151
|
Yang H, Lin X, Lu J, Zhao X, Wu D, Kim H, Su L, Cai L. Effect of shape on the transport and retention of nanoplastics in saturated quartz sand. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135766. [PMID: 39244984 DOI: 10.1016/j.jhazmat.2024.135766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Nanoplastics (NPs) pose great challenges to soil-groundwater systems. This study investigated the transport and retention of self-synthesized 0.5-μm polystyrene NPs with different shapes using column experiments. The regular NPs were with spherical shapes, while the irregular NPs were with toroid-like shapes. The toroid-like shapes were the irregular shapes (with low aspect ratio) which have not been studied yet. The explorations were carried out in both 5-25 mM NaNO3 and 1-10 mM Ca(NO3)2 solutions. Both breakthrough curves (BTCs) and retained profiles (RPs) were monitored. Our findings uncovered a clear disparity in the transport of irregular and regular NPs, with irregular particles exhibiting lower transport ability compared to the regular ones. For example, the average breakthrough plateaus of the regular and irregular NPs were ∼0.9 and ∼0.5, respectively, in 10 mM NaNO3. In-depth theoretical analysis indicated that the lower XDLVO interaction energy barrier between the irregular NPs and quartz sand was one factor, and the greater margination of irregular NPs on quartz sand, as verified by the numerical simulation, was another factor leading to the decreased transport and increased retention of the irregular NPs. The obtained results highlighted the significance of considering particle shape in future modelling and predicting the fate of NPs in real environmental circumstances.
Collapse
Affiliation(s)
- Haiyan Yang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xunyang Lin
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jizhe Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoning Zhao
- Beijing Institute of Metrology, Beijing 100029, China
| | - Dan Wu
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
152
|
Zhao S, Zhang Q, Huang Q, Zhang C, Li H, Siddique KHM. Polyvinyl chloride microplastics disseminate antibiotic resistance genes in Chinese soil: A metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135727. [PMID: 39244980 DOI: 10.1016/j.jhazmat.2024.135727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The widespread prevalence of microplastics (MPs) in the environment poses concerns as they are vectors of antibiotic resistance genes (ARGs). The relationships between antibiotic resistomes and MPs remain unexplored in soil which was considered as the reservoirs of MPs and ARGs. This study investigated the effects of polyvinyl chloride (PVC) MPs on soil bacterial communities and ARG abundance which soil samples sourced from 20 provinces across China. We found that PVC significantly influences soil bacterial community structure and ARG abundance. Structural equation modeling revealed that PVC alters soil characteristics, ultimately affecting soil bacterial communities, including ARG-containing bacterial hosts, and the relative abundance of ARGs. This study enhances our understanding of how MPs influence the proliferation and hosts of ARGs within diverse soil environments, offering crucial insights for future strategies in plastic management and disposal.
Collapse
Affiliation(s)
- Shuwen Zhao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianru Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qilan Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuchen Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
153
|
Zhang X, Zhang XX, Ma L. New Horizons in Micro/Nanoplastic-Induced Oxidative Stress: Overlooked Free Radical Contributions and Microbial Metabolic Dysregulations in Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39499580 DOI: 10.1021/acs.est.4c08865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Excessive production of reactive oxygen species (ROS) induced by micro/nanoplastics (MPs/NPs) is highly toxic to microbes. However, the mechanisms underlying ROS generation and metabolic regulation within anaerobic guilds remain poorly understood. In this study, we investigated the effects of environmentally relevant levels of polypropylene (PP)-MPs/NPs on oxidative stress and microbial ecology during anaerobic digestion (AD). Electron paramagnetic resonance spectroscopy revealed that PP-MPs/NPs elevated the concentrations of environmentally persistent free radicals (EPFRs) and derived hydroxyl radicals (•OH). EPFRs were identified as the primary contributors to •OH generation, as evidenced by a high Spearman correlation coefficient (r = 0.884, p < 0.001) and free radical-quenching studies. The formation of •OH enhanced ROS production by 86.2-100.9%, resulting in decreased cellular viability and methane production (by 37.5-50.5%) at 100 mg/g TS PP-MPs/NPs. Genome-centric metagenomic and metatranscriptomic analyses suggested that PP-MPs/NPs induced the reassembly of community structures, re-evolution of functional traits, and remodeling of interspecies interactions. Specifically, PP-MPs/NPs induced a shift in methanogen consortia from hydrogenotrophic Methanofollis sp. to acetoclastic and hydrogenotrophic Methanothrix soehngenii, primarily because of the latter's diverse ingestion patterns, electron bifurcation complexes, and ROS-scavenging abilities. Downregulation of genes associated with antioxidative defense systems (i.e., sodN, katA, and osmC) and ROS-driven redox signal transduction pathways (c-di-AMP and phosphorylation signaling pathways) provided insights into the mechanisms underlying ROS-induced microbial metabolic dysregulation. Our findings enhance the understanding of microbial ecological and metabolic traits under MPs/NPs stressors, facilitating the control of MPs/NPs toxicity and the stabilization of AD processes.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, P. R. China
| |
Collapse
|
154
|
Xu H, Dong C, Yu Z, Hu Z, Yu J, Ma D, Yao W, Qi X, Ozaki Y, Xie Y. First identification of microplastics in human uterine fibroids and myometrium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124632. [PMID: 39074687 DOI: 10.1016/j.envpol.2024.124632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
Microplastics (MPs) pollution has received widespread attention in recent years as the use of plastics continues to increase. However, currently no studies have reported the finding of MPs in human uterine fibroids (UFs) and myometrium tissues. In this study, UFs tissues (n = 48) and myometrium tissues (n = 40) from 48 patients and myometrium tissues (n = 8) from healthy population were collected. Following digestion of the samples by 10% KOH and 30% H2O2, MPs were analyzed qualitatively and quantitatively using Raman spectroscopy. The 16 UFs and myometrium tissue samples contained an average of 1.5 ± 1.17 MP particles per gram of tissue. Notably, the abundance of MPs in the UFs tissues (2.13 ± 1.17 particles per gram) was higher than in the myometrium tissues (0.88 ± 0.78 particles per gram). In the same cohort of individuals with UFs, the quantities of MPs detected in the affected UFs tissue (2.63 ± 1.77 particles per gram) exceeded those detected in healthy tissue (1.08 ± 0.93 particles per gram), particularly in elderly patients. A correlation was observed between elevated MP levels and frequent consumption of takeout meals and bottled water among patients, indicating that MP ingestion through food sources might have contributed to the increased abundance and variety of MPs within UFs. Furthermore, UFs increased in size with higher concentrations of MPs, which may have been related to elevated levels of MPs-induced hormones. This study provides new insights into the assessment of the relationship between exposure to MPs and human disease risk.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Chunlin Dong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ding Ma
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Xiaowei Qi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
155
|
Wu Y, Zhu J, Sun Y, Wang S, Wang J, Zhang X, Song J, Wang R, Chen C, Zou J. Effects of the co-exposure of microplastic/nanoplastic and heavy metal on plants: Using CiteSpace, meta-analysis, and machine learning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117237. [PMID: 39447297 DOI: 10.1016/j.ecoenv.2024.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Micro/nanoplastics (MNPs) and heavy metals (HMs) coexist worldwide. Existing studies have reported different or even contradictory toxic effects of co-exposure to MNPs and HMs on plants, which may be related to various influencing factors. In this study, existing publications were searched and analyzed using CiteSpace, meta-analysis, and machine learning. CiteSpace analysis showed that this research field was still in the nascent stage, and hotspots in this field included accumulation, cadmium (Cd), growth, and combined toxicity. Meta-analysis revealed the differential association of seven influencing factors (MNP size, pollutant treatment duration, cultivation media, plant species, MNP type, HM concentration, and MNP concentration) and 8 physiological parameters receiving the most attention. Co-exposure of the two contaminants had stronger toxic effects than HM treatment alone, and phytotoxicity was generally enhanced with increasing concentrations and longer exposure durations, especially when using nanoparticles, hydroponic medium, dicotyledons producing stronger toxic effects than microplastics, soil-based medium, and monocotyledons. Dry and fresh weight analysis showed that co-exposure to MNPs and Cd resulted in significant phytotoxicity in all classifications. Concerning the MNP types, polyolefins partially attenuated plant toxicity, but both modified polystyrene (PS) and biodegradable polymers exacerbated joint phytotoxicity. Finally, machine learning was used to fit and predict plant HM concentrations, showing five classifications with an accuracy over 80 %, implying that the polynomial regression model could be used to predict HM content in plants under complex pollution conditions. Overall, this study identifies current knowledge gaps and provides guidance for future research.
Collapse
Affiliation(s)
- Yuyang Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yue Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China; State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Siyuan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jun Wang
- Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China
| | - Xuanyu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jiayi Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ruoxi Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Chunyuan Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jinhua Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
156
|
Liu H, Li H, Liu Y, Zhao H, Peng R. Toxic effects of microplastic and nanoplastic on the reproduction of teleost fish in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62530-62548. [PMID: 39467868 DOI: 10.1007/s11356-024-35434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Microplastics and nanoplastics are widely present in aquatic environments and attract significant scholarly attention due to their toxicity, persistence, and ability to cross biological barriers, which pose substantial risks to various fish species. Microplastics and nanoplastics can enter fish through their digestive tract, gills and skin, causing oxidative damage to the body and adversely affecting their reproductive system. Given that fish constitute a crucial source of high-quality protein for humans, it is necessary to study the impact of microplastics on fish reproduction in order to assess the impact of pollutants on ecology, biodiversity conservation, environmental sustainability, and endocrine disruption. This review explores the reproductive consequences of microplastics and nanoplastics in fish, examining aspects such as fecundity, abnormal offspring, circadian rhythm, gonad index, spermatocyte development, oocyte development, sperm quality, ovarian development, and changes at the molecular and cellular level. These investigations hold significant importance in environmental toxicology.
Collapse
Affiliation(s)
- Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
157
|
Hu M, Ma H, Xing B. Identification of the degree of aging and adsorption behaviors of the naturally aged microplastics. CHEMOSPHERE 2024; 367:143585. [PMID: 39433096 DOI: 10.1016/j.chemosphere.2024.143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Microplastics (MPs) inevitably experienced various aging processes in nature may exhibit varied and complex interfacial interactions with adjacent species. Therefore, clarifying the possible interfacial interactions between naturally aged MPs and organic pollutants is of great significance to assess the actual behaviors of MPs in the environment. Here several plastic packaging materials after use were employed as the raw materials and representatives of naturally aged MPs, the alteration of surface characteristics, especially the degree of aging and the adsorption properties of MPs for anionic and cationic dyes were investigated. The types and the degree of aging of MPs were identified, and the variation of oxygen-containing functional groups (carbonyl, hydroxyl, and ester groups), the hydrophilicity and surface charge character were characterized. The fitting results of kinetics and isotherm models indicated that the adsorption was mainly multi-layer on heterogeneous surfaces, with hydrogen bonding, electrostatic attraction, polar interaction, and hydrophobic partitioning possibly involving. The hydrogen bond interaction was further confirmed by FTIR spectra. The increased temperature promoted the adsorption of cationic dyes on MPs, and the increased salinity of the solution enhanced the uptake of most of the tested dyes by MPs. This research deepened the understanding on the aging degree of MPs and their interfacial interactions with hydrophilic pollutants, and provided vital information for MPs as pollutant carriers.
Collapse
Affiliation(s)
- Miao Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
158
|
LaRue RJ, Koo S, Warren A, McKay YG, Latulippe DR. A strategy for quantifying microplastic particles in membrane filtration processes using flow cytometry. CHEMOSPHERE 2024; 368:143613. [PMID: 39454767 DOI: 10.1016/j.chemosphere.2024.143613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Microplastic (MP) pollution is ubiquitous in the aquatic environment, with significant quantities of MPs originating from municipal wastewater treatment plants. Efforts to evaluate and implement MP removal processes are underway, with membrane technologies often recommended as an "ideal" solution. A key challenge in evaluating these technologies involves efficiently quantifying MP concentrations in samples. Here, flow cytometry (FC) is demonstrated as an effective technique to obtain concentration measurements of plastic microbeads (MBs; 1-5 μm) suspended in water with/without added humic acid. Regardless of solution conditions, MB concentrations were easily quantified via FC. Subsequently, two microfiltration membranes were challenged to these suspensions. As measured via FC, the 0.45 μm membrane demonstrated effective MB rejection (>99%) whereas the 5 μm membrane exhibited a broad range of rejections (40% to >95%) depending on solution conditions and filtration time. Finally, a model was formulated utilizing FC forward light scattering intensity measurements to estimate MB sizes in samples. Using the model, a 33% reduction in median MB size, on average, was noted across the 5 μm membrane when filtering MBs suspended in humic acid solution, affirming a preferential permeation of smaller particles. Overall, this study advances MP quantification techniques towards validating removal processes.
Collapse
Affiliation(s)
- Ryan J LaRue
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| | - Samuel Koo
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| | - Ashleigh Warren
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| | - Yves G McKay
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| | - David R Latulippe
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| |
Collapse
|
159
|
Ma M, Han R, Han R, Xu D, Li F. Binding between Cu 2+/Zn 2+ and aged polyethylene and polyethylene terephthalate microplastics in swine wastewaters: Adsorption behavior, and mechanism insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124685. [PMID: 39111531 DOI: 10.1016/j.envpol.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microplastics (MPs) have aroused growing environmental concerns due to their biotoxicity and vital roles in accelerating the spread of toxic elements. Illuminating the interactions between MPs and heavy metals (HMs) is crucial for understanding the transport and fate of HM-loaded MPs in specific environmentally relevant scenarios. Herein, the adsorption of copper (Cu2+) and zinc (Zn2+) ions over polyethylene (PE) and polyethylene terephthalate (PET) particulates before and after heat persulfate oxidation (HPO) treatment was comprehensively evaluated in simulated and real swine wastewaters. The effects of intrinsic properties (i.e., degree of weathering, size, type) of MPs and environmental factors (i.e., pH, ionic strength, and co-occurring species) on adsorption were investigated thoroughly. It was observed that HPO treatment expedites the fragmentation of pristine MPs, and renders MPs with a variety of oxygen-rich functional groups, which are likely to act as new active sites for binding both HMs. The adsorption of both HMs is pH- and ionic strength-dependent at a pH of 4-6. Co-occurring species such as humic acid (HA) and tetracycline (TC) appear to enhance the affinity of both aged MPs for Cu2+ and Zn2+ ions via bridging complexation. However, co-occurring nutrient species (e.g., phosphate and ammonia) demonstrate different impacts on the adsorption, improving uptake of Cu2+ by precipitation while lowering affinity for Zn2+ owing to the formation of soluble zinc-ammonia complex. Spectroscopic analysis indicates that the dominant adsorption mechanism mainly involves electrostatic interactions and surface complexation. These findings provided fundamental insights into the interactions between aged MPs and HMs in swine wastewaters and might be extended to other nutrient-rich wastewaters.
Collapse
Affiliation(s)
- Mengyu Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ruxin Han
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ruoqi Han
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Defu Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Feihu Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China; NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
160
|
Liu X, Yu Y, Yu H, Sarkar B, Zhang Y, Yang Y, Qin S. Nonbiodegradable microplastic types determine the diversity and structure of soil microbial communities: A meta-analysis. ENVIRONMENTAL RESEARCH 2024; 260:119663. [PMID: 39043354 DOI: 10.1016/j.envres.2024.119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
As an emerging contaminant, microplastics (MPs) have received considerable attention for their potential threat to the soil environment. However, the response of soil bacterial and fungal communities to MPs exposure remains unclear. In this study, we conducted a global meta-analysis of 95 publications and 2317 observations to assess the effects of nonbiodegradable MP properties and exposure conditions on soil microbial biomass, alpha and beta diversity, and community structure. Our results indicate that MPs increased (p < 0.05) soil active microbial biomass by 42%, with the effect varying with MPs type, exposure concentration, exposure time and soil pH. MPs concentration was identified as the most important factor controlling the response of soil microbial biomass to MPs. MPs addition decreased (p < 0.05) the soil bacterial Shannon and Chao1 indices by 2% and 3%, respectively, but had limited effects (p > 0.05) on soil fungal Shannon and Chao1 indices. The type of MPs and exposure time determined the effects of MPs on bacterial Shannon and Chao1 indices, while the type of MPs and soil pH controlled the response ratios of fungal Shannon and Chao1 indices to MPs. Specifically, soil organic carbon (SOC) was the major factor regulating the response ratio of bacterial alpha diversity index to MPs. The presence of MPs did not affect soil bacterial community structure and beta diversity. Our results highlight that MPs reduced bacterial diversity and richness but increased the soil active microbial biomass, suggesting that MPs could disrupt biogeochemical cycles by promoting the growth of specific microorganisms.
Collapse
Affiliation(s)
- Xinhui Liu
- Hebei Provincial Key Laboratory of Soil Ecology, Hebei Provincial Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Haiyang Yu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shuping Qin
- Hebei Provincial Key Laboratory of Soil Ecology, Hebei Provincial Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China.
| |
Collapse
|
161
|
Ojha PC, Satpathy SS, Ojha R, Dash J, Pradhan D. Insight into the removal of nanoplastics and microplastics by physical, chemical, and biological techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1055. [PMID: 39404908 DOI: 10.1007/s10661-024-13247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
Plastic pollutants create health crises like physical damage to tissues, upset reproductive processes, altered behaviour, oxidative stress, neurological disorders, DNA damage, gene expression, and disrupt physiological functions, as the biosphere accumulates them inadvertently through the food web. Water resources have become the generic host of plastic wastes irrespective of their particle size, resulting in widespread distribution in aquatic environments. The pre-treatment step of the traditional water treatment process can easily remove coarse-sized plastic wastes. However, the fine plastic particles, with sizes ranging from nanometres to millimetres, are indifferent to the traditional water treatment. To address the escalating problems, the upgradation of different traditional physical, chemical, and biological remediation techniques offers a promising avenue for tackling tiny plastic particles from the water environment. Further, new techniques and hybrid incorporations to the existing water treatment techniques have been explored, specifically removing tiny plastic debris. A detailed understanding of the sources, fate, and impact of plastic wastes in the environment, as well as an evaluation of the above treatment techniques and their limitations and challenges, can only show the way for their upgradation, hybridization, and development of new techniques. This review paper provides a comprehensive overview of the current knowledge and techniques for the remediation of nanoplastics and microplastics.
Collapse
Affiliation(s)
- Priti Chhanda Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Swati Sucharita Satpathy
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Ritesh Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Jyotilagna Dash
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Debabrata Pradhan
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India.
| |
Collapse
|
162
|
Xu J, Zhang Y, Wen K, Wang X, Huang L, Yang Z, Zheng G, Huang Y, Zhang J. Enhanced flotation removal of polystyrene nanoplastics by chitosan modification: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174254. [PMID: 38925388 DOI: 10.1016/j.scitotenv.2024.174254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Nanoplastics are difficult to remove from water using conventional flotation processes due to their stability and resistance to biodegradation. Here, polystyrene nanoplastics (PSNPs) were selected as the object of study. In addition, chitosan (CTS), an environmentally friendly natural cationic polymer, was selected to modify the air flotation process to improve the separation of PSNPs using air flotation. Adding chitosan effectively enhanced the removal of PSNPs using air flotation from 3.1 % to 96.7 %. The residual concentration decreased from 9.69 mg/L to 0.33 mg/L. Removal of PSNPs by CTS-modified air flotation was maintained at 92.8 % even when the air flotation time was significantly shortened. The zeta potential alterations demonstrated robust electrostatic attraction within the CTS-modified air flotation process. The contact angle measurements indicated that incorporating CTS could enhance the hydrophobic interaction between bubbles and PSNPs. PSNPs particles around 100 nm agglomerated to form floating flocs with a particle size of more than 4500 nm. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) images confirmed the presence of tight adhesion between PSNPs and CTS, indicating the presence of bridging adsorption during the process. The major PSNPs removal mechanisms included electrostatic attraction, enhancement of hydrophobicity, and bridging adsorption. Increasing the aeration volume could improve the removal rate, but this improvement was finite. Weakly acidic and low ionic strength conditions favored PSNPs removal. The CTS-modified air flotation process showed great potential for PSNPs removal from real water bodies.
Collapse
Affiliation(s)
- Jinhui Xu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Yanting Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Kecheng Wen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xinyu Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Lupeng Huang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Guozhong Zheng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuan Huang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Ind Technol Res Inst, Sichuan University, Yibin 644000, China.
| |
Collapse
|
163
|
Preda OT, Vlasceanu AM, Andreescu CV, Tsatsakis A, Mezhuev Y, Negrei C, Baconi DL. Health Implications of Widespread Micro- and Nanoplastic Exposure: Environmental Prevalence, Mechanisms, and Biological Impact on Humans. TOXICS 2024; 12:730. [PMID: 39453150 PMCID: PMC11511527 DOI: 10.3390/toxics12100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
The increasing awareness of the potential health risks associated with microplastics' (MPs) and nanoplastics' (NPs) presence in the environment has led to a significant rise in research focused on these particles over the past few years. This review focuses on the research on MPs'/NPs' presence and spread, pathways of exposure, toxicological effects on human health and legal framework related to MP/NP challenges. Several research projects have aimed to assess their potential harm to human health, focusing on different systems and organs. After exposure (independent of the pathway), these hazards reach the blood stream and concentrate in different organs. Further, they are responsible for harmful changes, having an immediate effect (pain, inflammation, or hormone imbalance) or lead to a long-term disease (e.g., infertility, chronic obstructive pulmonary disease, or cancer). Toxicological effects have been noticed at high concentrations of MPs, specifically polystyrene, the most widespread typical MP, but only short-term effects have been mostly studied. Significant quantities of consumed MPs have been discovered to have diverse detrimental effects, posing a threat to human welfare. The exact concentrations of microplastics that are inhaled and swallowed and then build up in the human body are still not known. Further investigation is necessary to evaluate the impact of MP/NP contamination at minimal concentrations and for prolonged durations.
Collapse
Affiliation(s)
- Olivia-Teodora Preda
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania; (O.-T.P.); (D.L.B.)
| | - Ana-Maria Vlasceanu
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania; (O.-T.P.); (D.L.B.)
| | - Cristina Veronica Andreescu
- Department of Foreign Languages, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania;
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Division of Morphology, Medical School, University of Crete, Voutes Campus, 71003 Heraklion, Greece;
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047 Moscow, Russia;
- Laboratory of Heterochain Polymers, A.N. Nesmeyanov Instituite of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119334 Moscow, Russia
| | - Carolina Negrei
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania; (O.-T.P.); (D.L.B.)
| | - Daniela Luiza Baconi
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 20021 Bucharest, Romania; (O.-T.P.); (D.L.B.)
| |
Collapse
|
164
|
Zhou D, Cai Y, Yang Z. Transport of polystyrene microplastics in bare and iron oxide-coated quartz sand: Effects of ionic strength, humic acid, and co-existing graphene oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174270. [PMID: 38925391 DOI: 10.1016/j.scitotenv.2024.174270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
This research explored the effects of widely utilized nanomaterial graphene oxide (GO) and organic matter humic acid (HA) on the transport of microplastics under different ionic solution strengths in bare sand and iron oxide-coated sand. The results found transport of polystyrene microplastics (PS) did not respond to the presence of HA in sand that contains large amounts of iron oxide. Compared to bare quartz sand, ionic strength had little effect: <20 % of PS passed through Fe sand columns. There was a significant promotion of PS transport in the presence of GO, however, which can be attributed to the increased surface electronegativity of PS and steric hindrance. Moreover, GO combined with HA significantly promoted the transport of PS in the Fe sand, and transport further increased when the concentration of HA increased from 5 to 10 mg/L. Interestingly, the degree of this increase exactly corresponded to the change in the surface charge of the microplastics, demonstrating that electrostatic interaction dominated the PS transport. Further results indicated that co-existing pollutants had significant impacts on the transport of microplastics under various conditions by altering the surface characteristics of the plastic particles and the spatial steric hindrance within porous media. This research will offer insights into predicting the transport and fate of microplastics in complex environments.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
165
|
Lee JY, Chia RW, Veerasingam S, Uddin S, Jeon WH, Moon HS, Cha J, Lee J. A comprehensive review of urban microplastic pollution sources, environment and human health impacts, and regulatory efforts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174297. [PMID: 38945237 DOI: 10.1016/j.scitotenv.2024.174297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Microplastic (MP) pollution in urban environments is a pervasive and complex problem with significant environmental and human health implications. Although studies have been conducted on MP pollution in urban environments, there are still research gaps in understanding the exact sources, regulation, and impact of urban MP on the environment and public health. Therefore, the goal of this study is to provide a comprehensive overview of the complex pathways, harmful effects, and regulatory efforts of urban MP pollution. It discusses the research challenges and suggests future directions for addressing MPs related to environmental issues in urban settings. In this study, original research papers published from 2010 to 2024 across ten database categories, including PubMed, Google Scholar, Scopus, and Web of Science, were selected and reviewed to improve our understanding of urban MP pollution. The analysis revealed multifaceted sources of MPs, including surface runoff, wastewater discharge, atmospheric deposition, and biological interactions, which contribute to the contamination of aquatic and terrestrial ecosystems. MPs pose a threat to marine and terrestrial life, freshwater organisms, soil health, plant communities, and human health through ingestion, inhalation, and dermal exposure. Current regulatory measures for MP pollution include improved waste management, upgraded wastewater treatment, stormwater management, product innovation, public awareness campaigns, and community engagement. Despite these regulatory measures, several challenges such as; the absence of standardized MPs testing methods, MPs enter into the environment through a multitude of sources and pathways, countries struggle in balancing trade interests with environmental concerns have hindered effective policy implementation and enforcement. Addressing MP pollution in urban environments is essential for preserving ecosystems, safeguarding public health, and advancing sustainable development. Interdisciplinary collaboration, innovative research, stringent regulations, and public participation are vital for mitigating this critical issue and ensuring a cleaner and healthier future for urban environments and the planet.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - S Veerasingam
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Saif Uddin
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Woo-Hyun Jeon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Hee Sun Moon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| | - Jejung Lee
- School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| |
Collapse
|
166
|
Ockenden A, Mitrano DM, Kah M, Tremblay LA, Simon KS. Predator traits influence uptake and trophic transfer of nanoplastics in aquatic systems-a mechanistic study. MICROPLASTICS AND NANOPLASTICS 2024; 4:20. [PMID: 39416765 PMCID: PMC11481666 DOI: 10.1186/s43591-024-00096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Predicting the response of aquatic species to environmental contaminants is challenging, in part because of the diverse biological traits within communities that influence their uptake and transfer of contaminants. Nanoplastics are a contaminant of growing concern, and previous research has documented their uptake and transfer in aquatic food webs. Employing an established method of nanoplastic tracking using metal-doped plastics, we studied the influence of biological traits on the uptake of nanoplastic from water and diet in freshwater predators through two exposure assays. We focused on backswimmers (Anisops wakefieldi) and damselfly larvae (Xanthocnemis zealandica) - two freshwater macroinvertebrates with contrasting physiological and morphological traits related to feeding and respiration strategies. Our findings reveal striking differences in nanoplastic transfer dynamics: damselfly larvae accumulated nanoplastics from water and diet and then efficiently eliminated 92% of nanoplastic after five days of depuration. In contrast, backswimmers did not accumulate nanoplastic from either source. Differences in nanoplastic transfer dynamics may be explained by the contrasting physiological and morphological traits of these organisms. Overall, our results highlight the importance and potential of considering biological traits in predicting transfer of nanoplastics through aquatic food webs. Supplementary Information The online version contains supplementary material available at 10.1186/s43591-024-00096-4.
Collapse
Affiliation(s)
- Amy Ockenden
- School of Environment, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland CBD, Auckland, 1010 New Zealand
| | - Denise M. Mitrano
- ETH Zurich, Department of Environmental Systems Science, Universitatstrasse 16, Zurich, 8092 Switzerland
| | - Melanie Kah
- School of Environment, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland CBD, Auckland, 1010 New Zealand
| | - Louis A. Tremblay
- School of Biological Sciences, The University of Auckland, Building 110, 3A Symonds Street, Auckland CBD, Auckland, 1010 New Zealand
- Manaaki Whenua-Landcare Research, Lincoln, 7640 New Zealand
| | - Kevin S. Simon
- School of Environment, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland CBD, Auckland, 1010 New Zealand
| |
Collapse
|
167
|
Ma T, Liu N, Li Y, Ye Z, Chen Z, Cheng S, Campos LC, Li Z. Effects of Polyethylene Terephthalate Microplastics on Anaerobic Mono-Digestion and Co-Digestion of Fecal Sludge from Septic Tank. Molecules 2024; 29:4692. [PMID: 39407619 PMCID: PMC11478245 DOI: 10.3390/molecules29194692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Anaerobic digestion (AD) is one of the most significant processes for treating fecal sludge. However, a substantial amount of microplastics (MPs) have been identified in septic tanks, and it remains unclear whether they impact the resource treatment of feces. To investigate this, polyethylene terephthalate (PET) was used as an indicator of MPs to study their effect on the anaerobic digestion of fecal sludge (FS). Two digestion systems were developed: FS mono-digestion and FS co-digestion with anaerobic granular sludge. The results indicated that the effects of PET varied between the two systems. PET inhibited volatile fatty acid synthesis in both systems, but the inhibition period differed. During mono-digestion, PET slightly increased gas and methane production, in contrast to the co-digestion system, where PET reduced methane production by 75.18%. Furthermore, in the mono-digestion system, PET increased soluble chemical oxygen demand and ammonia nitrogen concentrations while blocking phosphorus release, whereas the co-digestion system showed the opposite effects. Ultimately, the choice of digestion method is crucial for the resource utilization of septic tank sludge, and the impact of MPs on AD cannot be ignored.
Collapse
Affiliation(s)
- Tingting Ma
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Nana Liu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Yuxuan Li
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; (Y.L.); (L.C.C.)
| | - Ziwang Ye
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Zhengxian Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Shikun Cheng
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Luiza C. Campos
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; (Y.L.); (L.C.C.)
| | - Zifu Li
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| |
Collapse
|
168
|
Li J, He X, Ke L, Wang C, Chen Y, Zhu G, Shao J, Zhang Y, Zhang M, Gao J, Xu H. Hierarchically Nano-Decorated Poly(lactic acid) Nanofibers for Humidity-Resistant Respiratory Healthcare and High-Accuracy Disease Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52476-52486. [PMID: 39297301 DOI: 10.1021/acsami.4c11843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The application of biodegradable and eco-friendly poly(lactic acid) (PLA) nanofibrous membranes (NFMs) toward respiratory healthcare has long been thwarted by the poor electroactivity and low surface activity of PLA. Herein, we unravel a microwave-assisted route to fabricate rod-like ZnO nanodielectrics, which were decorated with dopamine (ZnO@PDA) and anchored at the PLA nanofibers via an electrospinning-electrospray approach. The PLA/ZnO@PDA NFMs featured a substantially elevated specific surface area (up to 20.7 m2/g), increased dielectric constant (nearly 1.8) and a surface potential as high as 9.5 kV, resulting in superior air filtering performance (99.45% for PM0.3, 94.1 Pa, 32 L/min) compared with the pure PLA counterpart (90.04%, 169.0 Pa, 32 L/min). The notably increased electroactivity endowed the PLA/ZnO@PDA NFMs with significant improvements in triboelectric properties (output voltage of 11.5 V at 10 N, 0.5 Hz), laying down the cornerstone for self-powered monitoring of personal respiration. More importantly, a deep learning-assisted diagnostic system was developed based on respiration-driven signal patterns, enabling intelligent and real-time disease diagnosis with 100% accuracy for the protective membranes. The proposed hierarchical nanodecoration strategy opens up new possibilities for engendering eco-friendly nanofibers with an exceptional combination of efficient respiratory healthcare and intelligent diagnosis.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuyang Chen
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| | - Yifan Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Mingming Zhang
- China Academy of Safety Science & Technology, 100012 Beijing, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| |
Collapse
|
169
|
Zhu C, Zhou H, Bao M, Tang S, Gu X, Han M, Li P, Jiang Q. Polystyrene microplastics induce molecular toxicity in Simocephalus vetulus: A transcriptome and intestinal microorganism analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107046. [PMID: 39197247 DOI: 10.1016/j.aquatox.2024.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
The global prevalence and accumulation of plastic waste is leading to pollution levels that cause significant damage to ecosystems and ecological security. Exposure to two concentrations (1 and 5 mg/L) of 500 nm polystyrene (PS)-nanoplastics (NPs) for 14 d was evaluated in Simocephalus vetulus using transcriptome and 16 s rRNA sequencing analyses. PS-NP exposure resulted in stress-induced antioxidant defense, disturbed energy metabolism, and affected the FoxO signaling pathway, causing neurotoxicity. The expression of Cyclin D1 (CCND), glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase (PCK) genes was decreased compared to the control, whereas the expression of caspase3 (CASP3), caspase7 (CASP7), Superoxide dismutase (SOD), Heat shock protein 70 (HSP70), MPV17, and Glutathione S-transferase (GST) genes was increased, thus, suggesting that NP ingestion triggered oxidative stress and disrupted energy metabolism.. PS-NPs were present in the digestive tract of S. vetulus after 14 days of exposure. In addition, the abundance of the Proteobacteria and opportunistic pathogens was elevated after PS-NPs exposure. The diversity and homeostasis of the S. vetulus gut microbiota were disrupted and the stability of intestinal barrier function was impaired. Multiomic analyses highlighted the molecular toxicity and microbial changes in S. vetulus after exposure to NPs, providing an overview of how plastic pollution affects freshwater organisms and ecosystems.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China; Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Hui Zhou
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Mengyu Bao
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Shengkai Tang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Mingming Han
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
170
|
Liu H, Wen Y. Evaluation of the migration behaviour of microplastics as emerging pollutants in freshwater environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58294-58309. [PMID: 39298032 DOI: 10.1007/s11356-024-34994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed in freshwater environments such as rivers and lakes, posing immeasurable potential risks to aquatic ecosystems and human health. The migration behaviour of microplastics can exacerbate the degree or scope of risk. A complete understanding of the migration behaviour of microplastics in freshwater environments, such as rivers and lakes, can help assess the state of occurrence and environmental risk of microplastics and provide a theoretical basis for microplastic pollution control. Firstly, this review presents the hazards of microplastics in freshwater environments and the current research focus. Then, this review systematically describes the migration behaviours of microplastics, such as aggregation, horizontal transport, sedimentation, infiltration, stranding, resuspension, bed load, and the affecting factors. These migration behaviours are influenced by the nature of the microplastics themselves (shape, size, density, surface modifications, ageing), environmental conditions (ionic strength, cation type, pH, co-existing pollutants, rainfall, flow regime), biology (vegetation, microbes, fish), etc. They can occur cyclically or can end spontaneously. Finally, an outlook for future research is given.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China
| |
Collapse
|
171
|
Sun M, Zhang M, Di F, Bai W, Sun J, Zhang M, Sun J, Li M, Liang X. Polystyrene nanoplastics induced learning and memory impairments in mice by damaging the glymphatic system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116874. [PMID: 39153278 DOI: 10.1016/j.ecoenv.2024.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The excessive usage of nanoplastics (NPs) has posed a serious threat to the ecological environment and human health, which can enter the brain and then result in neurotoxicity. However, research on the neurotoxic effects of NPs based on different exposure routes and modifications of functional groups is lacking. In this study, the neurotoxicity induced by NPs was studied using polystyrene nanoplastics (PS-NPs) of different modifications (PS, PS-COOH, and PS-NH2). It was found that PS-NH2 through intranasal administration (INA) exposure route exhibited the greatest accumulation in the mice brain after exposure for 7 days. After the mice were exposed to PS-NH2 by INA means for 28 days, the exploratory ability and spatial learning ability were obviously damaged in a dose-dependent manner. Further analysis indicated that these damages induced by PS-NH2 were closely related to the decreased ability of glymphatic system to clear β-amyloid (Aβ) and phosphorylated Tau (P-Tau) proteins, which was ascribed to the loss of aquaporin-4 (AQP4) polarization in the astrocytic endfeet. Moreover, the loss of AQP4 polarization might be regulated by the NF-κB pathway. Our current study establishes the connection between the neurotoxicity induced by PS-NPs and the glymphatic system dysfunction for the first time, which will contribute to future research on the neurotoxicity of NPs.
Collapse
Affiliation(s)
- Meng Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Min Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fanglin Di
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Weijie Bai
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Mingkun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jinlong Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Meng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Xue Liang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
172
|
Liu T, Zhang Y, Gutierrez L, Zheng X, Benedetti M, Croué JP. Impact of dissolved organic matter characteristics and inorganic species on the stability and removal by coagulation of nanoplastics in aqueous media. CHEMOSPHERE 2024; 366:143482. [PMID: 39369743 DOI: 10.1016/j.chemosphere.2024.143482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The aggregation of rough, raspberry-type polystyrene nanoparticles (PS-NPs) was investigated in the presence of six hydrophobic and hydrophilic dissolved organic matter (DOM) isolates and biopolymers (effluent OM) in NaCl and CaCl2 solutions using time-resolved dynamic light scattering. Results showed that the stability of PS-NPs mainly depends on OM characteristics and ionic composition. Due to cation bridging, the aggregation rate of PS-NPs in Ca2+-containing solutions was significantly higher than at similar Na+-ionic strength. Biopolymers rich in protein and carbohydrate moieties showed higher affinity to the surface of PS-NPs than the other DOM isolates in the absence of both Ca2+ and Na+. Overall, the stability of PS-NPs followed the order of biopolymers > hydrophobic isolates > hydrophilic isolates in the presence of Na+ and biopolymers > hydrophilic isolates > hydrophobic isolates in Ca2+-containing solutions. In the presence of high MW structures (biopolymers), PS-NPs aggregation in both NaCl and CaCl2 solutions was attributed to steric repulsive forces. The impact of hydrophilic and hydrophobic isolates on PS-NPs aggregation highly relied on the ionic composition. Coagulation was an effective pretreatment for PS-NPs removal. Using inductively coupled plasma-mass spectrometry, higher removals were recorded with Al2(SO4)3 in the absence of DOM, while PACl more efficiently coagulated PS-NPs in the presence of DOM isolates.
Collapse
Affiliation(s)
- Tong Liu
- School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China; Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Yutong Zhang
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, France; Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| | - Leo Gutierrez
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, France; Facultad del Mar y Medio Ambiente, Universidad Del Pacifico, Ecuador
| | - Xing Zheng
- School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Marc Benedetti
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, France.
| |
Collapse
|
173
|
Karki A, Thaiba BM, Shishir Acharya KC, Sedai T, Kandel B, Paudyal H, Sharma KR, Giri B, Neupane BB. Smartphone microscopic method for imaging and quantification of microplastics in drinking water. Microsc Res Tech 2024; 87:2266-2274. [PMID: 38733288 DOI: 10.1002/jemt.24596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Analysis of microplastics in drinking water is often challenging due to smaller particle size and low particle count. In this study, we used a low cost and an easy to assemble smartphone microscopic system for imaging and quantitating microplastic particles as small as 20 μm. The system consisted of a spherical sapphire ball lens of 4 mm diameter attached to a smartphone camera as a major imaging component. It also involved pre-concentration of the sample using ZnCl2 solution. The spike recovery and limit of detection of the method in filtered distilled and deionized water samples (n = 9) were 55.6% ± 9.7% and 34 particles/L, respectively. Imaging performance of the microscopic system was similar to a commercial bright field microscopic system. The method was further implemented to examine microplastic particles in commercial bottled and jar water samples (n = 20). The particles count in bottled and jar water samples ranged from 0-91 particles/L to 0-130 particles/L, respectively. In both sample types, particles of diverse shape and size were observed. The particles collected from water samples were further confirmed by FTIR spectra (n = 36), which found 97% of the particles tested were made of plastic material. These findings suggested that the smartphone microscopic system can be implemented as a low-cost alternative for preliminary screening of microplastic in drinking water samples. RESEARCH HIGHLIGHTS: Ball lens based smartphone microscopic method was used for microplastic analysis. Particles of diverse shape and size were found in bottle and jar water samples.
Collapse
Affiliation(s)
- Asmita Karki
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Bishan Man Thaiba
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Thakur Sedai
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Baburam Kandel
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Hari Paudyal
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Basant Giri
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| | | |
Collapse
|
174
|
Zhang L, Zhang G, Shi Z, He M, Ma D, Liu J. Effects of polypropylene micro(nano)plastics on soil bacterial and fungal community assembly in saline-alkaline wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173890. [PMID: 38885717 DOI: 10.1016/j.scitotenv.2024.173890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Microplastic pollution is a major environmental threat, especially to terrestrial ecosystems. To better understand the effects of microplastics on soil microbiota, the influence of micro- to nano-scale polypropylene plastics was investigated on microbial community diversity, functionality, co-occurrence, assembly, and their interaction with soil-plant using high-throughput sequencing approaches and multivariate analyses. The results showed that polypropylene micro/nano-plastics mainly reduced bacterial diversity, not fungal, and that plastic size had a stronger effect than concentration on the assembly of microbial communities. Nano-plastics decreased the complexity and connectivity of both bacterial and fungal networks compared to micro-plastics. Moreover, bacteria were more sensitive and deterministic to polypropylene micro/nano-plastic stress than fungi, as shown by their different growth rates, guanine-cytosine content, and cell structure. Interestingly, the dominant ecological process for bacteria shifted from stochastic drift to deterministic selection with polypropylene micro/nano-plastic exposure. Furthermore, nano-plastics directly or indirectly disrupted the interactions within intra-microbes and between soil-bacteria-plant by altering soil nutrients and stoichiometry (C:N:P) or plant diversity. Collectively, the results indicate that polypropylene nano-plastics pose more ecological risks to soil microbes and their plant-soil interactions. This study sheds light on the potential ecological consequences of polypropylene micro/nano-plastic pollution in terrestrial ecosystems.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guorui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ziyue Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China..
| | - Dan Ma
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
175
|
Aydin S, Ulvi A, Aydin ME. Occurrence, characteristics, and risk assessment of microplastics and polycyclic aromatic hydrocarbons associated with microplastics in surface water and sediments of the Konya Closed Basin, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57989-58009. [PMID: 39305415 DOI: 10.1007/s11356-024-35029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/15/2024] [Indexed: 10/11/2024]
Abstract
The presence of polycyclic hydrocarbons (PAHs) and microplastics (MPs) in aquatic environments affects the ecosystems and threatens human health. In this study, the abundance, composition, and morphological characteristics of MPs were determined for the first time in the inland freshwater resources of the Konya Closed Basin, Turkey. The abundance of MPs ranged from 1139 to 23,444 particles/m3 and 150 to 3510 particles/kg in the surface water and sediment, respectively. Fragments and fibers were the most abundant MP shapes in the surface waters (51%, 34%) and sediments (29%, 40%), followed by films, pellets, and foams. Transparent and white MPs were present at the highest percentage in surface waters (72%) and sediments (69%), followed by blue, grey, black, brown, and green. In addition, polyethylene, polypropylene, and cellophane were identified as the main polymers in surface waters (34%, 25%, 24%) and sediments (37%, 17%, 31%). In the Konya Closed Basin, 35% of the surface water samples and 54% of the sediment samples were exposed to very high contamination (CF ≥ 6). Surface waters (PLI: 2.51) and sediments (PLI: 1.67) in the basin were contaminated (PLI > 1) with MPs. The 16 PAHs sorbed on MPs in the surface water and sediment ranged from 394 to 24,754 ng/g and from 37 to 18,323 ng/g, respectively. Phenanthrene and fluoranthene were the most abundant PAHs sorbed on MPs in all surface waters and sediments. Two to three-ring PAH compounds sorbed on MPs were also dominantly detected in surface waters and sediments, accounting for 68% and 78% of the total 16 PAHs, respectively. The source of PAHs carried by MPs in the Konya Closed Basin was mainly of petrogenic origin. Incremental lifetime cancer risk (ILCR) results indicated that the maximum ILCR values were higher than the EPA acceptable level (10-6) for child (2.95 × 10-5) and adult (1.46 × 10-4), indicating a potential cancer risk.
Collapse
Affiliation(s)
- Senar Aydin
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydin
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
176
|
Kherdekar RD, Ade AB. Integrated approaches for plastic waste management. Front Microbiol 2024; 15:1426509. [PMID: 39391604 PMCID: PMC11465426 DOI: 10.3389/fmicb.2024.1426509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Plastic pollution is the challenging problem of the world due to usage of plastic in daily life. Plastic is essential for packaging food and other goods and utensils to avoid the risk of microbial attack. Due to its hydrophobic nature, it is used for wrapping as laminates or packaging liquid substances in pouches and sachets. The tensile strength of the plastic is more therefore it is used for manufacturing carrying bags that can bear heavy loads. Plastic is available in various forms as per the requirements in our daily life. Annually millions to trillions of polyethene carry bags are being manufactured and utilized throughout the world. The plastic requires millions of years for natural degradation. The physical and chemical processes are able to degrade plastic material at the meager level by 200 to 500 years in natural conditions. Many industries focus on recycling of plastic. Biodegradation is a comparatively slow and cheaper process that involves microbes. To dispose of plastic completely there is a need of an integrated process in which all the possible methods of disposal are involved and used sustainably so that minimum depletion occurs to the livestock and the environment. In the current review, we could try to emphasize the intricate nature of plastic polymers, pollution caused by it and possible mitigation strategies for plastic waste management.
Collapse
|
177
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
178
|
Grumelot S, Ashkarran AA, Jiwani Z, Ibrahim R, Mahmoudi M. Identification of Pristine and Protein Corona Coated Micro- and Nanoplastic Particles with a Colorimetric Sensor Array. ACS OMEGA 2024; 9:39188-39194. [PMID: 39310157 PMCID: PMC11411689 DOI: 10.1021/acsomega.4c06166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024]
Abstract
A colorimetric sensor array has been developed to differentiate various micro- and nanoplastic particles (MNPs), both pristine and those coated with a protein corona, in buffered water. This array utilizes five distinct cross-reactive chemo-responsive dyes, which exhibit changes in visible optical absorbance upon interaction with MNPs. Although no single dye responds exclusively to either pristine or protein-corona-coated MNPs, the collective shifts in color across all dyes create a unique molecular fingerprint for each type of MNP. This method demonstrates high sensitivity, capable of detecting MNPs of various sizes (50 nm, 100 nm, and 2 μm) and differentiating them from controls at concentrations as low as 10 ng/mL using standard chemometric techniques, ensuring accurate results without error. Additionally, the method can effectively distinguish between pristine and protein-corona-coated polystyrene MNPs. This colorimetric approach offers a rapid, cost-effective, and accurate method for monitoring MNP pollution and assessing their prior interactions with biological systems.
Collapse
Affiliation(s)
- Shaun Grumelot
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Ali Akbar Ashkarran
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Zahra Jiwani
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Rula Ibrahim
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| |
Collapse
|
179
|
Kteeba SM, Guo L. Photodegradation Processes and Weathering Products of Microfibers in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16535-16546. [PMID: 39215709 DOI: 10.1021/acs.est.4c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microplastics, particularly microfibers (MFs), pose a significant threat to the environment. Despite their widespread presence, the photochemical reactivity, weathering products, and environmental fate of MFs remain poorly understood. To address this knowledge gap, photodegradation experiments were conducted on three prevalent MFs: polyester (POL), nylon (NYL), and acrylic (ACR), to elucidate their degradation pathways, changes in surface morphology and polymer structure, and chemical and colloidal characterization of weathering products during photochemical degradation of MFs. The results showed that concentrations of dissolved organic carbon, chromophoric dissolved organic matter (DOM), and fluorescent components consistently increased during weathering, exhibiting a continuous release of DOM. Scanning electron microscopy and Raman spectroscopy revealed changes in the surface morphology and polymer spectra of the MFs. During the weathering experiments, DOM aromaticity (SUVA254) decreased, while spectral slope increased, indicating concurrent DOM release and degradation of aromatic components. The released DOM or nanoplastics were negatively charged with sizes between 128 and 374 nm. The production rate constants of DOM or the photochemical reactivity of MFs followed the order ACR > NYL ≥ POL, consistent with their differences in chemical structures. These findings provide an improved understanding of the photochemical reactivity, degradation pathways, weathering products, and environmental fate of microfibers in the environment.
Collapse
Affiliation(s)
- Shimaa M Kteeba
- School of Freshwater Sciences, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53204, United States
- Faculty of Science, Damietta University, New Damietta, Damietta 34511, Egypt
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
180
|
Akyildiz SH, Fiore S, Bruno M, Sezgin H, Yalcin-Enis I, Yalcin B, Bellopede R. Release of microplastic fibers from synthetic textiles during household washing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124455. [PMID: 38942274 DOI: 10.1016/j.envpol.2024.124455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Textile materials are one of the primary sources of microplastic pollution. The washing procedure is by far the most significant way that textile products release microplastic fibers (MPFs). Therefore, in this study, the effects of various textile raw materials (A acrylic, PA polyamide, PET polyester, RPET recycled polyester and PP polypropylene), fabric construction properties (woven, knitted), thickness and basis weight values on MPFs release at different washing stages (pre-washing, soaping/rinsing) were examined separately. To mimic the most popular home washing procedures, a 10-min pre-wash and a 35-min soaping/rinsing phase at 40 °C were selected for the washing procedure. Utilizing the Image J program on macroscopic images captured by a high-resolution SL. R camera, the microfibers collected by filtering the water have been visually counted. According to the results, knitted fabrics released fewer MPFs than woven fabrics, with the woven acrylic sample (A3-w) exhibiting the highest release (2405 MPFs). The number of MPFs increased along with the thickness and weight of the fabric. Recycled polyester was found to release more MPFs than virgin polyester under the same conditions (1193 MPFs vs. 908 MPFs). This study demonstrates how recycled polyester, although initially an environmentally beneficial solution, can eventually become detrimental to the environment. Furthermore, it is known that the pre-washing procedure-which is optional-releases a lot more MPFs than the soaping and rinsing procedures, and that stopping this procedure will drastically lower the amount of MPFs incorporated into the water.
Collapse
Affiliation(s)
- Sinem Hazal Akyildiz
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy; Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey; Department of Textile Engineering, Marmara University, Istanbul, Turkey
| | - Silvia Fiore
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy.
| | - Martina Bruno
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - Hande Sezgin
- Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Bahattin Yalcin
- Department of Inorganic Chemistry, Marmara University, Istanbul, Turkey
| | - Rossana Bellopede
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
181
|
Liu J, Chen Y, Song Y, Xu D, Gu Y, Wang J, Song W, Sun B, Jiang Z, Xia B. Evidence of size-dependent toxicity of polystyrene nano- and microplastics in sea cucumber Apostichopus japonicus (Selenka, 1867) during the intestinal regeneration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124394. [PMID: 38901819 DOI: 10.1016/j.envpol.2024.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Microplastics are ubiquitous pollutants in the global marine environment. However, few studies have adequately explored the different toxic mechanisms of microplastics (MPs) and nanoplastics (NPs) in aquatic organisms. The sea cucumber, Apostichopus japonicus, is a key organism in the marine benthic ecosystem due to its crucial roles in biogeochemical cycles and food web. This study investigated the bioaccumulation and adverse effects of polystyrene micro- and nanoplastics (PS-M/NPs) of different sizes (20 μm, 1 μm and 80 nm) in the regenerated intestine of A. japonicus using multi-omics analysis. The results showed that after 30-day exposure at the concentration of 0.1 mg L-1, PS-MPs and PS-NPs accumulated to 155.41-175.04 μg g-1 and 337.95 μg g-1, respectively. This excessive accumulation led to increased levels of antioxidases (SOD, CAT, GPx and T-AOC) and reduced activities of immune enzymes (AKP, ACP and T-NOS), indicating oxidative damage and compromised immunity in the regenerated intestine. PS-NPs had more profound negative impacts on cell proliferation and differentiation compared to PS-MPs. Transcriptomic analysis revealed that PS-NPs primarily affected pathways related to cellular components, e.g., ribosome, and oxidative phosphorylation. In comparison, PS-MPs had greater influences on actin-related organization and organic compound metabolism. In the PS-M/NPs-treated groups, differentially expressed metabolites were mainly amino acids, fatty acids, glycerol phospholipid, and purine nucleosides. Additionally, microbial community reconstruction in the regenerated intestine was severely disrupted by the presence of PS-M/NPs. In the PS-NPs group, Burkholderiaceae abundance significantly increased while Rhodobacteraceae abundance decreased. Correlation analyses demonstrated that intestinal regeneration of A. japonicus was closely linked to its enteric microorganisms. These microbiota-host interactions were notably affected by different PS-M/NPs, with PS-NPs exposure causing the most remarkable disruption of mutual symbiosis. The multi-omic approaches used here provide novel insights into the size-dependent toxicity of PS-M/NPs and highlight their detrimental effects on invertebrates in M/NPs-polluted marine benthic ecosystems.
Collapse
Affiliation(s)
- Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yize Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqi Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Baiqin Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zitan Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
182
|
Yin J, Zhu T, Li X, Yin X, Xu J, Xu G. Polystyrene nanoplastics induce cell type-dependent secondary wall reinforcement in rice (Oryza sativa) roots and reduce root hydraulic conductivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135309. [PMID: 39053057 DOI: 10.1016/j.jhazmat.2024.135309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs) have been demonstrated the ability to penetrate plant roots and cause stress. However, the extent of NPs penetration into various root tissues and the corresponding plant defense mechanisms remain unclear. This study examined the penetration and accumulation patterns of polystyrene nanoplastics (PS-NPs) in different cell types within rice roots, and explored how the roots quickly modify their cell wall structure in response. The findings showed that fully developed sclerenchyma cells in rice roots effectively prevented the invasion of PS-NPs. Meanwhile, PS-NPs triggered the accumulation of lignin and suberin in specific cells such as the exodermis, sclerenchyma, and xylem vessels. PS-NPs at a concentration of 50 mg L-1 increased cell wall thickness by 18.6 %, 21.1 %, and 22.4 % in epidermis, exodermis, and sclerenchyma cells, respectively, and decreased root hydraulic conductivity by 14.8 %. qPCR analysis revealed that PS-NPs influenced the cell wall synthesis pathway, promoting the deposition of lignin and suberin monomers on the secondary wall through the up-regulation of genes such as OsLAC and OsABCG. These results demonstrate that PS-NPs can induce cell type-specific strengthening of secondary walls and barrier formation in rice roots, suggesting the potential role of plant secondary wall development in mitigating NPs contamination risks in crops.
Collapse
Affiliation(s)
- Jingjing Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Tongshan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250100, PR China
| | - Xiaozun Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Xiao Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Guoxin Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China.
| |
Collapse
|
183
|
Zhuo T, Yu K, Chai B, Tang Q, Gao X, Wang J, He L, Lei X, Li Y, Meng Y, Wu L, Chen B. Microplastics increase the microbial functional potential of greenhouse gas emissions and water pollution in a freshwater lake: A metagenomic study. ENVIRONMENTAL RESEARCH 2024; 257:119250. [PMID: 38844031 DOI: 10.1016/j.envres.2024.119250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Aquatic ecosystems are being increasingly polluted by microplastics (MPs), which calls for an understanding of how MPs affect microbially driven biogenic element cycling in water environments. A 28-day incubation experiment was conducted using freshwater lake water added with three polymer types of MPs (i.e., polyethylene, polypropylene, polystyrene) separately or in combination at a concentration of 1 items/L. The effects of various MPs on microbial communities and functional genes related to carbon, nitrogen, phosphorus, and sulfur cycling were analyzed using metagenomics. Results showed that Sphingomonas and Novosphingobium, which were indicator taxa (genus level) in the polyethylene treatment group, made the largest functional contribution to biogenic element cycling. Following the addition of MPs, the relative abundances of genes related to methane oxidation (e.g., hdrD, frhB, accAB) and denitrification (napABC, nirK, norB) increased. These changes were accompanied by increased relative abundances of genes involved in organic phosphorus mineralization (e.g., phoAD) and sulfate reduction (cysHIJ), as well as decreased relative abundances of genes involved in phosphate transport (phnCDE) and the SOX system. Findings of this study underscore that MPs, especially polyethylene, increase the potential of greenhouse gas emissions (CO2, N2O) and water pollution (PO43-, H2S) in freshwater lakes at the functional gene level.
Collapse
Affiliation(s)
- Tianyu Zhuo
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China; Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China
| | - Kehong Yu
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Beibei Chai
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China.
| | - Qingfeng Tang
- Beijing Center for Physical & Chemical Analysis, Beijing, 100089, China
| | - Xia Gao
- Beijing Center for Physical & Chemical Analysis, Beijing, 100089, China
| | - Jiamin Wang
- Beijing Center for Physical & Chemical Analysis, Beijing, 100089, China
| | - Lixin He
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China
| | - Xiaohui Lei
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yang Li
- School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yuan Meng
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, 056038, China; School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Lifeng Wu
- Hebei Key Laboratory of Intelligent Water Conservancy, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China
| | - Bin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan, 056038, China.
| |
Collapse
|
184
|
Junaid M, Liu S, Liao H, Yue Q, Wang J. Environmental nanoplastics quantification by pyrolysis-gas chromatography-mass spectrometry in the Pearl River, China: First insights into spatiotemporal distributions, compositions, sources and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135055. [PMID: 38941826 DOI: 10.1016/j.jhazmat.2024.135055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Nanoplastics (NPs, size <1000 nm) are ubiquitous plastic particles, potentially more abundant than microplastics in the environment; however, studies highlighting their distribution dynamics in freshwater are rare due to analytical limitations. Here, we investigated spatiotemporal levels of nine polymers of NPs in surface water samples (n = 30) from the full stretch of the Pearl River (sites, n = 15) using pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Six polymers were detected, including polystyrene (PS), polyvinyl chloride (PVC), nylon/polyamide 66 (PA66), polyester (PES), poly(methyl methacrylate) (PMMA) and polyethylene (PE), where three polymers showed high detection frequencies; PS (100 % in winter and summer), followed by PVC (73 % in winter and 87 % in summer) and PA66 (53 % in winter and 67 % in summer). The spatiotemporal distribution revealed the sites related to aquaculture (AQ) and shipping (SHP) showed higher NP levels than those of human settlement (HS) and wastewater treatment plants (WWTPs) (p = 0.004), and relatively high average levels of NPs in the urban sites compared to rural sites (p = 0.04), albeit showed no obvious seasonal differences (p = 0.78). For instance, the average PS levels in the Pearl River were in the following order: AQ 411.55 µg/L > SHP 81.75 µg/L > WWTP 56.66 µg/L > HS 47.75 µg/L in summer and HS 188.1 µg/L > SHP 103.55 µg/L > AQ 74.7 µg/L > WWTP 62.1 µg/L in winter. Source apportionment showed a higher contribution through domestic plastic waste emissions among urban sites, while rural sites showed an elevated contribution via aquaculture, agriculture, and surface run-off to the NP pollution. Risk assessment revealed that NPs at SHP and AQ sites posed a higher integrated risk in terms of pollution load index (PLI) than those at WWTP and HS sites. Regarding polymer hazard index (HI), 80 % of sampling sites in summer and 60 % of sampling sites in winter posed level III polymer risk, with PVC posing the highest risk. This study provides novel insights into the seasonal contamination and polymer risks of NP in the Pearl River, which will help to regulate the production and consumption of plastics in the region. ENVIRONMENTAL IMPLICATIONS: The contamination dynamics of field nanoplastics (NPs) in freshwater resources remain little understood, mainly attributed to analytical constraints. This study aims to highlight the spatiotemporal distribution of NPs in the Pearl River among various land use types, urban-rural comparison, seasonal comparison, their compositional profiles, potential sources, interaction with environmental factors, and ecological and polymer hazard assessments of investigated polymers in the full stretch of the Pearl River from Liuxi Reservoir to the Pearl River Delta (PRD) region. This study, with a comparatively large number of samples and NP polymers, will offer novel insights into the contamination profiles of nano-sized plastic particles in one of the important freshwater riverine systems in China.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Hongping Liao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
185
|
Qiu Q, Li H, Sun X, Tian K, Gu J, Zhang F, Zhou D, Zhang X, Huo H. Integrating genomics, molecular docking, and protein expression to explore new perspectives on polystyrene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135031. [PMID: 38943889 DOI: 10.1016/j.jhazmat.2024.135031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/01/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Faced with the escalating challenge of global plastic pollution, this study specifically addresses the research gap in the biodegradation of polystyrene (PS). A PS-degrading bacterial strain was isolated from the gut of Tenebrio molitor, and genomics, molecular docking, and proteomics were employed to thoroughly investigate the biodegradation mechanisms of Pseudomonas putida H-01 against PS. Using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (ATR-FTIR), and contact angle analysis, significant morphological and structural changes in the PS films under the influence of the H-01 strain were observed. The study revealed several potential degradation genes and ten enzymes that were specifically upregulated in the PS degradation environment. Additionally, a novel protein with laccase-like activity, LacQ1, was purified from this strain for the first time, and its crucial role in the PS degradation process was confirmed. Through molecular docking and molecular dynamics (MD) simulations, the interactions between the enzymes and PS were detailed, elucidating the binding and catalytic mechanisms of the degradative enzymes with the substrate. These findings have deepened our understanding of PS degradation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
| | - Xinwen Zhang
- College of Pharmacy, Hainan Vocational University of Science and Technology, Haikou 571126, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
186
|
Ding P, Xiang C, Yao Q, Li X, Zhang J, Yin R, Zhang L, Li AJ, Hu G. Aged polystyrene microplastics exposure affects apoptosis via inducing mitochondrial dysfunction and oxidative stress in early life of zebrafish. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121995. [PMID: 39083943 DOI: 10.1016/j.jenvman.2024.121995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
In recent years, the toxic effects of microplastics (MPs) on aquatic organisms have been increasingly recognized. However, the developmental toxicity and underlying mechanisms of photoaged MPs at environmental concentrations remain unclear. Therefore, the photodegradation of pristine polystyrene (P-PS) under UV irradiation was used to investigate, as well as the developmental toxicity and underlying mechanisms of zebrafish (Danio rerio) exposed to P-PS and aged polystyrene (A-PS) at environmentally relevant concentrations (0.1-100 μg/L). Mortality, heart rate, body length, and tail coiling frequency of zebrafish larvae were the developmental toxicity endpoints. A-PS had increased crystallinity, the introduction of new functional groups, and higher oxygen content after UV-photoaging. The toxicity results showed that exposure to A-PS resulted in more adverse developmental toxicity than exposure to P-PS. Exposure to A-PS induced oxidative damage, as evidenced by elevated production of reactive oxygen species (ROS) and DNA damage, and led to decreased mitochondrial membrane potential (MMP) and causes the release of cytochrome c (cyt c) from the mitochondria. The caspase-3/-9 activation signaling pathways may cause developmental toxicity via mitochondrial apoptosis. Significant changes in the expression of genes were further explored linking with oxidative stress, mitochondria dysfunctions and apoptosis pathways following A-PS exposure. These findings underscore the importance of addressing the environmental applications of aged MPs and call for further research to mitigate their potential risks on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Ping Ding
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chongdan Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Department of Public Health Emergency Preparedness and Response, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Qian Yao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China.
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
187
|
Du J, Huang W, Pan Y, Xu S, Li H, Jin M, Liu Q. Ecotoxicological Effects of Microplastics Combined With Antibiotics in the Aquatic Environment: Recent Developments and Prospects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1950-1961. [PMID: 38980257 DOI: 10.1002/etc.5950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
Both microplastics and antibiotics are commonly found contaminants in aquatic ecosystems. Microplastics have the ability to absorb antibiotic pollutants in water, but the specific adsorption behavior and mechanism are not fully understood, particularly in relation to the impact of microplastics on toxicity in aquatic environments. We review the interaction, mechanism, and transport of microplastics and antibiotics in water environments, with a focus on the main physical characteristics and environmental factors affecting adsorption behavior in water. We also analyze the effects of microplastic carriers on antibiotic transport and long-distance transport in the water environment. The toxic effects of microplastics combined with antibiotics on aquatic organisms are systematically explained, as well as the effect of the adsorption behavior of microplastics on the spread of antibiotic resistance genes. Finally, the scientific knowledge gap and future research directions related to the interactions between microplastics and antibiotics in the water environment are summarized to provide basic information for preventing and treating environmental risks. Environ Toxicol Chem 2024;43:1950-1961. © 2024 SETAC.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Suzhou Fishseeds Bio-technology, Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
| | - Wenfei Huang
- Eco-Environmental Science and Research, Institute of Zhejiang Province, Hangzhou, China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Shaodan Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | | | - Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Qinghua Liu
- Suzhou Fishseeds Bio-technology, Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
188
|
Chen L, Tu M, Mao C, Wang J, Shao H, Wang H, Gu J, Xu G. Electron beam synergetic removal of microplastics and hexavalent chromium: Synergetic removal process and mechanism. CHEMOSPHERE 2024; 364:143093. [PMID: 39173834 DOI: 10.1016/j.chemosphere.2024.143093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Microplastics are ubiquitous in the environment and aged microplastics are highly susceptible to absorbing pollutants from the environment. In this study, electron beam was innovatively used to treat PVC composite Cr(VI) pollutants (Composite contaminant formed by polyvinyl chloride microplastics with the heavy metal hexavalent chromium). Experiments showed that electron beam was able to achieve synergistic removal of PVC composite Cr(VI) pollutants compared to degrading the pollutants alone. During the electron beam removal of PVC composite Cr(VI) pollutants, the reduction efficiency of Cr(VI) increased from 57% to 92%, Cl- concentration increased from 3.52 to 12.41 mg L-1, and TOC concentration increased from 16.72 to 26.60 mg L-1. The research confirmed that electron beam can effectively promote the aging degradation of PVC, alter the physicochemical properties of microplastics, and generate oxygen-containing functional groups on the surface of microplastics. Aged microplastics enhanced the adsorption capacity for Cr(VI) through electrostatic and chelation interactions, and the adsorption process followed second-order kinetics and the Freundlich model. Theoretical calculations and experiments demonstrated that PVC consumed oxidizing free radical through dechlorination and decarboxylation processes, generating inorganic ions and small organic molecules. These inorganic ions and small organic molecules further reacted with oxidizing free radical to produce reducing free radicals, facilitating the reduction of Cr(VI). Cr(VI) continuously consumed the educing free radicals to transform into Cr (Ⅲ), enhancing the system oxidative atmosphere and promoting the oxidation degradation of PVC. This study investigated the formation and synergistic removal processes of PVC composite pollutants, offering new insights for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jun Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, PR China.
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jianzhong Gu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
189
|
Saravanan J, Nair A, Krishna SS, Viswanad V. Nanomaterials in biology and medicine: a new perspective on its toxicity and applications. Drug Chem Toxicol 2024; 47:767-784. [PMID: 38682270 DOI: 10.1080/01480545.2024.2340002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Nanotechnology offers excellent prospects for application in biology and medicine. It is used for detecting biological molecules, imaging, and as therapeutic agents. Due to nano-size (1-100 nm) and high surface-to-volume ratio, nanomaterials possess highly specific and distinct characteristics in the biological environment. Recently, the use of nanomaterials as sensors, theranostic, and drug delivery agents has become popular. The safety of these materials is being questioned because of their biological toxicity, such as inflammatory responses, cardiotoxicity, cytotoxicity, inhalation problems, etc., which can have a negative impact on the environment. This review paper focuses primarily on the toxicological effects of nanomaterials along with the mechanisms involved in cell interactions and the generation of reactive oxygen species by nanoparticles, which is the fundamental source of nanotoxicity. We also emphasize the greener synthesis of nanomaterials in biomedicine, as it is non-hazardous, feasible, and economical. The review articles shed light on the complexities of nanotoxicology in biosystems and the environment.
Collapse
Affiliation(s)
- Janani Saravanan
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sivadas Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
190
|
Chen L, Xie N, Yuan S, Shao H. Adsorption mechanism of hexavalent chromium on electron beam-irradiated aged microplastics: Novel aging processes and environmental factors. CHEMOSPHERE 2024; 363:142741. [PMID: 38977247 DOI: 10.1016/j.chemosphere.2024.142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China
| | - Nan Xie
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Shanning Yuan
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
191
|
Wang C, Liu X, Ma Q, Xing S, Yuan L, Ma Y. Distribution and effects of microplastics as carriers of heavy metals in river surface sediments. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104396. [PMID: 39047425 DOI: 10.1016/j.jconhyd.2024.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
There are few studies on microplastics (MPs) in urban river sediments compared to oceans, soils, and even rivers. In this study, the seasonal abundance of MPs, as well as their influencing factors on heavy metal adsorption in river sediments of the Ancient Canal of Zhenjiang City, China, were investigated for the first time. Through on-site sampling, microscopic observation, Raman spectroscopy, scanning electron microscopy, and high-temperature digestion, the abundance, shape, color, particle size, type, and surface characteristics of MPs in Ancient Canal sediments in different seasons, as well as the influencing factors of MPs as heavy metal carriers in different seasons, were analyzed. The results showed that the average abundance of MPs is 2049.09 ± 883.78 and 2216.36 ± 826.21 items kg-1 dry sediments in summer and winter, respectively, and different sites change significantly. In addition, particle sizes, types, colors, and shapes of MPs exhibited seasonal variations. Four MPs shapes were mainly observed: fibers, fragments, particles, and films. Among them, MPs in summer sediments are mainly fiber, and MPs in winter sediments are mainly particles. In the sediment in summer and winter, transparent MPs and small-size (<0.5 mm) MPs are the main ones, where the abundance of MPs decreased with increasing MPs size. The main MPs species are polyvinyl chloride (PVC), polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene (PE), with PP being the predominant MPs in the sediments in different seasons. Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) revealed that the surfaces of the MPs were characterized by rough, porous, cracked, and torn, with the attachment of various heavy metal elements, and all of the heavy metal elements accumulated to different degrees on the MPs. There was a significant positive correlation (p < 0.05) between the Mn content in the MPs and the Mn content in the sediments in winter, suggesting that the Mn in the MPs in winter may be derived from the sediments. In addition, the type, shape, size, and color of MPs affect the adsorption capacity of heavy metals. Most of the adsorption of MPs on Pb showed a significant negative correlation, and the adsorption of MPs on Cr, Zn, Cu, Cd, and Mn showed a significant positive correlation. MPs can be used as carriers of heavy metals, which will further enhance the hazards of living organisms and pose a potential threat to the safety of the urban river environment.
Collapse
Affiliation(s)
- Changyuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province 210014, China; National Agricultural Experiment Station for Agricultural Environment, Luhe, Nanjing 210014, China
| | - Xin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qianqian Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyu Xing
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lubin Yuan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province 210014, China; National Agricultural Experiment Station for Agricultural Environment, Luhe, Nanjing 210014, China.
| |
Collapse
|
192
|
Yuan W, Xu EG, Shabaka S, Chen P, Yang Y. The power of green: Harnessing phytoremediation to combat micro/nanoplastics. ECO-ENVIRONMENT & HEALTH 2024; 3:260-265. [PMID: 39234422 PMCID: PMC11372594 DOI: 10.1016/j.eehl.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 09/06/2024]
Abstract
Plastic pollution and its potential risks have been raising public concerns as a global environmental issue. Global plastic waste may double by 2030, posing a significant challenge to the remediation of environmental plastics. In addition to finding alternative products and managing plastic emission sources, effective removal technologies are crucial to mitigate the negative impact of plastic pollution. However, current remediation strategies, including physical, chemical, and biological measures, are unable to compete with the surging amounts of plastics entering the environment. This perspective lays out recent advances to propel both research and action. In this process, phytoaccumulation, phytostabilization, and phytofiltration can be applied to reduce the concentration of nanoplastics and submicron plastics in terrestrial, aquatic, and atmospheric environments, as well as to prevent the transport of microplastics from sources to sinks. Meanwhile, advocating for a more promising future still requires significant efforts in screening hyperaccumulators, coupling multiple measures, and recycling stabilized plastics from plants. Phytoremediation can be an excellent strategy to alleviate global micro/nanoplastic pollution because of the cost-effectiveness and environmental sustainability of green technologies.
Collapse
Affiliation(s)
- Wenke Yuan
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Soha Shabaka
- National Institute of Oceanography and Fisheries, Cairo 11516, Egypt
| | - Peng Chen
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| |
Collapse
|
193
|
Ameen A, Stevenson ME, Kirschner AKT, Jakwerth S, Derx J, Blaschke AP. Fate and transport of fragmented and spherical microplastics in saturated gravel and quartz sand. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:727-742. [PMID: 39162095 DOI: 10.1002/jeq2.20618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Microplastics in urban runoff undergo rapid fragmentation and accumulate in the soil, potentially endangering shallow groundwater. To improve the understanding of microplastic transport in groundwater, column experiments were performed to compare the transport behavior of fragmented microplastics (FMPs ∼1-µm diameter) and spherical microplastics (SMPs ∼1-, 10-, and 20-µm diameter) in natural gravel (medium and fine) and quartz sand (coarse and medium). Polystyrene microspheres were physically abraded with glass beads to mimic the rapid fragmentation process. The experiments were conducted at a constant flow rate of 1.50 m day-1 by injecting two pore volumes of SMPs and FMPs. Key findings indicate that SMPs showed higher breakthrough, compared to FMPs in natural gravel, possibly due to size exclusion of the larger SMPs. Interestingly, FMPs exhibited higher breakthrough in quartz sand, likely due to tumbling and their tendency to align with flow paths, while both sizes (larger and smaller relative to FMPs) of SMPs exhibited higher removal in quartz sand. Therefore, an effect due to shape and size was observed.
Collapse
Affiliation(s)
- Ahmad Ameen
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Margaret E Stevenson
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alexander K T Kirschner
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
- Division Water Quality & Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Stefan Jakwerth
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| |
Collapse
|
194
|
Ventura E, Gonçalves JM, Vilke JM, d'Errico G, Benedetti M, Regoli F, Bebianno MJ. Are mixtures of micro/nanoplastics more toxic than individual micro or nanoplastic contamination in the clam Ruditapes decussatus? MARINE POLLUTION BULLETIN 2024; 206:116697. [PMID: 39018822 DOI: 10.1016/j.marpolbul.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
The abundance of micro (MPs) and nano (NPs) sized plastic particles in the ocean is concerning due to their harmful effects on marine life. The interactions between MPs and NPs in the marine environment and their impact on marine biota remain not fully understood. This study contributes with new insights into the interaction between polystyrene NPs (PSNPs) and polyethylene MPs (PEMPs) on the clam Ruditapes decussatus. Results showed ingestion of MPs and NPs by clams, with PSNPs demonstrating higher toxicity in hemolymph. While no genotoxicity was observed, clams treated with MPs and the mixture showed increased acetylcolinesterase (AchE) activity over time. Additionally, the antioxidant defense system mitigated oxidative stress, suggesting effective neutralization of reactive oxygen species. Hazard assessment indicated the greatest impact on clam digestive glands after ten days of exposure, with an antagonistic interaction between MPs and NPs noted.
Collapse
Affiliation(s)
- Emma Ventura
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal; Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Joanna M Gonçalves
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Juliano M Vilke
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - Maria João Bebianno
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal.
| |
Collapse
|
195
|
de Moraes NG, Olivatto GP, Lourenço FMDO, Lourenço ALA, Garcia GM, Pimpinato RF, Tornisielo VL. Contamination by microplastics and sorbed organic pollutants in the surface waters of the Tietê River, São Paulo-SP, Brazil. Heliyon 2024; 10:e36047. [PMID: 39224265 PMCID: PMC11367139 DOI: 10.1016/j.heliyon.2024.e36047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Microplastics (MPs) are particles between 1 μm and 5 mm in size, originating mainly from poor solid waste and effluent management, that can reach water bodies from various sources. In freshwater environments, the occurrence, distribution, and characterization of this new class of pollutants are still little explored, especially in Brazil. The aim of this study was to assess the occurrence of MPs, as well as the presence and concentration of polychlorinated biphenyls (PCBs) sorbed to these particles in the surface waters of the Tietê River - SP. Surface water samples were collected in duplicate during the dry and wet seasons. The identification and characterization of the MPs was carried out through visual inspection and the chemical identity of the particles was verified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). For the analysis of PCBs adsorbed to the MPs, the sample extracts were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The MPs were found in concentrations ranging from 6.67 to 1530 particles m-3, with a predominance of the polymers polyethylene (PE, with 58.17 %) and polypropylene (PP, with 23.53 %). The main morphological categories identified were fragments (56.63 %), fibers (28.42 %), and transparent films (13.06 %). Higher abundances of PCBs were observed in the lower size range, between 0.106 and 0.35 mm. The total concentrations of PCBs in MPs ranged from 20.53 to 133.12 ng g-1. The results obtained here are relevant for understanding the dynamics and level of contamination of MPs and organic pollutants sorbed to these particles in the Tietê River, as well as helping with mitigation measures for the restoration and preservation of this ecosystem.
Collapse
Affiliation(s)
- Nicoli Gomes de Moraes
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | - Glaucia Peregrina Olivatto
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | - Felipe Machado de Oliveira Lourenço
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | | | - Gustavo Munhoz Garcia
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | - Rodrigo Floriano Pimpinato
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | - Valdemar Luiz Tornisielo
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| |
Collapse
|
196
|
Anindita MA, Ismanto A, Zainuri M, Hadibarata T, Kunarso K, Maslukah L, Widada S, Indrayanti E, Widiaratih R, Sugianto DN, Rochaddi B, Helmi M, Atmodjo W. Trajectory of microplastic particles with 2-dimensional hydrodynamic modelling approach at Pekalongan waters, Central Java, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:832. [PMID: 39177841 DOI: 10.1007/s10661-024-13016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
This research aims to understand the extent of microplastic contamination in Pekalongan waters, Central Java, and its potential impact on fishing grounds, aligning with Indonesia's National Action Plan for Handling Marine Debris 2018-2025. The study employs a 2D hydrodynamics modelling approach with Mike 21 Software to map the spatial distribution of microplastic movement concerning fishing areas during the west and east monsoon seasons. The results showed that microplastic particles follow tidal currents in Pekalongan waters, with their movement influenced by factors such as current, wind, and tidal conditions. The trajectory of microplastics entering fishing ground areas poses potential contamination risk for fish caught by fishermen, threatening the health of marine ecosystems and the stability of their structure and function.
Collapse
Affiliation(s)
- Malya Asoka Anindita
- Master of Marine Science, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Aris Ismanto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia.
| | - Muhammad Zainuri
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Malaysia
| | - Kunarso Kunarso
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Lilik Maslukah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Sugeng Widada
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Elis Indrayanti
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Rikha Widiaratih
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Denny Nugroho Sugianto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Baskoro Rochaddi
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Muhammad Helmi
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Warsito Atmodjo
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| |
Collapse
|
197
|
Sun L, Li Y, Lan J, Bao Y, Zhao Z, Shi R, Zhao X, Fan Y. Enhanced sinks of polystyrene nanoplastics (PSNPs) in marine sediment compared to freshwater sediment: Influencing factors and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173586. [PMID: 38810752 DOI: 10.1016/j.scitotenv.2024.173586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
The difference in the transport behaviors of nanoplastics consistently assistant with their toxicities to benthic and other aquatic organisms is still unclear between freshwater and marine sediments. Here, the mobilities of polystyrene nanoplastics (PSNPs) and key environmental factors including salinity and humic acid (HA) were systematically studied. In the sand column experiments, both tested PSNPs in the freshwater system (100 nm NPs (100NPs): 90.15 %; 500 nm NPs (500NPs): 54.22 %) presented much higher penetration ratio than in the marine system (100NPs: 8.09 %; 500NPs: 19.04 %). The addition of marine sediment with a smaller median grain diameter caused a much more apparent decline in NPs mobility (100NPs: from 8.09 % to 1.85 %; 500NPs: from 19.04 % to 3.51 %) than that containing freshwater sediment (100NPs: from 90.15 % to 83.56 %; 500NPs: from 54.22 % to 41.63 %). Interestingly, adding HA obviously led to decreased and slightly increased mobilities for NPs in freshwater systems, but dramatically improved performance for NPs in marine systems. Electrostatic and steric repulsions, corresponding to alteration of zeta potential and hydrodynamic diameter of NPs and sands, as well as minerals owing to adsorption of dissolved organic matter (DOM) and aggregations from varied salinity, are responsible for the mobility difference.
Collapse
Affiliation(s)
- Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yan Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Rongguang Shi
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, No. 31 Fukang Road, 300191 Nankai District, Tianjin, China.
| | - Xingchen Zhao
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, 60438 Frankfurt am Main, Germany.
| | - Ying Fan
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China.
| |
Collapse
|
198
|
Chen MM, Zhang YQ, Cheng LC, Zhao FJ, Wang P. Photoaged nanoplastics with multienzyme-like activities significantly shape the horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134884. [PMID: 38878434 DOI: 10.1016/j.jhazmat.2024.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Nanoplastics (NPs), identified as emerging pollutants, pose a great risk to environment and global public health, exerting profound influences on the prevalence and dissemination of antibiotic resistance genes (ARGs). Despite evidence suggesting that nano-sized plastic particles can facilitate the horizontal gene transfer (HGT) of ARGs, it is imperative to explore strategies for inhibiting the transfer of ARGs. Currently, limited information exists regarding the characteristics of environmentally aged NPs and their impact on ARGs propagation. Herein, we investigated the impact of photo-aged NPs on the transfer of ARG-carrying plasmids into Escherichia coli (E. coli) cells. Following simulated sunlight irradiation, photo-aged nano-sized polystyrene plastics (PS NPs) exhibited multiple enzyme-like activities, including peroxidase (POD) and oxidase (OXD), leading to a burst of reactive oxygen species (ROS). At relatively low concentrations (0.1, 1 μg/mL), both pristine and aged PS NPs facilitated the transfer of pUC19 and pHSG396 plasmids within E. coli due to moderate ROS production and enhanced cell membrane permeability. Intriguingly, at relatively high concentrations (5, 10 μg/mL), aged PS NPs significantly suppressed plasmids transformation. The non-unidirectional impact of aged PS NPs involved the overproduction of ROS (•OH and •O2-) via nanozyme activity, directly degrading ARGs and damaging plasmid structure. Additionally, oxidative damage to bacteria resulted from the presence of much toxic free radicals, causing physical damage to cell membranes, reduction of the SOS response and restriction of adenosine-triphosphate (ATP) supply, ultimately leading to inactivation of recipient cells. This study unveils the intrinsic multienzyme-like activity of environmentally aged NPs, highlighting their potential to impede the transfer and dissemination of ARGs.
Collapse
Affiliation(s)
- Ming-Ming Chen
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Qing Zhang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu-Chen Cheng
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
199
|
Wang Y, Zhao X, Tang H, Wang Z, Ge X, Hu S, Li X, Guo S, Liu R. The size-dependent effects of nanoplastics in mouse primary hepatocytes from cells to molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124239. [PMID: 38810687 DOI: 10.1016/j.envpol.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) are easily ingested by organisms and their major accumulation organ was determined to be liver. To date, the size-dependent cytotoxicity of NPs on mammalian hepatocytes remains unclear. This study utilized mouse primary hepatocytes and catalase (CAT) as specific receptors to investigate the toxicity of NPs from cells to molecules, focusing on size-dependent effects. Results showed that the larger the particle size of NP at low doses (≤50 mg/L), the most pronounced inhibitory effect on hepatocyte viability. 20 nm NPs significantly inhibit cell viability only at high doses (100 mg/L). Larger NP particles (500 nm and 1000 nm) resulted in a massive release of lactate dehydrogenase (LDH) from the cell (cell membrane damage). Reactive oxygen species (ROS), superoxide dismutase (SOD) and CAT tests suggest that NPs disturbed the cellular antioxidant system. 20 nm NPs show great strength in oxidizing lipids and disrupting mitochondrial function compared to NPs of other particle sizes. The degree of inhibition of CAT activity by different sized NPs was coherent at the cellular and molecular levels, and NP-500 had the most impact. This suggests that the structure and microenvironment of the polypeptide chain in the vicinity of the CAT active site is more susceptible to proximity and alteration by NP-500. In addition, the smaller NPs are capable of inducing relaxation of CAT backbone, disruption of H-bonding and reduction of α-helix content, whereas the larger NPs cause contraction of CAT backbone and increase in α-helix content. All NPs induce CAT fluorescence sensitization and make the chromophore microenvironment hydrophobic. This study provides new insights for NP risk assessment and applications.
Collapse
Affiliation(s)
- Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Houquan Tang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Zaifeng Wang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Xuan Ge
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
200
|
Li J, Liu J, Wang X, Zhang T, Wang D, Shan E, Teng J, Zhao J, Wang Q. Vertical transfer of microplastics in nearshore water by cultured filter-feeding oysters. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134769. [PMID: 38870849 DOI: 10.1016/j.jhazmat.2024.134769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Microplastics (MPs) are widely distributed in the sea, but the vertical transfer of MPs by marine organisms in coastal area is still poorly understood. In this study, we used laser direct infrared (LDIR) spectroscopy to determine the number and characteristics of MPs deposited by cultured oyster Crassostrea gigas and further compared the differences between MPs of natural deposit and biodeposit in field environments. The amounts of MPs found in the biodeposit of cultured oysters were 3.54 times greater than that in the natural deposition. The polymer types of biodeposit MPs also differed from those of natural deposition. It was estimated that a single oyster can deposit 15.88 MPs per day, which is a figure much higher than the initial results, and hotspots of MPs deposition may be formed within the oyster aquaculture area. We used generalized linear mixed model (GLMM) to further infer the sources of MPs in sediments and found that distance to shore, cultured zone and urban center were important predictors of MPs abundance in sediments of aquaculture area. The above results suggest that cultured bivalves have an important capacity for MPs biodeposition and will further change the vertical distribution pattern of MPs in coastal environments.
Collapse
Affiliation(s)
- Jiasen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jialin Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianyu Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|