, and manganese on gut microbiota were reviewed. • Both deficiency and supplementation of metal ions on gut microbiota were considered. • Mechanisms governing effects of metal ions on gut microbiota were discussed.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Xin-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
117
|
Golizeh M, Winter K, Roussel L, Landekic M, Langelier M, Loo VG, Ndao M, Vinh DC. Fecal host biomarkers predicting severity of Clostridioides difficile infection. JCI Insight 2021; 6:142976. [PMID: 33232301 PMCID: PMC7821589 DOI: 10.1172/jci.insight.142976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile is a major cause of health care-associated diarrhea. Severity ranges from mild to life-threatening, but this variability remains poorly understood. Microbiologic diagnosis of C. difficile infection (CDI) is straightforward but offers little insight into the patient's prognosis or into pathophysiologic determinants of clinical trajectory. The aim of this study was to discover host-derived, CDI-specific fecal biomarkers involved in disease severity. Subjects without and with CDI diarrhea were recruited. CDI severity was based on Infectious Diseases Society of America/Society for Healthcare Epidemiology of America criteria. We developed a liquid chromatography tandem mass spectrometry approach to identify host-derived protein biomarkers from stool and applied it to diagnostic samples for cohort-wise comparison (CDI-negative vs. nonsevere CDI vs. severe CDI). Selected biomarkers were orthogonally confirmed and subsequently verified in a CDI mouse model. We identified a protein signature from stool, consisting of alpha-2-macroglobulin (A2MG), matrix metalloproteinase-7 (MMP-7), and alpha-1-antitrypsin (A1AT), that not only discriminates CDI-positive samples from non-CDI ones but also is potentially associated with disease severity. In the mouse model, this signature with the murine homologs of the corresponding proteins was also identified. A2MG, MMP-7, and A1AT serve as biomarkers in patients with CDI and define novel components of the host response that may determine disease severity.
Collapse
Affiliation(s)
- Makan Golizeh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| | - Kaitlin Winter
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and
| | - Lucie Roussel
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada
| | - Marija Landekic
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada
| | - Mélanie Langelier
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada
| | - Vivian G Loo
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and.,Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebéc, Canada.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada.,Division of Medical Microbiology, Department of Laboratory Medicine, MUHC, Montréal, Québec, Canada
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and.,Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebéc, Canada
| | - Donald C Vinh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and.,Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebéc, Canada.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada.,Division of Medical Microbiology, Department of Laboratory Medicine, MUHC, Montréal, Québec, Canada
| |
Collapse
|
118
|
Seyoum Y, Baye K, Humblot C. Iron homeostasis in host and gut bacteria - a complex interrelationship. Gut Microbes 2021; 13:1-19. [PMID: 33541211 PMCID: PMC7872071 DOI: 10.1080/19490976.2021.1874855] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 02/08/2023] Open
Abstract
Iron deficiency is the most frequent nutritional deficiency in the world with an estimated 1.4 billion people affected. The usual way to fight iron deficiency is iron fortification, but this approach is not always effective and can have undesirable side effects including an increase in the growth and virulence of gut bacterial pathogens responsible for diarrhea and gut inflammation. Iron is mainly absorbed in the duodenum and is tightly regulated in mammals. Unabsorbed iron enters the colonic lumen where many microorganisms, referred to as gut microbiota, reside. Iron is essential for these bacteria, and its availability consequently affects this microbial ecosystem. The aim of this review is to provide further insights into the complex relationship between iron and gut microbiota. Given that overcoming anemia caused by iron deficiency is still a challenge today, gut microbiota could help identify more efficient ways to tackle this public health problem.
Collapse
Affiliation(s)
- Yohannes Seyoum
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kaleab Baye
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| |
Collapse
|
119
|
Chen S, Wu X, Wang X, Shao Y, Tu Q, Yang H, Yin J, Yin Y. Responses of Intestinal Microbiota and Immunity to Increasing Dietary Levels of Iron Using a Piglet Model. Front Cell Dev Biol 2020; 8:603392. [PMID: 33392192 PMCID: PMC7773786 DOI: 10.3389/fcell.2020.603392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential metal for both animals and microbiota. In general, neonates and infants of humans and animals are at the risk of iron insufficiency. However, excess dietary iron usually causes negative impacts on the host and microbiota. This study aimed to investigate overloaded dietary iron supplementation on growth performance, the distribution pattern of iron in the gut lumen and the host, intestinal microbiota, and intestine transcript profile of piglets. Sixty healthy weaning piglets were randomly assigned to six groups: fed on diets supplemented with ferrous sulfate monohydrate at the dose of 50 ppm (Fe50 group), 100 ppm (Fe100 group), 200 ppm (Fe200 group), 500 ppm (Fe500 group), and 800 ppm (Fe800), separately, for 3 weeks. The results indicated that increasing iron had no significant effects on growth performance, but increased diarrheal risk and iron deposition in intestinal digesta, tissues of intestine and liver, and serum. High iron also reduced serum iron-binding capacity, apolipoprotein, and immunoglobin A. The RNA-sequencing analysis revealed that iron changed colonic transcript profile, such as interferon gamma-signal transducer and activator of transcription two-based anti-infection gene network. Increasing iron also shifted colonic and cecal microbiota, such as reducing alpha diversity and the relative abundance of Clostridiales and Lactobacillus reuteri and increasing the relative abundance of Lactobacillus and Lactobacillus amylovorus. Collectively, this study demonstrated that high dietary iron increased diarrheal incidence, changed intestinal immune response-associated gene expression, and shifted gut microbiota. The results would enhance our knowledge of iron effects on the gut and microbiome in piglets and further contribute to understanding these aspects in humans.
Collapse
Affiliation(s)
- Shuai Chen
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Wu
- College of Animal Science and Technology, Hunan Agriculture University, Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Xia Wang
- College of Animal Science and Technology, Hunan Agriculture University, Hunan Co-Innovation Center of Animal Production Safety, Changsha, China.,Yiyang Vocational Technical College, Yiyang, China
| | - Yirui Shao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huansheng Yang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Agriculture University, Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
120
|
Anemia in preschool children from Angola: a review of the evidence. Porto Biomed J 2020; 5:e60. [PMID: 33299941 PMCID: PMC7722406 DOI: 10.1097/j.pbj.0000000000000060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022] Open
Abstract
Angola is one of the southern African countries with the highest prevalence of anemia, and despite the high geographic heterogeneity of its distribution across the country, it was reported to be indicative of a severe public health problem in some areas, mainly in children. Despite the relevance of this condition in the country there is still an important gap regarding scientific evidences and knowledge systematization in the indexed literature, that could be used to inform and optimize national public health policies willing to address it. Furthermore, the changes in anemia epidemiology among African preschool children and the late updates in nutrition-specific and nutrition-sensitive preventive strategies in the continent are of imperative relevance, as they could contribute to design context-specific national approaches to reduce anemia's morbidity and mortality. In this study we intent to perform a systematic review regarding the sparse evidence available on the country regarding the prevalence of anemia, its associated factors, the prevention, and/or control strategies with potential to reduce anemia that were implemented, and to discuss interventions targeting infections and/or nutrition conducted in other African countries.
Collapse
|
121
|
Zimmermann MB. Global look at nutritional and functional iron deficiency in infancy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:471-477. [PMID: 33275751 PMCID: PMC7727574 DOI: 10.1182/hematology.2020000131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron-deficiency anemia (IDA) affects many infants in low- and middle-income countries (LMICs) and may impair cognitive development and adaptive immunity. Effective interventions to improve iron intakes for infants in LMICs are urgently needed. However, absorption of oral iron fortificants and supplements is low, usually <10%, and most of the iron passes into the colon unabsorbed. In randomized controlled trials, provision of iron to infants in LMICs adversely affects their gut microbiome and increases pathogenic Escherichia coli, gut inflammation, and diarrhea. To minimize these detrimental effects of iron, it is important to provide the lowest effective dosage and maximize fractional iron absorption. Prebiotic galacto-oligosaccharides and apo-lactoferrin may prove useful in iron formulations in LMICs because they increase absorption of fortificant iron and at the same time may mitigate the adverse effects of unabsorbed iron on the infant gut. Providing well-absorbed iron early in infancy may improve immune function. Recent data from a Kenyan birth cohort suggest IDA at the time of infant vaccination impairs the response to diphtheria, pertussis, and pneumococcus vaccines. A randomized trial follow-up study reported that providing iron to Kenyan infants at the time of measles vaccination increased antimeasles immunoglobulin G (IgG), seroconversion, and IgG avidity. Because IDA is so common among infants in LMICs and because the vaccine-preventable disease burden is so high, even if IDA only modestly reduces immunogenicity of vaccines, its prevention could have major benefits.
Collapse
|
122
|
Carcinogenesis as Side Effects of Iron and Oxygen Utilization: From the Unveiled Truth toward Ultimate Bioengineering. Cancers (Basel) 2020; 12:cancers12113320. [PMID: 33182727 PMCID: PMC7698037 DOI: 10.3390/cancers12113320] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Cancer is a major cause of human mortality worldwide. No life on earth can live without iron. Persistent oxidative stress resulting from continuous use of iron and oxygen may be a fundamental cause of carcinogenesis. Many animal models demonstrated that excess iron may lead to carcinogenesis. This is supported by a variety of human epidemiological data on cancer risk and prognosis. Cancer is basically a disease of the genome with persistently activated oncogenes and inactivated tumor suppressor genes through which iron addiction with ferroptosis-resistance is established. We predict that fine use of nanomaterials and non-thermal plasma may be able to reverse this situation. Abstract Evolution from the first life on earth to humans took ~3.8 billion years. During the time there have been countless struggles among the species. Mycobacterium tuberculosis was the last major uncontrollable species against the human public health worldwide. After the victory with antibiotics, cancer has become the leading cause of death since 1981 in Japan. Considering that life inevitably depends on ceaseless electron transfers through iron and oxygen, we believe that carcinogenesis is intrinsically unavoidable side effects of using iron and oxygen. Many animal models unequivocally revealed that excess iron is a risk for carcinogenesis. This is supported by a variety of human epidemiological data on cancer risk and prognosis. Cancer is basically a disease of the genome with persistently activated oncogenes and inactivated tumor suppressor genes through which iron addiction with ferroptosis-resistance is maintained. Engineering has made a great advance in the past 50 years. In particular, nanotechnology is distinct in that the size of the engineered molecules is similar to that of our biomolecules. While some nano-molecules are found carcinogenic, there are principles to avoid such carcinogenicity with a smart possibility to use nano-molecules to specifically kill cancer cells. Non-thermal plasma is another modality to fight against cancer.
Collapse
|
123
|
Sousa Gerós A, Simmons A, Drakesmith H, Aulicino A, Frost JN. The battle for iron in enteric infections. Immunology 2020; 161:186-199. [PMID: 32639029 PMCID: PMC7576875 DOI: 10.1111/imm.13236] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for almost all living organisms, but can be extremely toxic in high concentrations. All organisms must therefore employ homeostatic mechanisms to finely regulate iron uptake, usage and storage in the face of dynamic environmental conditions. The critical step in mammalian systemic iron homeostasis is the fine regulation of dietary iron absorption. However, as the gastrointestinal system is also home to >1014 bacteria, all of which engage in their own programmes of iron homeostasis, the gut represents an anatomical location where the inter-kingdom fight for iron is never-ending. Here, we explore the molecular mechanisms of, and interactions between, host and bacterial iron homeostasis in the gastrointestinal tract. We first detail how mammalian systemic and cellular iron homeostasis influences gastrointestinal iron availability. We then focus on two important human pathogens, Salmonella and Clostridia; despite their differences, they exemplify how a bacterial pathogen must navigate and exploit this web of iron homeostasis interactions to avoid host nutritional immunity and replicate successfully. We then reciprocally explore how iron availability interacts with the gastrointestinal microbiota, and the consequences of this on mammalian physiology and pathogen iron acquisition. Finally, we address how understanding the battle for iron in the gastrointestinal tract might inform clinical practice and inspire new treatments for important diseases.
Collapse
Affiliation(s)
- Ana Sousa Gerós
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Alison Simmons
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Hal Drakesmith
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Anna Aulicino
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Joe N. Frost
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
124
|
Kangas ST, Salpéteur C, Nikièma V, Talley L, Briend A, Ritz C, Friis H, Kaestel P. Vitamin A and iron status of children before and after treatment of uncomplicated severe acute malnutrition. Clin Nutr 2020; 39:3512-3519. [DOI: 10.1016/j.clnu.2020.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/04/2023]
|
125
|
Shenton LM, Jones AD, Wilson ML. Factors Associated with Anemia Status Among Children Aged 6-59 months in Ghana, 2003-2014. Matern Child Health J 2020; 24:483-502. [PMID: 32030533 PMCID: PMC7078144 DOI: 10.1007/s10995-019-02865-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background In 2008, 78% of Ghanaian children under 5 years old were anemic versus 48% of children globally. In this study, we identified proximal and distal determinants of severe–moderate anemia and mild anemia related to socioeconomic status, nutrition, and health access. Methods Using data from the 2003, 2008, and 2014 Ghana Demographic and Health Surveys (GDHS), the odds of severe–moderate anemia and mild anemia compared to no anemia, in relation to various hypothesized risk factors, were assessed using a multivariable, multinomial logistic regression, which accounted for survey design. Results From among 7739 households sampled, severe–moderate anemia was found in approximately 52%, 56%, and 40% of children during 2003, 2008, and 2014, respectively. The proportion of children diagnosed as not anemic was 26% in 2003, 22% in 2008, and 33% in 2014. There are large disparities in anemia prevalence among regions and between urban and rural areas. In 2014, children who were younger (aged 6–24 months), had a recent fever, were from poorer families, and whose mothers were less educated had greater odds of being severely–moderately anemic. These results remained significant when controlling for other risk factors. Predictors of anemia in Ghana remained relatively consistent among the three time periods when the GDHS was administered. Conclusions The prevalence of anemia in Ghana among children aged 6–59 months has remained unacceptably high. To reduce anemia in these children, the Ghanaian government should concentrate on educating women through both the traditional school system and antenatal care visits.
Collapse
Affiliation(s)
- Luke M. Shenton
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - Andrew D. Jones
- Department of Nutritional Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - Mark L. Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| |
Collapse
|
126
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
127
|
Abstract
Iron supplementation and fortification are used to treat iron deficiency, which is often associated with gastrointestinal conditions, such as inflammatory bowel disease and colorectal cancer. Within the gut, commensal bacteria contribute to maintaining systemic iron homeostasis. Disturbances that lead to excess iron promote the replication and virulence of enteric pathogens. Consequently, research has been interested in better understanding the effects of iron supplementation and fortification on gut bacterial composition and overall gut health. While animal and human trials have shown seemingly conflicting results, these studies emphasize how numerous factors influence gut microbial composition. Understanding how different iron formulations and doses impact specific bacteria will improve the outcomes of iron supplementation and fortification in humans. Furthermore, discerning the nuances of iron supplementation and fortification will benefit subpopulations that currently do not respond well to treatment.
Collapse
|
128
|
How Severe Anaemia Might Influence the Risk of Invasive Bacterial Infections in African Children. Int J Mol Sci 2020; 21:ijms21186976. [PMID: 32972031 PMCID: PMC7555399 DOI: 10.3390/ijms21186976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
Severe anaemia and invasive bacterial infections are common causes of childhood sickness and death in sub-Saharan Africa. Accumulating evidence suggests that severely anaemic African children may have a higher risk of invasive bacterial infections. However, the mechanisms underlying this association remain poorly described. Severe anaemia is characterized by increased haemolysis, erythropoietic drive, gut permeability, and disruption of immune regulatory systems. These pathways are associated with dysregulation of iron homeostasis, including the downregulation of the hepatic hormone hepcidin. Increased haemolysis and low hepcidin levels potentially increase plasma, tissue and intracellular iron levels. Pathogenic bacteria require iron and/or haem to proliferate and have evolved numerous strategies to acquire labile and protein-bound iron/haem. In this review, we discuss how severe anaemia may mediate the risk of invasive bacterial infections through dysregulation of hepcidin and/or iron homeostasis, and potential studies that could be conducted to test this hypothesis.
Collapse
|
129
|
Jeroense FMD, Zeder C, Zimmermann MB, Herter-Aeberli I. Acute Consumption of Prebiotic Galacto-Oligosaccharides Increases Iron Absorption from Ferrous Fumarate, but not from Ferrous Sulfate and Ferric Pyrophosphate: Stable Iron Isotope Studies in Iron-Depleted Young Women. J Nutr 2020; 150:2391-2397. [PMID: 32692367 DOI: 10.1093/jn/nxaa199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although acute consumption of high doses of prebiotic galacto-oligosaccharides (GOS) increases fractional iron absorption (FIA) from ferrous fumarate (FeFum), it is uncertain if low doses of GOS have this effect. Furthermore, whether GOS improve iron absorption from other commonly used iron compounds and whether ascorbic acid (AA) enhances the effect of GOS on iron absorption from FeFum is unclear. OBJECTIVES In iron-depleted women [serum ferritin (SF) <30 μg/L], we assessed: 1) whether the acute enhancing effect of GOS on FeFum is dose dependent; 2) if GOS would affect FIA from ferrous sulfate (FeSO4) or ferric pyrophosphate (FePP); and 3) if AA and GOS given together enhance FIA from FeFum to a greater extent compared with GOS alone. METHODS We recruited 46 women (mean age 22.0 y, mean BMI 21.3 kg/m2, median SF 17.1 μg/L), and measured FIA from 14 mg iron labeled with stable isotopes in the following conditions: 1) FIA from FeFum given with 3.5 g, 7 g GOS, and without GOS; 2) FIA from FeSO4 and FePP given with and without 15 g GOS; and 3) FIA from FeFum given with 7 g GOS with and without 93 mg AA. FIA was measured as erythrocyte incorporation of stable isotopes after 14 d. Comparisons were made using paired samples t-test or Wilcoxon rank sum test where appropriate. RESULTS Giving 7 g of GOS significantly increased FIA from FeFum (+26%; P = 0.039), whereas 3.5 g GOS did not (P = 0.130). GOS did not significantly increase FIA from FeSO4 (P = 0.998) or FePP (P = 0.059). FIA from FeFum given with GOS and AA was significantly higher compared with FeFum given with GOS alone (+30%; P <0.001). CONCLUSIONS In iron-depleted women, GOS does not increase FIA from FeSO4 or FePP, but it increases FIA from FeFum. Thus, a combination of FeFum and GOS may be a well-absorbed formula for iron supplements. The study was registered at clinicaltrials.gov as NCT03762148.
Collapse
Affiliation(s)
- Frederike M D Jeroense
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
130
|
Grembi JA, Lin A, Karim MA, Islam MO, Miah R, Arnold BF, McQuade ETR, Ali S, Rahman MZ, Hussain Z, Shoab AK, Famida SL, Hossen MS, Mutsuddi P, Rahman M, Unicomb L, Haque R, Taniuchi M, Liu J, Platts-Mills JA, Holmes SP, Stewart CP, Benjamin-Chung J, Colford JM, Houpt ER, Luby SP. Effect of water, sanitation, handwashing and nutrition interventions on enteropathogens in children 14 months old: a cluster-randomized controlled trial in rural Bangladesh. J Infect Dis 2020; 227:jiaa549. [PMID: 32861214 PMCID: PMC9891429 DOI: 10.1093/infdis/jiaa549] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We evaluated the impact of low-cost water, sanitation, handwashing (WSH) and child nutrition interventions on enteropathogen carriage in the WASH Benefits cluster-randomized controlled trial in rural Bangladesh. METHODS We analyzed 1411 routine fecal samples from children 14±2 months old in the WSH (n = 369), nutrition counseling plus lipid-based nutrient supplement (n = 353), nutrition plus WSH (n = 360), and control (n = 329) arms for 34 enteropathogens using quantitative PCR. Outcomes included the number of co-occurring pathogens; cumulative quantity of four stunting-associated pathogens; and prevalence and quantity of individual pathogens. Masked analysis was by intention-to-treat. RESULTS 326 (99.1%) control children had one or more enteropathogens detected (mean 3.8±1.8). Children receiving WSH interventions had lower prevalence and quantity of individual viruses than controls (prevalence difference for norovirus: -11% [95% confidence interval [CI], -5 to -17%]; sapovirus: -9% [95%CI, -3 to -15%]; and adenovirus 40/41: -9% [95%CI, -2 to - 15%]). There was no difference in bacteria, parasites, or cumulative quantity of stunting-associated pathogens between controls and any intervention arm. CONCLUSIONS WSH interventions were associated with fewer enteric viruses in children aged 14 months. Different strategies are needed to reduce enteric bacteria and parasites at this critical young age.
Collapse
Affiliation(s)
- Jessica A Grembi
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Audrie Lin
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Md Abdul Karim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Ohedul Islam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rana Miah
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Benjamin F Arnold
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California, USA
| | - Elizabeth T Rogawski McQuade
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Shahjahan Ali
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Zahir Hussain
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Abul K Shoab
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Syeda L Famida
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Saheen Hossen
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Palash Mutsuddi
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Leanne Unicomb
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rashidul Haque
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, California, USA
| | - Christine P Stewart
- Institute for Global Nutrition, University of California, Davis, Davis, California, USA
| | - Jade Benjamin-Chung
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - John M Colford
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
131
|
Competitors versus Collaborators: Micronutrient Processing by Pathogenic and Commensal Human-Associated Gut Bacteria. Mol Cell 2020; 78:570-576. [PMID: 32442503 DOI: 10.1016/j.molcel.2020.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
Co-evolution of gut commensal bacteria and humans has ensured that the micronutrient needs of both parties are met. This minireview summarizes the known molecular mechanisms of iron, zinc, and B vitamin processing by human-associated bacteria, comparing gut pathogens and commensals, and highlights the tension between their roles as competitors versus collaborators with the human host.
Collapse
|
132
|
Verhaeghe R, George K, Westerman M, Olbina G, McCann D, Parrow N, Pincus E, Havranek T, Fleming RE. Hepcidin Status at 2 Months in Infants Fed Breast Milk Compared with Formula. Neonatology 2020; 117:474-479. [PMID: 32818935 DOI: 10.1159/000508447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The basis for the superior absorption of iron from breast milk compared with infant formulas is unclear. The hormone hepcidin downregulates dietary iron absorption. Hepcidin production increases with increased body iron status (reflected in serum ferritin levels). We hypothesized that serum hepcidin levels are suppressed relative to iron status in infants fed breast milk compared with formula. METHODS Subjects were healthy infants presenting for routine 2-month clinic visit and strictly fed either breast milk or standard infant formula. Urinary hepcidin and ferritin levels (reflective of serum levels) were analyzed and compared across the breast milk- and formula-fed groups. The relationship between urinary hepcidin and ferritin levels within each group was analyzed by linear regression. RESULTS Twenty-four subjects were enrolled in each group. The median urinary hepcidin level in the group fed breast milk was lower than in formula (130 vs. 359 ng hepcidin/mg creatinine, p < 0.05). However, the median ferritin levels were similar (2.1 vs. 1.9 ng/mL). Within each group, urinary hepcidin correlated with urinary ferritin (r = 0.5, p < 0.05 for each group); however, the slope of the regression line was lower in the group fed breast milk compared with formula (p < 0.005). CONCLUSION Despite similar urinary ferritin levels, urinary hepcidin levels are lower at 2 months in infants fed breast milk compared with infants fed formula. Hepcidin levels correlate with iron status in each group; however, this relationship is relatively dampened in infants fed breast milk. We speculate that relatively lower infant hepcidin contributes to the superior efficiency of iron absorption from breast milk.
Collapse
Affiliation(s)
- Rebecca Verhaeghe
- Pediatrics/Neonatology, Saint Louis University, St. Louis, Missouri, USA
| | - Kandie George
- Pediatrics/Neonatology, Albert Einstein University/Montefiore, Bronx, New York, USA
| | | | | | - Diane McCann
- Intrinsic LifeSciences, La Jolla, California, USA
| | - Nermi Parrow
- Pediatrics/Neonatology, Saint Louis University, St. Louis, Missouri, USA
| | - Elisa Pincus
- Pediatrics/Neonatology, Saint Louis University, St. Louis, Missouri, USA
| | - Tomas Havranek
- Pediatrics/Neonatology, Albert Einstein University/Montefiore, Bronx, New York, USA
| | - Robert E Fleming
- Pediatrics/Neonatology, Saint Louis University, St. Louis, Missouri, USA,
| |
Collapse
|
133
|
Fischer JA, Pei LX, Goldfarb DM, Albert A, Elango R, Kroeun H, Karakochuk CD. Is untargeted iron supplementation harmful when iron deficiency is not the major cause of anaemia? Study protocol for a double-blind, randomised controlled trial among non-pregnant Cambodian women. BMJ Open 2020; 10:e037232. [PMID: 32801202 PMCID: PMC7430471 DOI: 10.1136/bmjopen-2020-037232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION The WHO recommends daily oral iron supplementation for 12 weeks in women and adolescents where anaemia prevalence is greater than 40%. However, if iron deficiency is not a major cause of anaemia, then, at best, untargeted iron supplementation is a waste of resources; at worst, it could cause harm. Further, different forms of iron with varying bioavailability may present greater risks of harm. METHODS AND ANALYSIS A 12-week three-arm, double-blind, randomised controlled supplementation trial was conducted in Cambodia to determine if there is potential harm associated with untargeted iron supplementation. We will recruit and randomise 480 non-pregnant women (ages 18-45 years) to receive one of three interventions: 60 mg elemental iron as ferrous sulfate (the standard, commonly used form), 18 mg ferrous bisglycinate (a highly bioavailable iron amino acid chelate) or placebo. We will measure ferritin concentrations (to evaluate non-inferiority between the two forms of iron), as well as markers of potential harm in blood and stool (faecal calprotectin, gut pathogen abundance and DNA damage) at baseline and 12 weeks. Mixed-effects generalised linear models will be used to assess the effect of iron on ferritin concentration and markers of potential harm at 12 weeks. ETHICS AND DISSEMINATION Ethical approval was obtained from the University of British Columbia Clinical Research Ethics Board (H18-02610), the Children's and Women's Health Centre of British Columbia Research Ethics Board (H18-02610) and the National Ethics Committee for Health Research in Cambodia (273-NECHR). Findings will be published in peer-reviewed journals, presented to stakeholders and policymakers globally and shared within participants' communities. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT04017598).
Collapse
Affiliation(s)
- Jordie Aj Fischer
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Lulu X Pei
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - David M Goldfarb
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arianne Albert
- Department of Biostatistics, Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - Rajavel Elango
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hou Kroeun
- Helen Keller International Cambodia, Phnom Penh, British Columbia, Cambodia
| | - Crystal D Karakochuk
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
134
|
Engle-Stone R. The role of modelling to inform context-specific anaemia programming. LANCET GLOBAL HEALTH 2020; 8:e982-e983. [PMID: 32710870 DOI: 10.1016/s2214-109x(20)30301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Reina Engle-Stone
- Department of Nutrition and Institute for Global Nutrition, University of California, Davis, CA 95616, USA.
| |
Collapse
|
135
|
Oral iron supplementation in iron-deficient women: How much and how often? Mol Aspects Med 2020; 75:100865. [PMID: 32650997 DOI: 10.1016/j.mam.2020.100865] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022]
Abstract
Iron deficiency and iron deficiency anemia (IDA) are major public health problems worldwide, especially in young women. Oral iron supplementation can be an effective strategy to treat and prevent IDA, but guidelines vary. Some experts recommend doses of 150-200 mg elemental iron per day, with the dose split through the day. However, recent studies suggest this may not be an optimal regimen. The fraction of iron absorbed from high doses of oral iron is low, and unabsorbed iron can cause gut irritation, inflammation and dysbiosis, and these reduce compliance. In recent studies using serum hepcidin profiles and stable iron isotopes to quantify iron absorption in young women, we have shown that: (a) oral iron doses ≥60 mg in iron-deficient women, and doses ≥100 mg in women with IDA, stimulate an acute increase in hepcidin that persists 24 h after the dose, but subsides by 48 h; (b) therefore, to maximize fractional iron absorption, oral doses ≥60 mg should be given on alternate days; (c) the circadian increase in plasma hepcidin is augmented by a morning iron dose; therefore, iron doses should not be given in the afternoon or evening after a morning dose. If rate of Hb response is important, a pooled analysis of our data done for this review indicates that total iron absorption is also higher if twice the target daily iron dose is given on alternate days. In summary, these studies suggest changing from daily to alternate-day schedules and from divided to morning single doses increases iron absorption and may reduce side effects. Thus, providing morning doses of 60-120 mg iron as a ferrous salt given with ascorbic acid on alternate days may be an optimal oral dosing regimen for women with iron-deficiency and mild IDA.
Collapse
|
136
|
Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients 2020; 12:E1769. [PMID: 32545596 PMCID: PMC7353203 DOI: 10.3390/nu12061769] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
A healthy gut microbiota not only has beneficial effects on the activity of the immune system, but also on thyroid function. Thyroid and intestinal diseases prevalently coexist-Hashimoto's thyroiditis (HT) and Graves' disease (GD) are the most common autoimmune thyroid diseases (AITD) and often co-occur with Celiac Disease (CD) and Non-celiac wheat sensitivity (NCWS). This can be explained by the damaged intestinal barrier and the following increase of intestinal permeability, allowing antigens to pass more easily and activate the immune system or cross-react with extraintestinal tissues, respectively. Dysbiosis has not only been found in AITDs, but has also been reported in thyroid carcinoma, in which an increased number of carcinogenic and inflammatory bacterial strains were observed. Additionally, the composition of the gut microbiota has an influence on the availability of essential micronutrients for the thyroid gland. Iodine, iron, and copper are crucial for thyroid hormone synthesis, selenium and zinc are needed for converting T4 to T3, and vitamin D assists in regulating the immune response. Those micronutrients are often found to be deficient in AITDs, resulting in malfunctioning of the thyroid. Bariatric surgery can lead to an inadequate absorption of these nutrients and further implicates changes in thyroid stimulating hormone (TSH) and T3 levels. Supplementation of probiotics showed beneficial effects on thyroid hormones and thyroid function in general. A literature research was performed to examine the interplay between gut microbiota and thyroid disorders that should be considered when treating patients suffering from thyroid diseases. Multifactorial therapeutic and preventive management strategies could be established and more specifically adjusted to patients, depending on their gut bacteria composition. Future well-powered human studies are warranted to evaluate the impact of alterations in gut microbiota on thyroid function and diseases.
Collapse
Affiliation(s)
- Jovana Knezevic
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (J.K.); (K.A.)
| | - Christina Starchl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (J.K.); (K.A.)
| | - Adelina Tmava Berisha
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (J.K.); (K.A.)
| |
Collapse
|
137
|
Iron status and inherited haemoglobin disorders modify the effects of micronutrient powders on linear growth and morbidity among young Lao children in a double-blind randomised trial. Br J Nutr 2020; 122:895-909. [PMID: 31303184 PMCID: PMC7672373 DOI: 10.1017/s0007114519001715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Some studies found that providing micronutrient powder (MNP) causes adverse health outcomes, but modifying factors are unknown. We aimed to investigate whether Fe status and inherited Hb disorders (IHbD) modify the impact of MNP on growth and diarrhoea among young Lao children. In a double-blind controlled trial, 1704 children of age 6–23 months were randomised to daily MNP (with 6 mg Fe plus fourteen micronutrients) or placebo for about 36 weeks. IHbD, and baseline and final Hb, Fe status and anthropometrics were assessed. Caregivers provided weekly morbidity reports. At enrolment, 55·6 % were anaemic; only 39·3 % had no sign of clinically significant IHbD. MNP had no overall impact on growth and longitudinal diarrhoea prevalence. Baseline Hb modified the effect of MNP on length-for-age (LAZ) (P for interaction = 0·082). Among children who were initially non-anaemic, the final mean LAZ in the MNP group was slightly lower (–1·93 (95 % CI –1·88, –1·97)) v. placebo (–1·88 (95 % CI –1·83, –1·92)), and the opposite occurred among initially anaemic children (final mean LAZ –1·90 (95 % CI –1·86, –1·94) in MNP v. –1·92 (95 % CI –1·88, –1·96) in placebo). IHbD modified the effect on diarrhoea prevalence (P = 0·095). Among children with IHbD, the MNP group had higher diarrhoea prevalence (1·37 (95 % CI 1·17, 1·59) v. 1·21 (95 % CI 1·04, 1·41)), while it was lower among children without IHbD who received MNP (1·15 (95 % CI 0·95, 1·39) v. 1·37 (95 % CI 1·13, 1·64)). In conclusion, there was a small adverse effect of MNP on growth among non-anaemic children and on diarrhoea prevalence among children with IHbD.
Collapse
|
138
|
Thankachan P, Bose B, Subramanian R, Koneri R, Kurpad AV. Fractional iron absorption from enteric-coated ferrous sulphate tablet. Indian J Med Res 2020; 151:371-374. [PMID: 32461401 PMCID: PMC7371052 DOI: 10.4103/ijmr.ijmr_1464_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background & objectives: Iron supplementation is widely used public health measure to manage iron deficiency anaemia. In India, enteric-coated iron tablets are administered to adolescent boys and girls to avoid adverse effects such as gastritis, which reduces compliance, but this may result in poor iron absorption. Data on the absorption of iron from enteric-coated ferrous sulphate tablets are lacking. The present study using stable isotopic approach was aimed to measure iron absorption in iron deficient women. Methods: Iron absorption was measured from stable isotope-labelled enteric-coated ferrous sulphate (57Fe, ECFS) and uncoated ferrous sulphate (58Fe, UCFS) tablets in iron-deficient (n=9) women, aged 18-40 yr with no infection or inflammation. The two types of tablets (ECFS and UCFS) were administered on consecutive days, 60 min after breakfast, and the sequence being random. Blood samples were collected before dosing, and on day 15, to measure iron absorption from the shift in iron isotopic ratios in haemoglobin. Results: Eight women completed the iron absorption study. Iron absorption was found to be significantly lower in ECFS compared to UCFS (3.5 vs. 12%, P<0.05) consumption. Interpretation & conclusions: Our study showed poor iron bioavailability from ECFS, and supplementation programmes may consider UCFS tablets for better haematological outcomes.
Collapse
Affiliation(s)
- Prashanth Thankachan
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka, India
| | - Beena Bose
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka, India
| | - Rajarajan Subramanian
- Department of Pharmaceutics, Karnataka College of Pharmacy, Bengaluru, Karnataka, India
| | - Raju Koneri
- Department of Pharmaceutics, Karnataka College of Pharmacy, Bengaluru, Karnataka, India
| | - Anura V Kurpad
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
139
|
Forgie AJ, Drall KM, Bourque SL, Field CJ, Kozyrskyj AL, Willing BP. The impact of maternal and early life malnutrition on health: a diet-microbe perspective. BMC Med 2020; 18:135. [PMID: 32393275 PMCID: PMC7216331 DOI: 10.1186/s12916-020-01584-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Early-life malnutrition may have long-lasting effects on microbe-host interactions that affect health and disease susceptibility later in life. Diet quality and quantity in conjunction with toxin and pathogen exposure are key contributors to microbe-host physiology and malnutrition. Consequently, it is important to consider both diet- and microbe-induced pathologies as well as their interactions underlying malnutrition. MAIN BODY Gastrointestinal immunity and digestive function are vital to maintain a symbiotic relationship between the host and microbiota. Childhood malnutrition can be impacted by numerous factors including gestational malnutrition, early life antibiotic use, psychological stress, food allergy, hygiene, and exposure to other chemicals and pollutants. These factors can contribute to reoccurring environmental enteropathy, a condition characterized by the expansion of commensal pathobionts and environmental pathogens. Reoccurring intestinal dysfunction, particularly during the critical window of development, may be a consequence of diet-microbe interactions and may lead to life-long immune and metabolic programming and increased disease risk. We provide an overview of the some key factors implicated in the progression of malnutrition (protein, fat, carbohydrate, iron, vitamin D, and vitamin B12) and discuss the microbiota during early life that may contribute health risk later in life. CONCLUSION Identifying key microbe-host interactions, particularly those associated with diet and malnutrition requires well-controlled dietary studies. Furthering our understanding of diet-microbe-host interactions will help to provide better strategies during gestation and early life to promote health later in life.
Collapse
Affiliation(s)
- Andrew J. Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Kelsea M. Drall
- Department of Pediatrics, University of Alberta, Edmonton, Alberta Canada
| | - Stephane L. Bourque
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta Canada
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Anita L. Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| |
Collapse
|
140
|
Guo T, Yang Y, Zhang J, Miao Y, Lin F, Zhu S, Zhang C, Wu H. Ascorbate exacerbates iron toxicity on intestinal barrier function against Salmonella infection. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:91-107. [PMID: 32397945 DOI: 10.1080/26896583.2020.1729632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ascorbic acid is often used to enhance iron absorption in nutritional interventions, but it produces pro-oxidant effects in the presence of iron. This study aimed to evaluate ascorbate's role in iron toxicity on intestinal resistance against foodborne pathogens during iron supplementation/fortification. In polarized Caco-2 cell monolayers, compared to the iron-alone treatment, the iron-ascorbate co-treatment caused more than 2-fold increase in adhesion, invasion and translocation of Salmonella enterica serovar Typhimurium. According to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase release and transepithelial electrical resistance, the iron-ascorbate co-treatment resulted in reduced cell viability and increased impairment of cell membrane and paracellular permeability compared to the iron-alone treatment. Butylated hydroxytoluene protected cells against these prooxidant toxicities of ascorbate. Ascorbate completely restored iron-induced intracellular oxidant burst and depletion of cytosolic antioxidant reserve, according to dichlorodihydrofluorescein fluorescence and intracellular reduced glutathione levels. In Salmonella-infected C57BL/6 mice, iron-ascorbate co-supplementation resulted in greater loss of body weight and appetite, lower survival rate, shorter colon length, heavier intestinal microvilli damage, and more intestinal pathogen colonization and translocation than the iron-alone supplementation. Overall, ascorbate would exacerbate iron toxicity on intestinal resistance against Salmonella infection through pro-oxidant impairment of intestinal epithelial barrier from extracellular side and/or by facilitating intestinal pathogen colonization.
Collapse
Affiliation(s)
- Tengjiao Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yisheng Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Jiayou Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Miao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Feifei Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Suqin Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Caili Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
141
|
Metaproteomics characterizes human gut microbiome function in colorectal cancer. NPJ Biofilms Microbiomes 2020; 6:14. [PMID: 32210237 PMCID: PMC7093434 DOI: 10.1038/s41522-020-0123-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
Pathogenesis of colorectal cancer (CRC) is associated with alterations in gut microbiome. Previous studies have focused on the changes of taxonomic abundances by metagenomics. Variations of the function of intestinal bacteria in CRC patients compared to healthy crowds remain largely unknown. Here we collected fecal samples from CRC patients and healthy volunteers and characterized their microbiome using quantitative metaproteomic method. We have identified and quantified 91,902 peptides, 30,062 gut microbial protein groups, and 195 genera of microbes. Among the proteins, 341 were found significantly different in abundance between the CRC patients and the healthy volunteers. Microbial proteins related to iron intake/transport; oxidative stress; and DNA replication, recombination, and repair were significantly alternated in abundance as a result of high local concentration of iron and high oxidative stress in the large intestine of CRC patients. Our study shows that metaproteomics can provide functional information on intestinal microflora that is of great value for pathogenesis research, and can help guide clinical diagnosis in the future.
Collapse
|
142
|
McCarthy EK, Dempsey EM, Kiely ME. Iron supplementation in preterm and low-birth-weight infants: a systematic review of intervention studies. Nutr Rev 2020; 77:865-877. [PMID: 31532494 PMCID: PMC6888764 DOI: 10.1093/nutrit/nuz051] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Context Enteral iron supplementation in preterm infants is recommended to supply sufficient iron for growth and development without increasing the risk of iron overload. However, the current recommendations date from 2010 and are based on limited evidence. Objective This systematic review aimed to investigate the effects of enteral iron supplementation on iron status, growth, neurological development, and adverse clinical outcomes in preterm (<37 weeks’ gestation) and low-birth-weight (LBW, <2500 g) infants. Data sources The PubMed/Medline and Cochrane Library databases were searched to 31 October 2018. Data extraction Of the 684 records identified, 27 articles, describing 18 randomized controlled trials (RCTs) plus 4 nonrandomized interventions, were included. Using the Cochrane Collaboration’s criteria, study quality was found to be poor to fair overall. Results Most articles (23/27) reported iron status indices; supplementation for ≥8 weeks resulted in increased hemoglobin and ferritin concentrations and a reduction in iron deficiency and anemia. No article reported on iron overload. Growth-related parameters reported in 12 articles were not affected by supplementation. Among the 7 articles on neurological development, a positive effect on behavior at 3.5 and 7 years was observed in one Swedish RCT. No association was found between supplementation and adverse clinical outcomes in the 9 articles reporting on studies in which such data was collected. Conclusions Long-term iron supplementation appears to result in improved iron status and a reduction in iron deficiency and anemia in preterm and LBW infants. However, high-quality evidence regarding the long-term effects of supplementation on functional health outcomes is lacking. Iron overload has largely been ignored. Well-designed, long-term, dose-response RCTs are required to ascertain the optimal dose and delivery method for the provision of dietary iron in preterm infants, with consideration of short- and long-term health effects. Systematic Review Registration PROSPERO registration no. CRD42018085214.
Collapse
Affiliation(s)
- Elaine K McCarthy
- INFANT Research Centre, University College Cork, Cork, Republic of Ireland.,Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, Cork, Republic of Ireland
| | - Eugene M Dempsey
- INFANT Research Centre, University College Cork, Cork, Republic of Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Republic of Ireland
| | - Mairead E Kiely
- INFANT Research Centre, University College Cork, Cork, Republic of Ireland.,Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, Cork, Republic of Ireland
| |
Collapse
|
143
|
Ghadimi D, Yoness Hassan MF, Fölster-Holst R, Röcken C, Ebsen M, de Vrese M, Heller KJ. Regulation of hepcidin/iron-signalling pathway interactions by commensal bifidobateria plays an important role for the inhibition of metaflammation-related biomarkers. Immunobiology 2020; 225:151874. [DOI: 10.1016/j.imbio.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
144
|
Biruete A, Hill Gallant KM, Lindemann SR, Wiese GN, Chen NX, Moe SM. Phosphate Binders and Nonphosphate Effects in the Gastrointestinal Tract. J Ren Nutr 2020; 30:4-10. [PMID: 30846238 PMCID: PMC6722023 DOI: 10.1053/j.jrn.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/03/2018] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Phosphate binders are commonly prescribed in patients with end-stage kidney disease to prevent and treat hyperphosphatemia. These binders are usually associated with gastrointestinal distress, may bind molecules other than phosphate, and may alter the gut microbiota, altogether having systemic effects unrelated to phosphate control. Sevelamer is the most studied of the available binders for nonphosphate-related effects including binding to bile acids, endotoxins, gut microbiota-derived metabolites, and advanced glycation end products. Other binders (calcium- and noncalcium-based binders) may bind vitamins, such as vitamin K and folic acid. Moreover, the relatively new iron-based phosphate binders may alter the gut microbiota, as some of the iron or organic ligands may be used by the gastrointestinal bacteria. The objective of this narrative review is to provide the current evidence for the nonphosphate effects of phosphate binders on gastrointestinal function, nutrient and molecule binding, and the gut microbiome.
Collapse
Affiliation(s)
- Annabel Biruete
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathleen M Hill Gallant
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Stephen R Lindemann
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Gretchen N Wiese
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Neal X Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sharon M Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana.
| |
Collapse
|
145
|
Harvey JW, Harr KE, Murphy D, Walsh MT, de Wit M, Deutsch CJ, Bonde RK. Serum Iron Analytes in Healthy and Diseased Florida Manatees (Trichechus manatus latirostris). J Comp Pathol 2019; 173:58-70. [PMID: 31812174 DOI: 10.1016/j.jcpa.2019.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 11/26/2022]
Abstract
Serum iron concentration is usually decreased in true iron deficiency and with inflammatory disease in man and domestic animals. Serum total iron binding capacity (TIBC) may be increased in true iron deficiency and decreased with inflammatory disease. This prospective study was designed to measure serum iron analytes in healthy free-ranging and housed Florida manatees (Trichechus manatus latirostris) of both sexes and various ages and to evaluate the effects of diseases common to manatees on these analytes. Blood samples were collected without anticoagulant from 137 healthy free-ranging manatees, 90 healthy housed manatees and 74 free-ranging diseased manatees, and serum was prepared by centrifugation. Serum iron concentration and unsaturated iron binding capacity were measured colourimetrically, and TIBC and percent transferrin saturation with iron were calculated. Serum amyloid A (SAA) was measured to assist in the health assessment of manatees and provide evidence of inflammation in diseased manatees. Based on the serum iron analytes, iron availability was lower in immature manatees compared with adults, and it was lower in housed manatees compared with free-ranging manatees. In contrast to other mammals studied, serum iron concentration was elevated rather than depressed in late pregnancy. Serum iron concentrations and transferrin saturation with iron percentages were significantly lower, and SAA concentrations were significantly higher, in diseased (ill and injured) manatees compared with healthy manatees. Serum iron concentration and transferrin saturation with iron values were negatively correlated with SAA concentrations, and manatees with the highest SAA concentrations had lower serum TIBC values. These findings indicate that inflammation is the major factor responsible for alterations in iron analytes in diseased manatees. Consequently, hypoferraemia may be used as supportive evidence of inflammatory disease in manatees (unless haemorrhage is also present). A decision threshold of ≤13.8 μmol/l was determined for hypoferraemia using receiver operating curve analysis. Based on studies in man and domestic animals, iron therapy is unnecessary for manatees with hypoferraemia associated with inflammation and has the potential for causing tissue damage and increased susceptibility to bacterial infections.
Collapse
Affiliation(s)
- J W Harvey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, USA.
| | - K E Harr
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, USA
| | | | | | - M de Wit
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Marine Mammal Pathobiology Laboratory, Saint Petersburg, USA
| | - C J Deutsch
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Wildlife Research Laboratory, Gainesville, USA
| | - R K Bonde
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| |
Collapse
|
146
|
McCormick BJJ, Murray-Kolb LE, Lee GO, Schulze KJ, Ross AC, Bauck A, Lima AAM, Maciel BLL, Kosek MN, Seidman JC, Ambikapathi R, Bose A, John S, Kang G, Turab A, Mduma E, Bessong P, Shrestra SK, Ahmed T, Mahfuz M, Olortegui MP, Bhutta Z, Caulfield LE, MAL-ED Network Investigators
AcostaAngel Mendez12de BurgaRosa Rios12ChavezCesar Banda12FloresJulian Torres12OloteguiMaribel Paredes12PinedoSilvia Rengifo12SalasMery Siguas12TrigosoDixner Rengifo12VasquezAngel Orbe12AhmedImran13AlamDidar13AliAsad13BhuttaZulfiqar A13QureshiShahida13RasheedMuneera13SoofiSajid13TurabAli13ZaidiAnita K M13BodhidattaLadaporn14MasonCarl J14BabjiSudhir15BoseAnuradha15GeorgeAjila T15HarirajuDinesh15JenniferM Steffi15JohnSushil15KakiShiny15KangGagandeep15KarunakaranPriyadarshani15KoshyBeena15LazarusRobin P15MuliyilJayaprakash15RaghavaMohan Venkata15RajuSophy15RamachandranAnup15RamadasRakhi15RamanujamKarthikeyan15BoseAnuradha15RoshanReeba15SharmaSrujan L15Sundaram EShanmuga15ThomasRahul J15PanWilliam K116AmbikapathiRamya1CarreonJ Daniel1CharuVivek1DoanViyada1GrahamJhanelle1HoestChristel1KnoblerStacey1LangDennis R117McCormickBenjamin J J1McGrathMonica1MillerMark A1MohaleArchana1NayyarGaurvika1PsakiStephanie1RasmussenZeba1RichardStephanie A1SeidmanJessica C1WangVivian1BlankRebecca17GottliebMichael17TountasKaren H17AmourCaroline8BayyoEliwaza8MdumaEstomih R8MvungiRegisiana8NshamaRosemary8PascalJohn8SwemaBuliga Mujaga8YarrotLadislaus8AhmedTahmeed18AhmedA M Shamsir18HaqueRashidul18HossainIqbal18IslamMunirul18MahfuzMustafa18MondalDinesh18TofailFahmida18ChandyoRam Krishna19ShresthaPrakash Sunder19ShresthaRita19UlakManjeswori19BauckAubrey20BlackRobert E20CaulfieldLaura E20CheckleyWilliam120KosekMargaret N20LeeGwenyth20SchulzeKerry20YoriPablo Peñataro20Murray-KolbLaura E21RossA Catharine21SchaeferBarbara121SimonsSuzanne21PendergastLaura22AbreuCláudia B23CostaHilda23MouraAlessandra Di23FilhoJosé Quirino123HavtAlexandre23LeiteÁlvaro M23LimaAldo A M23LimaNoélia L23LimaIla F23MacielBruna L L23MedeirosPedro H Q S23MoraesMilena23MotaFrancisco S23OriáReinaldo B23QuetzJosiane23SoaresAlberto M23MotaRosa M S23PatilCrystal L24BessongPascal9MahopoCloupas9MaphulaAngelina9NyathiEmanuel9SamieAmidou9BarrettLeah25DillinghamRebecca25GratzJean25GuerrantRichard L25HouptEric25PetriWilliam AJr25Platts-MillsJames25ScharfRebecca25ShresthaBinob26ShresthaSanjaya Kumar26StrandTor27SvensenErling828. Intestinal permeability and inflammation mediate the association between nutrient density of complementary foods and biochemical measures of micronutrient status in young children: results from the MAL-ED study. Am J Clin Nutr 2019; 110:1015-1025. [PMID: 31565748 PMCID: PMC6766446 DOI: 10.1093/ajcn/nqz151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Environmental enteric dysfunction (EED) is thought to increase the risk of micronutrient deficiencies, but few studies adjust for dietary intakes and systemic inflammation. OBJECTIVE We tested whether EED is associated with micronutrient deficiency risk independent of diet and systemic inflammation, and whether it mediates the relation between intake and micronutrient status. METHODS Using data from 1283 children in the MAL-ED (Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health) birth cohort we evaluated the risk of anemia, low retinol, zinc, and ferritin, and high transferrin receptor (TfR) at 15 mo. We characterized gut inflammation and permeability by myeloperoxidase (MPO), neopterin (NEO), and α-1-antitrypsin (AAT) concentrations from asymptomatic fecal samples averaged from 9 to 15 mo, and averaged the lactulose:mannitol ratio z-score (LMZ) at 9 and 15 mo. Nutrient intakes from complementary foods were quantified monthly from 9 to 15 mo and densities were averaged for analyses. α-1-Acid glycoprotein at 15 mo characterized systemic inflammation. Relations between variables were modeled using a Bayesian network. RESULTS A greater risk of anemia was associated with LMZ [1.15 (95% CI: 1.01, 1.31)] and MPO [1.16 (1.01, 1.34)]. A greater risk of low ferritin was associated with AAT [1.19 (1.03, 1.37)] and NEO [1.22 (1.04, 1.44)]. A greater risk of low retinol was associated with LMZ [1.24 (1.08, 1.45)]. However, MPO was associated with a lower risk of high transferrin receptor [0.86 (0.74, 0.98)], NEO with a lower risk of low retinol [0.75 (0.62, 0.89)], and AAT with a lower risk of low plasma zinc [0.83 (0.70, 0.99)]. Greater nutrient intake densities (vitamins A and B6, calcium, protein, and zinc) were negatively associated with EED. Inverse associations between nutrient densities and micronutrient deficiency largely disappeared after adjustment for EED, suggesting that EED mediates these associations. CONCLUSIONS EED is independently associated with an increased risk of low ferritin, low retinol, and anemia. Greater nutrient density from complementary foods may reduce EED, and the control of micronutrient deficiencies may require control of EED.
Collapse
Affiliation(s)
| | - Laura E Murray-Kolb
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Gwenyth O Lee
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kerry J Schulze
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Aubrey Bauck
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aldo A M Lima
- Universidade Federal do Ceará, INCT—Instituto de Biomedicina do Semiárido Brasileiro, Fortaleza, Brazil
| | - Bruna L L Maciel
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Negro, Brazil
| | - Margaret N Kosek
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Anuradha Bose
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Sushil John
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Ali Turab
- Centre of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | | | | | - Sanjaya K Shrestra
- Walter Reed, Armed Forces Research Institute of Medical Sciences (AFRIMS) Research Unit, Nepal (WARUN), Kathmandu, Nepal
| | - Tahmeed Ahmed
- Division of Nutrition and Clinical Services, icddr,b, Dhaka, Bangladesh
| | - Mustafa Mahfuz
- Division of Nutrition and Clinical Services, icddr,b, Dhaka, Bangladesh
| | | | - Zulfiqar Bhutta
- Centre of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Laura E Caulfield
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Address correspondence to LEC (E-mail: )
| | | |
Collapse
|
147
|
Derrien M, Alvarez AS, de Vos WM. The Gut Microbiota in the First Decade of Life. Trends Microbiol 2019; 27:997-1010. [PMID: 31474424 DOI: 10.1016/j.tim.2019.08.001] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Appreciation of the importance of the gut microbiome is growing, and it is becoming increasingly relevant to identify preventive or therapeutic solutions targeting it. The composition and function of the gut microbiota are relatively well described for infants (less than 3 years) and adults, but have been largely overlooked in pre-school (3-6 years) and primary school-age (6-12 years) children, as well as teenagers (12-18 years). Early reports suggested that the infant microbiota would attain an adult-like structure at the age of 3 years, but recent studies have suggested that microbiota development may take longer. This development time is of key importance because there is evidence to suggest that deviations in this development may have consequences in later life. In this review, we provide an overview of current knowledge concerning the gut microbiota, its evolution, variation, and response to dietary challenges during the first decade of life with a focus on healthy pre-school and primary school-age children (up to 12 years) from various populations around the globe. This knowledge should facilitate the identification of diet-based approaches targeting individuals of this age group, to promote the development of a healthy microbiota in later life.
Collapse
Affiliation(s)
- Muriel Derrien
- Danone Nutricia Research, RD, 128 Avenue de la Vauve, 91120 Palaiseau, France.
| | - Anne-Sophie Alvarez
- Danone Nutricia Research, RD, 128 Avenue de la Vauve, 91120 Palaiseau, France
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
148
|
Karl JP, Armstrong NJ, McClung HL, Player RA, Rood JC, Racicot K, Soares JW, Montain SJ. A diet of U.S. military food rations alters gut microbiota composition and does not increase intestinal permeability. J Nutr Biochem 2019; 72:108217. [PMID: 31473505 DOI: 10.1016/j.jnutbio.2019.108217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
Interactions between gut microbes and dietary components modulate intestinal permeability (IP) and inflammation. Recent studies have reported altered fecal microbiota composition together with increased IP and inflammation in individuals consuming military food rations in austere environments, but could not isolate effects of the diet from environmental factors. To determine how the U.S. Meal, Ready-to-Eat food ration affects fecal microbiota composition, IP and inflammation, 60 adults (95% male,18-61 years) were randomized to consume their usual ad libitum diet for 31 days (CON) or a strictly controlled Meal, Ready-to-Eat-only diet for 21 days followed by their usual diet for 10 days (MRE). In both groups, fecal microbiota composition was measured before, during (INT, days 1-21) and after the intervention period. IP and inflammation [high-sensitivity C-reactive protein (hsCRP)] were measured on days 0, 10, 21 and 31. Longitudinal changes in fecal microbiota composition differed between groups (P=.005), and fecal samples collected from MRE during INT were identified with 88% accuracy using random forest models. The genera making the strongest contribution to that prediction accuracy included multiple lactic acid bacteria (Lactobacillus, Lactococcus, Leuconostoc), which demonstrated lower relative abundance in MRE, and several genera known to dominate the ileal microbiota (Streptococcus, Veillonella, Clostridium), the latter two demonstrating higher relative abundance in MRE. IP and hsCRP were both lower (34% and 41%, respectively) in MRE relative to CON on day 21 (P<.05) but did not differ otherwise. Findings demonstrate that a Meal, Ready-to-Eat ration diet alters fecal microbiota composition and does not increase IP or inflammation.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA.
| | - Nicholes J Armstrong
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA.
| | - Holly L McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA.
| | - Robert A Player
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723, USA.
| | - Jennifer C Rood
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| | - Kenneth Racicot
- Combat Feeding Directorate, U.S. Army Combat Capabilities Development Command-Soldier Center, 15 General Greene Ave, Natick, MA 01760, USA.
| | - Jason W Soares
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command-Soldier Center, 15 General Greene Ave, Natick, MA 01760, USA.
| | - Scott J Montain
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA.
| |
Collapse
|
149
|
Williams AM, Addo OY, Grosse SD, Kassebaum NJ, Rankin Z, Ballesteros KE, Olsen HE, Sharma AJ, Jefferds ME, Mei Z. Data needed to respond appropriately to anemia when it is a public health problem. Ann N Y Acad Sci 2019; 1450:268-280. [PMID: 31267542 DOI: 10.1111/nyas.14175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Although the proportion of anemia amenable to change varies by population, the World Health Organization (WHO) criteria used to describe the public health severity of anemia are based on population prevalences. We describe the importance of measuring iron and other etiologic indicators to better understand what proportion of anemia could be responsive to interventions. We discuss the necessity of measuring inflammation to interpret iron biomarkers and documenting anemia of inflammation. Finally, we suggest assessing nonmodifiable genetic blood disorders associated with anemia. Using aggregated results from the Global Burden of Disease 2016, we compare population prevalence of anemia with years lived with disability (YLD) estimates, and the relative contributions of mild, moderate, and severe anemia to YLD. Anemia prevalences correlated with YLD and the relative proportion of moderate or severe anemia increased with anemia prevalence. However, individual-level survey data revealed irregular patterns between anemia prevalence, the prevalence of moderate or severe anemia, and the prevalence of iron deficiency anemia (IDA). We conclude that although the WHO population prevalence criteria used to describe the public health severity of anemia are important for policymaking, etiologic-specific metrics that take into account IDA and other causes will be necessary for effective anemia control policies.
Collapse
Affiliation(s)
- Anne M Williams
- McKing Consulting Corporation, Atlanta, Georgia.,Department of Global Health, Emory University, Atlanta, Georgia.,Division of Nutrition, Physical Activity and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - O Yaw Addo
- Department of Global Health, Emory University, Atlanta, Georgia.,Division of Nutrition, Physical Activity and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Scott D Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Nicholas J Kassebaum
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington.,Seattle Children's Hospital, Seattle, Washington
| | - Zane Rankin
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington
| | - Katherine E Ballesteros
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington
| | | | - Andrea J Sharma
- Division of Nutrition, Physical Activity and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia.,The U.S. Public Health Service Commissioned Corps, Atlanta, Georgia
| | - Maria Elena Jefferds
- Division of Nutrition, Physical Activity and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Zuguo Mei
- Division of Nutrition, Physical Activity and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| |
Collapse
|
150
|
Ironing out the Iron Requirements of Children and Adolescents. Indian Pediatr 2019. [DOI: 10.1007/s13312-019-1550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|