151
|
Chen SH, Lin KY, Chang CC, Fang CL, Lin CP. Aloe-emodin-induced apoptosis in human gastric carcinoma cells. Food Chem Toxicol 2007; 45:2296-303. [PMID: 17637488 DOI: 10.1016/j.fct.2007.06.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 05/10/2007] [Accepted: 06/05/2007] [Indexed: 02/01/2023]
Abstract
The purpose of this study was to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two distinct human gastric carcinoma cell lines, AGS and NCI-N87. We demonstrate that aloe-emodin induced cell death in a dose- and time-dependent manner. Noteworthy is that the AGS cells were generally more sensitive than the NCI-N87 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by the activation of caspase-3, leading to nuclear shrinkage and apoptosis. In addition, exposure to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These preclinical studies suggest that aloe-emodin represents a suitable and novel chemotherapeutic drug candidate for the treatment of human gastric carcinoma.
Collapse
Affiliation(s)
- Sheng-Hsuan Chen
- Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
152
|
Pei Y, Xing D, Gao X, Liu L, Chen T. Real-time monitoring full length bid interacting with Bax during TNF-alpha-induced apoptosis. Apoptosis 2007; 12:1681-90. [PMID: 17520191 DOI: 10.1007/s10495-007-0091-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bid, a member of the pro-apoptotic Bcl-2 protein family, is activated through caspase-8-mediated cleavage into a truncated form (p15 tBid) during TNF-alpha(tumor necrosis factor alpha)-induced apoptosis. Activated tBid can induce Bax oligomerization and translocation to mitochondria, triggering the release of cytochrome c, caspase-3 activation and cell apoptosis. However, it is debatable that whether Bid and tBid can interact directly with Bax in living cells. In this study, we used confocal fluorescence microscope, combined with both FRET (fluorescence resonance energy transfer) and acceptor photobleaching techniques, to study the dynamic interaction between Bid and Bax during TNF-alpha-induced apoptosis in single living cell. In ASTC-a-1 cells, full length Bid induced Bax translocation to mitochondria by directly interacting with Bax transiently in response to TNF-alpha treatment before cell shrinkage. Next, we demonstrated that, in both ASTC-a-1 and HeLa cells, Bid was not cleaved before cell shrinkage even under the condition that caspase-8 had been activated, but in MCF-7 cells Bid was cleaved. In addition, in ASTC-a-1 cells, caspase-3 activation was a biphasic process and Bid was cleaved after the second activation of caspase-3. In summary, these findings indicate that, FL-Bid (full length-Bid) directly regulated the activation of Bax during TNF-alpha-induced apoptosis in ASTC-a-1 cells and that the cleavage of Bid occurred in advanced apoptosis.
Collapse
Affiliation(s)
- Yihui Pei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | | | | | | | | |
Collapse
|
153
|
Bedri S, Cizek SM, Rastarhuyeva I, Stone JR. Regulation of protein kinase CK1alphaLS by dephosphorylation in response to hydrogen peroxide. Arch Biochem Biophys 2007; 466:242-9. [PMID: 17626781 PMCID: PMC2131699 DOI: 10.1016/j.abb.2007.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 12/19/2022]
Abstract
Low levels of hydrogen peroxide (H(2)O(2)) are mitogenic to mammalian cells and stimulate the hyperphosphorylation of heterogeneous nuclear ribonucleoprotein C (hnRNP-C) by protein kinase CK1alpha. However, the mechanisms by which CK1alpha is regulated have been unclear. Here it is demonstrated that low levels of H(2)O(2) stimulate the rapid dephosphorylation of CK1alphaLS, a nuclear splice form of CK1alpha. Furthermore, it is demonstrated that either treatment of endothelial cells with H(2)O(2), or dephosphorylation of CK1alphaLS in vitro enhances the association of CK1alphaLS with hnRNP-C. In addition, dephosphorylation of CK1alphaLS in vitro enhances the kinase's ability to phosphorylate hnRNP-C. While CK1alpha appears to be present in all metazoans, analysis of CK1alpha genomic sequences from several species reveals that the alternatively spliced nuclear localizing L-insert is unique to vertebrates, as is the case for hnRNP-C. These observations indicate that CK1alphaLS and hnRNP-C represent conserved components of a vertebrate-specific H(2)O(2)-responsive nuclear signaling pathway.
Collapse
Affiliation(s)
- Shahinaz Bedri
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Stephanie M. Cizek
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Iryna Rastarhuyeva
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - James R. Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
154
|
Giamas G, Hirner H, Shoshiashvili L, Grothey A, Gessert S, Kühl M, Henne-Bruns D, Vorgias C, Knippschild U. Phosphorylation of CK1delta: identification of Ser370 as the major phosphorylation site targeted by PKA in vitro and in vivo. Biochem J 2007; 406:389-98. [PMID: 17594292 PMCID: PMC2049039 DOI: 10.1042/bj20070091] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The involvement of CK1 (casein kinase 1) delta in the regulation of multiple cellular processes implies a tight regulation of its activity on many different levels. At the protein level, reversible phosphorylation plays an important role in modulating the activity of CK1delta. In the present study, we show that PKA (cAMP-dependent protein kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2) and PKC (protein kinase C) alpha all phosphorylate CK1delta. PKA was identified as the major cellular CK1deltaCK (CK1delta C-terminal-targeted protein kinase) for the phosphorylation of CK1delta in vitro and in vivo. This was implied by the following evidence: PKA was detectable in the CK1deltaCK peak fraction of fractionated MiaPaCa-2 cell extracts, PKA shared nearly identical kinetic properties with those of CK1deltaCK, and both PKA and CK1deltaCK phosphorylated CK1delta at Ser370 in vitro. Furthermore, phosphorylation of CK1delta by PKA decreased substrate phosphorylation of CK1delta in vitro. Mutation of Ser370 to alanine increased the phosphorylation affinity of CK1delta for beta-casein and the GST (gluthatione S-transferase)-p53 1-64 fusion protein in vitro and enhanced the formation of an ectopic dorsal axis during Xenopus laevis development. Anchoring of PKA and CK1delta to centrosomes was mediated by AKAP (A-kinase-anchoring protein) 450. Interestingly, pre-incubation of MiaPaCa-2 cells with the synthetic peptide St-Ht31, which prevents binding between AKAP450 and the regulatory subunit RII of PKA, resulted in a 6-fold increase in the activity of CK1delta. In summary, we conclude that PKA phosphorylates CK1delta, predominantly at Ser370 in vitro and in vivo, and that site-specific phosphorylation of CK1delta by PKA plays an important role in modulating CK1delta-dependent processes.
Collapse
Affiliation(s)
- Georgios Giamas
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Heidrun Hirner
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Levani Shoshiashvili
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Arnhild Grothey
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Susanne Gessert
- †Institute for Biochemistry and Molecular Biology, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michael Kühl
- †Institute for Biochemistry and Molecular Biology, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Doris Henne-Bruns
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Constantinos E. Vorgias
- ‡Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis-Zographou, 15784 Athens, Greece
| | - Uwe Knippschild
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
155
|
Gómez-Esquer F, Palomar MA, Rivas I, Delcán J, Linares R, Díaz-Gil G. Characterization of the BH3 protein Bmf in Gallus gallus: identification of a novel chicken-specific isoform. Gene 2007; 407:21-9. [PMID: 17967519 DOI: 10.1016/j.gene.2007.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/11/2007] [Accepted: 09/19/2007] [Indexed: 01/01/2023]
Abstract
Bmf is a proapoptotic member of the BH3-only subgroup of Bcl-2 family proteins, which is associated to myosin V motors by binding to the dynein light chain 2 (DLC2). It acts as a sentinel detecting intracellular damages on the main cytoskeletal structures. The cloning and characterization of the chicken (Gallus gallus) Bmf cDNA and splicing variant is described in this report. The Bmf cDNA was amplified by reverse transcriptase-polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The chicken Bmf cDNA encodes a protein of 193 amino acids, showing homology to mammalian Bmf proteins. A splicing variant of the chicken Bmf (Bmf(S), short isoform of Bmf) coding a protein of 118 amino acids was also identified. This is the first Bmf isoform identified so far which lacks the DLC2-binding domain although retaining the BH3 domain. Both chicken Bmf isoforms induced apoptosis 24 h after transfection in MCF7 and HeLa cell lines, but chicken Bmf(S) exhibits a higher proapoptotic activity. In addition, mRNA expression analysis showed that chicken Bmf transcription is ubiquitous in all embryo developmental stages, suggesting a role for this protein in the control of the development process.
Collapse
Affiliation(s)
- Francisco Gómez-Esquer
- Departamento de Ciencias de la Salud III, Universidad Rey Juan Carlos, Avenida de Atenas S/N, Alcorcón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
156
|
Zimina EP, Fritsch A, Schermer B, Bakulina AY, Bashkurov M, Benzing T, Bruckner-Tuderman L. Extracellular phosphorylation of collagen XVII by ecto-casein kinase 2 inhibits ectodomain shedding. J Biol Chem 2007; 282:22737-46. [PMID: 17545155 DOI: 10.1074/jbc.m701937200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ecto-phosphorylation is emerging as an important mechanism to regulate cellular ligand interactions and signal transduction. Here we show that extracellular phosphorylation of the cell surface receptor collagen XVII regulates shedding of its ectodomain. Collagen XVII, a member of the novel family of collagenous transmembrane proteins and component of the hemidesmosomes, mediates adhesion of the epidermis to the dermis in the skin. The ectodomain is constitutively shed from the cell surface by metalloproteinases of the ADAM (a disintegrin and metalloproteinase) family, mainly by tumor necrosis factor-alpha converting enzyme (TACE). We used biochemical, mutagenesis, and structural modeling approaches to delineate mechanisms controlling ectodomain cleavage. A standard assay for extracellular phosphorylation, incubation of intact keratinocytes with cell-impermeable [gamma-(32)P]ATP, led to collagen XVII labeling. This was significantly diminished by both broad-spectrum extracellular kinase inhibitor K252b and a specific casein kinase 2 (CK2) inhibitor. Collagen XVII peptides containing a putative CK2 recognition site were phosphorylated by CK2 in vitro, disclosing Ser(542) and Ser(544) in the ectodomain as phosphate group acceptors. Phosphorylation of Ser(544) in vivo and in vitro was confirmed by immunoblotting of epidermis and HaCaT keratinocyte extracts with phosphoepitope-specific antibodies. Functionally, inhibition of CK2 kinase activity or mutation of the phosphorylation acceptor Ser(544) to Ala significantly increased ectodomain shedding, whereas overexpression of CK2alpha inhibited cleavage of collagen XVII. Structural modeling suggested that the phosphorylation of serine residues prevents binding of TACE to its substrate. Thus, extracellular phosphorylation of collagen XVII by ecto-CK2 inhibits its shedding by TACE and represents novel mechanism to regulate adhesion and motility of epithelial cells.
Collapse
Affiliation(s)
- Elena P Zimina
- Department of Dermatology, Faculty of Biology, University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
157
|
Olayioye MA, Buchholz M, Schmid S, Schöffler P, Hoffmann P, Pomorski T. Phosphorylation of StarD10 on Serine 284 by Casein Kinase II Modulates Its Lipid Transfer Activity. J Biol Chem 2007; 282:22492-8. [PMID: 17561512 DOI: 10.1074/jbc.m701990200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
StarD10 is a dual specificity lipid transfer protein capable of shuttling phosphatidylcholine and phosphatidylethanolamine between membranes in vitro. We now provide evidence that, in vivo, StarD10 is phosphorylated on serine 284. This novel phosphorylation site was identified by tandem mass spectrometry of immunoaffinity-purified StarD10 from lysates of HEK293T cells transiently expressing the protein. In vitro kinase assays revealed that casein kinase II was capable of phosphorylating wild-type StarD10 but not a S284A mutant protein. Interestingly, hypotonic extracts prepared from HEK293T cells expressing the serine to alanine mutant exhibited increased lipid transfer activity compared with those from wild-type StarD10-expressing cells, suggesting that, in a cellular context, phosphorylation on serine 284 negatively regulates StarD10 activity. Because casein kinase II phosphorylation also inhibited lipid transfer activity of the purified recombinant StarD10 protein, inhibition is not dependent on any cellular cofactors. Instead, our data show that C-terminal StarD10 phosphorylation on serine 284 regulates its association with cellular membranes.
Collapse
Affiliation(s)
- Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart 70569, Germany.
| | | | | | | | | | | |
Collapse
|
158
|
Pan MH, Chiou YS, Cheng AC, Bai N, Lo CY, Tan D, Ho CT. Involvement of MAPK, Bcl-2 family, cytochrome c, and caspases in induction of apoptosis by 1,6-O,O-diacetylbritannilactone in human leukemia cells. Mol Nutr Food Res 2007; 51:229-38. [PMID: 17262884 DOI: 10.1002/mnfr.200600148] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
1,6-O,O-diacetylbritannilactone (OODBL) isolated from Inula britannica, exhibits potent antitumor activity against several human cancer cell lines. However, the molecular mechanism of OODBL in the induction of anticancer activity is still unclear. In the present study, we demonstrated that OODBL induced the occurrence of apoptosis in human leukemic (HL-60) cells and cell arrest at the S phase. On the other hand, activation of caspase-8, -9, and -3, phosphorylation of Bcl-2 and Bid, and increased release of cytochrome c from mitochondria into cytosolic fraction were detected in OODBL-treated HL-60 cells. We further demonstrated that production of reactive oxygen species (ROS), activation of mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways may play an important role in OODBL-induced apoptosis. The results from the present study highlight the molecular mechanisms underlying OODBL-induced anticancer activity.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
159
|
Ahmad KA, Harris NH, Johnson AD, Lindvall HCN, Wang G, Ahmed K. Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells. Mol Cancer Ther 2007; 6:1006-12. [PMID: 17363494 DOI: 10.1158/1535-7163.mct-06-0491] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resveratrol and epigallocatechin-3-gallate (EGCG) are important candidates as chemopreventive agents by virtue of their ability to induce apoptosis in cancer cells. Casein kinase 2 (CK2) is a ubiquitous protein ser/thr kinase that plays diverse roles in cell proliferation and apoptosis. We have previously shown that overexpression of CK2 suppresses apoptosis induced by a variety of agents, whereas down-regulation of CK2 sensitizes cells to induction of apoptosis. We therefore investigated whether or not CK2 played a role in resveratrol and EGCG signaling in androgen-sensitive (ALVA-41) and androgen-insensitive (PC-3) prostate cancer cells. Resveratrol- and EGCG-induced apoptosis is associated with a significant down-regulation of CK2 activity and protein expression in both the ALVA-41 and PC-3 cells. Overexpression of CK2alpha protected prostatic cancer cells against resveratrol- and EGCG-induced apoptosis. Relatively low doses (10 mumol/L) of resveratrol and EGCG induced a modest proliferative response in cancer cells that could be switched to cell death by moderate inhibition of CK2. These findings characterize, for the first time, the effects of polyphenolic compounds on CK2 signaling in androgen-sensitive and androgen-insensitive prostatic carcinoma cells and suggest that resveratrol and EGCG may mediate their cellular activity, at least in part, via their targeting of CK2. Further, the data hint at the potential of using these polyphenols alongside CK2 inhibitors in combination chemotherapy.
Collapse
Affiliation(s)
- Kashif A Ahmad
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, One Veterans Drive, Minneapolis, MN 55417, USA.
| | | | | | | | | | | |
Collapse
|
160
|
Kim JS, Eom JI, Cheong JW, Choi AJ, Lee JK, Yang WI, Min YH. Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin Cancer Res 2007; 13:1019-28. [PMID: 17289898 DOI: 10.1158/1078-0432.ccr-06-1602] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Protein kinase CK2 is implicated in cellular proliferation and transformation. However, the clinical and biological significances of CK2 have not been elucidated in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN We evaluated the biological significances of catalytic subunit of CK2 (CK2alpha) expression in leukemia cell lines and primary leukemic blasts obtained from AML patients. RESULTS In this study, the expression of CK2alpha was elevated in a substantial proportion of AML. In AML patients with normal karyotype, the disease-free survival and overall survival rates were significantly lower in the CK2alpha-high compared with the CK2alpha-low AML cases (P=0.0252 and P=0.0392, respectively). An induced overexpression of CK2alpha increased the levels of Ser473 phosphorylated (p)-Akt/protein kinase B (PKB), p-PDK1, pFKHR, p-BAD, Bcl-2, Bcl-xL, Mcl-1, and XIAP. Treatment of U937 cell line and primary AML blasts with selective CK2 inhibitor, tetrabromobenzotriazole or apigenin, reduced the levels of these molecules in a dose-dependent manner. CK2alpha small interfering RNA treatment also resulted in a down-regulation of p-Akt/PKB and Bcl-2 in U937 cells. Apigenin-induced cell death was preferentially observed in the CK2alpha-high leukemia cell lines, HL-60 and NB4, which was accompanied by cytoplasmic release of SMAC/DIABLO and proteolytic cleavage of procaspase-9, procaspase-3, procaspase-8, and poly(ADP)ribose polymerase. An induced overexpression of CK2alpha potentially enhanced the sensitivity of U937 cells to the apigenin-induced cell death. Apigenin-induced cell death was significantly higher in CK2alpha-high AML compared with CK2alpha-low AML (P<0.0001) or normal bone marrow samples (P<0.0001). CONCLUSION These findings strongly suggest protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in AML.
Collapse
Affiliation(s)
- Jin Seok Kim
- Department of Internal Medicine, Brain Korea 21 Research Team of Nanobiomaterials for the Cell-Based Implants, Medical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
161
|
Tyazhelova VG. The role of the interaction between signaling protein domains and of the complexes of signaling proteins in apoptosis initiation. BIOL BULL+ 2007. [DOI: 10.1134/s106235900702001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
162
|
Guan J, Li H, Rogulja A, Axelrod JD, Cadigan KM. The Drosophila casein kinase Iepsilon/delta Discs overgrown promotes cell survival via activation of DIAP1 expression. Dev Biol 2007; 303:16-28. [PMID: 17134692 PMCID: PMC2892850 DOI: 10.1016/j.ydbio.2006.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 01/07/2023]
Abstract
The proper number of cells in developing tissues is achieved by coordinating cell division with apoptosis. In Drosophila, the adult wing is derived from wing imaginal discs, which undergo a period of growth and proliferation during larval stages without much programmed cell death. In this report, we demonstrate that the Drosophila casein kinase Iepsilon/delta, known as Discs overgrown (Dco), is required for maintaining this low level of apoptosis. Expression of dco can suppress the apoptotic activity of Head involution defective (Hid) in the developing eye. Loss of dco in the wing disc results in a dramatic reduction in expression of the caspase inhibitor DIAP1 and a concomitant activation of caspases. The regulation of DIAP1 by Dco occurs by a post-transcriptional mechanism that is independent of hid. Mutant clones of dco are considerably smaller than controls even when apoptosis is inhibited, suggesting that Dco promotes cell division/growth in addition to its role in cell survival. The dco phenotype cannot be explained by defects Wingless (Wg) signaling. We propose that Dco coordinates tissue size by stimulating cell division/growth and blocking apoptosis via activation of DIAP1 expression.
Collapse
Affiliation(s)
- Ju Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| | - Hui Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| | - Ana Rogulja
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| | - Jeff D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford CA 94305
| | - Ken M. Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| |
Collapse
|
163
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
164
|
Falschlehner C, Emmerich CH, Gerlach B, Walczak H. TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 2007; 39:1462-75. [PMID: 17403612 DOI: 10.1016/j.biocel.2007.02.007] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/20/2022]
Abstract
The TNF-related apoptosis-inducing ligand, TRAIL, has been shown to selectively kill tumour cells. This property has made TRAIL and agonistic antibodies against its death inducing receptors (TRAIL-R1 and TRAIL-R2) to some of the most promising novel biotherapeutic agents for cancer therapy. Here we review the signalling pathways initiated by the apoptosis- as well as the non-apoptosis-inducing receptors, TRAIL-R3 and TRAIL-R4. The TRAIL "death-inducing signalling complex" (DISC) transmits the apoptotic signal. DISC formation leads to activation of a protease cascade, finally resulting in cell death. The TRAIL death receptor-mediated "extrinsic" pathway and the "intrinsic" pathway, which is controlled by the interaction of members of the Bcl-2 family, interact with each other in the decision about life or death of a cell. Apoptotic and non-apoptotic signalling is influenced by the NF-kappaB, PKB/Akt and the MAPK signalling pathways. In this review we intend to summarise the most important findings on the TRAIL signalling network and the interplay in the decisions between life and death of a tumor cell.
Collapse
Affiliation(s)
- Christina Falschlehner
- Division of Apoptosis Regulation (D040), Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
165
|
Roukos V, Iliou MS, Nishitani H, Gentzel M, Wilm M, Taraviras S, Lygerou Z. Geminin cleavage during apoptosis by caspase-3 alters its binding ability to the SWI/SNF subunit Brahma. J Biol Chem 2007; 282:9346-9357. [PMID: 17261582 DOI: 10.1074/jbc.m611643200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Geminin has been proposed to coordinate cell cycle and differentiation events through balanced interactions with the cell cycle regulator Cdt1 and with homeobox transcription factors and chromatin remodeling activities implicated in cell fate decisions. Here we show that Geminin is cleaved in primary cells and cancer cell lines induced to undergo apoptosis by a variety of stimuli. Geminin targeting is mediated by caspase-3 both in vivo and in vitro. Two sites at the carboxyl terminus of Geminin (named C1 and C2) are cleaved by the caspase, producing truncated forms of Geminin. We provide evidence that Geminin cleavage is regulated by phosphorylation. Casein kinase II alters Geminin cleavage at site C1 in vitro, whereas mutating phosphorylation competent Ser/Thr residues proximal to site C1 affects Geminin cleavage in vivo. We show that truncated Geminin produced by cleavage at C1 can promote apoptosis. In contrast, Geminin cleaved at site C2 has lost the ability to interact with Brahma (Brm), a catalytic subunit of the SWI/SNF chromatin remodeling complex, while binding efficiently to Cdt1, indicating that targeting of Geminin during apoptosis differentially affects interactions with its binding partners.
Collapse
Affiliation(s)
- Vassilis Roukos
- Laboratory of General Biology, School of Medicine, University of Patras, 26500 Rio, Patras, Greece
| | - Maria S Iliou
- Laboratory of General Biology, School of Medicine, University of Patras, 26500 Rio, Patras, Greece
| | - Hideo Nishitani
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Marc Gentzel
- Gene Expression Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Matthias Wilm
- Gene Expression Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Stavros Taraviras
- Laboratory of Pharmacology, Medical School, University of Patras, 26500 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of General Biology, School of Medicine, University of Patras, 26500 Rio, Patras, Greece.
| |
Collapse
|
166
|
Okoumassoun LE, Russo C, Denizeau F, Averill-Bates D, Henderson JE. Parathyroid hormone-related protein (PTHrP) inhibits mitochondrial-dependent apoptosis through CK2. J Cell Physiol 2007; 212:591-9. [PMID: 17443683 DOI: 10.1002/jcp.21055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the past decade, parathyroid hormone-related protein (PTHrP) has been identified as a key survival factor for cells subjected to apoptotic stimuli. Its anti-apoptotic activity has been attributed to nuclear accumulation of the intact protein, or a synthetic peptide corresponding to its nuclear targeting sequence (NTS), which promotes rapid exit of nutrient deprived cells from the cell cycle. Intracellular PTHrP also inhibited apoptosis by blocking tumor necrosis factor alpha (TNFalpha)-induced apoptosis by blocking signaling from the "death receptor" and preventing damage to the mitochondrial membrane. In both cases, the anti-apoptotic activity was significantly reduced in the presence of a nuclear deficient form of PTHrP with a (88)K/E K/E.K/I(91) mutation in the NTS. The current work was undertaken to determine the mechanism by which nuclear PTHrP blocked mitochondrial-mediated apoptosis. Using sub-cellular fractionation and functional assays we showed that pre-treatment of HEK293 cells with exogenous NTS peptide before inducing apoptosis with TNFalpha was as effective as expression of the full-length protein in inhibiting apoptosis. Inhibition of apoptosis was associated with increased expression of protein kinase casein kinase 2 (CK2) and in sustained CK2 accumulation and activity in the nuclear fraction. In primary chondrogenic cells harvested from the limb buds of PTHrP(+/-) and PTHrP(-/-) embryonic mice, there was a dose-dependent decrease in CK2 expression and activity that correlated with increased susceptibility to apoptosis. Taken together the results indicate that nuclear accumulation of PTHrP effectively inhibits mitochondrial-mediated apoptosis through regulation of the expression, activity, and sub-cellular trafficking of CK2.
Collapse
|
167
|
Bustos VH, Ferrarese A, Venerando A, Marin O, Allende JE, Pinna LA. The first armadillo repeat is involved in the recognition and regulation of beta-catenin phosphorylation by protein kinase CK1. Proc Natl Acad Sci U S A 2006; 103:19725-30. [PMID: 17172446 PMCID: PMC1750875 DOI: 10.1073/pnas.0609424104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple phosphorylation of beta-catenin by glycogen synthase kinase 3 (GSK3) in the Wnt pathway is primed by CK1 through phosphorylation of Ser-45, which lacks a typical CK1 canonical sequence. Synthetic peptides encompassing amino acids 38-64 of beta-catenin are phosphorylated by CK1 on Ser-45 with low affinity (K(m) approximately 1 mM), whereas intact beta-catenin is phosphorylated at Ser-45 with very high affinity (K(m) approximately 200 nM). Peptides extended to include a putative CK1 docking motif (FXXXF) at 70-74 positions or a F74AA mutation in full-length beta-catenin had no significant effect on CK1 phosphorylation efficiency. beta-Catenin C-terminal deletion mutants up to residue 181 maintained their high affinity, whereas removal of the 131-181 fragment, corresponding to the first armadillo repeat, was deleterious, resulting in a 50-fold increase in K(m) value. Implication of the first armadillo repeat in beta-catenin targeting by CK1 is supported in that the Y142E mutation, which mimics phosphorylation of Tyr-142 by tyrosine kinases and promotes dissociation of beta-catenin from alpha-catenin, further improves CK1 phosphorylation efficiency, lowering the K(m) value to <50 nM, approximating the physiological concentration of beta-catenin. In contrast, alpha-catenin, which interacts with the N-terminal region of beta-catenin, prevents Ser-45 phosphorylation of CK1 in a dose-dependent manner. Our data show that the integrity of the N-terminal region and the first armadillo repeat are necessary and sufficient for high-affinity phosphorylation by CK1 of Ser-45. They also suggest that beta-catenin association with alpha-catenin and beta-catenin phosphorylation by CK1 at Ser-45 are mutually exclusive.
Collapse
Affiliation(s)
- Victor H. Bustos
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Program of Cell and Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; and
| | - Anna Ferrarese
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Department of Biological Chemistry and Consiglio Nazionale delle Ricerche Institute for Neurosciences, University of Padova, 35121 Padova, Italy
| | - Andrea Venerando
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Department of Biological Chemistry and Consiglio Nazionale delle Ricerche Institute for Neurosciences, University of Padova, 35121 Padova, Italy
| | - Oriano Marin
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Department of Biological Chemistry and Consiglio Nazionale delle Ricerche Institute for Neurosciences, University of Padova, 35121 Padova, Italy
| | - Jorge E. Allende
- Program of Cell and Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; and
- To whom correspondence may be addressed at:
ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile. E-mail:
| | - Lorenzo A. Pinna
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Department of Biological Chemistry and Consiglio Nazionale delle Ricerche Institute for Neurosciences, University of Padova, 35121 Padova, Italy
- To whom correspondence may be addressed at:
Department of Biological Chemistry, Viale G. Colombo 3, I-35121 Padova, Italy. E-mail:
| |
Collapse
|
168
|
Abstract
Bcl-2 family proteins play central roles in the regulation of most, if not all, apoptotic pathways, and hence this family plays a critical role in oncogenesis. The Bcl-2 homology 3 (BH3)-only members of this family are "proapoptotic," promoting apoptosis by sensing cellular stresses: that is, they are activated or induced in response to stress stimuli. These BH3-only proteins then interfere with the function of "prosurvival" Bcl-2 family members, thereby promoting the progression of apoptosis. It has long been recognized that the induction and activation of each of the BH3-only proteins are subject to the type of stress stimulus. Although it was originally assumed that all the BH3-only proteins exert similar effects on the downstream apoptotic machinery, recent studies have uncovered their distinct functional properties, indicating the operation of more intricate, versatile control mechanisms of apoptosis. In this review, we will summarize recent findings on the diversity in the activation and function of BH3-only proteins. In particular, we focus on the overlapping and individual roles of 2 BH3-only proteins, Puma and Noxa, in the context of the apoptotic response induced by the tumor suppressor p53.
Collapse
Affiliation(s)
- Tsukasa Shibue
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
169
|
Abstract
Sustained progression of neuronal cell death causes brain tissue loss and subsequent functional deficits following stroke or central nervous system trauma and in neurodegenerative diseases. Despite obvious differences in the pathology of these neurological disorders, the underlying delayed neuronal demise is carried out by a common biochemical cell death programme. Mitochondrial membrane permeabilization and subsequent release of apoptotic factors are key mechanisms during this process. Bcl-2 family proteins, e.g. the pro-apoptotic Bid, Bax or Bad and the antiapoptotic Bcl-2, Bcl-XL, play a crucial role in the regulation of this mitochondrial checkpoint in neurons. In particular, cleavage of cytosolic Bid and subsequent mitochondrial translocation have been detected in many paradigms of neuronal cell death related to acute or chronic neurodegeneration. The current review focuses on the emerging role of Bid as an integrating key regulator of the intrinsic death pathway that amplifies caspase-dependent and caspase-independent execution of neuronal apoptosis. Therefore pharmacological inhibition of Bid provides a promising therapeutic strategy in neurological diseases where programmed cell death is prominent.
Collapse
Affiliation(s)
- C Culmsee
- Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Building D, D-81377 Munich, Germany.
| | | |
Collapse
|
170
|
Tapia JC, Torres VA, Rodriguez DA, Leyton L, Quest AFG. Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription. Proc Natl Acad Sci U S A 2006; 103:15079-84. [PMID: 17005722 PMCID: PMC1622780 DOI: 10.1073/pnas.0606845103] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Indexed: 12/19/2022] Open
Abstract
Increased expression of casein kinase 2 (CK2) is associated with hyperproliferation and suppression of apoptosis in cancer. Mutations in the tumor suppressor APC (adenomatous polyposis coli) are frequent in colon cancer and often augment beta-catenin-T cell factor (Tcf)/lymphoid enhancer binding factor (Lef)-dependent transcription of genes such as c-myc and cyclin-D1. CK2 has also been implicated recently in the regulation of beta-catenin stability. To identify mechanisms by which CK2 promotes survival, effects of the specific CK2 inhibitors 4,5,6,7-tetrabromobenzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole were assessed. TBB and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole significantly decreased proliferation and increased apoptosis of HT29(US) colon cancer cells. RT-PCR and immunoblot analysis revealed that both inhibitors decreased survivin mRNA and protein levels in HT29(US) cells. Similar effects were observed with TBB in human DLD-1 and SW-480 colorectal cells as well as ZR-75 breast cancer cells and HEK-293T embryonic kidney cells. Expression of GFP-CK2alpha in HEK-293T cells resulted in beta-catenin-Tcf/Lef-dependent up-regulation of survivin and increased resistance to anticancer drugs. Augmented beta-catenin-Tcf/Lef-dependent transcription and resistance to apoptosis observed upon GFP-CK2alpha expression were abolished by TBB. Alternatively, HEK-293T cells expressing GFP-survivin were resistant to TBB-induced apoptosis. Finally, siRNA-mediated down-regulation of CK2alpha in HEK-293T cells coincided with reduced beta-catenin and survivin levels. Taken together, these results suggest that CK2 kinase activity promotes survival by increasing survivin expression via beta-catenin-Tcf/Lef-mediated transcription. Hence, selective CK2 inhibition or down-regulation in tumors may provide an attractive opportunity for the development of novel cancer therapies.
Collapse
Affiliation(s)
- J. C. Tapia
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 838-0453, Chile
| | - V. A. Torres
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 838-0453, Chile
| | - D. A. Rodriguez
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 838-0453, Chile
| | - L. Leyton
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 838-0453, Chile
| | - A. F. G. Quest
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 838-0453, Chile
| |
Collapse
|
171
|
Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G, Di Maira G, Barbon F, Cabrelle A, Zambello R, Adami F, Trentin L, Pinna LA, Semenzato G. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 2006; 108:1698-1707. [PMID: 16684960 DOI: 10.1182/blood-2005-11-013672] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous cellular serine-threonine kinase that regulates relevant biologic processes, many of which are dysregulated in malignant plasma cells. Here we investigated its role in multiple myeloma (MM). Analysis of MM cell lines and highly purified malignant plasma cells in patients with MM revealed higher protein and CK2 activity levels than in controls (normal in vitro-generated polyclonal plasma cells and B lymphocytes). The inhibition of CK2 with specific synthetic compounds or by means of RNA interference caused a cytotoxic effect on MM plasma cells that could not be overcome by IL-6 or IGF-I and that was associated with the activation of extrinsic and intrinsic caspase cascades. CK2 blockage lowered the sensitivity threshold of MM plasma cells to the cytotoxic effect of melphalan. CK2 inhibition also resulted in impaired IL-6-dependent STAT3 activation and in decreased basal and TNF-alpha-dependent I kappaB alpha degradation and NF-kappaB-driven transcription. Our data show that CK2 was involved in the pathophysiology of MM, suggesting that it might play a crucial role in controlling survival and sensitivity to chemotherapeutics of malignant plasma cells.
Collapse
Affiliation(s)
- Francesco A Piazza
- Department of Clinical and Experimental Medicine, Hematology-Immunology Division, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
He H, Tan M, Pamarthy D, Wang G, Ahmed K, Sun Y. CK2 phosphorylation of SAG at Thr10 regulates SAG stability, but not its E3 ligase activity. Mol Cell Biochem 2006; 295:179-88. [PMID: 16874460 DOI: 10.1007/s11010-006-9287-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/10/2006] [Indexed: 01/07/2023]
Abstract
Sensitive to Apoptosis Gene (SAG), a RING component of SCF E3 ubiquitin ligase, was shown to be phosphorylated by protein kinase CK2 at the Thr10 residue. It is, however, unknown whether this phosphorylation is stress-responsive or whether the phosphorylation changes its E3 ubiquitin ligase activity. To address these, we made a specific antibody against the phosphor-SAG(Thr10). Transient transfection experiment showed that SAG was phosphorylated at Thr10 which can be significantly inhibited by TBB, a relatively specific inhibitor of protein kinase CK2. To determine whether this SAG phosphorylation is stress-responsive, we defined a chemical-hypoxia condition in which SAG and CK2 were both induced. Under this condition, we failed to detect SAG phosphorylation at Thr10, which was readily detected, however, in the presence of MG132, a proteasome inhibitor, suggesting that the phosphorylated SAG has undergone a rapid degradation. To further define this, we made two SAG mutants, SAG-T10A which abolishes the SAG phosphorylation and SAG-T10E, which mimics the constitutive SAG phosphorylation. The half-life study revealed that indeed, SAG-T10E has a much shorter protein half-life (2 h), as compared to wild-type SAG (10 h). Again, rapid degradation of SAG-T10E in cells can be blocked by MG132. Thus, it appears that CK2-induced SAG phosphorylation at Thr10 regulates its stability through a proteasome-dependent pathway. Immunocytochemistry study showed that SAG as well as its phosphorylation mutants, was mainly localized in nucleus and lightly in cytoplasm. Hypoxia condition did not change their sub-cellular localization. Finally, an in vitro ubiqutination assay showed that SAG mutation at Thr10 did not change its E3 ligase activity when complexed with cullin-1. These studies suggested that CK2 might regulate SAG-SCF E3 ligase activity through modulating SAG's stability, rather than its enzymatic activity directly.
Collapse
Affiliation(s)
- Hongbin He
- Division of Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, 4304 CCGC, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0936, USA
| | | | | | | | | | | |
Collapse
|
173
|
Kominami K, Takagi C, Kurata T, Kitayama A, Nozaki M, Sawasaki T, Kuida K, Endo Y, Manabe N, Ueno N, Sakamaki K. The initiator caspase, caspase-10β, and the BH-3-only molecule, Bid, demonstrate evolutionary conservation inXenopusof their pro-apoptotic activities in the extrinsic and intrinsic pathways. Genes Cells 2006; 11:701-17. [PMID: 16824191 DOI: 10.1111/j.1365-2443.2006.00983.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two major apoptotic signaling pathways have been defined in mammals, the extrinsic pathway, initiated by ligation of death receptors, and the intrinsic pathway, triggered by cytochrome c release from mitochondria. Here, we identified and characterized the Xenopus homologs of caspase-10 (xCaspase-10beta), a novel initiator caspase, and Bid (xBid), a BH3-only molecule of the Bcl-2 family involved in both the extrinsic and intrinsic pathways. Exogenous expression of these molecules induced apoptosis of mammalian cells. By biochemical and cytological analyses, we clarified that xCaspase-10beta and xBid exhibit structural and functional similarities to their mammalian orthologues. We also detected xCaspase-10beta and xBid transcripts during embryogenesis by whole-mount in situ hybridization and RT-PCR analysis. Microinjection of mRNA encoding a protease-defect xCaspase-10beta mutant into embryos resulted in irregular development. Enforced expression of active xBid induced cell death in developing embryos. Using transgenic frogs established to allow monitoring of caspase activation in vivo, we confirmed that this form of cell death is caspase-dependent apoptosis. Thus, we demonstrated that the machinery governing the extrinsic and intrinsic apoptotic pathways are already established in Xenopus embryos. Additionally, we propose that the functions of the initiator caspase and BH3-only molecule are evolutionarily conserved in vertebrates, functioning during embryonic development.
Collapse
Affiliation(s)
- Katsuya Kominami
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Recombinant murine BID protein was used as an in vitro substrate for the CK2 holoenzyme and the catalytic CK2alpha subunit. The results obtained show that BID can only serve as a substrate for the catalytic CK2alpha subunit. Phosphorylation of BID using the CK2 holoenzyme was only possible in the presence of polylysine, supporting the notion that BID behaves similarly to calmodulin. Co-immunoprecipitation of BID and CK2 subunits revealed that BID is preferentially associated with the CK2alpha subunit. Enzyme kinetic analyses yielded a Km value for BID that is a level of magnitude lower than that measured for casein and the synthetic peptide, suggesting more specific and tight binding of BID to CK2alpha. In contrast are the Vmax values observed, with a significantly higher phosphorylation rate measured for casein and the synthetic peptide than for BID. When BID was phosphorylated by polylysine-stimulated CK2 holoenzyme prior to caspase-8 cleavage, the formation of tC-BID was reduced in comparison to treatment with caspase-8 in the absence of protein kinase. Mass spectrometric analysis of BID phosphorylated by CK2alpha before and after cleavage with caspase-8 showed phosphorylation of residues Thr58 and Ser76.
Collapse
Affiliation(s)
- Birgitte B Olsen
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
175
|
Abstract
Individual BCL2 family members couple apoptosis regulation and cell cycle control in unique ways. Antiapoptotic BCL2 and BCL-x(L) are antiproliferative by facilitating G0. BAX is proapoptotic and accelerates S-phase progression. The dual functions in apoptosis and cell cycle are coordinately regulated by the multi-domain BCL2 family members (MCL-1) and suggest that survival is maintained at the expense of proliferation. The role of BH3-only molecules in cell cycle is more variable. BAD antagonizes both the cell cycle and antiapoptotic functions of BCL2 and BCL-x(L) through BH3 binding. BID has biochemically separable functions in apoptosis and S-phase checkpoint, determined by post-translational modification. p53-induced PUMA is known only to have apoptotic function. Inhibition of apoptosis is oncogenic, whereas promotion of cell cycle arrest is tumor suppressive. Paradoxically, selected BCL2 family members can be both oncogenic and tumor suppressive. Which of the dual functions predominates is lineage specific and context dependent.
Collapse
Affiliation(s)
- S Zinkel
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
176
|
Abstract
Liver repopulation by transplanted hepatocytes is a promising approach for many inborn errors of metabolism. In this review, examples of liver repopulation in animals and the implications of these models for clinical cell transplantation will be discussed.
Collapse
Affiliation(s)
- Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
177
|
Abstract
BCL-2 family members are pivotal regulators of the apoptotic process. Mitochondria are a major site-of-action for these proteins. Several prominent alterations occur to mitochondria during apoptosis that seem to be part of the "mitochondrial apoptotic program." The BCL-2 family members are believed to be the major regulators of this program, however their exact mechanism of action still remains a mystery. BID, a pro-apoptotic BCL-2 family member plays an essential role in initiating this program. Recently, we have revealed that in apoptotic cells the activated/truncated form of BID, tBID, interacts with a novel, uncharacterized protein named mitochondrial carrier homolog 2 (Mtch2). Mtch2 is a conserved protein that is similar to members of the mitochondrial carrier protein (MCP) family. This review summarizes the current knowledge regarding BCL-2 family members and the mitochondrial apoptotic program and examines the possible involvement of Mtch2 in this program.
Collapse
Affiliation(s)
- Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
178
|
Yin XM. Bid, a BH3-only multi-functional molecule, is at the cross road of life and death. Gene 2006; 369:7-19. [PMID: 16446060 DOI: 10.1016/j.gene.2005.10.038] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 12/22/2022]
Abstract
Bid, BH3-interacting domain death agonist, was initially cloned based in its ability to interact with both Bcl-2 and Bax. Bid contains only the BH3 domain, which is required for its interaction with the Bcl-2 family proteins and for its pro-death activity. Bid is susceptible to proteolytic cleavage by caspases, calpains, Granzyme B and cathepsins. Bid is important to cell death mediated by these proteases and thus is the sentinel to protease-mediated death signals. Protease-cleaved Bid is able to induce multiple mitochondrial dysfunctions, including the release of the inter-membrane space proteins, cristae reorganization, depolarization, permeability transition and generation of reactive oxygen species. Thus Bid is the molecular linker bridging various peripheral death pathways to the central mitochondria pathway. Recent studies further indicate that Bid may be more than just a killer molecule. Deletion of Bid inhibits carcinogenesis in the liver, although this genetic alteration promotes tumorigenesis in the myeloid cells. This is likely related to the function of Bid to promote cell cycle progression into S phase. Bid could be also involved in the maintenance of genomic stability by engaging at mitosis checkpoint. These novel findings indicate that this BH3-only Bcl-2 family protein has a diverse array of functions that are important to both the life and death of the cell.
Collapse
Affiliation(s)
- Xiao-Ming Yin
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States.
| |
Collapse
|
179
|
Díaz-Gil G, Gómez-Esquer F, Agudo D, Delcán J, Martínez-Arribas F, Rivas C, Schneider J, Palomar MA, Linares R. Characterization of a human Bid homologue protein from Gallus gallus. Gene 2006; 372:26-32. [PMID: 16483731 DOI: 10.1016/j.gene.2005.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 09/30/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Bid protein, a member of the "BH3-only" subgroup of Bcl-2 family, plays a critical role in mammalian apoptosis regulation. In this study, we have cloned the chicken Bid gene, which encodes a 193 amino acid protein and shares 40% homology with human and mouse Bid proteins. Bid sequence comparison emphasises the conservation of both the functional domain BH3 and the proteolytic cleavage sites. An induction of apoptosis by chicken Bid and the cleavage of the protein, after TNFalpha treatment, were also demonstrated. In addition, mRNA Bid expression was detected along all embryo stages and tissues examined, suggesting a role for this protein in the developmental process. This is the first report demonstrating the functionality of a "BH3-only" protein in chicken.
Collapse
Affiliation(s)
- Gema Díaz-Gil
- Departamento de Ciencias de la Salud III, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Ortiz-Ferrón G, Tait SW, Robledo G, de Vries E, Borst J, López-Rivas A. The mitogen-activated protein kinase pathway can inhibit TRAIL-induced apoptosis by prohibiting association of truncated Bid with mitochondria. Cell Death Differ 2006; 13:1857-65. [PMID: 16485030 DOI: 10.1038/sj.cdd.4401875] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Breast cancer cells often show increased activity of the mitogen-activated protein kinase (MAPK) pathway. We report here that this pathway reduces their sensitivity to death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and present the underlying mechanism. Activation of protein kinase C (PKC) inhibited TRAIL-induced apoptosis in a protein synthesis-independent manner. Deliberate activation of MAPK was also inhibitory. In digitonin-permeabilized cells, PKC activation interfered with the capacity of recombinant truncated (t)Bid to release cytochrome c from mitochondria. MAPK activation did not affect TRAIL or tumor necrosis factor (TNF)alpha-induced Bid cleavage. However, it did inhibit translocation of (t)Bid to mitochondria as determined both by subcellular fractionation analysis and confocal microscopy. Steady state tBid mitochondrial localization was prohibited by activation of the MAPK pathway, also when the Bcl-2 homology domain 3 (BH3) domain of tBid was disrupted. We conclude that the MAPK pathway inhibits TRAIL-induced apoptosis in MCF-7 cells by prohibiting anchoring of tBid to the mitochondrial membrane. This anchoring is independent of its interaction with resident Bcl-2 family members.
Collapse
Affiliation(s)
- G Ortiz-Ferrón
- Instituto de Parasitología y Biomedicina, CSIC, Granada, Spain
| | | | | | | | | | | |
Collapse
|
181
|
Fischer U, Stroh C, Schulze-Osthoff K. Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene 2006; 25:152-9. [PMID: 16186808 DOI: 10.1038/sj.onc.1209015] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although caspase-8 has an established role as an initiator of death receptor-mediated apoptosis, the function of its closest homolog, caspase-10, is almost completely unknown. To gain a closer insight into the physiological function of caspase-10, we compared the cleavage of known caspase-8 substrates by both initiator caspases. We demonstrate that caspase-10 and -8 have overlapping cleavage preferences for several substrates such as the kinases RIP and PAK2. Interestingly, in other substrates, such as the Bcl-2 protein Bid, we found additional and distinct cleavage sites for both caspases, which might have important consequences for mitochondrial targeting and propagation of the death signal. Caspase-8 and -10 also caused different interchain cleavage patterns of their enzyme precursors. Together, these results suggest that caspase-8 and -10, despite having overlapping functions, also have selective substrate cleavage specificities and might thereby exert nonredundant roles in apoptosis signaling.
Collapse
Affiliation(s)
- U Fischer
- Institute of Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | |
Collapse
|
182
|
Hanson JC, Bostick MK, Campe CB, Kodali P, Lee G, Yan J, Maher JJ. Transgenic overexpression of interleukin-8 in mouse liver protects against galactosamine/endotoxin toxicity. J Hepatol 2006; 44:359-67. [PMID: 16168518 DOI: 10.1016/j.jhep.2005.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 06/08/2005] [Accepted: 06/08/2005] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIMS CXC chemokines function as survival factors for several types of cells. In this study, we investigated whether CXC chemokines promote survival of liver cells following an apoptotic stimulus in vivo. METHODS Apoptosis was induced in mouse liver by treatment with galactosamine and endotoxin (Gal/ET). The influence of CXC chemokines was investigated by comparing Gal/ET responses in wild-type (WT) mice to those in mice with a transgene encoding the CXC chemokine interleukin-8 (IL-8 TG). RESULTS IL-8 TG mice displayed less apoptosis and better survival after Gal/ET treatment than did WT mice (60% fewer TUNEL-positive cells at 6 h; 36% better survival at 24 h). Gal/ET toxicity was also preventable in WT mice by pre-treatment with IL-8. Notably, IL-8 was not protective against hepatic apoptosis due to anti-Fas or concanavalin A. In Gal/ET-treated mice, IL-8 promoted liver cell survival by interfering with the mitochondrial pathway of apoptosis. Survival was not attributable to activation of NF-kappaB or up-regulation of anti-apoptotic proteins, but coincided instead with activation of Akt and phosphorylation of the pro-apoptotic protein Bad. CONCLUSIONS IL-8 protects liver cells from Gal/ET-mediated apoptosis by signaling through phosphatidylinositol-3 kinase (PI-3K). This is in keeping with the reported mechanism of chemokine-related survival in other tissues.
Collapse
Affiliation(s)
- Jennifer C Hanson
- Liver Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Vondrácek J, Soucek K, Sheard MA, Chramostová K, Andrysík Z, Hofmanová J, Kozubík A. Dimethyl sulfoxide potentiates death receptor-mediated apoptosis in the human myeloid leukemia U937 cell line through enhancement of mitochondrial membrane depolarization. Leuk Res 2006; 30:81-9. [PMID: 15998540 DOI: 10.1016/j.leukres.2005.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 05/24/2005] [Accepted: 05/24/2005] [Indexed: 11/17/2022]
Abstract
Dimethyl sulfoxide (DMSO) is a widely used prototypical chemical inducer of cell differentiation. In the present study, the effects of DMSO on susceptibility of human myeloid leukemia U937 cells towards ligation of distinct death receptors (DRs) were investigated. DMSO sensitized cells towards induction of apoptosis by anti-Fas antibody, tumour necrosis factor-alpha or Apo2 ligand/TNF-related apoptosis-inducing ligand (TRAIL). Apart from increasing Fas levels, DMSO did not affect expression of proteins in death signal transduction, such as Bcl-2 family proteins, FADD, caspase-3 and -8, the inhibitor of apoptosis proteins (IAPs) or cFLIP(L). However, DMSO significantly potentiated mitochondrial membrane depolarization, suggesting that this mechanism might be involved in sensitisation of myeloid cells to DR-mediated apoptosis.
Collapse
Affiliation(s)
- Jan Vondrácek
- Laboratory of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
184
|
Vogel A, Aslan JE, Willenbring H, Klein C, Finegold M, Mount H, Thomas G, Grompe M. Sustained phosphorylation of Bid is a marker for resistance to Fas-induced apoptosis during chronic liver diseases. Gastroenterology 2006; 130:104-19. [PMID: 16401474 PMCID: PMC1424224 DOI: 10.1053/j.gastro.2005.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 09/28/2005] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Increased rates of apoptosis have been reported to play a role in the pathophysiology of many disorders, including liver diseases. Conversely, genetic mutations that result in impairment of programmed cell death have been associated with cancer development. However, apoptosis resistance can also be the result of nongenetic stress adaptation, as seen in the cancer-prone metabolic liver disease hereditary tyrosinemia. To clarify whether stress-induced apoptosis resistance is a general feature of chronic liver diseases, an animal model of chronic cholestasis was examined. METHODS Studies were performed with mice before and 2 weeks following bile duct ligation and with Fah-/- and Fah/p21-/- mice before and after NTBC withdrawal. RESULTS Here we show that bile duct ligation induced profound resistance against Fas monoclonal antibody-mediated hepatocyte death. The apoptosis signaling pathway was blocked downstream of caspase-8 activation and proximal to mitochondrial cytochrome c release. In controls, activation of the Fas receptor resulted in rapid dephosphorylation of Bid and its subsequent cleavage, whereas Bid remained phosphorylated and uncleaved in chronic cholestasis and other models of hepatic apoptosis resistance. CONCLUSIONS We propose a model in which the phosphorylation status of Bid determines the apoptotic threshold of hepatocytes in vivo. Furthermore, resistance to apoptosis in chronic cholestasis may contribute to the long-term risk of cancer in this setting.
Collapse
Key Words
- bdl, bile duct ligation
- disc, death-inducing signaling complex
- egta, ethylene glycol-bis[β-aminoethyl ether]-n,n,n′,n′ -tetraacetic acid
- fadd, fas-associated death domain adaptor protein
- ht-1, hereditary tyrosinemia
- iaps, inhibitors of apoptosis proteins
- mab, monoclonal antibody
- nf-κb, nuclear factor κb
- pp2a, protein phosphatase 2a
- sds-page, sodium dodecyl sulfate/polyacrylamide gel electrophoresis
- tunel, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling
Collapse
Affiliation(s)
- Arndt Vogel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Stöter M, Bamberger AM, Aslan B, Kurth M, Speidel D, Löning T, Frank HG, Kaufmann P, Löhler J, Henne-Bruns D, Deppert W, Knippschild U. Inhibition of casein kinase I delta alters mitotic spindle formation and induces apoptosis in trophoblast cells. Oncogene 2005; 24:7964-75. [PMID: 16027726 DOI: 10.1038/sj.onc.1208941] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 06/02/2005] [Accepted: 06/17/2005] [Indexed: 01/09/2023]
Abstract
The serine/threonine-specific casein kinase I delta (CKIdelta) is ubiquitously expressed in all tissues, is p53 dependently induced in stress situations and plays an important role in various cellular processes. Our immunohistochemical analysis of the human placenta revealed strongest expression of CKIdelta in extravillous trophoblast cells and in choriocarcinomas. Investigation of the functional role of CKIdelta in an extravillous trophoblast hybrid cell line revealed that CKIdelta was constitutively localized at the centrosomes and the mitotic spindle. Inhibition of CKIdelta with the CKI-specific inhibitor IC261 led to structural alterations of the centrosomes, the formation of multipolar spindles, the inhibition of mitosis and, in contrast to other cell lines, the induction of apoptosis. Our findings indicate that CKIdelta plays an important role in the mitotic progression and in the survival of cells of trophoblast origin. Therefore, IC261 could provide a new tool in treating choriocarcinomas.
Collapse
Affiliation(s)
- Martin Stöter
- Department of Visceral and Transplantation Surgery, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE, Thorburn A, Kidd VJ, Slaughter CA, Osborn SL, Winoto A, Tang WJ, Peter ME. Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell 2005; 19:321-32. [PMID: 16061179 DOI: 10.1016/j.molcel.2005.06.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 05/03/2005] [Accepted: 06/24/2005] [Indexed: 01/20/2023]
Abstract
FADD is essential for death receptor (DR)-induced apoptosis. However, it is also critical for cell cycle progression and proliferation, activities that are regulated by phosphorylation of its C-terminal Ser194, which has also been implicated in sensitizing cancer cells to chemotherapeutic drugs and in regulating FADD's intracellular localization. We now demonstrate that casein kinase Ialpha (CKIalpha) phosphorylates FADD at Ser194 both in vitro and in vivo. FADD-CKIalpha association regulates the subcellular localization of FADD, and phosphorylated FADD was found to colocalize with CKIalpha on the spindle poles in metaphase. Inhibition of CKIalpha diminished FADD phosphorylation, prevented the ability of Taxol to arrest cells in mitosis, and blocked mitogen-induced proliferation of mouse splenocytes. In contrast, a low level of cycling splenocytes from mice expressing FADD with a mutated phosphorylation site was insensitive to CKI inhibition. These data suggest that phosphorylation of FADD by CKI is a crucial event during mitosis.
Collapse
Affiliation(s)
- Elizabeth C Alappat
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Sinicrope FA, Penington RC. Sulindac sulfide–induced apoptosis is enhanced by a small-molecule Bcl-2 inhibitor and by TRAIL in human colon cancer cells overexpressing Bcl-2. Mol Cancer Ther 2005; 4:1475-83. [PMID: 16227396 DOI: 10.1158/1535-7163.mct-05-0137] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sulindac is a nonsteroidal anti-inflammatory drug (NSAID) that induces apoptosis in cultured colon cancer cells and in intestinal epithelia in association with its chemopreventive efficacy. Resistance to sulindac is well documented in patients with familial adenomatous polyposis; however, the molecular mechanisms underlying such resistance remain unknown. We determined the effect of ectopic Bcl-2 expression upon sulindac-induced apoptotic signaling in SW480 human colon cancer cells. Sulindac sulfide activated both the caspase-8-dependent and mitochondrial apoptotic pathways. Ectopic Bcl-2 attenuated cytochrome c release and apoptosis induction compared with SW480/neo cells. Coadministration of sulindac sulfide and the small-molecule Bcl-2 inhibitor HA14-1 increased apoptosis induction and enhanced caspase-8 and caspase-9 cleavage, Bax redistribution, and cytochrome c and second mitochondria-derived activator of caspase release. Given that sulindac sulfide activated caspase-8 and increased membrane death receptor (DR4 and DR5) protein levels, we evaluated its combination with the endogenous death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Coadministration of sulindac sulfide and TRAIL cooperatively enhanced apoptotic signaling as effectively as did HA14-1. Together, these data indicate that HA14-1 or TRAIL can enhance sulindac sulfide-induced apoptosis and represent novel strategies for circumventing Bcl-2-mediated apoptosis resistance in human colon cancer cells.
Collapse
Affiliation(s)
- Frank A Sinicrope
- Division of Gastroenterology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | | |
Collapse
|
188
|
Wolff S, Xiao Z, Wittau M, Süssner N, Stöter M, Knippschild U. Interaction of casein kinase 1 delta (CK1 delta) with the light chain LC2 of microtubule associated protein 1A (MAP1A). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:196-206. [PMID: 15961172 DOI: 10.1016/j.bbamcr.2005.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/28/2005] [Accepted: 05/13/2005] [Indexed: 11/25/2022]
Abstract
CK1delta, a member of the casein kinase 1 family of serine/threonine specific kinases, has been shown to be involved in the regulation of microtubule dynamics. We have now identified a 176 aa fragment of the light chain LC2 of MAP1A (termed LC2-P16) specifically interacting with CK1delta. Two CK1delta interacting domains of LC2 were identified, located between aa 2629 and 2753 close to aa 2683 and between aa 2712 and 2805 of LC2. The two regions necessary for the interaction of LC2 with CK1delta have been mapped between aa 76-103 and aa 351-375 of CK1delta. Furthermore, LC2 has been identified as a new substrate of CK1delta. We therefore propose a model in which CK1delta could modulate microtubule dynamics by changing the phosphorylation status of the light chain LC2 of MAP1A.
Collapse
Affiliation(s)
- Sonja Wolff
- Department of Visceral and Transplantation Surgery at the Medical University of Ulm, Chirurgische Universitätsklinik Ulm, Steinhövelstr. 9, 89075 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
189
|
Abstract
MDMX is a homolog of MDM2 that is critical for regulating p53 function during mouse development. MDMX degradation is regulated by MDM2-mediated ubiquitination. Whether there are other mechanisms of MDMX regulation is largely unknown. We found that MDMX binds to the casein kinase 1 alpha isoform (CK1alpha) and is phosphorylated by CK1alpha. Expression of CK1alpha stimulates the ability of MDMX to bind to p53 and inhibit p53 transcriptional function. Regulation of MDMX-p53 interaction requires CK1alpha binding to the central region of MDMX and phosphorylation of MDMX on serine 289. Inhibition of CK1alpha expression by isoform-specific small interfering RNA (siRNA) activates p53 and further enhances p53 activity after ionizing irradiation. CK1alpha siRNA also cooperates with DNA damage to induce apoptosis. These results suggest that CK1alpha is a functionally relevant MDMX-binding protein and plays an important role in regulating p53 activity in the absence or presence of stress.
Collapse
Affiliation(s)
- Lihong Chen
- H. Lee Moffitt Cancer Center, MRC3057A, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
190
|
Abstract
Caspase activation has been frequently viewed as synonymous with apoptotic cell death; however, caspases can also contribute to processes that do not culminate in cell demise. Moreover, inhibition of caspases can have cytoprotective effects. In a number of different models, caspase inhibition does not maintain cellular viability and instead shifts the morphology of death from apoptosis to nonapoptotic pathways. Here, we explore the contribution of caspases to cell death, either as upstream signals or as downstream effectors contributing to apoptotic morphology, as well as alternative strategies for cell death inhibition. Such alternative strategies may either target catabolic hydrolases or be aimed at preventing mitochondrial membrane permeabilization and its upstream triggers.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre National de la Recherche Scientifique, UMR8125, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France.
| | | |
Collapse
|
191
|
Abraham R, Schäfer J, Rothe M, Bange J, Knyazev P, Ullrich A. Identification of MMP-15 as an anti-apoptotic factor in cancer cells. J Biol Chem 2005; 280:34123-32. [PMID: 16093241 DOI: 10.1074/jbc.m508155200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have performed an in vitro selection for an anti-apoptotic phenotype that resembles the selection process that pre-malignant cells undergo in the initial phase of carcinogenesis in vivo. Using the cervical carcinoma cell line HeLa S3 as a model system, the selection procedure yielded cell clones that displayed increased resistance to apoptosis induced by Fas, tumor necrosis factor-related apoptosis-inducing ligand, and serum starvation. Gene expression profiling using gene family focused cDNA arrays revealed numerous genes that are differentially expressed in HeLa S3 and the resistant subclones and therefore are potentially involved in the definition of sensitivity to apoptotic stimuli. From the genes identified in this functional genomics approach we validated the anti-apoptotic activity of the membrane-anchored matrix metalloproteinase 15 (MMP-15) by means of small interfering RNA-mediated knock-down and ectopic expression in parental HeLa S3 cells and, to confirm a more general significance of our findings, in other cancer cell lines. The in vivo relevance of these findings is supported by the overexpression of MMP-15 in human lung adenocarcinoma compared with normal lung. Because MMP-15 is known to promote invasion, our results suggest that this protease connects metastasis and apoptosis resistance by an unknown regulatory mechanism. Our findings therefore strongly suggest that cancer characteristics such as metastatic potential, which are thought to evolve late in cancer progression, could be manifested early on by selection for an anti-apoptotic phenotype.
Collapse
Affiliation(s)
- Reimar Abraham
- Department of Molecular Biology, Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
192
|
Luo S, Vacher C, Davies JE, Rubinsztein DC. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. ACTA ACUST UNITED AC 2005; 169:647-56. [PMID: 15911879 PMCID: PMC2171695 DOI: 10.1083/jcb.200412071] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. Mutant htt toxicity is exposed after htt cleavage by caspases and other proteases release NH(2)-terminal fragments containing the polyQ expansion. Here, we show htt interacts and colocalizes with cdk5 in cellular membrane fractions. Cdk5 phosphorylates htt at Ser434, and this phosphorylation reduces caspase-mediated htt cleavage at residue 513. Reduced mutant htt cleavage resulting from cdk5 phosphorylation attenuated aggregate formation and toxicity in cells expressing the NH(2)-terminal 588 amino acids (htt588) of mutant htt. Cdk5 activity is reduced in the brains of HD transgenic mice compared with controls. This result can be accounted for by the polyQ-expanded htt fragments reducing the interaction between cdk5 and its activator p35. These data predict that the ability of cdk5 phosphorylation to protect against htt cleavage, aggregation, and toxicity is compromised in cells expressing toxic fragments of htt.
Collapse
Affiliation(s)
- Shouqing Luo
- Department of Medical Genetics, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 2XY, England, UK
| | | | | | | |
Collapse
|
193
|
Kamer I, Sarig R, Zaltsman Y, Niv H, Oberkovitz G, Regev L, Haimovich G, Lerenthal Y, Marcellus RC, Gross A. Proapoptotic BID Is an ATM Effector in the DNA-Damage Response. Cell 2005; 122:593-603. [PMID: 16122426 DOI: 10.1016/j.cell.2005.06.014] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 05/03/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
The "BH3-only" proapoptotic BCL-2 family members are sentinels of intracellular damage. Here, we demonstrated that the BH3-only BID protein partially localizes to the nucleus in healthy cells, is important for apoptosis induced by DNA damage, and is phosphorylated following induction of double-strand breaks in DNA. We also found that BID phosphorylation is mediated by the ATM kinase and occurs in mouse BID on two ATM consensus sites. Interestingly, BID-/- cells failed to accumulate in the S phase of the cell cycle following treatment with the topoisomerase II poison etoposide; reintroducing wild-type BID restored accumulation. In contrast, introducing a nonphosphorylatable BID mutant did not restore accumulation in the S phase and resulted in an increase in cellular sensitivity to etoposide-induced apoptosis. These results implicate BID as an ATM effector and raise the possibility that proapoptotic BID may also play a prosurvival role important for S phase arrest.
Collapse
Affiliation(s)
- Iris Kamer
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Yamane K, Kinsella TJ. CK2 inhibits apoptosis and changes its cellular localization following ionizing radiation. Cancer Res 2005; 65:4362-7. [PMID: 15899828 DOI: 10.1158/0008-5472.can-04-3941] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we show that CK2 (casein kinase II, CKII) participates in apoptotic responses following ionizing radiation (IR). Using HeLa human cervical carcinoma cells, we find that transfection of small interfering RNA against the CK2 alpha and/or alpha' catalytic subunits results in enhanced apoptosis following IR damage as measured by flow cytometry techniques, compared with a control small interfering RNA. Within 2 to 6 hours of IR, CK2 alpha partially localizes to perinuclear structures, whereas a marked nuclear localization of alpha' occurs. Treatment with a pan-caspase inhibitor or transfection of ARC (apoptosis repressor with caspase recruitment domain) suppresses the apoptotic response to IR in the CK2-reduced cells, indicating involvement of caspases. Additionally, we find that CK2 alpha and/or alpha' reduction affects cell cycle progression independent of IR damage in this human cell line. However, the G2-M checkpoint following IR is not affected in CK2 alpha- and/or alpha'-reduced cells. Thus, our data suggest that CK2 participates in inhibition of apoptosis and negatively regulates caspase activity following IR damage.
Collapse
Affiliation(s)
- Kazuhiko Yamane
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio 44106-6068, USA
| | | |
Collapse
|
195
|
Yamane K, Kinsella TJ. Casein kinase 2 regulates both apoptosis and the cell cycle following DNA damage induced by 6-thioguanine. Clin Cancer Res 2005; 11:2355-63. [PMID: 15788687 DOI: 10.1158/1078-0432.ccr-04-1734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purine antimetabolite, 6-thioguanine (6-TG), is an effective drug in the management of acute leukemias. In this study, we analyze the mechanisms of apoptosis associated with 6-TG treatment and casein kinase 2 (CK2 or CKII) in human tumor cells. EXPERIMENTAL DESIGN Small interfering RNA and chemical CK2 inhibitors were used to reduce CK2 activity. Control and CK2 activity-reduced cells were cultured with 6-TG and assessed by flow cytometry to measure apoptosis and cell cycle profiles. Additionally, confocal microscopy was used to assess localization of CK2 catalytic units following 6-TG treatment. RESULTS Transfection of small interfering RNA against the CK2 alpha and/or alpha' catalytic subunits results in marked apoptosis of HeLa cells following treatment with 6-TG. Chemical inhibitors of CK2 also induce apoptosis following 6-TG treatment. Apoptosis induced by 6-TG is similarly observed in both mismatch repair-proficient and -deficient HCT116 and HeLa cells. Concomitant treatment with a pan-caspase inhibitor or transfection of apoptosis repressor with caspase recruitment domain markedly suppresses the apoptotic response to DNA damage by 6-TG in the CK2-reduced cells, indicating caspase regulation by CK2. CK2 alpha relocalizes to the endoplasmic reticulum after 6-TG treatment. Additionally, transfection of Cdc2 with a mutation at Ser(39) to Ala, which is the CK2 phosphorylation site, partially inhibits cell cycle progression in G(1) to G(2) phase following 6-TG treatment. CONCLUSION CK2 is essential for apoptosis inhibition following DNA damage induced by 6-TG, controlling caspase activity.
Collapse
Affiliation(s)
- Kazuhiko Yamane
- Department of Radiation Oncology, Case Western Reserve University and University Hospitals of Cleveland, Case Comprehensive Cancer Center, 11100 Euclid Avenue, Cleveland, OH 44106-6068, USA
| | | |
Collapse
|
196
|
Olsten MEK, Litchfield DW. Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem Cell Biol 2005; 82:681-93. [PMID: 15674436 DOI: 10.1139/o04-116] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CK2 is a highly conserved, ubiquitously expressed protein serine/threonine kinase present in all eukaryotes. Circumscribed as having a vast array of substrates located in a number of cellular compartments, CK2 has been implicated in critical cellular processes such as proliferation, apoptosis, differentiation, and transformation. Despite advances in elucidating its substrates and involvement in cellular regulation, its precise mode of regulation remains poorly defined. In this respect, there are currently conflicting views as to whether CK2 is constitutively active or modulated in response to specific stimuli. Perhaps an important consideration in resolving these apparent discrepancies is recognition of the existence of many discrete CK2 subpopulations that are distinguished from one another by localization or association with distinct cellular components. The existence of these subpopulations brings to light the possibility of each population being regulated independently rather than the entire cellular CK2 content being regulated globally. Logically, each local population may then be regulated in a distinct manner to carry out its precise function(s). This review will examine those mechanisms including regulated expression and assembly of CK2 subunits, phosphorylation of CK2, and interactions with small molecules or cellular proteins that could contribute to the local regulation of distinct CK2 populations.
Collapse
Affiliation(s)
- Mary Ellen K Olsten
- Department of Biochemistry, Siebens-Drake Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | | |
Collapse
|
197
|
Izeradjene K, Douglas L, Delaney A, Houghton JA. Casein kinase II (CK2) enhances death-inducing signaling complex (DISC) activity in TRAIL-induced apoptosis in human colon carcinoma cell lines. Oncogene 2005; 24:2050-8. [PMID: 15688023 DOI: 10.1038/sj.onc.1208397] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein kinase casein kinase II (CK2) is increased in response to diverse growth stimuli, as well as being elevated in many human cancers examined. We have demonstrated that CK2 is a key survival factor that protects human colon carcinoma cells from TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. We determined that inhibition of CK2 phosphorylation events by DRB (5,6-dichlorobenzimidazole) resulted in dramatic sensitization of tumor cells to TRAIL-induced apoptosis, in the absence of effects in normal cells. Sensitization was caspase dependent, and independent of regulation via NF-kappaB. Further, inhibition of phosphorylation by CK2 did not modify the expression level of antiapoptotic proteins. Analysis of TRAIL-induced death-inducing signaling complex (DISC) formation demonstrated enhanced formation of the DISC, enhanced cleavage of caspase-8 and cleavage of Bid in the presence of DRB, thereby facilitating the release of proapoptotic factors from the mitochondria with subsequent downregulation of the expression of XIAP and c-IAP1. Further, silencing of CK2alpha in HT29 cells following transfection of CK2alpha shRNA abrogated CK2 kinase activity while simultaneously increasing TRAIL sensitivity. These findings demonstrate that CK2 plays a critical antiapoptotic role by conferring resistance to TRAIL at the level of the DISC.
Collapse
Affiliation(s)
- Kamel Izeradjene
- Division of Molecular Therapeutics, Department of Hematology-Oncology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA.
| | | | | | | |
Collapse
|
198
|
Urbich C, Knau A, Fichtlscherer S, Walter DH, Brühl T, Potente M, Hofmann WK, de Vos S, Zeiher AM, Dimmeler S. FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J 2005; 19:974-6. [PMID: 15824087 DOI: 10.1096/fj.04-2727fje] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to postnatal neovascularization. Risk factors for coronary artery disease reduce the number of EPCs in humans. Since EPC apoptosis might be a potential mechanism to regulate the number of EPCs, we investigated the effects of oxidative stress and HMG-CoA-reductase inhibitors (statins) on EPC apoptosis. Atorvastatin, mevastatin, or VEGF prevented EPC apoptosis induced by H2O2. The antiapoptotic effect was reversed by inhibition of the PI3K/Akt pathway. Forkhead transcription factors (FOXO1, FOXO3a, FOXO4) exert proapoptotic effects and are phosphorylated and, thereby, inactivated by Akt. Therefore, we elucidated the involvement of forkhead transcription factors. Atorvastatin induced the phosphorylation of the predominant forkhead factor FOXO4 in EPCs. In addition, atorvastatin reduced the expression of the proapoptotic forkhead-regulated protein Bim in a PI3K-dependent manner. Consistently, overexpression of FOXO4 activated the Bim promoter as determined by reporter gene expression and stimulated the expression of Bim, resulting in an increased EPC apoptosis. Statins failed to prevent EPC apoptosis induced by overexpression of Bim or nonphosphorylatable FOXO4, suggesting that the protective effects of statins depend on this pathway. In summary, our results show that FOXO-dependent expression of Bim plays a pivotal role for EPC apoptosis. Statins reduce oxidative stress-induced EPC apoptosis, inactivate FOXO4, and down-regulate Bim.
Collapse
Affiliation(s)
- Carmen Urbich
- Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Green MML, Hutchison GJ, Valentine HR, Fitzmaurice RJ, Davidson SE, Hunter RD, Dive C, West CML, Stratford IJ. Expression of the proapoptotic protein Bid is an adverse prognostic factor for radiotherapy outcome in carcinoma of the cervix. Br J Cancer 2005; 92:449-58. [PMID: 15685241 PMCID: PMC2362081 DOI: 10.1038/sj.bjc.6602344] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Bcl-2 family of apoptotic regulators is thought to play an essential role in cancer development and influence the sensitivity of tumour cells to radiotherapy. Bid is an abundantly expressed Bcl-2 family protein playing a central role in various pathways of apoptosis by integrating and converging signals at the mitochondria. The relevance of apoptotic modulation by Bcl-2 and related proteins in tumour development and radiation response for human tumours remains undefined. Therefore, a study was made regarding the expression of Bid in patients with locally advanced cervix carcinoma who received radiotherapy. Bid expression was assessed using immunohistochemistry in pretreatment archival biopsies from 98 patients. The data were correlated with clinicopathologic characteristics and treatment outcome. Pretreatment tumour radiosensitivity data were available for 60 patients. Strong Bid expression was associated with a patient age less than the median of 52 years (P=0.034) and poor metastasis-free survival. In multivariate analysis, after allowing for stage, Bid expression was a significant prognostic factor for both disease-specific and metastasis-free survival (P=0.026). It is concluded that strong tumour Bid expression is associated with poor outcome following radiotherapy regardless of intrinsic tumour cell radiosensitivity, and is adverse prognostic for disease-specific and metastasis-free survival in younger patients.
Collapse
Affiliation(s)
- M M L Green
- Experimental Oncology Group, School of Pharmacy and Pharmaceutical Sciences, Coupland III, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - G J Hutchison
- Academic Department of Radiation Oncology, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - H R Valentine
- Academic Department of Radiation Oncology, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - R J Fitzmaurice
- Department of Histopathology, Clinical Sciences, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK
| | - S E Davidson
- Department of Clinical Oncology, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - R D Hunter
- Department of Clinical Oncology, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - C Dive
- Experimental Oncology Group, School of Pharmacy and Pharmaceutical Sciences, Coupland III, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Cancer Research UK Cellular and Molecular Pharmacology Group, Paterson Institute of Cancer Research, Wilmslow Road, Manchester M20 4BX, UK
| | - C M L West
- Academic Department of Radiation Oncology, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - I J Stratford
- Experimental Oncology Group, School of Pharmacy and Pharmaceutical Sciences, Coupland III, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Experimental Oncology Group, School of Pharmacy and Pharmaceutical Sciences, Coupland III, University of Manchester, Oxford Road, Manchester M13 9PL, UK. E-mail:
| |
Collapse
|
200
|
Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 2005; 24:717-29. [PMID: 15692567 PMCID: PMC549619 DOI: 10.1038/sj.emboj.7600559] [Citation(s) in RCA: 462] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 12/15/2004] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria form contacts that support communication between these two organelles, including synthesis and transfer of lipids, and the exchange of calcium, which regulates ER chaperones, mitochondrial ATP production, and apoptosis. Despite the fundamental roles for ER-mitochondria contacts, little is known about the molecules that regulate them. Here we report the identification of a multifunctional sorting protein, PACS-2, that integrates ER-mitochondria communication, ER homeostasis, and apoptosis. PACS-2 controls the apposition of mitochondria with the ER, as depletion of PACS-2 causes BAP31-dependent mitochondria fragmentation and uncoupling from the ER. PACS-2 also controls formation of ER lipid-synthesizing centers found on mitochondria-associated membranes and ER homeostasis. However, in response to apoptotic inducers, PACS-2 translocates Bid to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated Bid, the release of cytochrome c, and the activation of caspase-3, thereby causing cell death. Together, our results identify PACS-2 as a novel sorting protein that links the ER-mitochondria axis to ER homeostasis and the control of cell fate, and provide new insights into Bid action.
Collapse
Affiliation(s)
| | | | | | | | - Lei Wan
- Vollum Institute, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|