101
|
Murali A, Brokesh AM, Cross LM, Kersey AL, Jaiswal MK, Singh I, Gaharwar A. Inorganic Biomaterials Shape the Transcriptome Profile to Induce Endochondral Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402468. [PMID: 38738803 PMCID: PMC11304299 DOI: 10.1002/advs.202402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Minerals play a vital role, working synergistically with enzymes and other cofactors to regulate physiological functions including tissue healing and regeneration. The bioactive characteristics of mineral-based nanomaterials can be harnessed to facilitate in situ tissue regeneration by attracting endogenous progenitor and stem cells and subsequently directing tissue-specific differentiation. Here, cellular responses of human mesenchymal stem/stromal cells to traditional bioactive mineral-based nanomaterials, such as hydroxyapatite, whitlockite, silicon-dioxide, and the emerging synthetic 2D nanosilicates are investigated. Transcriptome sequencing is utilized to probe the cellular response and determine the significantly affected signaling pathways due to exposure to these inorganic nanomaterials. Transcriptome profiles of stem cells treated with nanosilicates reveals a stabilized skeletal progenitor state suggestive of endochondral differentiation. This observation is bolstered by enhanced deposition of matrix mineralization in nanosilicate treated stem cells compared to control or other treatments. Specifically, use of 2D nanosilicates directs osteogenic differentiation of stem cells via activation of bone morphogenetic proteins and hypoxia-inducible factor 1-alpha signaling pathway. This study provides insight into impact of nanomaterials on cellular gene expression profile and predicts downstream effects of nanomaterial induction of endochondral differentiation.
Collapse
Affiliation(s)
- Aparna Murali
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Anna M. Brokesh
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Lauren M. Cross
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Anna L. Kersey
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Manish K. Jaiswal
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Irtisha Singh
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Cell Biology and GeneticsCollege of MedicineTexas A&M UniversityBryanTX77807‐3260USA
- Interdisciplinary Program in Genetics and GenomicsTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh Gaharwar
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Interdisciplinary Program in Genetics and GenomicsTexas A&M UniversityCollege StationTX77843USA
- Department of Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
102
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
103
|
Yadalam PK, R R, Anegundi RV. Gradient Boosting Prediction of Overlapping Genes From Weighted Co-expression and Differential Gene Expression Analysis of Wnt Pathway: An Artificial Intelligence-Based Bioinformatics Study. Cureus 2024; 16:e67207. [PMID: 39295699 PMCID: PMC11410066 DOI: 10.7759/cureus.67207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The Wnt (wingless-related integration site) signalling pathway is crucial for bone formation and remodelling, regulating the commitment of mesenchymal stem cells (MSCs) to the osteoblastic lineage. It triggers the transcriptional activation of Wnt target genes and promotes osteoblast proliferation and survival. Weighted co-expression network analysis (WGCNA) and differential gene expression analysis help researchers understand gene roles. Gradient boosting, a machine learning technique, enhances understanding of genetic and molecular mechanisms contributing to overlap genes, improving gene regulation and functional genomics. The aim is to predict overlapping genes in the Wnt signalling pathway. Methods Differential gene expression analysis was performed using the National Center for Biotechnology Information (NCBI) geo dataset-GSE251951, focusing on the effect of Wnt signaling on treatment. The WGCNA module was analyzed using the iDEP tool to identify interconnected gene clusters. Hub genes were identified by calculating module eigengenes, correlated with external traits, and ranked based on module membership values. The study utilized gradient boosting, an ensemble learning method, to predict models, evaluate their performance using metrics like accuracy, precision, recall, and F1 score, and adjust predictions based on gradient and learning rate. Results The dendrogram uses the "Dynamic TreeCut" algorithm to analyze gene clusters, aiding researchers in understanding gene modules and biological processes, identifying co-expressed genes, and discovering new pathways. The confusion matrix displays 88 actual and predicted cases. The gradient boosting model achieves 78.9% accuracy in predicting Wnt pathway overlapping genes, with a respectable area under the curve (AUC) and classification accuracy values. It accurately predicts 73.9% of samples, with a high precision ratio and low recall. Conclusion Future research should enhance differential expression analysis and WGCNA to identify key Wnt pathway genes, improve sensitivity, specificity, hyperparameter tuning, and validation experiments, and use larger datasets.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Periodontics, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences (SIMATS) Deemed University, Chennai, IND
| | - Ramya R
- Oral Pathology and Oral Biology, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences (SIMATS) Deemed University, Chennai, IND
| | - Raghavendra Vamsi Anegundi
- Periodontics, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences (SIMATS) Deemed University, Chennai, IND
| |
Collapse
|
104
|
Jiang Y, Chen Y, Fu J, Zhao R, Xu J, Liu Y. Bone morphogenetic protein 4 alleviates pulmonary fibrosis by regulating macrophages. Int Immunopharmacol 2024; 139:112530. [PMID: 39053231 DOI: 10.1016/j.intimp.2024.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is a pathological change mainly characterized by an increase of fibrous connective tissue and decrease of parenchymal cells. Its continuous progress may lead to the destruction of organ structure and function decline. An excess of alternatively activated M2 macrophages have been considered crucial candidates in the progression of fibrosis. Bone morphogenetic proteins (BMPs), a group of multifunctional growth factors, are essential for organ development and pathophysiological process, however, the roles that BMPs play in innate immune homeostasis in the development of fibrosis and the downstream signals have not been fully explored. In the current study, we firstly found that the expression of BMP4 was significantly down-regulated in human and mouse fibrosis samples. Then we investigated the effects of BMP4 on macrophage polarization in IL-4 environment and related molecular mechanisms, and found that BMP4 caused a decrease in polarized response towards M2, reflected in the expression of the markers Fizz1, Ym1 and Arg1, together with an inhibition in Stat6 phosphorylation. This relied on the Smad1/5/8 signaling, which had a crosstalk with Stat6. Moreover, the in vivo study showed that BMP4 treatment can reduce collagen deposition and delay the development of experimental pulmonary fibrosis in mice by inhibiting M2 macrophages through adoptive transfer experiment. These findings revealed a novel role of BMP4 in regulating macrophages, offering potential strategies for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Rui Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
105
|
Vrščaj LA, Marc J, Ostanek B. Towards an enhanced understanding of osteoanabolic effects of PTH-induced microRNAs on osteoblasts using a bioinformatic approach. Front Endocrinol (Lausanne) 2024; 15:1380013. [PMID: 39086902 PMCID: PMC11289717 DOI: 10.3389/fendo.2024.1380013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
In this study, we used a bioinformatic approach to construct a miRNA-target gene interaction network potentially involved in the anabolic effect of parathyroid hormone analogue teriparatide [PTH (1-34)] on osteoblasts. We extracted a dataset of 26 microRNAs (miRNAs) from previously published studies and predicted miRNA target interactions (MTIs) using four software tools: DIANA, miRWalk, miRDB, and TargetScan. By constructing an interactome of PTH-regulated miRNAs and their predicted target genes, we elucidated signaling pathways regulating pluripotency of stem cells, the Hippo signaling pathway, and the TGF-beta signaling pathway as the most significant pathways in the effects of PTH on osteoblasts. Furthermore, we constructed intersection of MTI networks for these three pathways and added validated interactions. There are 8 genes present in all three selected pathways and a set of 18 miRNAs are predicted to target these genes, according to literature data. The most important genes in all three pathways were BMPR1A, BMPR2 and SMAD2 having the most interactions with miRNAs. Among these miRNAs, only miR-146a-5p and miR-346 have validated interactions in these pathways and were shown to be important regulators of these pathways. In addition, we also propose miR-551b-5p and miR-338-5p for further experimental validation, as they have been predicted to target important genes in these pathways but none of their target interactions have yet been verified. Our wet-lab experiment on miRNAs differentially expressed between PTH (1-34) treated and untreated mesenchymal stem cells supports miR-186-5p from the literature obtained data as another prominent miRNA. The meticulous selection of miRNAs outlined will significantly support and guide future research aimed at discovering and understanding the crucial pathways of osteoanabolic PTH-epigenetic effects on osteoblasts. Additionally, they hold potential for the discovery of new PTH target genes, innovative biomarkers for the effectiveness and safety of osteoporosis-affected treatment, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Lucija Ana Vrščaj
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute of Clinical Chemistry and Biochemistry, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
106
|
Kim JG, Sharma AR, Lee YH, Chatterjee S, Choi YJ, Rajvansh R, Chakraborty C, Lee SS. Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging Dis 2024:AD.2024.0282. [PMID: 39012676 DOI: 10.14336/ad.2024.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Quercetin (QC), a naturally occurring bioflavonoid found in various fruits and vegetables, possesses many potential health benefits, primarily attributed to its robust antioxidant properties. The generation of oxidative stress in bone cells is a key modulator of their physiological behavior. Moreover, oxidative stress status influences the pathophysiology of mineralized tissues. Increasing scientific evidence demonstrates that manipulating the redox balance in bone cells might be an effective technique for developing bone disease therapies. The QC antioxidant abilities in skeletal muscle significantly enhance muscle regeneration and reduce muscle atrophy. In addition, QC has been shown to have protective effects against oxidative stress, inflammation, apoptosis, and matrix degradation in tendons, helping to maintain the structural integrity and functionality of tendons. Thus, the antioxidant properties of QC might be crucial for addressing age-related musculoskeletal disorders like osteoporosis, sarcopenia, and tendon-related inflammatory conditions. Understanding how QC influences redox signaling pathways involved in musculoskeletal disorders, including their effect on bone, muscle, and tendon differentiation, might provide insights into the diverse advantages of QC in promoting tissue regeneration and preventing cellular damage. Therefore, this study reviewed the intricate relationship among oxidative stress, inflammation, and tissue repair, affected by the antioxidative abilities of QC, in age-related musculoskeletal tissues to improve the overall health of bones, muscles, and tendons of the skeletal system. Also, reviewing the ongoing clinical trials of QC for musculoskeletal systems is encouraging. Given the positive effect of QC on musculoskeletal health, further scientific investigations and controlled human intervention studies are necessary to explore the therapeutic potential to its optimum strength.
Collapse
Affiliation(s)
- Jae Gyu Kim
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yeon-Hee Lee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Srijan Chatterjee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yean Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Korea
| | - Roshani Rajvansh
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| |
Collapse
|
107
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
108
|
Yang J, Han C, Ye J, Hu X, Wang R, Shen J, Li L, Hu G, Shi X, Jia Z, Qu X, Liu H, Zhang X, Wu Y. PM 2.5 exposure inhibits osteoblast differentiation by increasing the ubiquitination and degradation of Smad4. Toxicol Lett 2024; 398:127-139. [PMID: 38914176 DOI: 10.1016/j.toxlet.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Increasing epidemiological evidence has shown that PM2.5 exposure is significantly associated with the occurrence of osteoporosis. It has been well demonstrated that PM2.5 exposure enhanced the differentiation and function of osteoclasts by indirectly causing chronic inflammation, while the mechanism in osteoblasts remains unclear. In our study, toxic effects were evaluated by direct exposure of 20-80 μg/ml PM2.5 to MC3T3-E1 cells and BMSCs. The results showed that PM2.5 exposure did not affect cell viability via proliferation and apoptosis, but significantly inhibited osteoblast differentiation in a dose-dependent manner. Osteogenic transcription factors Runx2 and Sp7 and other biomarkers Alp and Ocn decreased after PM2.5 exposure. RNA-seq revealed TGF-β signaling was involved in PM2.5 exposure inhibited osteoblast differentiation, which led to P-Smad1/5 and P-Smad2 reduction in the nucleus by increasing the ubiquitination and degradation of Smad4. At last, the inflammation response increased in MC3T3-E1 cells with PM2.5 exposure. Moreover, the mRNA levels of Mmp9 increased in bone marrow-derived macrophage cells treated with the conditional medium collected from MC3T3-E1 cells exposed to PM2.5. Overall, these results indicated that PM2.5 exposure inhibits osteoblast differentiation and concurrently increases the maturation of osteoclasts. Our study provides in-depth mechanistic insights into the direct impact of PM2.5 exposure on osteoblast, which would indicate the unrecognized role of PM2.5 on osteoporosis.
Collapse
Affiliation(s)
- Jiatao Yang
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Chunqing Han
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Junxing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Xiping Hu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Ruijian Wang
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Jin Shen
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Longfei Li
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Guoqin Hu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Zhongtang Jia
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Qu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Huanliang Liu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
109
|
Shi W, Feng Y, Tang J, Xu Y, Wang W, Zhang L, Jiang X, Ding Z, Xi K, Chen L, Gu Y. A Genetically Engineered "Reinforced Concrete" Scaffold Regulates the N2 Neutrophil Innate Immune Cascade to Repair Bone Defects. Adv Healthc Mater 2024; 13:e2304585. [PMID: 38411324 DOI: 10.1002/adhm.202304585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/17/2024] [Indexed: 02/28/2024]
Abstract
The innate immune response is crucial to inflammation, but how neutrophils and macrophages act in bone repair and tissue engineering treatment strategies await clarification. In this study, it is found that N2 neutrophils release stronger "eat me" signals to induce macrophage phagocytosis and polarize into the M2 anti-inflammatory phenotype. Guided by this biological mechanism, a mesoporous bioactive glass scaffold (MBG) is filled with hyaluronic acid methacryloyl (HAMA) hydrogel loaded with Transforming growth factor-β1 (TGFβ1) adenovirus (Ad@H), constructing a genetically engineered composite scaffold (Ad@H/M). The scaffold not only has good hydrophilicity and biocompatibility, but also provides mechanical stress support for bone repair. Adenovirus infection quickly induces N2 neutrophils, upregulating NF-κB and MAPK signaling pathways through Toll-like receptor 4 (TLR4) to promote the inflammatory response and macrophage phagocytosis. Macrophages perform phagocytosis and polarize towards the M2 phenotype, mediating the inflammatory response by inhibiting the PI3K-AKT-NF-κB pathway, maintaining homeostasis of the osteogenic microenvironment. The role of the Ad@H/M scaffold in regulating early inflammation and promoting long-term bone regeneration is further validated in vivo. In brief, this study focuses on the cascade of reactions between neutrophils and macrophage subtypes, and reports a composite scaffold that coordinates the innate immune response to promote bone repair.
Collapse
Affiliation(s)
- Wenxiao Shi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yu Feng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yichang Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Lichen Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Xinzhao Jiang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Zhouye Ding
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Kun Xi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yong Gu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|
110
|
Vuong TA, Zhang Y, Kim J, Leem YE, Kang JS. Prmt7 is required for the osteogenic differentiation of mesenchymal stem cells via modulation of BMP signaling. BMB Rep 2024; 57:330-335. [PMID: 38627951 PMCID: PMC11289507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 08/03/2024] Open
Abstract
Arginine methylation, which is catalyzed by protein arginine methyltransferases (Prmts), is known to play a key role in various biological processes. However, the function of Prmts in osteogenic differentiation of mesenchymal stem cells (MSCs) has not been clearly understood. In the current study, we attempted to elucidate a positive role of Prmt7 in osteogenic differentiation. Prmt7-depleted C3H/10T1/2 cells or bone marrow mesenchymal stem cells (BMSCs) showed the attenuated expression of osteogenic specific genes and Alizarin red staining compared to the wild-type cells. Furthermore, we found that Prmt7 deficiency reduced the activation of bone morphogenetic protein (BMP) signaling cascade, which is essential for the regulation of cell fate commitment and osteogenesis. Taken together, our data indicate that Prmt7 plays important regulatory roles in osteogenic differentiation. [BMB Reports 2024; 57(7): 330-335].
Collapse
Affiliation(s)
- Tuan Anh Vuong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - June Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
111
|
Wang S, Liu J, Zhou L, Xu H, Zhang D, Zhang X, Wang Q, Zhou Q. Research progresses on mitochondrial-targeted biomaterials for bone defect repair. Regen Biomater 2024; 11:rbae082. [PMID: 39055307 PMCID: PMC11272180 DOI: 10.1093/rb/rbae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, the regulation of the cell microenvironment has opened up new avenues for bone defect repair. Researchers have developed novel biomaterials to influence the behavior of osteoblasts and immune cells by regulating the microenvironment, aiming to achieve efficient bone repair. Mitochondria, as crucial organelles involved in energy conversion, biosynthesis and signal transduction, play a vital role in maintaining bone integrity. Dysfunction of mitochondria can have detrimental effects on the transformation of the immune microenvironment and the differentiation of stem cells, thereby hindering bone tissue regeneration. Consequently, targeted therapy strategies focusing on mitochondria have emerged. This approach offers a wide range of applications and reliable therapeutic effects, thereby providing a new treatment option for complex and refractory bone defect diseases. In recent studies, more biomaterials have been used to restore mitochondrial function and promote positive cell differentiation. The main directions are mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial quality control. In this review, we investigated the biomaterials used for mitochondria-targeted treatment of bone defect repair in recent years from the perspective of progress and strategies. We also summarized the micro-molecular mechanisms affected by them. Through discussions on energy metabolism, oxidative stress regulation and autophagy regulation, we emphasized the opportunities and challenges faced by mitochondria-targeted biomaterials, providing vital clues for developing a new generation of bone repair materials.
Collapse
Affiliation(s)
- Shuze Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Jialin Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Hao Xu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qing Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
112
|
Phiri CB, Davis CR, Grahn M, Gannon BM, Kokinos BP, Crenshaw TD, Tanumihardjo SA. Vitamin D Maintains Growth and Bone Mineral Density against a Background of Severe Vitamin A Deficiency and Moderate Toxicity in a Swine Model. Nutrients 2024; 16:2037. [PMID: 38999785 PMCID: PMC11243655 DOI: 10.3390/nu16132037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Excessive vitamin A (VA) negatively impacts bone. Interactions between VA and vitamin D (VD) in bone health are not well-understood. This study used a traditional two-by-two factorial design. Pigs were weaned and randomized to four treatments (n = 13/group): -A-D, -A+D, +A-D, and +A+D for 3 and 5 wk. Serum, liver, kidney, adrenal glands, spleen, and lung were analyzed by ultra-performance LC. Growth was evaluated by weight measured weekly and BMD by DXA. Weights were higher in -A+D (18.1 ± 1.0 kg) and +A+D (18.2 ± 2.3 kg) at 5 wk than in -A-D (15.5 ± 2.1 kg) and +A-D (15.8 ± 1.5 kg). Serum retinol concentrations were 0.25 ± 0.023, 0.22 ± 0.10, 0.77 ± 0.12, and 0.84 ± 0.28 µmol/L; and liver VA concentrations were 0.016 ± 0.015, 0.0065 ± 0.0035, 2.97 ± 0.43, 3.05 ± 0.68 µmol/g in -A-D, -A+D, +A-D, and +A+D, respectively. Serum 25(OH)D3 concentrations were 1.5 ± 1.11, 1.8 ± 0.43, 27.7 ± 8.91, and 23.9 ± 6.67 ng/mL in -A-D, +A-D, -A+D, +A+D, respectively, indicating a deficiency in -D and adequacy in +D. BMD was highest in +D (p < 0.001). VA and the interaction had no effect on BMD. Dietary VD influenced weight gain, BMD, and health despite VA status.
Collapse
Affiliation(s)
- Cacious B. Phiri
- Nutrition and Metabolism Graduate Program, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.B.P.); (B.M.G.)
| | - Christopher R. Davis
- Nutrition and Metabolism Graduate Program, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.B.P.); (B.M.G.)
| | - Michael Grahn
- Nutrition and Metabolism Graduate Program, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.B.P.); (B.M.G.)
| | - Bryan M. Gannon
- Nutrition and Metabolism Graduate Program, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.B.P.); (B.M.G.)
| | - Brittney P. Kokinos
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.P.K.); (T.D.C.)
| | - Thomas D. Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.P.K.); (T.D.C.)
| | - Sherry A. Tanumihardjo
- Nutrition and Metabolism Graduate Program, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.B.P.); (B.M.G.)
| |
Collapse
|
113
|
Dang AT, Ono M, Wang Z, Tosa I, Hara ES, Mikai A, Kitagawa W, Yonezawa T, Kuboki T, Oohashi T. Local E-rhBMP-2/β-TCP Application Rescues Osteocyte Dendritic Integrity and Reduces Microstructural Damage in Alveolar Bone Post-Extraction in MRONJ-like Mouse Model. Int J Mol Sci 2024; 25:6648. [PMID: 38928355 PMCID: PMC11203997 DOI: 10.3390/ijms25126648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/β-Tricalcium phosphate (E-rhBMP-2/β-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/β-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/β-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/β-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.
Collapse
Affiliation(s)
- Anh Tuan Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Akihiro Mikai
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Wakana Kitagawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| |
Collapse
|
114
|
Wang Y, Qin Q, Wang Z, Negri S, Sono T, Tower RJ, Li Z, Xing X, Archer M, Thottappillil N, Zhu M, Suarez A, Kim DH, Harvey T, Fan CM, James AW. The Mohawk homeobox gene represents a marker and osteo-inhibitory factor in calvarial suture osteoprogenitor cells. Cell Death Dis 2024; 15:420. [PMID: 38886383 PMCID: PMC11183145 DOI: 10.1038/s41419-024-06813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The regeneration of the mammalian skeleton's craniofacial bones necessitates the action of intrinsic and extrinsic inductive factors from multiple cell types, which function hierarchically and temporally to control the differentiation of osteogenic progenitors. Single-cell transcriptomics of developing mouse calvarial suture recently identified a suture mesenchymal progenitor population with previously unappreciated tendon- or ligament-associated gene expression profile. Here, we developed a Mohawk homeobox (MkxCG; R26RtdT) reporter mouse and demonstrated that this reporter identifies an adult calvarial suture resident cell population that gives rise to calvarial osteoblasts and osteocytes during homeostatic conditions. Single-cell RNA sequencing (scRNA-Seq) data reveal that Mkx+ suture cells display a progenitor-like phenotype with expression of teno-ligamentous genes. Bone injury with Mkx+ cell ablation showed delayed bone healing. Remarkably, Mkx gene played a critical role as an osteo-inhibitory factor in calvarial suture cells, as knockdown or knockout resulted in increased osteogenic differentiation. Localized deletion of Mkx in vivo also resulted in robustly increased calvarial defect repair. We further showed that mechanical stretch dynamically regulates Mkx expression, in turn regulating calvarial cell osteogenesis. Together, we define Mkx+ cells within the suture mesenchyme as a progenitor population for adult craniofacial bone repair, and Mkx acts as a mechanoresponsive gene to prevent osteogenic differentiation within the stem cell niche.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ziyi Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology of the University of Verona, 37134, Verona, Italy
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Robert J Tower
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Allister Suarez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tyler Harvey
- Department of Embryology, Carnegie Institution of Washington, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
115
|
Miao Y, Zhao L, Lei S, Zhao C, Wang Q, Tan C, Peng C, Gong J. Caffeine regulates both osteoclast and osteoblast differentiation via the AKT, NF-κB, and MAPK pathways. Front Pharmacol 2024; 15:1405173. [PMID: 38939843 PMCID: PMC11208461 DOI: 10.3389/fphar.2024.1405173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Background: Although caffeine generally offers benefits to human health, its impact on bone metabolism remains unclear. Aim and Methods: This study aimed to systematically evaluate the long-term effects of caffeine administration on osteoclasts, osteoblasts, and ovariectomy-induced postmenopausal osteoporosis (OP). Results: Our in vitro findings revealed that 3.125 and 12.5 μg/mL caffeine inhibited RANKL-mediated osteoclastogenesis in RAW 264.7 cells through the MAPK and NF-κB pathways, accompanied by the inactivation of nuclear translocation of nuclear factor NFATc1. Similarly, 3.125 and 12.5 μg/mL of caffeine modulated MC3T3-E1 osteogenesis via the AKT, MAPK, and NF-κB pathways. However, 50 μg/mL of caffeine promoted the phosphorylation of IκBα, P65, JNK, P38, and AKT, followed by the activation of NFATc1 and the inactivation of Runx2 and Osterix, ultimately disrupting the balance between osteoblastogenesis and osteoclastogenesis. In vivo studies showed that gavage with 55.44 mg/kg caffeine inhibited osteoclastogenesis, promoted osteogenesis, and ameliorated bone loss in ovariectomized mice. Conclusion: Conversely, long-term intake of high-dose caffeine (110.88 mg/kg) disrupted osteogenesis activity and promoted osteoclastogenesis, thereby disturbing bone homeostasis. Collectively, these findings suggest that a moderate caffeine intake (approximately 400 mg in humans) can regulate bone homeostasis by influencing both osteoclasts and osteoblasts. However, long-term high-dose caffeine consumption (approximately 800 mg in humans) could have detrimental effects on the skeletal system.
Collapse
Affiliation(s)
- Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Lei Zhao
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
116
|
Follmer ML, Isner T, Ozekin YH, Levitt C, Bates EA. Depolarization induces calcium-dependent BMP4 release from mouse embryonic palate mesenchyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598333. [PMID: 38915514 PMCID: PMC11195066 DOI: 10.1101/2024.06.11.598333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Ion channels are essential for proper morphogenesis of the craniofacial skeleton. However, the molecular mechanisms underlying this phenomenon are unknown. Loss of the Kcnj2 potassium channel disrupts Bone Morphogenetic Protein (BMP) signaling within the developing palate. BMP signaling is essential for the correct development of several skeletal structures, including the palate, though little is known about the mechanisms that govern BMP secretion. We introduce a tool to image the release of bone morphogenetic protein 4 (BMP4) from mammalian cells. Using this tool, we show that depolarization induces BMP4 release from mouse embryonic palate mesenchyme cells in a calcium-dependent manner. We show native transient changes in intracellular calcium occur in cranial neural crest cells, the cells from which embryonic palate mesenchyme derives. Waves of transient changes in intracellular calcium suggest that these cells are electrically coupled and may temporally coordinate BMP release. These transient changes in intracellular calcium persist in palate mesenchyme cells from embryonic day (E) 9.5 to 13.5 mice. Disruption of Kcnj2 significantly decreases the amplitude of calcium transients and the ability of cells to secrete BMP. Together, these data suggest that temporal control of developmental cues is regulated by ion channels, depolarization, and changes in intracellular calcium for mammalian craniofacial morphogenesis. SUMMARY We show that embryonic palate mesenchyme cells undergo transient changes in intracellular calcium. Depolarization of these cells induces BMP4 release suggesting that ion channels are a node in BMP4 signaling.
Collapse
|
117
|
Zhang XF, Wang ZX, Zhang BW, Huang KP, Ren TX, Wang T, Cheng X, Hu P, Xu WH, Li J, Zhang JX, Wang H. TGF-β1-triggered BMI1 and SMAD2 cooperatively regulate miR-191 to modulate bone formation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102164. [PMID: 38549914 PMCID: PMC10973191 DOI: 10.1016/j.omtn.2024.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/04/2024] [Indexed: 08/09/2024]
Abstract
Transforming growth factor β 1 (TGF-β1), as the most abundant signaling molecule in bone matrix, is essential for bone homeostasis. However, the signaling transduction of TGF-β1 in the bone-forming microenvironment remains unknown. Here, we showed that microRNA-191 (miR-191) was downregulated during osteogenesis and further decreased by osteo-favoring TGF-β1 in bone marrow mesenchymal stem cells (BMSCs). MiR-191 was lower in bone tissues from children than in those from middle-aged individuals and it was negatively correlated with collagen type I alpha 1 chain (COL1A1). MiR-191 depletion significantly increased osteogenesis and bone formation in vivo. Hydrogels embedded with miR-191-low BMSCs displayed a powerful bone repair effect. Mechanistically, transcription factors BMI1 and SMAD2 coordinately controlled miR-191 level. In detail, BMI1 and pSMAD2 were both upregulated by TGF-β1 under osteogenic condition. SMAD2 activated miR-191 transcription, while BMI1 competed with SMAD2 for binding to miR-191 promoter region, thus disturbing the activation of SMAD2 on miR-191 and reducing miR-191 level. Altogether, our findings reveal that miR-191 regulated by TGF-β1-induced BMI1 and SMAD2 negatively modulated bone formation and regeneration, and inhibition of miR-191 might be therapeutically useful to enhance bone repair in clinic.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Zi-Xuan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Bo-Wen Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Kun-Peng Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Tian-Xing Ren
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Ting Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Cheng
- Health Care Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Wei-Hua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Jin-Xiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
118
|
Yang J, Wang DF, Huang JH, Zhu QH, Luo LY, Lu R, Xie XL, Salehian-Dehkordi H, Esmailizadeh A, Liu GE, Li MH. Structural variant landscapes reveal convergent signatures of evolution in sheep and goats. Genome Biol 2024; 25:148. [PMID: 38845023 PMCID: PMC11155191 DOI: 10.1186/s13059-024-03288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.
Collapse
Affiliation(s)
- Ji Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jia-Hui Huang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiang-Hui Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ling-Yun Luo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ran Lu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Meng-Hua Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
119
|
Yadalam PK, Ramadoss R, Suresh R. Weighted Gene Co-expression Network Analysis of the Inflammatory Wnt Signaling Reveals Biomarkers Related to Bone Formation. Cureus 2024; 16:e63510. [PMID: 39081453 PMCID: PMC11288288 DOI: 10.7759/cureus.63510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
Background and aim Osteocytes regulate bone metabolism and balance through various mechanisms, including the Wnt (Wingless-related integration site signal transduction) signaling pathway. Weighted gene co-expression network analysis (WGCNA) is a computational method to identify functionally related genes based on expression patterns, especially in the Wnt-beta-catenin and osteo-regenerative pathways. This study aims to analyze gene modules of the Wnt signaling pathway from WGCNA analysis. Methods The study used a microarray dataset from the GEO (GSE228306) to analyze differential gene expression in human primary monocytes. The study standardized datasets using Robust Multi-Array Average (RMA) expression measure and Integrated Differential Expression and Pathway (IDEP) analysis tool, building a co-expression network for group-specific component (GC) genes. Results The study uses WGCNA to identify co-expression modules with dysregulated mRNAs, revealing enrichment in Wnt-associated pathways and top hub-enriched genes like colony-stimulating factor 3 (CSF3), interleukin-6 (IL-6), IL-23 subunit alpha (IL23A), suppressor of cytokine signaling 1 (SOCS1), and C-C motif chemokine ligand 19 (CCL19). Conclusion WGCNA analysis of the Wnt signaling pathway will involve functional annotation, network visualization, validation, integration with other omics data, and addressing method limitations for better understanding.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ramya Ramadoss
- Oral Pathology and Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ramya Suresh
- Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
120
|
Dhawan U, Williams JA, Windmill JFC, Childs P, Gonzalez-Garcia C, Dalby MJ, Salmeron-Sanchez M. Engineered Surfaces That Promote Capture of Latent Proteins to Facilitate Integrin-Mediated Mechanical Activation of Growth Factors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310789. [PMID: 38253339 DOI: 10.1002/adma.202310789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-β1) is bound. rLTBP1 facilitates the interaction of LAP with integrin β1 and the subsequent mechanically driven release of TGF-β1 to stimulate canonical TGF-β1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo.
Collapse
Affiliation(s)
- Udesh Dhawan
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Jonathan A Williams
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, Glasgow, G4 0NW, UK
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G11XW, UK
| | - Peter Childs
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Cristina Gonzalez-Garcia
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
121
|
Seki Y, Takebe H, Nakao Y, Sato K, Mizoguchi T, Nakamura H, Iijima M, Hosoya A. Osteoblast differentiation of Gli1⁺ cells via Wnt and BMP signaling pathways during orthodontic tooth movement. J Oral Biosci 2024; 66:373-380. [PMID: 38499228 DOI: 10.1016/j.job.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVES Factors that induce bone formation during orthodontic tooth movement (OTM) remain unclear. Gli1 was recently identified as a stem cell marker in the periodontal ligament (PDL). Therefore, we evaluated the mechanism of differentiation of Cre/LoxP-mediated Gli1/Tomato+ cells into osteoblasts during OTM. METHODS After the final administration of tamoxifen to 8-week-old Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato mice for 2 days, nickel-titanium closed coil springs were attached between the upper anterior alveolar bone and the first molar. Immunohistochemical localizations of β-catenin, Smad4, and Runx2 were observed in the PDL on 2, 5, and 10 days after OTM initiation. RESULTS In the untreated tooth, few Gli1/Tomato+ cells were detected in the PDL. Two days after OTM initiation, the number of Gli1/Tomato+ cells increased in the PDL on the tension side. On this side, 49.3 ± 7.0% of β-catenin+ and 48.7 ± 5.7% of Smad4+ cells were found in the PDL, and Runx2 expression was detected in some Gli1/Tomato+ cells apart from the alveolar bone. The number of positive cells in the PDL reached a maximum on day 5. In contrast, on the compression side, β-catenin and Smad4 exhibited less immunoreactivity. On day 10, Gli1/Tomato+ cells were aligned on the alveolar bone on the tension side, with some expressing Runx2. CONCLUSIONS Gli1+ cells in the PDL differentiated into osteoblasts during OTM. Wnt and bone morphogenetic proteins signaling pathways may be involved in this differentiation.
Collapse
Affiliation(s)
- Yuri Seki
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Yuya Nakao
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Kohei Sato
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
122
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
123
|
Lu D, Zeng L, Li Y, Gu R, Hu M, Zhang P, Yu P, Zhang X, Xie Z, Liu H, Zhou Y. Cinobufotalin prevents bone loss induced by ovariectomy in mice through the BMPs/SMAD and Wnt/β-catenin signaling pathways. Animal Model Exp Med 2024; 7:208-221. [PMID: 38013618 PMCID: PMC11228090 DOI: 10.1002/ame2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength. However, current anti-resorptive drugs carry a risk of various complications. The deep learning-based efficacy prediction system (DLEPS) is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes. This study aimed to explore the protective effect and potential mechanisms of cinobufotalin (CB), a traditional Chinese medicine (TCM), on bone loss. METHODS DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis. Micro-CT, histological and morphological analysis were applied for the bone protective detection of CB, and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells (hBMMSCs) were also investigated. The underlying mechanism was verified using qRT-PCR, Western blot (WB), immunofluorescence (IF), etc. RESULTS: A safe concentration (0.25 mg/kg in vivo, 0.05 μM in vitro) of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs. Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation, further regulating the expression of osteogenesis-associated factors, and ultimately promoting osteogenesis. CONCLUSION Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss, further promoting osteogenic differentiation/function of hBMMSCs, with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.
Collapse
Affiliation(s)
- Da‐zhuang Lu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Li‐jun Zeng
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Yang Li
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Ran‐li Gu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Meng‐long Hu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Ping Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Peng Yu
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
- Department of Cariology and EndodontologyPeking University School and Hospital of StomatologyBeijingChina
| | - Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Zheng‐wei Xie
- Peking University International Cancer InstitutePeking University Health Science Center, Peking UniversityBeijingChina
| | - Hao Liu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
- Central LaboratoryPeking University School and Hospital of StomatologyBeijingChina
| | - Yong‐sheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
- Central LaboratoryPeking University School and Hospital of StomatologyBeijingChina
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesBeijingChina
| |
Collapse
|
124
|
Wei E, Hu M, Wu L, Pan X, Zhu Q, Liu H, Liu Y. TGF-β signaling regulates differentiation of MSCs in bone metabolism: disputes among viewpoints. Stem Cell Res Ther 2024; 15:156. [PMID: 38816830 PMCID: PMC11140988 DOI: 10.1186/s13287-024-03761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into cells of different lineages to form mesenchymal tissues, which are promising in regard to treatment for bone diseases. Their osteogenic differentiation is under the tight regulation of intrinsic and extrinsic factors. Transforming growth factor β (TGF-β) is an essential growth factor in bone metabolism, which regulates the differentiation of MSCs. However, published studies differ in their views on whether TGF-β signaling regulates the osteogenic differentiation of MSCs positively or negatively. The controversial results have not been summarized systematically and the related explanations are required. Therefore, we reviewed the basics of TGF-β signaling and summarized how each of three isoforms regulates osteogenic differentiation. Three isoforms of TGF-β (TGF-β1/β2/β3) play distinct roles in regulating osteogenic differentiation of MSCs. Additionally, other possible sources of conflicts are summarized here. Further understanding of TGF-β signaling regulation in MSCs may lead to new applications to promote bone regeneration and improve therapies for bone diseases.
Collapse
Affiliation(s)
- Erfan Wei
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Likun Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Xingtong Pan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Qiyue Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials , Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
125
|
Bogun L, Koch A, Scherer B, Germing U, Fenk R, Maus U, Bormann F, Köhrer K, Petzsch P, Wachtmeister T, Kobbe G, Dietrich S, Haas R, Schroeder T, Geyh S, Jäger P. Overlapping Stromal Alterations in Myeloid and Lymphoid Neoplasms. Cancers (Basel) 2024; 16:2071. [PMID: 38893194 PMCID: PMC11171322 DOI: 10.3390/cancers16112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) have not been unraveled so far. Given the pivotal role of mesenchymal stromal cells (MSCs) in the regulation of hematopoiesis in the BM niche it is assumed that MSCs also play a relevant role in the pathogenesis of hematological neoplasms. We aimed to identify overlapping mechanisms in MSCs derived from myeloid and lymphoid neoplasms contributing to disease progression and suppression of HSPCs to develop interventions that target these mechanisms. MSCs derived from healthy donors (n = 44) and patients diagnosed with myeloproliferative neoplasia (n = 11), myelodysplastic syndromes (n = 16), or acute myeloid leukemia (n = 25) and B-Non-Hodgkin lymphoma (n = 9) with BM infiltration and acute lymphoblastic leukemia (n = 9) were analyzed for their functionality and by RNA sequencing. A reduced growth and differentiation capacity of MSCs was found in all entities. RNA sequencing distinguished both groups but clearly showed overlapping differentially expressed genes, including major players in the BMP/TGF and WNT-signaling pathway which are crucial for growth, osteogenesis, and hematopoiesis. Functional alterations in healthy MSCs were inducible by exposure to supernatants from malignant cells, implicating the involvement of these factors in disease progression. Overall, we were able to identify overlapping factors that pose potential future therapeutic targets.
Collapse
Affiliation(s)
- Lucienne Bogun
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Bo Scherer
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Uwe Maus
- Department of Orthopedic Surgery and Traumatology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany;
| | | | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| |
Collapse
|
126
|
Cheng K, Gao S, Mei Y, Zhou D, Song C, Guo D, Hou Y, Liu Z. The bone nonunion microenvironment: A place where osteogenesis struggles with osteoclastic capacity. Heliyon 2024; 10:e31314. [PMID: 38813209 PMCID: PMC11133820 DOI: 10.1016/j.heliyon.2024.e31314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Bone nonunion is a common and serious orthopedic disorder, the occurrence of which is associated with a disruption of the dynamic balance between osteoblasts and osteoclasts during bone repair. However, the critical molecular mechanisms affecting this homeostasis are not well understood, and it is essential to investigate the specific components of this mechanism and to restore the balance between osteoblasts and osteoclasts to promote bone repair. First, we defined this complex local environmental factor as the "bone nonunion microenvironment" and identified the importance of the "struggle" between osteoblasts and osteoclasts, which is the most essential element in determining the process of repair. On this basis, we also explored the cellular factors that influence osteogenesis and the molecular signals that influence the balance between osteoclast and osteoblasts, which are important for restoring homeostasis. Further, we explored other factors involved in osteogenesis, such as the biomechanical environment, the nutritional environment, the acid-base environment, and the temperature environment, which are important players in osteogenesis. In conclusion, we found that the balance between osteoblasts and osteoclasts is the essence of bone healing, which is based on the "bone nonunion microenvironment". Therefore, investigating the role of the bone nonunion microenvironment in the system of osteoblast-osteoclast "struggle" provides an important basis for further understanding of the mechanism of nonunion and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Kang Cheng
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Silong Gao
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yongliang Mei
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chao Song
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Daru Guo
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yunqing Hou
- Department of Medical Imaging, Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Zongchao Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Medical Imaging, Luzhou Longmatan District People's Hospital, Luzhou, China
| |
Collapse
|
127
|
Bogun L, Koch A, Scherer B, Fenk R, Maus U, Bormann F, Köhrer K, Petzsch P, Wachtmeister T, Zukovs R, Dietrich S, Haas R, Schroeder T, Jäger P, Geyh S. Stromal alterations in patients with monoclonal gammopathy of undetermined significance, smoldering myeloma, and multiple myeloma. Blood Adv 2024; 8:2575-2588. [PMID: 38241490 PMCID: PMC11145751 DOI: 10.1182/bloodadvances.2023011632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
ABSTRACT The hallmark of multiple myeloma (MM) is a clonal plasma cell infiltration in the bone marrow accompanied by myelosuppression and osteolysis. Premalignant stages such as monoclonal gammopathy of undetermined significance (MGUS) and asymptomatic stages such as smoldering myeloma (SMM) can progress to MM. Mesenchymal stromal cells (MSCs) are an integral component of the bone marrow microenvironment and play an important role in osteoblast differentiation and hematopoietic support. Although stromal alterations have been reported in MM contributing to hematopoietic insufficiency and osteolysis, it is not clear whether alterations in MSC already occur in MGUS or SMM. In this study, we analyzed MSCs from MGUS, SMM, and MM regarding their properties and functionality and performed messenger RNA sequencing to find underlying molecular signatures in different disease stages. A high number of senescent cells and a reduced osteogenic differentiation capacity and hematopoietic support were already present in MGUS MSC. As shown by RNA sequencing, there was a broad spectrum of differentially expressed genes including genes of the BMP/TGF-signaling pathway, detected already in MGUS and that clearly increases in patients with SMM and MM. Our data may help to block these signaling pathways in the future to hinder progression to MM.
Collapse
Affiliation(s)
- Lucienne Bogun
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Bo Scherer
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Uwe Maus
- Department of Orthopedic Surgery and Traumatology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | | | - Karl Köhrer
- Biological and Medical Research Center, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Romans Zukovs
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Rainer Haas
- Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
128
|
Li X, Zhang C, Feng C, Zhang Z, Feng N, Sha H, Luo X, Zou G, Liang H. Transcriptome Analysis Elucidates the Potential Key Genes Involved in Rib Development in bmp6-Deficient Silver Carp ( Hypophthalmichthys molitrix). Animals (Basel) 2024; 14:1451. [PMID: 38791669 PMCID: PMC11117292 DOI: 10.3390/ani14101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Bone morphogenetic protein 6 (BMP-6) is a constituent of the TGF-β superfamily, known for its ability to stimulate bone and cartilage formation. The investigation of bmp6's involvement in the formation of intermuscular bones in fish has garnered significant attention in recent years. The rib cage is an important skeletal structure that plays a protective function for internal organs in fish. However, there has been limited research conducted on the effects of the bmp6 gene on rib development. Silver carp is one of four major fish in China, favoured for its affordability and tender muscle. Nevertheless, the presence of numerous intermuscular bones in silver carp significantly hinders the advancement of its palatability and suitability for processing. This study showcases the effective utilisation of CRISPR/Cas9 technology for the purpose of disrupting the bmp6 gene in silver carp, leading to the creation of chimeras in the P0 generation, marking the first instance of such an achievement. The chimeras exhibited complete viability, normal appearance, and partial intermuscular bones loss, with approximately 30% of them displaying rib bifurcation or bending. Subsequently, a transcriptome analysis on ribs of P0 chimeras and wild-type silver carp was conducted, leading to the identification of 934 genes exhibiting differential expression, of which 483 were found to be up-regulated and 451 were found to be down-regulated. The results of the KEGG analysis revealed that the "NF-kappa B signalling pathway", "Hippo signalling pathway", "osteoclast differentiation", and "haematopoietic cell lineage" exhibited enrichment and displayed a significant correlation with bone development. The up-regulated genes such as tnfα, fos, and ctgf in pathways may facilitate the proliferation and differentiation of osteoclasts, whereas the down-regulation of genes such as tgfb2 and tgfbr1 in pathways may hinder the formation and specialisation of osteoblasts, ultimately resulting in rib abnormalities. This study presents novel findings on the impact of bmp6 gene deletion on the rib development of silver carp, while simultaneously investigating the previously unexplored molecular mechanisms underlying rib defects in fish.
Collapse
Affiliation(s)
- Xiaohui Li
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Chunyan Zhang
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Laboratory of Zooligical Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Cui Feng
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Zewen Zhang
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Laboratory of Zooligical Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Nannan Feng
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Laboratory of Zooligical Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Hang Sha
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Xiangzhong Luo
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Guiwei Zou
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
129
|
He(何璇) XA, Berenson A, Bernard M, Weber C, Cook LE, Visel A, Fuxman Bass JI, Fisher S. Identification of conserved skeletal enhancers associated with craniosynostosis risk genes. Hum Mol Genet 2024; 33:837-849. [PMID: 37883470 PMCID: PMC11070136 DOI: 10.1093/hmg/ddad182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Craniosynostosis, defined by premature fusion of one or multiple cranial sutures, is a common congenital defect affecting more than 1/2000 infants and results in restricted brain expansion. Single gene mutations account for 15%-20% of cases, largely as part of a syndrome, but the majority are nonsyndromic with complex underlying genetics. We hypothesized that the two noncoding genomic regions identified by a GWAS for craniosynostosis contain distal regulatory elements for the risk genes BMPER and BMP2. To identify such regulatory elements, we surveyed conserved noncoding sequences from both risk loci for enhancer activity in transgenic Danio rerio. We identified enhancers from both regions that direct expression to skeletal tissues, consistent with the endogenous expression of bmper and bmp2. For each locus, we also found a skeletal enhancer that also contains a sequence variant associated with craniosynostosis risk. We examined the activity of each enhancer during craniofacial development and found that the BMPER-associated enhancer is active in the restricted region of cartilage closely associated with frontal bone initiation. The same enhancer is active in mouse skeletal tissues, demonstrating evolutionarily conserved activity. Using enhanced yeast one-hybrid assays, we identified transcription factors that bind each enhancer and observed differential binding between alleles, implicating multiple signaling pathways. Our findings help unveil the genetic mechanism of the two craniosynostosis risk loci. More broadly, our combined in vivo approach is applicable to many complex genetic diseases to build a link between association studies and specific genetic mechanisms.
Collapse
Affiliation(s)
- Xuan Anita He(何璇)
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
- Graduate Program in Biomolecular Medicine, Boston University, 72 East Concord St, Boston, MA 02118, United States
| | - Anna Berenson
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Michelle Bernard
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
- College of Arts and Sciences, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Chris Weber
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Laura E Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, United States
- School of Natural Sciences, 5200 Lake Road, University of California Merced, Merced, CA 95343, United States
| | - Juan I Fuxman Bass
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Shannon Fisher
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
| |
Collapse
|
130
|
Zhang S, Lee Y, Liu Y, Yu Y, Han I. Stem Cell and Regenerative Therapies for the Treatment of Osteoporotic Vertebral Compression Fractures. Int J Mol Sci 2024; 25:4979. [PMID: 38732198 PMCID: PMC11084822 DOI: 10.3390/ijms25094979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Osteoporotic vertebral compression fractures (OVCFs) significantly increase morbidity and mortality, presenting a formidable challenge in healthcare. Traditional interventions such as vertebroplasty and kyphoplasty, despite their widespread use, are limited in addressing the secondary effects of vertebral fractures in adjacent areas and do not facilitate bone regeneration. This review paper explores the emerging domain of regenerative therapies, spotlighting stem cell therapy's transformative potential in OVCF treatment. It thoroughly describes the therapeutic possibilities and mechanisms of action of mesenchymal stem cells against OVCFs, relying on recent clinical trials and preclinical studies for efficacy assessment. Our findings reveal that stem cell therapy, particularly in combination with scaffolding materials, holds substantial promise for bone regeneration, spinal stability improvement, and pain mitigation. This integration of stem cell-based methods with conventional treatments may herald a new era in OVCF management, potentially improving patient outcomes. This review advocates for accelerated research and collaborative efforts to translate laboratory breakthroughs into clinical practice, emphasizing the revolutionary impact of regenerative therapies on OVCF management. In summary, this paper positions stem cell therapy at the forefront of innovation for OVCF treatment, stressing the importance of ongoing research and cross-disciplinary collaboration to unlock its full clinical potential.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Yunhwan Lee
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea;
| | - Yanting Liu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
131
|
Faria-Teixeira MC, Tordera C, Salvado E Silva F, Vaz-Carneiro A, Iglesias-Linares A. Craniofacial syndromes and class III phenotype: common genotype fingerprints? A scoping review and meta-analysis. Pediatr Res 2024; 95:1455-1475. [PMID: 38347173 PMCID: PMC11126392 DOI: 10.1038/s41390-023-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 02/18/2024]
Abstract
Skeletal Class III (SCIII) is among the most challenging craniofacial dysmorphologies to treat. There is, however, a knowledge gap regarding which syndromes share this clinical phenotype. The aims of this study were to: (i) identify the syndromes affected by the SCIII phenotype; (ii) clarify the involvement of maxillary and/or mandibular structures; (iii) explore shared genetic/molecular mechanisms. A two-step strategy was designed: [Step#1] OMIM, MHDD, HPO, GeneReviews and MedGen databases were explored; [Step#2]: Syndromic conditions indexed in [Step#1] were explored in Medline, Pubmed, Scopus, Cochrane Library, WOS and OpenGrey. Eligibility criteria were defined. Individual studies were assessed for risk of bias using the New Ottawa Scale. For quantitative analysis, a meta-analysis was conducted. This scoping review is a hypothesis-generating research. Twenty-two studies met the eligibility criteria. Eight syndromes affected by the SCIII were targeted: Apert syndrome, Crouzon syndrome, achondroplasia, X-linked hypohidrotic ectodermal dysplasia (XLED), tricho-dento-osseous syndrome, cleidocranial dysplasia, Klinefelter and Down syndromes. Despite heterogeneity between studies [p < 0.05], overall effects showed that midface components were affected in Apert and Down Syndromes, lower face in Klinefelter Syndrome and midface and lower face components in XLED. Our review provides new evidence on the craniofacial characteristics of genetically confirmed syndromes exhibiting the SCIII phenotype. Four major regulatory pathways might have a modulatory effect on this phenotype. IMPACT: What does this review add to the existing literature? To date, there is no literature exploring which particular syndromes exhibit mandibular prognathism as a common trait. Through this research, it was possibly to identify the particular syndromes that share the skeletal Class III phenotype (mandibular prognathism) as a common trait highlighting the common genetic and molecular pathways between different syndromes acknowledging their impact in craniofacial development.
Collapse
Affiliation(s)
- Maria Cristina Faria-Teixeira
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
- University of Lisbon, School of Medicine, University Clinic of Stomatology, 1200, Lisbon, Portugal
| | - Cristina Tordera
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
| | | | | | - Alejandro Iglesias-Linares
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain.
- BIOCRAN (Craniofacial Biology) Research Group, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
132
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
133
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
134
|
Yu FF, Yu SY, Duan LZ, Yang S, Hou XB, Du YH, Gao MH, Zuo J, Sun L, Fu XL, Li ZY, Huang H, Zhou GY, Jia DL, Chen RQ, Ba Y. Proteomics Sequencing Reveals the Role of TGF-β Signaling Pathway in the Peripheral Blood of Offspring Rats Exposed to Fluoride. Biol Trace Elem Res 2024; 202:2100-2110. [PMID: 37582921 DOI: 10.1007/s12011-023-03805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
The underlying mechanism of fluorosis has not been fully elucidated. The purpose of this study was to explore the mechanism of fluorosis induced by sodium fluoride (NaF) using proteomics. Six offspring rats exposed to fluoride without dental fluorosis were defined as group A, 8 offspring rats without fluoride exposure were defined as control group B, and 6 offspring rats exposed to fluoride with dental fluorosis were defined as group C. Total proteins from the peripheral blood were extracted and then separated using liquid chromatography-tandem mass spectrometry. The identified criteria for differentially expressed proteins were fold change > 1.2 or < 0.83 and P < 0.05. Gene Ontology function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the oeCloud tool. The 177 upregulated and 22 downregulated proteins were identified in the A + C vs. B group. KEGG pathway enrichment analysis revealed that transforming growth factor-β (TGF-β) signaling pathway significantly enriched. PPI network constructed using Cytoscape confirmed RhoA may play a crucial role. The KEGG results of genes associated with fluoride and genes associated with both fluoride and inflammation in the GeneCards database also showed that TGF-β signaling pathway was significantly enriched. The immunofluorescence in HPA database showed that the main expression sites of RhoA are plasma membrane and cytosol, while the main expression site of Fbn1 is the Golgi apparatus. In conclusion, long-term NaF intake may cause inflammatory response in the peripheral blood of rats by upregulating TGF-β signaling pathway, in which RhoA may play a key role.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shui-Yuan Yu
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lei-Zhen Duan
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Yang
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiang-Bo Hou
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu-Hui Du
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ming-Hui Gao
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Juan Zuo
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lei Sun
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiao-Li Fu
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhi-Yuan Li
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Guo-Yu Zhou
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Dao-Li Jia
- Outpatient Department, Zhengyang County People's Hospital, Zhumadian, Henan, China
| | - Rui-Qin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
135
|
Kathami N, Moreno-Vicente C, Martín P, Vergara-Arce JA, Ruiz-Hernández R, Gerovska D, Aransay AM, Araúzo-Bravo MJ, Camarero-Espinosa S, Abarrategi A. rhBMP-2 induces terminal differentiation of human bone marrow mesenchymal stromal cells only by synergizing with other signals. Stem Cell Res Ther 2024; 15:124. [PMID: 38679735 PMCID: PMC11057131 DOI: 10.1186/s13287-024-03735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Recombinant human bone morphogenetic protein 2 (rhBMP-2) and human bone marrow mesenchymal stromal cells (hBM-MSCs) have been thoroughly studied for research and translational bone regeneration purposes. rhBMP-2 induces bone formation in vivo, and hBM-MSCs are its target, bone-forming cells. In this article, we studied how rhBMP-2 drives the multilineage differentiation of hBM-MSCs both in vivo and in vitro. METHODS rhBMP-2 and hBM-MSCs were tested in an in vivo subcutaneous implantation model to assess their ability to form mature bone and undergo multilineage differentiation. Then, the hBM-MSCs were treated in vitro with rhBMP-2 for short-term or long-term cell-culture periods, alone or in combination with osteogenic, adipogenic or chondrogenic media, aiming to determine the role of rhBMP-2 in these differentiation processes. RESULTS The data indicate that hBM-MSCs respond to rhBMP-2 in the short term but fail to differentiate in long-term culture conditions; these cells overexpress the rhBMP-2 target genes DKK1, HEY-1 and SOST osteogenesis inhibitors. However, in combination with other differentiation signals, rhBMP-2 acts as a potentiator of multilineage differentiation, not only of osteogenesis but also of adipogenesis and chondrogenesis, both in vitro and in vivo. CONCLUSIONS Altogether, our data indicate that rhBMP-2 alone is unable to induce in vitro osteogenic terminal differentiation of hBM-MSCs, but synergizes with other signals to potentiate multiple differentiation phenotypes. Therefore, rhBMP-2 triggers on hBM-MSCs different specific phenotype differentiation depending on the signalling environment.
Collapse
Affiliation(s)
- Neda Kathami
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- POLYMAT, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastian, Spain
| | | | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Jhonatan A Vergara-Arce
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Raquel Ruiz-Hernández
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Sandra Camarero-Espinosa
- POLYMAT, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.
- Regenerative Medicine and Disease Models Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo Miramón, 194, 20014, Donostia, Gipuzkoa, Spain.
| |
Collapse
|
136
|
Yang Z, Xu J, Kang T, Chen X, Zhou C. The Impact of NLRP3 Inflammasome on Osteoblasts and Osteogenic Differentiation: A Literature Review. J Inflamm Res 2024; 17:2639-2653. [PMID: 38707958 PMCID: PMC11067939 DOI: 10.2147/jir.s457927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoblasts (OBs), which are a crucial type of bone cells, derive from bone marrow mesenchymal stem cells (MSCs). Accumulating evidence suggests inflammatory cytokines can inhibit the differentiation and proliferation of OBs, as well as interfere with their ability to synthesize bone matrix, under inflammatory conditions. NLRP3 inflammasome is closely associated with cellular pyroptosis, which can lead to excessive release of pro-inflammatory cytokines, causing tissue damage and inflammatory responses, however, the comprehensive roles of NLRP3 inflammasome in OBs and their differentiation have not been fully elucidated, making targeting NLRP3 inflammasome approaches to treat diseases related to OBs uncertain. In this review, we provide a summary of NLRP3 inflammasome activation and its impact on OBs. We highlight the significant roles of NLRP3 inflammasome in regulating OBs differentiation and function. Furthermore, current available strategies to affect OBs function and osteogenic differentiation targeting NLRP3 inflammasome are listed and analyzed. Finally, through the prospective discussion, we seek to provide novel insights into the crucial role of NLRP3 inflammasome in diseases related to OBs and offer valuable information for devising treatment strategies.
Collapse
Affiliation(s)
- Ziyuan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Jiaan Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Chengcong Zhou
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
137
|
Song W, Xia X, Fan Y, Zhang B, Chen X. Functional and Genetic Analyses Unveil the Implication of CDC27 in Hemifacial Microsomia. Int J Mol Sci 2024; 25:4707. [PMID: 38731925 PMCID: PMC11083823 DOI: 10.3390/ijms25094707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Hemifacial microsomia (HFM) is a rare congenital genetic syndrome primarily affecting the first and second pharyngeal arches, leading to defects in the mandible, external ear, and middle ear. The pathogenic genes remain largely unidentified. Whole-exome sequencing (WES) was conducted on 12 HFM probands and their unaffected biological parents. Predictive structural analysis of the target gene was conducted using PSIPRED (v3.3) and SWISS-MODEL, while STRING facilitated protein-to-protein interaction predictions. CRISPR/Cas9 was applied for gene knockout in zebrafish. In situ hybridization (ISH) was employed to examine the spatiotemporal expression of the target gene and neural crest cell (NCC) markers. Immunofluorescence with PH3 and TUNEL assays were used to assess cell proliferation and apoptosis. RNA sequencing was performed on mutant and control embryos, with rescue experiments involving target mRNA injections and specific gene knockouts. CDC27 was identified as a novel candidate gene for HFM, with four nonsynonymous de novo variants detected in three unrelated probands. Structural predictions indicated significant alterations in the secondary and tertiary structures of CDC27. cdc27 knockout in zebrafish resulted in craniofacial malformation, spine deformity, and cardiac edema, mirroring typical HFM phenotypes. Abnormalities in somatic cell apoptosis, reduced NCC proliferation in pharyngeal arches, and chondrocyte differentiation issues were observed in cdc27-/- mutants. cdc27 mRNA injections and cdkn1a or tp53 knockout significantly rescued pharyngeal arch cartilage dysplasia, while sox9a mRNA administration partially restored the defective phenotypes. Our findings suggest a functional link between CDC27 and HFM, primarily through the inhibition of CNCC proliferation and disruption of pharyngeal chondrocyte differentiation.
Collapse
Affiliation(s)
- Wenjie Song
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xin Xia
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Fan
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaowei Chen
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
138
|
Li Z, Kegui H, Piao W, Xuejiu W, Lim KT, Jin H. PAI-1 transfected-conditioned media promotes osteogenic differentiation of hBMSCs. Cell Biol Int 2024. [PMID: 38654436 DOI: 10.1002/cbin.12166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Reconstruction of injured bone remains challenging in the clinic owing to the lack of suitable bone grafts. The utilization of PAI-1 transfected-conditioned media (P-CM) has demonstrated its ability to facilitate the differentiation process of mesenchymal stem cells (MSCs), potentially serving as a crucial mediator in tissue regeneration. This research endeavored to explore the therapeutic potential of P-CM concerning the differentiation of human bone marrow mesenchymal stem cells (hBMSCs). To assess new bone formation, a rat calvaria critical defect model was employed, while in vitro experiments involved the use of the alizarin Red-S mineral induction test. In the rat calvaria critical defect model, P-CM treatment resulted in significan new bone formation. In vitro, P-CM treated hBMSCs displayed robust osteogenesis compared to the control group, as demonstrated by the mineral induction test using alizarin Red-S. P-CM with hydroxyapatite/β-tricalcium phosphate/fibrin gel treatment significantly exhibited new bone formation, and the expression of osteogenic associated markers was enhanced in the P-CM-treated group. In conclusion, results demonstrate that P-CM treatment significantly enhanced the osteogenic differantiation efficiency and new bone formation, thus could be used as an ideal therapeutic biomolecule for constructing bone-specific implants, especially for orthopedic and dental applications.
Collapse
Affiliation(s)
- Zhang Li
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Hou Kegui
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wang Piao
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wang Xuejiu
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, South Korea
| | - Hexiu Jin
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
139
|
Damiati LA, El Soury M. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review. Front Med (Lausanne) 2024; 11:1386683. [PMID: 38690172 PMCID: PMC11059066 DOI: 10.3389/fmed.2024.1386683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Neuro bone tissue engineering is a multidisciplinary field that combines both principles of neurobiology and bone tissue engineering to develop innovative strategies for repairing and regenerating injured bone tissues. Despite the fact that regeneration and development are considered two distinct biological processes, yet regeneration can be considered the reactivation of development in later life stages to restore missing tissues. It is noteworthy that the regeneration capabilities are distinct and vary from one organism to another (teleost fishes, hydra, humans), or even in the same organism can vary dependent on the injured tissue itself (Human central nervous system vs. peripheral nervous system). The skeletal tissue is highly innervated, peripheral nervous system plays a role in conveying the signals and connecting the central nervous system with the peripheral organs, moreover it has been shown that they play an important role in tissue regeneration. Their regeneration role is conveyed by the different cells' resident in it and in its endoneurium (fibroblasts, microphages, vasculature associated cells, and Schwann cells) these cells secrete various growth factors (NGF, BDNF, GDNF, NT-3, and bFGF) that contribute to the regenerative phenotype. The peripheral nervous system and central nervous system synchronize together in regulating bone homeostasis and regeneration through neurogenic factors and neural circuits. Receptors of important central nervous system peptides such as Serotonin, Leptin, Semaphorins, and BDNF are expressed in bone tissue playing a role in bone homeostasis, metabolism and regeneration. This review will highlight the crosstalk between peripheral nerves and bone in the developmental stages as well as in regeneration and different neuro-bone tissue engineering strategies for repairing severe bone injuries.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
140
|
Avery D, Morandini L, Sheakley L, Grabiec M, Olivares-Navarrete R. CD4 + and CD8 + T cells reduce inflammation and promote bone healing in response to titanium implants. Acta Biomater 2024; 179:385-397. [PMID: 38554889 PMCID: PMC11045310 DOI: 10.1016/j.actbio.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
T cells are adaptive immune cells essential in pathogenic response, cancer, and autoimmune disorders. During the integration of biomaterials with host tissue, T cells modify the local inflammatory environment by releasing cytokines that promote inflammatory resolution following implantation. T cells are vital for the modulation of innate immune cells, recruitment and proliferation of mesenchymal stem cells (MSCs), and formation of functional tissue around the biomaterial implant. We have demonstrated that deficiency of αβ T cells promotes macrophage polarization towards a pro-inflammatory phenotype and attenuates MSC recruitment and proliferation in vitro and in vivo. The goal of this study was to understand how CD4+ and CD8+ T cells, subsets of the αβ T cell family, impact the inflammatory response to titanium (Ti) biomaterials. Deficiency of either CD4+ or CD8+ T cells increased the proportion of pro-inflammatory macrophages, lowered anti-inflammatory macrophages, and diminished MSC recruitment in vitro and in vivo. In addition, new bone formation at the implantation site was significantly reduced in T cell-deficient mice compared to T cell-competent mice. Deficiency of CD4+ T cells exacerbated these effects compared to CD8+ T cell deficiency. Our results show the importance of CD4+ and CD8+ T cells in modulating the inflammatory response and promoting new bone formation in response to modified Ti implants. STATEMENT OF SIGNIFICANCE: CD4+ and CD8+ T cells are essential in modulating the peri-implant microenvironment during the inflammatory response to biomaterial implantation. This study shows that deficiency of either CD4+ or CD8+ T cell subsets altered macrophage polarization and reduced MSC recruitment and proliferation at the implantation site.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Luke Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Melissa Grabiec
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States.
| |
Collapse
|
141
|
Qi B, Wang Z, Cao Y, Zhao H. Study on the treatment of osteoarthritis by acupuncture combined with traditional Chinese medicine based on pathophysiological mechanism: A review. Medicine (Baltimore) 2024; 103:e37483. [PMID: 38579081 PMCID: PMC10994424 DOI: 10.1097/md.0000000000037483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/13/2024] [Indexed: 04/07/2024] Open
Abstract
Osteoarthritis (OA) is a major contributor to disability and social costs in the elderly. As the population ages and becomes increasingly obese, the incidence of the disease is higher than in previous decades. In recent years, important progress has been made in the causes and pathogenesis of OA pain. Modern medical treatment modalities mainly include the specific situation of the patient and focus on the core treatment, including self-management and education, exercise, and related weight loss. As an important part of complementary and alternative medicine, TCM has remarkable curative effect, clinical safety, and diversity of treatment methods in the treatment of OA. Traditional Chinese Medicine treatment of OA has attracted worldwide attention. Therefore, this article will study the pathophysiological mechanism of OA based on modern medicine, and explore the treatment of OA by acupuncture combined with Chinese Medicine.
Collapse
Affiliation(s)
- Biao Qi
- Shenzhen Baoan District Shiyan People’s Hospital, Shenzhen, China
| | - Zeyu Wang
- Shenzhen Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Ying Cao
- Shenzhen Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Haishen Zhao
- Community Health Service Center of Nanhui New Town, Shanghai, China
| |
Collapse
|
142
|
Ali D, Okla M, Abuelreich S, Vishnubalaji R, Ditzel N, Hamam R, Kowal JM, Sayed A, Aldahmash A, Alajez NM, Kassem M. Apigenin and Rutaecarpine reduce the burden of cellular senescence in bone marrow stromal stem cells. Front Endocrinol (Lausanne) 2024; 15:1360054. [PMID: 38638133 PMCID: PMC11024792 DOI: 10.3389/fendo.2024.1360054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Osteoporosis is a systemic age-related disease characterized by reduced bone mass and microstructure deterioration, leading to increased risk of bone fragility fractures. Osteoporosis is a worldwide major health care problem and there is a need for preventive approaches. Methods and results Apigenin and Rutaecarpine are plant-derived antioxidants identified through functional screen of a natural product library (143 compounds) as enhancers of osteoblastic differentiation of human bone marrow stromal stem cells (hBMSCs). Global gene expression profiling and Western blot analysis revealed activation of several intra-cellular signaling pathways including focal adhesion kinase (FAK) and TGFβ. Pharmacological inhibition of FAK using PF-573228 (5 μM) and TGFβ using SB505124 (1μM), diminished Apigenin- and Rutaecarpine-induced osteoblast differentiation. In vitro treatment with Apigenin and Rutaecarpine, of primary hBMSCs obtained from elderly female patients enhanced osteoblast differentiation compared with primary hBMSCs obtained from young female donors. Ex-vivo treatment with Apigenin and Rutaecarpine of organotypic embryonic chick-femur culture significantly increased bone volume and cortical thickness compared to control as estimated by μCT-scanning. Discussion Our data revealed that Apigenin and Rutaecarpine enhance osteoblastic differentiation, bone formation, and reduce the age-related effects of hBMSCs. Therefore, Apigenin and Rutaecarpine cellular treatment represent a potential strategy for maintaining hBMSCs health during aging and osteoporosis.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sarah Abuelreich
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Rimi Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Justyna M. Kowal
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Ahmed Sayed
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Abdullah Aldahmash
- Department of Medical Basic Sciences, College of Medicine, Vision College, Riyadh, Saudi Arabia
| | - Nehad M. Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Institute for Cellular and Molecular Medicine (ICMM), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
143
|
Cao G, Hu S, Ning Y, Dou X, Ding C, Wang L, Wang Z, Sang X, Yang Q, Shi J, Hao M, Han X. Traditional Chinese medicine in osteoporosis: from pathogenesis to potential activity. Front Pharmacol 2024; 15:1370900. [PMID: 38628648 PMCID: PMC11019011 DOI: 10.3389/fphar.2024.1370900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis characterized by decreased bone density and mass, is a systemic bone disease with the destruction of microstructure and increase in fragility. Osteoporosis is attributed to multiple causes, including aging, inflammation, diabetes mellitus, and other factors induced by the adverse effects of medications. Without treatment, osteoporosis will further progress and bring great trouble to human life. Due to the various causes, the treatment of osteoporosis is mainly aimed at improving bone metabolism, inhibiting bone resorption, and promoting bone formation. Although the currently approved drugs can reduce the risk of fragility fractures in individuals, a single drug has limitations in terms of safety and effectiveness. By contrast, traditional Chinese medicine (TCM), a characteristic discipline in China, including syndrome differentiation, Chinese medicine prescription, and active ingredients, shows unique advantages in the treatment of osteoporosis and has received attention all over the world. Therefore, this review summarized the pathogenic factors, pathogenesis, therapy limitations, and advantages of TCM, aiming at providing new ideas for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Gang Cao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - ShaoQi Hu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangnan Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
144
|
Lai B, Jiang H, Gao Y, Zhou X. Skeletal ciliopathy: pathogenesis and related signaling pathways. Mol Cell Biochem 2024; 479:811-823. [PMID: 37188988 DOI: 10.1007/s11010-023-04765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Cilia are tiny organelles with conserved structures and components in eukaryotic cells. Ciliopathy is a set of diseases resulting from cilium dysfunction classified into first-order and second-order ciliopathy. With the advancement of clinical diagnosis and radiography, numerous skeletal phenotypes, including polydactyly, short limbs, short ribs, scoliosis, a narrow thorax, and numerous anomalies in bone and cartilage, have been discovered in ciliopathies. Mutation in genes encoding cilia core components or other cilia-related molecules have been found in skeletal ciliopathies. Meanwhile, various signaling pathways associated with cilia and skeleton development have been deemed to be significant for the occurrence and progression of diseases. Herein, we review the structure and key components of the cilium and summarize several skeletal ciliopathies with their presumable pathology. We also emphasize the signaling pathways involved in skeletal ciliopathies, which may assist in developing potential therapies for these diseases.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China.
| |
Collapse
|
145
|
Wang Z, Chen X, Yan L, Wang W, Zheng P, Mohammadreza A, Liu Q. Antimicrobial peptides in bone regeneration: mechanism and potential. Expert Opin Biol Ther 2024; 24:285-304. [PMID: 38567503 DOI: 10.1080/14712598.2024.2337239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Antimicrobial peptides (AMPs) are small-molecule peptides with a unique antimicrobial mechanism. Other notable biological activities of AMPs, including anti-inflammatory, angiogenesis, and bone formation effects, have recently received widespread attention. These remarkable bioactivities, combined with the unique antimicrobial mechanism of action of AMPs, have led to their increasingly important role in bone regeneration. AREAS COVERED In this review, on the one hand, we aimed to summarize information about the AMPs that are currently used for bone regeneration by reviewing published literature in the PubMed database. On the other hand, we also highlight some AMPs with potential roles in bone regeneration and their possible mechanisms of action. EXPERT OPINION The translation of AMPs to the clinic still faces many problems, but their unique antimicrobial mechanisms and other conspicuous biological activities suggest great potential. An in-depth understanding of the structure and mechanism of action of AMPs will help us to subsequently combine AMPs with different carrier systems and perform structural modifications to reduce toxicity and achieve stable release, which may be a key strategy for facilitating the translation of AMPs to the clinic.
Collapse
Affiliation(s)
- ZhiCheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - XiaoMan Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - WenJie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - PeiJia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Atashbahar Mohammadreza
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of International Education, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
146
|
Bao S, Yu D, Tang Z, Wu H, Zhang H, Wang N, Liu Y, Huang H, Liu C, Li X, Guo Z. Conformationally regulated "nanozyme-like" cerium oxide with multiple free radical scavenging activities for osteoimmunology modulation and vascularized osseointegration. Bioact Mater 2024; 34:64-79. [PMID: 38186961 PMCID: PMC10770363 DOI: 10.1016/j.bioactmat.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Given post-operative aseptic loosening in orthopedic disease treatment, osteointegration occurs at the bone-implant interface as a holistic process, including immunoregulation (e.g., macrophage polarization), angiogenesis and osteogenesis in sequence. In order to achieve early rapid and satisfactory osseointegration, different nano-shaped (nanocone, nanopolyhedron and nanoflower abbr. NC, NP & NF) cerium oxide (CeO2-x) coatings, endowed with "nanozyme-like" activities for multiple free radical elimination and osteoimmunology regulation, were hydrothermally synthesized on titanium alloy (TC4). In vitro cell experiments showed that nano-CeO2-x coated TC4 not only induced polarization of RAW264.7 cells toward M2 phenotype, but also promoted angiogenesis and vascularization of endothelial cells along with differentiation and mineralization of osteogenic precursor cells. Improvements in M2-polarized macrophage, angiogenesis, and bone regeneration were further confirmed in a rat femoral condyle model. Among the above three nano-morphologies, NF exhibited the best osseoinetegration. RNA sequencing and mechanism exploration suggested that the inhibition of PI3K-AKT signaling pathway was essential for immunomodulatory capacity of NF. In conclusion, it provided promising insights into the immunomodulatory exploitation of orthopedic implants.
Collapse
Affiliation(s)
- Shusen Bao
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, 310000, China
| | - Dongmei Yu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- University College London, UCL Institute of Orthopaedics and Musculo-Skeletal Science, M14 the Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, United Kingdom
| | - Zhen Tang
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hao Wu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hao Zhang
- Department of Burn Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ning Wang
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yichao Liu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hai Huang
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chaozong Liu
- University College London, UCL Institute of Orthopaedics and Musculo-Skeletal Science, M14 the Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, United Kingdom
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zheng Guo
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
147
|
Bhat AA, Moglad E, Bansal P, Kaur H, Deorari M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Ali H. Pollutants to pathogens: The role of heavy metals in modulating TGF-β signaling and lung cancer risk. Pathol Res Pract 2024; 256:155260. [PMID: 38493726 DOI: 10.1016/j.prp.2024.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-β signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-β regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-β signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-β receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-β pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-β signalling.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| |
Collapse
|
148
|
Kang M, Lee S, Seo JP, Lee EB, Ahn D, Shin J, Paik YK, Jo D. Cell-permeable bone morphogenetic protein 2 facilitates bone regeneration by promoting osteogenesis. Mater Today Bio 2024; 25:100983. [PMID: 38327977 PMCID: PMC10848039 DOI: 10.1016/j.mtbio.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
The use of the FDA-approved osteoinductive growth factor BMP2 is widespread for bone regeneration. However, its clinical application has been hindered by limitations in cell permeability and a short half-life in circulation. To address this issue, we have developed a modified version of BMP2, referred to as Cell Permeable (CP)-BMP2, which possesses improved cell permeability. CP-BMP2 incorporates an advanced macromolecular transduction domain (aMTD) to facilitate transfer across the plasma membrane, a solubilization domain, and recombinant human BMP2. Compared to traditional rhBMP2, CP-BMP2 exhibits enhanced cell permeability, solubility, and bioavailability, and activates Smad phosphorylation through binding to BMP receptor 2. The effectiveness of CP-BMP2 was evaluated in three animal studies focusing on bone regeneration. In the initial study, mice and rabbits with critical-size calvarial defects received subcutaneous (SC) injections of CP-BMP2 and rhBMP2 (7.5 mg/kg, 3 injections per week for 8 weeks).Following 8 weeks of administration, CP-BMP2 demonstrated a remarkable 65 % increase in bone formation in mice when compared to both the vehicle and rhBMP2. Moreover, rabbits exhibited faster bone formation, characterized by a filling pattern originating from the center. In a subsequent study involving injured horses, hind limb bones treated with CP-BMP2 exhibited an 85 % higher bone regeneration rate, as evidenced by Micro-CT results, in contrast to horses treated with the vehicle or rhBMP2 (administered at 150 μg/defect, subcutaneously, once a week for 8 weeks, without a scaffold). These results underscore the potential of CP-BMP2 to facilitate rapid and effective healing. No noticeable adverse effects, such as ectopic bone formation, were observed in any of the studies. Overall, our findings demonstrate that CP-BMP2 holds therapeutic potential as a novel and effective osteogenic agent.
Collapse
Affiliation(s)
- Mingu Kang
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Seokwon Lee
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Jong-pil Seo
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Eun-bee Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Daye Ahn
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Jisoo Shin
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Young-Ki Paik
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| |
Collapse
|
149
|
Jiang Q, Lan S, Tan F, Liang Y, Guo Z, Hou Y, Zhang H, Wu G, Liu Z. Adenosylhomocysteinase plays multiple roles in maintaining the identity and pluripotency of mouse embryonic stem cells†. Biol Reprod 2024; 110:450-464. [PMID: 38035769 DOI: 10.1093/biolre/ioad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
Adenosylhomocysteinase (AHCY), a key enzyme in the methionine cycle, is essential for the development of embryos and the maintenance of mouse embryonic stem cells (mESCs). However, the precise underlying mechanism of Ahcy in regulating pluripotency remains unclear. As the only enzyme that can hydrolyze S-adenosylhomocysteine in mammals, AHCY plays a critical role in the metabolic homeostasis, epigenetic remodeling, and transcriptional regulation. Here, we identified Ahcy as a direct target of OCT4 and unveiled that AHCY regulates the self-renewal and differentiation potency of mESCs through multiple mechanisms. Our study demonstrated that AHCY is required for the metabolic homeostasis of mESCs. We revealed the dual role of Ahcy in both transcriptional activation and inhibition, which is accomplished via the maintenance of H3K4me3 and H3K27me3, respectively. We found that Ahcy is required for H3K4me3-dependent transcriptional activation in mESCs. We also demonstrated that AHCY interacts with polycomb repressive complex 2 (PRC2), thereby maintaining the pluripotency of mESCs by sustaining the H3K27me3-regulated transcriptional repression of related genes. These results reveal a previously unrecognized OCT4-AHCY-PRC2 axis in the regulation of mESCs' pluripotency and provide insights into the interplay between transcriptional factors, cellular metabolism, chromatin dynamics and pluripotency regulation.
Collapse
Affiliation(s)
- Qi Jiang
- College of Life Science, Northeast Agricultural University, Harbin, China
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Shubing Lan
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
| | - Fancheng Tan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yiping Liang
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
| | - Zhencheng Guo
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
| | - Yanlin Hou
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
| | - Hui Zhang
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guangming Wu
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
150
|
Wang TH, Watanabe K, Hamada N, Tani-Ishii N. Role of MAPKs in TGF-β1-induced maturation and mineralization in human osteoblast-like cells. J Oral Biosci 2024; 66:61-67. [PMID: 38110177 DOI: 10.1016/j.job.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES Our study aimed to clarify the role of mitogen-activated protein kinases (MAPKs) in transforming growth factor (TGF)-β1-stimulated mineralization in the human osteoblast-like MG63 cells. METHODS The viability of MG63 cells under TGF-β1 stimulation was assessed by MTS assay. Western blotting determined TGF-β1-mediated activation of extracellular signal-related protein kinase (ERK), p38, and c-Jun amino-terminal kinase (JNK). Mineralization-related gene expression was examined by quantitative real-time PCR, and mineral deposition levels were evaluated by alizarin red S staining. RESULTS TGF-β1 had no effect on MG63 cell proliferation. Activation of p38 was observed at 3 h post TGF-β1 stimulation. Moreover, JNK phosphorylation was upregulated by TGF-β1 from 1 to 6 h post stimulation, but had no activation on ERK phosphorylation throughout the experimental period. Treatment with JNK inhibitor diminished the alizarin red S-stained area in a dose-dependent manner. Mineral deposition was unaffected by MEK inhibitor, whereas p38 inhibitor increased the red-stained area. Gene expression levels of ALP and BSP were significantly decreased under treatment with JNK inhibitor and p38 inhibitor. The MEK inhibitor had no effect on the TGF-β1-mediated upregulation of ALP and BSP. Although all three inhibitors suppressed expression of COL I, none were found to stimulate expression of OCN. CONCLUSIONS Human osteoblast-like MG63 cells maturation and mineralization are induced through JNK activation of MAPK signaling in response to TGF-β1.
Collapse
Affiliation(s)
- Ting-Hsuan Wang
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Kiyoko Watanabe
- Department of Liberal Arts Education, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Nobushiro Hamada
- Department of Oral Microbiology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Nobuyuki Tani-Ishii
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan.
| |
Collapse
|